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Abstract

The main concrete result of this paper is enumeration of genus-two curves with complex struc-
ture fixed in P2 and P3. Along the way, rational curves with certain simple singularities are
counted as well. While the methods described can be used to count positive-genus curves in
some other cases, the most powerful direct applications of the machinery developed are to
enumeration of rational curves with a very large class of singularities in projective spaces.
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1 Introduction

1.1 Background and Results

Let (¥, jx) be a nonsingular Riemann surface of genus ¢g>2, and let d,n be positive integers with
d>1 and n>2. Denote by Hy, q(P") the set of simple holomorphic maps from 3 to P of degree d.
Let p=(u1,...,un) be an N-tuple of proper complex submanifolds of P™ such that

I=N
Z codimcp; =d(n+1) —n(g—1) + N. (1.1)
=1

If these submanifolds are in general position, the cardinality of the set

Hsa(pw) = {1, ynviw): u€Hs o(P"); w €D, uly)€m vi=1,...,N} (1.2)

is finite, and its cardinality depends only on the homology classes of p1, ..., uy. The group Aut(X)
of holomorphic automorphisms of ¥ acts freely on Hy q(x). For this reason, algebraic geometers
prefer to consider the ratio of the cardinality of the set Hy, 4(1) and the order of the group Aut(X).
For a dense open subset of complex structures on X, the cardinality of the set Hy 4(u) has the
same order. The same is true of the set Aut(X). If jy lies in this open subset, we denote the
above ratio by ng 4(1). This number is precisely the number of irreducible, nodal degree-d genus-g
curves in P" with a fixed generic complex structure on the normalization and passing through the
constraints py, ..., uN.



For g=0,1, one can define the numbers ny 4(;) for constraints of appropriate total codimension
by counting the number of equivalence classes under the action of the now infinite group Aut(X)
on the set Hy 4(p) defined as in (1.2) above. It is shown in [RT] that

nO,d(N) - RTO,d(,u‘la W2, U35 g,y - - - 7,U’N)7

where RT( 4(-;-) denotes the symplectic invariant of P" as defined in [RT]. For g =1, in [I]
the difference

RT g q(p1; p2, -, un) — 2ng.q(pe)

is expressed as an intersection number on a blowup of the space of degree-d (N+1)-marked rational
curves passing through the constraints pi,...,py. This number is shown to be computable, and
explicit formulas are given in the n = 2,3 cases. On the other hand, the symplectic invariant is
easily computable from the two composition laws of [RT]. A completely different approach for the
n=2, g=1 case is given in [P1]. Using this algebraic approach, [KQR] express ny 4 in the n=2
case in terms of the numbers ng o with d’ <d.

In this paper, we extend the approach of [I] to compute the difference

RToq(; p1, - i) — 2n2,q(p)

in the n=2,3 cases. The reason for the factor of two above is that the automorphism group of a
generic genus-two Riemann surface has order two. The following two theorems are the main results
of this paper. The two tables list some low-degree genus-two numbers. Evidence in support of the
two formulas is described in Subsection 5.8, where more low-degree numbers for P? are also given.

Theorem 1.1 Let ny g4 denote the number of genus-two degree-d curves that pass through 3d—2
points in general position in P? and have a fized generic complex structure. With ng="mnod,

1 9dy1da—1N [ 3d—2
2 2 12 102
= -1 — E ( 28 -1 7) .
na.d 3(d )nd + 9 d1d2 + 28 6 3d — 2 <3d1—1> d1d2nd1nd2
di+do=d
d |112]3 4 S 6 7

nog | 00| 0] 14,400 | 6,350,400 | 3,931,128,000 | 3,718,909,209,600

Theorem 1.2 If d is a positive integer and p is a tuple of p points and q lines in general position
in P3 with 2p+q=4d—3,
2n,4(p) = RT4(; 1) — CR(p),

where CR(p) is the sum of the intersection numbers of explicit tautological classes in the space of
stable rational maps into P3.

degree 4 5 6

(p,a) (3,7) (2,9) (1,11) (8,1) (0,17) (10,1)
na.a() | 14,400 | 307,200 | 4,748,160 | 9,600 | 7,494,574,433,280 | 1,301,760




A formula for CR(u) is given in Theorem 5.28. Intersection numbers of tautological classes are
shown to be computable in [P2]. In fact, we give a method of computing these numbers along the
lines of that in [I], which is slightly different from the method of [P2]; see Subsection 5.7.

The numbers we obtain in the n=2 case are different from the numbers given in [KQR]. However,
our numbers can be recovered via the approach of [KQR]. In particular,

KQR
nod = 6(712752 + 74),

where 74 is the number of degree-d tacnodal rational curves passing through (3d—2) points in

general position in P2. The factor of six is a minor omission on the authors’ part. The contribution

of 674 arises from a three-component stratum [KQR] rule out by Remark 3.12, which is stated

without a proof. Details can be found in [Z2].

This paper combines the topological tools of Section 3 with the explicit analytic structure theorems
of [Z1]. Together these give a general framework that will hopefully provide a way of computing
positive-genus enumerative invariants from the symplectic ones in any homogeneous Kahler mani-
fold. In fact, the methods of this paper should apply, with very little change, at least up to genus
seven in P2, to the g=3 case in P3, and to the g=2 case in P*. Genus-three plane fixed-complex-
structure curves have been enumerated; see [Z3].

Along the way, we enumerate cuspidal rational curves in P? and two-component rational curves
connected at a tacnode in P3; see Lemmas 5.4 and 5.5. The formula of Lemma 5.4 is not new.
However, the methods of this paper can be used to count rational curves with singularities of “lo-
cal nature.” By “local nature,” we mean that a description of the singularities can be given that
involves at most one point of each component of the normalization of the curve. For example, a
tacnode on a one-component curve is not of “local nature,” but a tacnode at the node common
to two irreducible components of a curve is. So is a cusp of any arbitrary pre-specified form. Un-
like many approaches in algebraic geometry, our methods are not limited to P? and apply just as
well to arbitrary-dimensional projective spaces. In fact, the machinery itself can be used on other
homogeneous manifolds to express counts of singular rational curves in terms of intersections of
tautological classes on moduli spaces of rational maps. However, there is no general method of
computing these intersections for homogeneous manifolds other than the projective spaces.

The author is grateful to T. Mrowka for pointing out the paper [I] and many useful discussions, and
G. Tian for first introducing him to Gromov-Witten invariants. The author also thanks R. Vakil
for sharing some of his expertise in enumerative algebraic geometry, and A. J. de Jong and J. Starr
for help with understanding [KQR].

1.2 Summary

Ifrel'(¥ XP”;AO’IWET*Z_J @ mpa TP™), let My, q denote the set of all smooth maps u from 3 to
P™ of degree d such that Ju|,=v/(, () for all z€X. If p is as above, put

Msa(w) ={(1,...,yv;u): uEMs pa; MES, uly)Ew Vi=1,...,N}.

For a generic v, My, ,, 4 is a smooth finite-dimensional oriented manifold, and My, , 4(1t) is a zero-
dimensional finite submanifold of My, 4% ¥V, whose cardinality (with sign) depends only the
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homology classes of i1, ..., un; see [RT]. The symplectic invariant RTy 4(; 1) is the signed cardi-
nality of the set My, , q(1).

If [[villco — 0 and (y,;ui) € My, a(p), then a subsequence of {(y ;u;)};2; must converge in the
stable-map topology to one of the following:
(1) an element of Hy, 4(1);
(2) (7,9, u), where X is a bubble tree of S?’s attached to ¥ with marked points 1, ..., yy, and
w: ¥p —P" is a holomorphic map such that u(yy) €y for I=1,..., N, and

(2a) uly, is simple and the tree contains at least one S?;

(2b) uly is multiply-covered;

(2c) uly is constant and the tree contains at least one S2.
By Proposition 6.6, the case (2a) does not occur if the constraints are in general position. Fur-
thermore, if g=2, (2b) cannot occur either if n=2,3 or if n=4 and d#2. It is well-known that
n22(p) =0, and thus the case n=4 and g=d=2 presents no interest. Our approach will be to take
t very small and to count the number of elements of My 4, 4(1t) that lie near the maps of type (2c).
The rest of the elements of My 4, (1) must lie near the space Hy, q(1t). By Proposition 3.30 in [Z1]
and Corollary 6.5, there is a one-to-one correspondence between the elements of Hy 4(p) and the
nearby elements of My, 4, 4(1), at least if d>3. If d=1,2, Hy 4(p) =0; see the proof of Proposi-
tion 6.6. Thus, we are able to compute the cardinality of Hy 4(x) by computing the total number
of elements of My, 4, q(1t) that lie near the maps of type (2c).

In Subsection 1.3, we summarize our notation for spaces of bubble maps and vector bundle over
them. For details, the reader is referred to [Z1]. In Section 2, we describe an obstruction-bundle
setup and state Theorem 2.7, which relates the elements of My 44, (1) lying near the maps of
type (2c¢) to the zero set of a map between two bundles. We also describe the local structure of
certain spaces of stable rational maps. These spaces are very familiar in algebraic geometry, but
for our computations in Section 5 we need the analytic estimate of Theorem 2.8.

In Section 3, we introduce a category of mostly smooth (ms) objects and maps and present the
topological tools used in Section 4. We view moduli spaces of rational maps as ms-manifolds, rather
than as stacks. This approach allows to study the behavior of certain bundle sections over these
topological spaces using the analytic estimate of Theorem 2.8.

In Section 4, we use the topological tools of Subsection 3.1 to show that the number of zeros
of the maps of Theorem 2.7 is the same as the number of zeros of explicit affine maps between
vector bundles over cartesian products of spaces of rational maps with ¥*. The results of this
simplification are summarized in Subsection 4.9. In Section 5, we relate the zeros of these affine
maps to the intersection numbers of spaces of stable rational maps into P". We use Theorem 2.8
and Section 3 for local excess-intersection type of computations. We conclude with the very explicit
formula of Theorem 1.1 in the n=2 case and a somewhat less explicit one of Theorem 5.28 in the
n=3 case.

1.3 Notation

In this subsection, we give a brief description of the most important notation used in this paper.
See Section 2 in [Z1] for more details.



Let gn,qs: C— 82 C R? be the stereographic projections mapping the origin in C to the north
and south poles, respectively. Explicitly,

2z 1-— |z|2) 22 —1+4 |22
— , € CxR, _ ( , ) 1.3
We denote the south pole of S2, i.e. the point (0,0, —1) €R3, by co. Let
eso = (0,0,1) = d ‘<2>6T 52 (1.4)
oo = (U, YU, = ags o\ s oo .

where we write z = s+it € C. We identify C with S>—{occ} via the map gy. If N is any nonnegative
integer, let [N]={1,...,N}.

Definition 1.3 (1) A finite partially ordered set I is a linearly ordered set if for all iy,i9,he€l
such that 11,19 <h, either i1 <ig or io <iy.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there ezists 0el
such that 0<i for alliel.

If 71 is a linearly ordered set, let I be the subset of the non-minimal elements of I. For every
h € I, denote by ¢, € I the largest element of I which is smaller than h. We call ¢: I — I the

attaching map of I. Suppose I = || Ij is the splitting of I into rooted trees such that k is the
keK

minimal element of I;,. If 1¢ I, we define the linearly ordered set IL1 to be the set TU{1} with
all partial-order relations of I along with the relations
k<1, 1<h if hely.
If I is a rooted tree, we write JU1 for IL1.
If S=% or S=5? and M is a finite set, a P"-valued bubble map with M-marked points is a tuple
b= (S,M,I;a:, (j,y),u),
where I is a linearly ordered set, and
z:I—SUS% j:M—1I, y:M—SUS? and u: I—C™(S;P") U C™(S?;P")

are maps such that

52 —{oo}, ifpel; 52 {0}, ifjiel; C°(S%, P, ifiel;
Tp € . A 1 € IR u; € A
S, if o, &1, S, if j, &1, C°(S;P"), ifidl,

and uy,(co)=u,, (x3,) for all he I. We associate such a tuple with Riemann surface

= ) iy xS, ifiel; )
Xp = <7EL|IEb,Z)/N7 where Ypi = {{i}xS, ifigl and (h,00) ~ (11, z) YheEl,



with marked points (ji,;) € X5, and continuous map wuy, : 3y — P, given by w|s, , = u; for
all ieI. We require that all the singular points of ¥y, i.e. (¢p,xp) € Xy, for h € f, and all the
marked points be distinct. In addition, if ¥;=5? and u;.[S?|=0€ Hy(P"; Z), then %; must con-
tain at least two singular and /or marked points of ¥j, other than (i,00). Two bubble maps b and ¥’
are equivalent if there exists a homeomorphism ¢: ¥, — Xy such that w, =uyo ¢, ¢(Jj1, yi) = (j], )
for all € M, @|s,, is holomorphic for all i€ [, and ¢[s, ,=1d if S=% and iel—1.

The general structure of bubble maps is described by tuples 7 = (S, M, I; j, d), with d; € Z describing
the degree of the map uy, on Xy ,;. We call such tuples bubble types. Bubble type T is simple if I is
a rooted tree; 7 is is basic if I =0; T is semiprimitive if ¢}, & I for all heI. We call semiprimitive
bubble type 7 primitive if j; € I for all J1€ M. The above equivalence relation on the set of bubble
maps induces an equivalence relation on the set of bubble types. For each h,i€ 1, let

DT ={hel:i<h}, DT =D;TU{i}, HT ={hel:y,=i}, M7T ={leM: j=i},
0, ifd;=0Vi<h;
xTh =11, ifd,#0, but d;=0 Vi<h,;

2, otherwise.

Let H7 denote the space of all holomorphic bubble maps with structure 7.

The automorphism group of every bubble type 7 we encounter in Sections 4 and 5 is trivial. Thus,
every bubble type discussed below is presumed to be automorphism-free.

If S=3%, we denote by M7 the set of equivalence classes of l?ubble maps in H7. Then there exists
/\/lgg) C H7 such that M7 is the quotient of /\/lgg) by an (S')!-action. Corresponding to this action,
we obtain |I| line orbi-bundles {L,7 — M7 : h € I}. The bundle of gluing parameters in this

case is .
Lh,[b]T® th,[b}T’ lf LhEI;

FT = Fy T, where F,n7 = R
D5 Lo {L,L[b]’f@TzhE, if g

hel
Let FT ={v= (Un) i €FT v #0 Vhe I}. Each line orbi-bundle F},7 — M7 is the quotient of
a line bundle FfEO)T—> M(TO) by a Gr= (Sl)f—action. We denote by FOT the preimage of FOT

in FOT = P F, ,EO)’T . The bundles F7T, FOT and F }EO)T are defined even if the automorphism

hel
group of 7 is nontrivial.

For each bubble type 7 = (5%, M, I;7,d), let
Ur = {[b] b= (Sva)I;xv (],y),u) €Hr, u“(OO) = ’LLZQ(OO) VilaiQGI_f}-

Similarly to the S=2X case above, Ut is the quotient of a subset By of H7 by a GTE (Sl)l—action.
Denote by Z/{7(9) the quotient of By by GTE(Sl)ICéT. Then Ug is the quotient of Z/{7(9) by the
residual G5 = (S Wi=Ic G action. Corresponding to these quotients, we obtain line orbi-bundles



(L T—UY: he I} and {L;T— Uz i€T}. Let

FT =@ AT — Uy, where FyT =
hel
FT =@ FT — Uz, where FyyT =LyyT @ L], y7T.
hel

Lh,[b}T & Lrh,[b}77 if vp Ej;
Lh,[b}Ta if Lh gi,

The orbi-bundles F3,7 and F;7 are quotients of line bundles over By similarly to the S=X case.

The stable-map topology on the space of equivalence classes of bubble maps induces a partial
ordering on the set of bubble types and their equivalence classes such that the spaces

UMT/, Z/_l,gg): UU7(9/), and Ur = UUTI
T'<T T'<T T'<T

are compact and Hausdorff. The G’%-action on Ll7(9 ) extends to an action on 2;{7(9 ), and thus line

Mr

orbi-bundles L;7T — U7 with i€ —1I extend over Ur. The evaluation maps
evi: Hr —>]Pm7 eVl((S, M, I;z, (.77y)7u)) :ujl(yl)a

descend to all the quotients and induce continuous maps on My, Uz, and L_l7(9 )1t W=y is an
M-tuple of submanifolds of P", let

Mz (p) ={beMz:evi(b)ew Yie M}
and define spaces Uz (11), Uz (i), etc. in a similar way. If S=52, we define another evaluation map,
ev: By — P" by ev((S2,M, Iz, (g, y),u)) = u()(oo),

where 0 is any minimal element of I. This map descends to L{7(—0 ) and Ur. T u=p {O)uM is a tuple
of constraints, let

Ut (s par) = {bEUT (par) : ev(b) € g}
and define Ug) ) (kg5 pear), ete. similarly. If S = ¥, 7 is a simple bubble type, and dy = 0, define
ev: Hy — P" by ev((E,M, Iz, (7, y),u)) = uy(X).

This map is well-defined, since u; is a degree-zero holomorphic map and thus is constant.

If 7 is any bubble type, let (T) be the basic bubble such that 7 <(7). If 7 is a simple bubble type,
let 7 be the bubble type obtained from 7 by dropping the minimal element 0 from the indexing
set I and the subset My7 from M. Note that if 7" is primitive, 7 is basic.

Finally, if X is any space, F'— X a normed vector bundle, and §: X — R is any function, let
Fs5 = {(b,’U)EF: |U|b < 5(())}

Similarly, if © is a subset of F, let Q5 = F; N Q. If v = (b,v) € F, denote by b, the image of v
under the bundle projection map, i.e. b in this case.



2 Analysis

2.1 The Basic Setup

In this section, we focus on bubble types 7 = (S, M, I;7, gl) such that either S =52 or ds=0. In
the first case, we describe a small neighborhood of Uz (u) in U7y (1) and the behavior of sections
of certain bundles over U1 (1) near Ur (p1); see Theorem 2.8. This theorem is deduced from The-
orem 3.33 in [Z1]. If 7 is a simple bubble type, S =X, and dy =0, we describe the elements of
Ms .a(pe) lying near M7 (u) as the zero set of a map defined on an open subset of the bundle F'7;
see Theorem 2.7. The map takes values in a bundle over M7 (), which is the analogue of Taubes’s
obstruction bundle of [T] in this setting. Theorem 2.7 is a consequence of Theorem 3.29 in [Z1],
which requires us to make two major choices. This is done in the next two subsections.

If7= (S, M, I;j, d) and S =52, by Corollaries 6.3 and 6.5, 7 is a (P", J)-regular bubble type in
the sense of Definition 3.1 in [Z1]. This regularity property implies that

(R1) Hr is a smooth manifold;

(R2) for any b= (S, M, I;z,(j,y),u) € Hr, a neighborhood of b in Hr, is modeled on

ker (Dy: T'(b) — T (b)) & @Txhzb,Lh ® @ Ty, X,y
hel leM

(R3) Dy: T'(b) —T%1(b) is surjective for all be Hr.

Here T'%1(b) denotes the space of u;TP"-valued (0, 1)-forms on the components of ¥y, while I'(b)
is the set of vector fields & on the components of ¥, that agree at the nodes and such that
&(i1,00)=¢&(i9,00) for all i1, i e€I—1. The operator Dy, is the linearization of the d-operator with
respect to a connection in TIP". Along Hy, it is independent of the choice of the connection. On
the other hand, if 7 is a simple bubble type, S=3, and dy =0, by the same two corollaries, 7 is
a (P, J)-semiregular bubble type in the sense of Definition 3.2 in [Z1]. This means that (R1) and
(R2) are satisfied, with I'(b) defined as above but omitting the last condition. Property (R3) is not
satisfied, and in fact by the two corollaries,

coker Dy ~ Hy:' @ TpyyP" Ve H7,

where HOZ’1 is the space of harmonic (0, 1)-forms on X. This cokernel bundle descends to a bundle
ot — M7, which will be our obstruction bundle.

If S=%, for the gluing construction in [Z1], we choose a smooth family {g, 5: b€ H7} of metrics
on ¥ such that for all
b= (3,M, Lz, (j,y),u) € Hr,

the metric 9pp 18 flat on a neighborhood of x; in X for all h € I such that ¢, =0. This family of

metrics, in fact, depends only on the sets {xp : 1 = @} Along with the standard metric on S2,

the metric g, 5 induces a Riemannian metric g, = (gp;)icr on Xp = |J Zp;. If S= 52, we take 9b,i
’ icl

to be the standard metric on X ; = S? for all i€ 1. With notation as above, if zj,, z € Y=, let

rb,h(z):dgb()(ach, z). If xp, zEZbﬂ-:SQ and z#o00, let ry 5 (2) =|2—xp|.

For each v=(b,vp); ;€ F 7 sufficiently small, in [Z1] we then define a complex curve ¥,, smooth
maps ¢, : Xy, — Xp and ¢, ;: X, g — X for i€ I, and Riemannian metric g, on ¥ on X, such that

9



(G1) the linearly ordered set corresponding to X, is I(v)=I—{hel: v, #0};
(G2) the map ¢z, factors through each of the maps gy ;
(G3) qv: (Zv, 90) — (Zp, g) is an isometry (and thus holomorphic) outside of the annuli

_ 1 1
ALy = dok, ({2€ 500 lonl¥ < ron(2) < 28 });
— —1 1 1 1 (21)
Apn = Qo ({zezb,%: Slvnl® < mp(2) < ol })-

(G4) qu, (Aih,gu) — (quyn (Aih),gb) is an isometry.

The map ¢, collapses disjoint circles on ¥, and identifies the resulting surfaces with S? in a
manner encoded by v. Alternatively, (X,, g,) can be viewed as the surface obtained by smoothing
(some of) the nodes of ¥;. The maps ¢, and g, ; are constructed explicitly by fixing a smooth
function f: R— [0, 1] such that

0, ift<1;
t)y=< " - and "(t) >0 if te(1,2). 2.2
5(1) {1, i, B'(1) (1,2) (2:2)

If r >0, let 5, € C*(R;R) be given by ﬁr(t)zﬂ(r_%t). Note that
1,1 1 _
supp(B,) = [r2,2r2], [|Blco < Cpr™2, and [|B/]|co < Cor™. (2.3)

These cutoff functions will not appear in the main statements of this paper, but they do show up
in the proofs of Lemma 2.1, Theorem 2.8, and Proposition 4.4. Having constructed the maps g,
we let b(v) = (X4, uy) = (Zy, up © ¢y). The marked points on ¥, are the preimages of the marked
points of ¥ under the map gq,,.

We also need to choose a smooth family {gpn;: b€ /\/lgq)} of metrics on P" invariant under the

equivalence relation on Mg(—)) if S=¥ and on By if S=52. While taking gpn p to be the standard
metric on P may be the canonical choice, for computational reasons it is more convenient to take
gen b= gpn ev(b), Where {gpn q: ¢€P"} is the family of metrics of Lemma 2.1.

Lemma 2.1 There exist rpn >0 and a smooth family of Kahler metrics {gpnq: ¢ € P*} on P"
with the following property. If By(q',7) CP™ denotes the gpn 4-geodesic ball about ¢ of radius r, the
triple (Bq(q,rpn), J, gpn ) is isomorphic to a ball in C™ for all g€ P™.

Proof: On the open set Up={[Xo:...: X,,] € P": Xy # 0}, the Fubini-Study symplectic form is
given by .
7 —
wpn = 5—00 In(1+fo), where fo([Xo:...: Xp]) = > 1Xk/Xol (2.4)
ke[n]
see [GH, p31]. Let g=[1:0:...:0]. Set
i -
Wpn g e = %88{]60 + (Be2o fo)(ln(1+f0) — fo)}. (2.5)

Note that wpn 4 agrees with wpn outside of the set {fo < 2¢} and with the standard symplectic
form wen on {fy < €}. Here we view wcn as a form on Uy via the coordinates zy ;= X/ Xo, k€ [n].
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In particular, wpn 4 is globally defined, and the corresponding Riemannian metric on {fo < €} is
flat. Furthermore,

WPn g, :{(1 — Be2 o fo)wen + (Be2 © fo)an}

i I . _ _ (2.6)
+ %{(8(6620]00)) (8f0) — (0(Be20 /o)) (0.f0) + (aa(ﬂegofo))fo},
where fy = In(1+ fo) — fo. On the set {fo < 2¢} with € < %,
|Foll o < Ce* and [[dfo| o < Ce2, (2.7)

where Hd fOH co denotes the C%-norm with respect to the standard metric on C". Furthermore,
by (2.3),

ld(Be0follgo < Celer, [[VA(Beofo)]|go < Cle2erex + €71, (2.8)
where again all the norms are computed with respect to the standard metric on C". Equations
(2.7) and (2.8) imply that the term on the second line of (2.6) tends to 0 as € goes to 0. Thus by

(2.6), we can choose € > 0 such that wpnr ; = wpn 4 is a symplectic form on all of P". Note that
wpn 4 is invariant under the action of the stabilizer of ¢ in SU,, 41, which is the subgroup

Staby(SUn41) = {( deto(h) 2 > he Un} C SUni.

We can define a smooth family of symplectic Kahler forms on P" by

*
Wpn g.q = g WpPn g, g c SUn+1.

The above invariance property of wpn  insures that wpn 4., depends only on g-q. We can now take
gpn g.¢ to be the metric corresponding to the symplectic form wpn 4., and the standard complex
structure J on P"™.

We denote by exp, and II, x for X € TP" the gpn ,-exponential map and gpn p-parallel transport
along the gpn j-geodesic for X, respectively. If ve I’ O let

gpry = gpnp,, €XP, = expy, , I, x =11, x.
If ve FO is sufficiently small, we define L2-norms inner-products on
I'(v) =T (b(v)) and r%(v) = 1% (b(v))

via the metrics gpr ,, and g,, in the usual way. Denote by D,, the linearization of the 0-operator with
respect to the metric gpn,, on P and by D} its formal adjoint with respect to the above (L?,v)
inner-product. We fix p>2 and denote by || - ||, .1 and || - ||, the modified Sobolev (LY, gpn 1, )
and (LP, gpn v, gp) norms of [LT] on T'(v) and T%!(v), respectively. Let Lf(v) and LP(v) be the
corresponding completions. A description of the modified Sobolev norms in the notation of this
paper can be found in [Z1]. They are needed only for certain technical aspects of this paper.
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2.2 Obstruction Bundle

In this subsection, in the case =3, we choose an obstruction bundle over F’ @75 in the sense of
Definition 3.13 in [Z1] with § € C*®°(M7;R™) sufficiently small.

Let 07 € C®°(M;R™) be such that
467 (b)|duillp,co < rpn Vb= (3, M, I;z, (j,y),u) e M1, i€l

We assume that the above function d is such that 853 < 6r. fve FOT; and X P ETeV(bU)]P’”@JH%l,

define R, Xv¢ € I'%!(u,) as follows. If z € ¥, =¥ is such that ¢,(z) € b, for some h € I with
x7h=1 and ‘qb?l(qv(z)ﬂ < 267 (by), by our assumption on é7, we can define %, (2) € Toy (5, )P" by

€XPy ev(by) Uy(2) = up(2), |ty(2)| < rpn.

Given z€X, let h, €I be such that ¢,(2) €%y, .. If weT,%, put

RUXTMZU) = B(éT(bUNQUZ‘)(w‘zw)HU,EU(Z)Xa it x7h, =1;
(¢|zw)X7 if x7h, = 0.

Let F(fl(v) be the image of Tev(bu)]P’"@)H%l under the map R,,. Denote by 772’}_ the (L2, v)-orthogonal
projection of LP(v) onto I'! (v).

The spaces F%l(v) form our obstruction bundle over F®7. We need to show that these spaces
satisfy the requirements of Definition 3.13 in [Z1]. First, the rate of change of n?f_ with respect
to changes in v should be controlled by a function of b, only. The proof of this fact is similar to
the proof of the second statement of (5) of Lemma 3.6 in [Z1]. The next lemma implies that the

remaining conditions are also satisfied. For any he I, put

Lemma 2.2 For any ve FOT5 and Xi/JETev(bv)]P”@H%l, D} R, X1 vanishes outside of the annuli
App = qgl({(h, 2)€Xp, bt 07(by) < |q§1(z)| < 267 (by)})

with hel such that x7h=1. Furthermore, there exists C € C®°(Mz;R") such that
(D) D3 Ru Xt oo < CO)( 5 [ola)IXTullello;

xTh=1
2 2 .
(2) (1= C o) l?) [ X¢llop < [RoX W[l < (14 C00) ] ?) | X9 |lo5, where p=2,p.

Proof: The first statement and estimate (2) are immediate from the definition of R, X and of
the norms; see [Z1]. Let (s,t) be the conformal coordinates on A, j, given by ¢,(s,t) = s+ it € C.
Write g, = 072(s,t)(ds? + dt?). Then

=< (145 +1t%). (2.9)

DN =
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Put

5(57 t) = {Rleb}(s’t)as = ﬁ(éT(bu) \% 52 + t2) (¢|(s,t)8s)Hv,ﬁv(s,t)X- (2'10)
Then by [MS, p29],
* _p2( _ 2 B
DiR, XY, = 0 ( —¢+ Jdtf), (2.11)

where % and % denote covariant differentiation with respect to the metric gpn,, on P". Since this
metric is flat on the support of £ and z/JEHOZ’I, equations (2.9)-(2.11) give

\ 1+52412)° —s it
DR, X, = %{B/‘éT(bu)\/sﬂ-t?éT(bv)\/m}(w‘(s,t)as)nv,ﬁv(s,t)X’ (2.12)

Since the right hand-side of (2.12) vanishes unless d7(b,) ™! <v/s2+12 <267 (b,) ™!, it follows that
IDERXD],, . < C)|lends]IXTs < C'(b0) olall]21X] (2.13)
Claim (1) follows from (2.13).
Let R, : H%l ® Tey(p,)P" —T'—(v) be the adjoint of R e
(RoXw, RuX'WY), , = (X0, XY, 5 = (X, X ), (6,0 (2.14)
for all X, X' € Tuy(p,)P" and ¢, ¢ € H3:'. By Lemma 2.2, || R, — Ryll2 < C(by)|v].

2.3 Tangent-Bundle Model

We now describe our choice for a tangent-bundle model, which is the subject of Definition 3.11
in [Z1].

For any v € FOT sufficiently small and ¢ € T'(b,), define R,£€ LE(v) by {R,£}(2) = &(qu(2)).
Let I'_(v) be the image of ker(Dy,) under the map R,. Denote by I'y(v) its (L2, v)-orthogonal
complement in L} (v). Let 7, + be the (L?,v)-orthogonal projection onto '+ (v).

If zeX, let Hy(z)={v EH%’l : 9|y =0}. This is a codimension-one subspace of H%l for all z€%;
see [GH]. Denote by Hi;(z) its L?-orthogonal complement. The space Hy;(z) is independent of the
choice of a Kahler metric on (X, jx). For any he I, we put ip(v) =q,., (th,xp). Fix h* eI such
that y7h*=1. Let

T_(v) = D} Ry(H5; (2 (v)) @ Toyp,)B")-

Denote by T'; (v) the (L2,U):orthogonal~complement of T_(v) in LY(v) and by 7, + the ~(L2, 9v)-
orthogonal projections onto I'y(v). Let I'; (v) be the image of I' (v) under 7, 4 and let I'_(v) be
the (L2, v)-orthogonal complement of T'y (v) in Lf (u,).

The spaces f‘_(v) will be our tangent-space model. We need to check that the requirements of
Definition 3.11 in [Z1] are satisfied. Let

{hel:xr(h)=1} = {hi=h" hy, ..., hp}.
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If z€ %y 5, is such that |g5'(2)] < 28(b), define @y, (2) € Tov)P" by
€XPpev(b) U, (2) = Un,(2), |Un, (2)|p < TPn.
If X €ToyyP", define Ry p, X €T (up,) by

0, if 2| > 267 (b))~
Rop, X(2) =9 0 0P v others
5 ‘6T(b)‘z‘ bvuhr (z) , otherwise.

||

Since Ry, p, X vanishes at all the nodes of X by assumption on d7, we can extend Ry, X by zero
to an element of I'(b). If c=cjy eCl" is different from zero, let

T_(b:c) { Y Ry, X X €Tog )]P’”}
refm)

Denote by I'; (b; ) the (L?,b)-orthogonal complement of I'_(b; ¢) in I'(b). Let 7 + be the corre-
sponding (L2, b)-orthogonal projection maps. Let I'y (b;¢) = Tb,e)+ (L4 (b)) and let I'_(b;¢) be its
(b, L?)-orthogonal complement.

Lemma 2.3 There exist 0, C’EC’OO(MgQ);RJF) such that for all ve FOT; and ¢ eT_(v),

1€llop1 < C(bo)[[E]l.2-

In addition, dimc ['_(v)=dimc T (by; c)=n for any nonzero c€ C™. Furthermore, ifug—be Mg(—))
and & €T _(v) is such that ||€klv,,2 = 1, then there exists a nonzero c€C™ and £ €T'_(b;c) with
1€]lb.2=1 such that a subsequence of {&} C-converges to €.

Remark: The last statement means that a subsequence of {¢;} C%-converges to & on compact
subsets of ¥} and the norms /{4, p,1 are uniformly bounded; see Definition 3.9 in [Z1].

Proof: (1) Let ¢ be a generator of HOE’}JF (Zn, (v)). If X €Ty, P and r € [m], define R, , X €' (uy)
as follows. If ¢, (2) € Ep, p,, let

R, h,«X ( Z hb:cr(v qu hT QN 8 D 1+ ‘qu‘ )

re[m] |qu|

Xﬁ/‘57(bv)|quz| (szd(qu,]llr OQN)as)Hbv,ﬂu(z)X'

Note that the sum is not zero, since ¢|jh1(v) #0. If qu(2) €Xp, b, we let R, X(2)=0. Since the
modified Sobolev norms are equivalent to the standard ones away from the thin necks of (X,, g,),

-1
HR’U hTXval = (bv)< Z "(z}ﬁcr(v)d(Q;}lTOQN)asD ‘szd(q;]llr OQN)88“X|U
re[m)|

(2.15)
< C'(by) |1 Ropy X [l o,2-

By the proof of Lemma 2.2, if ¢ € T'_(v),

§=R,X= )Y RypX

re[m)]
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for some X €Tty (p,)P". Thus, the first two statements of the lemma follow from (2.15).
(2) If vy —b and &, =R, X €T'_(vg) is such that ||€g]v, 2=1, then it is immediate from (1) that

a subsequence of &, C%-converges to > ¢ Ry p, X, where
re(m]

-1
X = lim Xz, ¢ = lim (Z\%(U)d(q;}”oq]v)aso (s d(ayh, oan)ds).  (2.16)

k—00 k—
re[m]

The two limits in (2.16) exist after passing to a subsequence of the original sequence. This proves
the last statement of the lemma.

Lemma 2.4 There exist 9, CECOO(MgQ);RJF) such that for all ve FOT; and ¢€T_(v),

||§||v,p,1 < C(bv)HgHvQ'

Proof: Let T'_ (v) be the (v, L*)-orthogonal complement of m,, _ (I'_(v)) in I'_(v). Then
I (v)=T_,(v)®T_(v).

Since this decomposition is (L?,v)-orthogonal, we can assume that either £€T_, (v) or £€T_(v).
In the first case, the statement is obvious, since I'_; (v) C I'_(v). The second case is proved in
Lemma 2.3.

Corollary 2.5 Suppose v € FOT5 and Uk—>b6./\/lg9). If {€,1) is an (L2,U)-0rth0n0rmgl basis
for T_(vy), then there exists a nonzero c€ C™ and an (L?,b)-orthonormal basis {&,,} for T—(b;c)
such that after passing to a subsequence &,, CO-converges to &y for all 1.

Proof: If & € f_(vk), by Lemma 2.3 a subsequence of {{;} CO-converges to an element of
& €l (b;c) for some nonzero ¢ € C" dependent on the sequence {vy}. Furthermore, orthonormal
pairs of such elements C°-converge to an orthonormal pair in T'— (b). If &, €T _ (vy) CT—(v), then
by definition of I'_ (vk), a subsequence of {&;} C%-converge to an element & € T'—(b), which must
be orthogonal to I'_ (b; ¢); see Lemma 3.10 in [Z1]. Thus, a subsequence of {{&;}} C%-converges to
an orthonormal set of vectors in I'_(b), which implies that dim¢ T'_ (b; ¢) > dime I'— (vy,). However,
dime T (b; ¢) = dime T (b; ¢) + dime T (b; ¢)
=dimc ' (b) + (dimc I'_(b;c) — dimg mp —T'— (b; c)) :
dimc T (vz) = dime T'_ (vg) + dime T (vg)
= dimc ' (vg) + (dimc I'_(vg) — dim¢ varf‘_(vk)) ,
where I'_ (b; ¢) denotes the (L?,b)-complement of 7, _I'_(b;c) in I'_(b). Since I'_(vy) and I'_(b)
have the same dimension, in order to conclude the proof, it is sufficient to show that

mp— : T (b;c) — T_(b;c)
is an isomorphism; see Lemma 2.6.
Lemma 2.6 There exists C' € COO(MgQ);RJF) such that for all bEMg(—)), nonzero c€C™ and £ €T _(b; c)

[1€llp.2 < C(be)l|76,~Ellp,2-
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Proof: Suppose X € Te, ) P"". We define Ry p, X €T%(uy, ), outside of 0o € Ty .., by

Rop, X[, = 48007 (0)lay' (@)]) (ay""d2) Wz, () X,

where dz is the usual (0, 1)-form on C. By the same computation as in the proof of Lemma 2.2,

Ry p, X =D} Rb,th- Thus, if {=¢; €ker Dy and 20 < d7(b), by integration by parts,

b,Uhr

(& Rop, X))y, = {énrs Dy, Ryp, X)),

= 257 (b)! / (). Ty, (o X .

gy (z)|=6-"
since Dy, &n, =0. Using the change of variables with x = gn(w™1h), we obtain

C1x dw
(&, (), My, (@) X)pay "dz = — /<§h,«‘qN(w1)7Hb,ﬂhT(qN(w1))X> el
4y (@)=51 jwi=o

. d
= —271'2% <£h* |qN(w*1)) Hb,ﬂhT ((IN(wil))X>b‘

w=0

=0 —2m’< %(&“ °ds) ‘2—07 X>’

. d
= —2mi—={&h.lgs(2)> Mo, (s () X o
since Dy, &n, =0. It follows from (2.17) and (2.18) that for any =& € ker(Dy),
D
— -1 -
<<§’ Z Cer’hTX>>b = dmor(b) Z cr<ds (ghroqs)‘z=0’X>’
relm] re[m)]
Along with Corollary 6.3, equations (2.19) gives
D
|m > el X| = CO)enl  sup —(&n,.005)| X
Tez[;n] b,2 & Eker(Dy), 1€an 11=1 <d8 = >b

> C'0)ler |1X] 2 C"0)]| 3 eRon, X

re[m)]

(2.17)

(2.18)

(2.19)

(2.20)

where r* € [m] is such that |¢,«| =sup, |¢,|. Since the right-hand side of (2.20) must be a continuous

function of b, the claim follows.

The statement of Corollary 2.5 is precisely Condition (1) of Definition 3.11 in [Z1]. The other
two conditions require that the rate of change of the (L2, v)-orthogonal projection onto I'_(v) be
controlled by a function of b, only. This is a consequence of the convergence described in the
Corollary 2.5, i.e. we can use the same argument as described in the remark following Lemma 3.6

in [Z1], but with I'"_(b) replaced by the appropriate space I'_(b; ¢) (depending on v).

2.4 Structure Theorem, S =X

If T=(X%,[N],I;7,d) is a simple bubble type and p is an N-tuple of complex submanifolds of P"

such that the evaluation map,

eviyy=evy X ... xevn: Mg — (PN,
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is transversal to pq X...xuy, Mz (p) is a complex submanifold of M7z. Let N*7T be its normal
bundle. If S is a complex submanifold of M, denote its normal bundle by N'S and an identification
of small neighborhoods of S in NS and in M7 by ¢s. For any complex vector bundle V—s M,
we denote by ®s an identification of ¢V and 7}V such that its restriction to the fibers over S
is the identity. We assume that &g preserves F 0T c FT. Let

FYS = {(b,71,v)eENS & FS: (b,v) € F'T}.

If evy|s is transversal to pix. . . xun, S(u) =SNM7(u) is a complex submanifold of S with normal
bundle N*7T. Let ¢/ and ®s be the analogues of ¢s and ®s for the bundle N*T — S(u). We
assume the bundle N*7 is normed. We call the pair (®s, @) a regularization of S(p) if it satisfies
a certain minor compatibility condition. For the purposes of this paper, it suffices to say that once
®s is chosen, it is a condition on ®|p7; see Subsection 3.8 in [Z1] for details. However, the exact
nature of @g\ 7 is irrelevant for our computational purposes. Finally, we denote by C_'(O;; N) (%; ) the
space of all bubble maps (E, [N], I; z, (3, y),u) such that ), ; ui[Sp;] = dA, where A€ Ho(P"; Z)
is the class of a line, and wu;, (y;) € yy for all € [N].

Theorem 2.7 Suppose d is a positive integer, T = (3,[N],I;j,d) is a simple bubble type with

dy=0 and ) d;=d, S C Mt is a complex submanifold, and
el

v el (S x P A s T8 ® mhn TP")
is a generic section. Let i be an N -tuple of complex submanifolds of P™ in general position of total

codimension
codimcp =d(n+1)—n(g—1)+ N,

and (Ps, ®'s) a regularization of §'(u) Then for every precompact open subset K of S(u), there
exist a neighborhood Uk of K in C(O;_N)(E; w) and 6,¢e,C >0 with the following property. For every
te(0,€), there exist a section

Spg,tu € 11(1*%55|K§ 71}5/\/“8), with ‘Spg,tu(v)‘bv < C(t + |’U\%)7

and a sign-preserving bijection between My 4, 4(p) N Uk and the zero set of the section 1[@ , de-
fined by

* 0,1 * .
Vs 4, ET(FOSs| s mhs (HY: @ ev™TP™)), Iy, 0 ) V50 (V) = Vs (R5(5 4, (V)5
s €T (FIS; [ Ths(Hy @ ev TP™)), Ty, 4(0) Y50 (0) =07 1 (Ps(v));
wT,tV el (FQ% ‘MTQUK ) W;‘T(H%l & e'U*T]Pm)) ) RUQZJ'Z’,U/ (U) - W?}:];(tl/v,t_ 6'&@ - vav,tu) 5

where Iy denotes the gpn p-parallel transport along the gpn p-geodesics from ev(b) to ev(b') when-
ever dpn (ev(b), ev(b')) <rpn, &up €T4(v),

e = v,y < Cl+[0l7), and |€oull,,, < Clt+[o]).

Proof: This theorem follows immediately from Theorem 3.29 in [Z1] applied to the obstruction
bundle setup of Subsections 2.2 and 2.3. The only refinement is that we drop the term 7, s, from
the definition of 17 4,. This is because it vanishes on the support of the (0,1)-forms in % (v),
provided ¢ is sufficiently small. Thus, wgzl_ﬁm,,:().
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2.5 Structure Theorem, S = S?

In this subsection, we define sections DE%) p» Where kel -1 , of the bundle L;T @M Qev*TP" over

L?<T> (1), and describe their behavior with respect to the gluing maps near each space Uz (). In
Section 4, the number of elements of My 4, 4(¢) lying near each space M7 (u) will be expressed
as the number of zeros of affine maps between certain bundles. These affine maps will involve

the sections D(Tmlz' Their behavior near various boundary strata is the foundation for the local

computations of Section 5.
If b:(SQ,M, Iz, (j,y),u) eBr,m>1, and k€1, let

2 Dml g

(ukogs) ;

(m
D -_- - -
7.0 (m—1)'ds™1 ds (s,£)=0

where the covariant derivatives are taken with respect to the metric gpnp and s+t € C. If 7" is a

basic bubble type, the maps Dg—mlz with 7 <7T* and k€ I—I induce a continuous section of ev*TP"

over L_I(TO*) and a continuous section of the bundle L;7*®™®ev*TP™ over Uz, described by

DY, b, ci] = DY, it be Uy, o € C.

We will often write D7, instead of D%)k. If T is simple, we will abbreviate Dg—nj’k) as D™ If
T =(3,[N],I;4,d) is a simple bubble type and kel, let Dg—mlz denote the section D(Tmlz'

Theorem 2.8 If T*=(S% M, I*;j,d*) is a basic bubble type and p is an M -tuple of constraints in
general position, the spaces Z;{?*) () and U+ (1) are oriented topological orbifolds. If T <T*, there
exist Gr=-invariant functions §,C € C* (L{(TO) (1); R+) and Gr+-equivariant continuous map

:y'éll': F%‘u;?)(u) — z;{éf)*)(ﬂ)?

which is an orientation-preserving homeomorphism onto an open neighborhood of Llj(p ) (1) in 2;17(9*) (1)

and is identity on Z/{(TO) (). This map is smooth on Fi75. Furthermore, for any
v = [(b7 vh)hef] = [(S2,M,I;IE, (jay)7u)7(vh)vef] € Fgé‘ué?)(“y

G oy s @) =2 37 T] ) (dunle)|

help,xTh=1 ;cfi<h
1
<cw)lr Y ( T,

hely,xTh=1 e} i<n

where I, C I 1s the rooted tree containing k.

Remark: This theorem states that there exists an identification 74 : F7 5 — Uz« (p) of neighbor-

18



hoods of Ur(p) in FT and in Uz~ (p). Furthermore, with appropriate identifications,

‘DT* k() — ar (pr(v) ‘ < O(by)|v|» |p7 )|, where (2.21)
p7 (V)= (b, (Tn)yrh=1) € FT= @L;{T@Lzh’f; Up = H vi; p=min{i€l:i<h};
xTh=1 icli<h
ar (b, (Bn)xrh=1)= > Drnbn.
hel,xrh=1

This estimate is used frequently in Section 5. Note that if 7 is a semiprimitive bubble type, the
bundle F7 is defined over Uz (u). However, FT is not the normal bundle of Uz (u) in Uy (1)
unless MyTUHT is a two-element set; see [P2]. The theorem implies only that the restrictions of
the normal bundle of Uz (u) in Uiy (1) and of FT to Ur(p) are isomorphic.

Proof: (1) All statements of this theorem, except for the analytic estimate, follow immediately
from Theorem 3.33 in [Z1]. We deduce the analytic estimate from (2) of Theorem 3.33. Let

V() = (8%, M, I(v); 2(v), (j(v), y(v)), Gy ).
By Theorem 3.33, there exist a holomorphic bubble map
b,: [527M7 Ia :1:,7 (]7 y/)aul]

1
such that dex (b, ") < C(by)|v|» and with appropriate identifications, i, = expy ,,,oq, € for some
1
§el(uyoqy) with [|€][p co <C(by)|v|». Thus, for the purposes of proving the analytic estimate, we

can assume that wu, = expy, ,, oq, &u for £ € T'(upoqy) with [[€,[[co < C’(bu)|v|%, i.e. it is enough to
prove the estimate for the map 47 as defined in [Z1] with 7 a simple bubble type. If dj #0, the
claim is immediate from the usual Sobolev and elliptic estimates near (k,o0). Thus, we assume
that dy=0. For future use, we obtain equations describing the behavior of DMF L (v) for all m>1.
(2) We identify By, , (ev(b), %T[pm) with an open subset of C" via the gpn cy()-parallel transport

along the geodesics from ev(b). We assume that 6 € C>° (U (0) R™) satisfies

CO5®) +50)5 (3 ldualleo) < gren

€M

Let q: B1(0;C) — S? be the local stretching map as in Subsection 2.2 of [Z1] withv =1, defined
with respect to the standard metric on C. Let f, = u,0q and fv = u,0q. We denote the usual
complex coordinate on C by 2. For any z € B1(0;C), let i,(2) be such that ¢,(q(2)) € Xp;,(z). If
X €Toy)P" and m>1, define R, X9(™ €T%1(f,) by

Xzm—ldz, if x7i,(2) = 0;
Ry Xv™|_ = < 5(6(by)|qw(q(2))) X771z, if x7iv(z) = 1;
0, if XTiu(z) =2.

Note that if x7i,(z) =0, or x7i,(2) =1 and B(8(by)|g.(q(2))]) # 0, fu(z) lies in By, (ev(b), 2rpn).
Thus, R, X¥™) is well-defined. We now compute (0 fy, Ry XM in two ways and compare the
results. First, note that the map f, is holomorphic outside of the annulus

Ay(v) = B1(0;C) — B% (0;C).
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Thus, by the same computation as in the proof of Lemma 4.3, we see that
Y3 m)y — _ T /pm)
<<8fv7RvX¢ >> = m<D ’Y’Z’(’U)yX>' (2.22)

(3) Since fU—expeV(b (&uoq) and f, is constant on Ay(v),
/A F (m)\\ _ 0 m—1 32
2i((0fv, RuX'"™)) = <f(§voq), X>z dz N dz (2.23)
Ag(v) \OZ

Denote by Ag (v) and Ag (v) the outer and inner boundary of As(v), respectively. For every hel
with xy7h=1, let

— — — 1
An(©) = @t ({€ T 40(00) " onl loy 21 < [onl?}) € 3y 5

Denote by A7 (v) the outer and inner boundary of A(v). Let w be the complex coordinate on
Ccxy, =5 2. Note that g is holomorphic inside of Ay (v) and outside of ¢! (4; (v)). Furthermore,
since up and 1, are both holomorphic, on the image of this set under ¢

0
%gv = _%uv

The last quantity vanishes outside of the annuli Ay (v). Thus by integration by parts,

/A . )< 0 — (€400), > "Lz A dz
_ Z( / auu 8_3) X>zm_1d2/\dz—|— /<£v0q,X>zm_1dz> (2.24)

XTI g (A 0 (45 @)
duy
x7h=1 An(v) Ah( v)

where g(w)=w""1. Since &,0q is constant on Ag (v), the second boundary term is zero. Note that
the radius of A, (v) in CC S? is bounded by C(b,)|0|. Furthermore, |g| < Cp,(by) on 4; (v). It
follows that

‘Ah(v)<5v,X>gdw‘ < Co(bo) V] 7| ]. (2.95)

On the other hand, by the same computation as in the proof of Lemma 4.3,

6“1) T Q! m—1 m m
R S ) LU B
nlv

m/

Combining equations (2.22)-(2.26), we see that

‘@(m)%( ). XY —2m 3y (dun| ewe (<c 1Bk ( 3y \vh\) (2.27)

xTh=1 xTh=1
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3 Topology

3.1 Maps Between Vector Bundles

In Section 4, we express the number of zeros of the maps 1/1% ., (and ng ., for certain submanifolds
S of M) of Theorem 2.7 in terms of the number of zeros of affine maps between the same vector
bundles. The topological justification for this reduction is discussed in this subsection. Subsec-
tions 3.2 and 3.3 are used in the explicit computations of Section 5. For simplicity, we state all the
results for smooth vector bundles over smooth manifolds, but similar statements apply in the orb-
ifold category. However, in the cases of g=2, n=2, 3, 4, the spaces involved are actually manifolds.

Let Z denote the unit interval [0,1]. If Z is a compact oriented zero-dimensional manifold, we
denote the signed cardinality of Z by ¥|Z|. All vector bundles we encounter in this subsection will
be assumed to be smooth, complex, and normed.

Definition 3.1 Suppose M is a smooth manifold and F,O — M are vector bundles.
i=k
(1) If F= @ F;, bundle map o: F — O is a polynomial of degree dy, if for each i€ [k] there exists

i=1

i=k i=k
pi €T(M; EF®520) foric(k] s.t. a(v) = Zpi (vfi) Vv = (vi)ie[] € @FZ
i=1 =1
(2) If a: F— O is a polynomial, the rank of « is the number

rk o = max{rkya: be M}, where rkya = dimg (Im ab).

Polynomial a: F — O 1is of constant rank if rkya = vk o for all b€ M; « is nondegenerate if
rkya = rk F for allbe M.
(3) If Q is an open subset of Zx F, O is a vector bundle, and

{1} = {p: {veF: (t,v)€Q} — O}

is a family of smooth bundle maps, bundle map o: F— O is a dominant term for {¢:} if there
ezists e € CY(I x F;R) such that

|pe(v) — a(v)] <e(t,v)(t+ |a(v)]) V(t,v)€Q and lim e(t,v) =0.

(t,v)—0
Dominant term a: F— O of {¢¢} is the resolvent of {¢:} if « is a polynomial of constant rank.

In (2) above, by dimg¢(Im ab)_vve mean the dimension of the image of oy as an analytic subvariety
of the fiber Oy,. Note that if Q CZ x F' contains a neighborhood of {0} x M, the resolvent of {¢;}
is unique (if it exists).

Lemma 3.2 Suppose M is a smooth manifold,

(1) F=F " ®F"—M and O = O~ ® Ot — M are vector bundles;

(2) Q is an open subset of Tx F and {¢¢: {vEF: (t,v) €Q}— O} is a family of smooth maps;
(3) a: F— O is a dominant term for {¢;} s.t. «(FT)C O, a” =7~ oa|p- is a constant-rank
polynomial, where 7~ : O~ @& OT—— O~ s the projection map, and (dim M+2rk o~ ) <21k O~ ;
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(4) v=w",vt)eET(M; O~ @ O") is generic with respect to a™ .
Then for every compact subset K of M, there exist 5 >0 and a neighborhood Up(K) of K in F
such that the map

Y {veF: (tv)€Q} — O, Yu(v) =ty + P (v),
has no zeros on {veUp(K): (t,v)€Q} for all t€(0,0k).

Proof: (1) Suppose U €8s, |k and ¢;(0)=0. Then by our assumptions on ¢,
()] < Ck (t + &k (0k)|(D)]),

where C'x >0 depends only on K (and ) and £k is a continuous function vanishing at zero. Thus,
if 05 >0 is sufficiently small,

()] < 20Kt Wt < 0, DEFs, |k st () = 0. (3.1)

k
F; — M be the bundles and pief(/\/l;ﬂ*(@di@@_) the sections as in (1) of
=1
Definition 3.1 corresponding to a~. Define

(2) Let F~ =

1=

Pt € F(M;End(F‘)) by pi(v;) = t=Ydig) if v; € Fy.
Then by our assumption on ¢; and equation (3.1),
7™+ (@i(07))] < Créx(0x) Yt <0k, DE€F5|k s.t. (D) =0, (3:2)

where C is determined by K. Since o~ has constant rank, the image of o~ is closed and is the
total space of a bundle of affine analytic varieties of complex dimension rk a~< rk O7— % dim M.
Thus, by assumption (4) of the lemma, 7~ does not intersect the image of o™, and there exists
ex >0 such that

‘17_+a_(v_)| >ex YWEF k. (3.3)

If e > Cxéx(9x), by (3.2) and (3.3), 7~ o ¢, (and thus 1) has no zeros on Fj, |.

We will call family {qﬁt: {veF: (t,v)eQ} —>O} of smooth maps hollow if it admits a dominant
term « that satisfies hypothesis (3) of Lemma 3.2.

Definition 3.3 Suppose M is a smooth manifold and F — M is a vector bundle.

(1) Subset Y of F is small if Y contains no fiber of F' and there exists a smooth manifold Z of
dimension (dim F—1) and a smooth map f: Z — F such that the image of f is closed in F and
contains Y .

(2) If F, F— M are smooth complex vector bundles, p € I'(M; F*®d g F) induces a d-to-1 cover
F—F if the map

Fb—>F~‘b) ’U—>p(U)Ep(Ud),

is d-to-1 on a dense open subset of every fiber Fy of F.
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i=k
Lemma 3.4 Suppose M is a smooth manifold, =P F; and O are vector bundles over M, and

i=1
i=k
o= sz' :F— O, where pZ-EF(M;Fi*@di ® 0),
i=1

i=k
is a nondegenerate polynomial. Then there exists a small subset Y, of F' = @ F;, which is invariant

under scalar multiplication in each component separately, with the followz_'ng property. If K is a
compact subset of O — a(Yy), there exists Ci >0 such that

lv] < Ckla(v)] VwveF st alv)eK.

Proof: (1) Let Y, C F be the closed subset on which the differential of the fiberwise map v — a(v)
does not have full rank, i.e. its rank is less than rk F'. Since « is nondegenerate, Y, contains no
fiber of F'. By our assumptions on «,

i=k
D(CM|Fb)|v = (D(p1|F1,b)|ul’ .. ?D(pk|Fk,b)‘Uk) B ®...0F, — O, VbeM, U:U[k]E@Fi.
=1

Since p;| F;, is a homogeneous polynomial of degree d;, its derivative is a homogeneous polynomial
of degree (d;—1). Thus, Y, is preserved under scalar multiplication in each component separately.
It also clearly satisfies the second condition of (1) of Definition 3.3.

(2) On F—Y,, « is a covering map onto its image with the number of leaves bounded by some
number N,. Thus, if K is any compact subset of O—a(Y,), a !(K) is a compact subset of F.
Therefore, there exists C'x such that

lv] < Ckla(v)] YveF s.t. a(v)eK.

Note that if 0 ¢ (Y, ), then « is a linear injection on every fiber, and the above inequality holds
on all of F.

Lemma 3.5 Suppose M is a smooth manifold,

i=k
(1) F=@ F; and O are vector bundles over M with vk F+1 dim M =rkO;
i=1

i=k

(2) Y is a small subset of F'= @ F;, which is invariant under the scalar multiplication in each
i=1

component separately;

(3) Q is an open subset of IXF such that QU({0}xX) is a neighborhood of {0}xX in Tx (F—(Y —X));
(4) {¢¢: {vEF: (t,0)€Q}— O} is a family of smooth maps;

(5) nondegenerate polynomial oc: F — O is the resolvent of {¢:};

(6) veT'(M;O) is generic with respect to (Y, o), and the map

F— 0, v—1,+av), (3.4)

has a finite number of (transverse) zeros.
If 4y is transversal to zero for all t, there exists a compact subset K, of M with the following
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property. If K is a precompact open subset of M containing K, p, there exist 0r, e >0 such that
for all t€(0,€x),

i‘{UEF5K|K (t,v)€Q, P(v)=0}| = HUEF Uy+a(v) =0},

where Py (v) = t,+¢e(v) as before. Furthermore, all the zeros of ¢t|F5 K lie over Kq p.
K

Proof: (1) Since the map in (3.4) has a finite number of zeros, all of them lie in the interior
of Fe, ,|k. , for some compact subset K, of M and number C, 5 > 0. Suppose K C M is a
precompact open subset containing K, 5, dx >0 is such that Fj, |k—y CQ, and 0 € Qs |k is such
that 1;(0)=0. By the same argument as in the proof of Lemma 3.2, if 05 >0 is sufficiently small,

|o(0)| < Ckt and  |tog + a(0)| < ex(Ok)t Vi < 0k, DEFs |k s.b. () =0, (3.5)

where Cx and éx =&k (0 ) depend only on K, and éx (dx ) tends to zero with dx. Let ¢p: F— F
be the map defined in (2) of the proof of Lemma 3.2, with F'~ replaced by F. By (3.5),

(gbt( )) (K CK,EK((SK ) = {YDEOCK: |17w+w|§§K(5K)}

- ~ (3.6)
Vi < Ik, UEF5K|K s.t. (D) = 0.

(2) If v is generic, the map in (3.4) does not vanish on Y, where Y, is as in Lemma 3.4. Since
a(Y,) is a closed subset of O, there exists ex >0 such that
‘171, + a(v)! >ex YV UEYQ‘K.

Thus, if éx(0x) <ex, Ko (K; C’K,EK(éK)) is a compact subset of O disjoint from «(Y,). Then by
(3.6) and Lemma 3.4,

|p1(0)| < Ck Vit <0k, DEFs |k s.t. (D) =0, (3.7)

where C depends only on K.
(3) There is a one-to-one sign-preserving correspondence between the zeros of ¢y on Q;, |k and the
zeros of

i Qa5 (K1) = {0e P (8,67 (1)) €D [} — O, dulw) =710 (6;(v).

By (3.7), all the zeros of 9 on Qs (K,t) are in fact contained in Fe: |k We can assume that
Ck > Cq,p- By our assumptions on ¢y,

W)t — (Tp+a(v ))‘ < Ckeéx(dg) Vv e Q(;K(K, t)N FC;(|K, (3.8)

where Cx >0 depends only on K. We define a cobordism between the zeros of i, and the zeros of
V+a on Q(gK(K, t) N FC;}‘K by

. IXQ(;K(K, t) N FC;}‘K — O, \IIT(U) = T";t(v) + (1_7')(51; + a(v)) + 777'(”)7

where 1: TxQg, (K,t) — O is any smooth function with very small C%-norm such that 79 =m, =0
and W is transversal to zero. It remains to see that W~!(0) is compact. Suppose ¥, (v,)=0
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and (7, v;) converges (7,0) €L X Fycy g3 we need to show that ©€Qs, (K,t) N Fey k. By equa-
tion (3.8),

|7, +a(vr)| € Crér(6k) + [Inllco Vr = |+ a(D)| < Créx (k) + [Inllco- (3.9)

On the other hand, since 7 is generic, the map in (3.4) does not vanish on Y. Furthermore, all the
zeros of this map are contained in the interior of F¢, |k, ,. Thus, by compactness,

K—FCQ,DIKQ,;)}>0, (3.10)

where €x depends only on K. If €x > Cxéx(dx)+|nllco, by (3.9) and (3.10),

€KEinf{|17U+a(U)‘ TVE (Y N FQC;{) U (FC;<

U € Fo,ylKay C Foplk =Y C Qs (K 1).

The last inclusion follows from the very first assumption on 6 above. We conclude that ¥~1(0)
is compact.

Corollary 3.6 Suppose M is a smooth oriented manifold,
(1) FEF~® FT, F~, and O=0~@® O" are vector bundles over M with

~ 1
rkF~ =rkF~ =rkOQ™ — §dim/\/l and rkFT =rkOT;

(2) peT(M; F*®k @ F~) induces a d-to-1 cover F—F, and a~ eT(M; F*@07);

(3) a: F— O is a nondegenerate polynomial such that ot = a|p+ : Ft— OV is linear and
T o=« op;

(4) Y is a small subset of F', which is invariant under the scalar multiplication in each component
separately;

(5) Q is an open subset of TxF such that QU X is a neighborhood of {0}xX in Ix (F—(Y —X));
(6) {gbt: {veF: (t,v) EQ}—>(9} 1s a family of smooth maps with resolvent a;

(7) v=w",vt)eT(M; O~ @ O%) is generic with respect to (a™,a™,p,Y), and the map

FT— 0, w—i_+a (@), (3.11)

has a finite number of (transverse) zeros.

If 4y s transversal to zero for all t, there exists a compact subset K, of M with the following
property. If K is precompact open subset of M containing K.y, there exist dx,ex >0 such that
for all t€(0,€x),

iHUEE;K|K: (t,v)€Q, Py(v)=0}| = d- i!{weﬁ_: vo+a (w) =0}

)

where Py (v) = t,+¢e(v). Furthermore, all the zeros of Yy 5 lie over Kq 5.

‘FaK\

Proof: Let K, and dx >0 be as in Lemma 3.5. Then if K is a precompact open subset of M,
for all t € (0,€x) the signed number of zeros of ¢y on Qs, |x is the same as the signed number of
solutions of

7y +a(p(v7) =0 € O

v +at(ot)+ 7t (a(v™))=0€ OT.

For every solution of the first equation, there is a unique solution of the second equation. Since o™
is complex-linear on the fibers, the signed number of solutions of (3.12) is the same as the signed
number of solutions of the first equation. Since the first equation has no solutions on Y, - if v is
generic and p is d-to-1 outside of Y,-, p induces a d-to-1 sign-preserving map from the set of zeros
of (3.11) to the set of solutions of the first equation.

Flx — O, { (3.12)
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3.2 Contributions to the Euler Class

If M is a smooth oriented compact n-manifold and V — M is an oriented vector bundle of rank n,

the euler class of V is the number of zeros of any section s: M — V which is transverse to the

zero set. In this subsection, under slightly more topological assumptions on M and V, we discuss

a relationship between subsets of the zero set of a non-transverse section and the euler class of V.
_ i=n—2

Definition 3.7 (1) Compact oriented topological manifold M =M, U || M; of dimension n is

=0
mostly smooth, or ms, if

(1a) each M; is a smooth manifold of dimension i, and M=M,, is a dense open subset of M;
i—2

- J=
(1b) for each i€[n—2], M;—M; C |J M;;
=0

(2) If Z=ZU||Z; and M= MU | |M; are ms-manifolds, continuous map m: Z— M is an
ms-map if for each j there ewists i such that w: Z; — M, is a smooth map.

(3) If M is an ms-manifold, topological vector bundle V.— M is an ms-bundle if V| p, is a smooth
vector bundle for i=n and all i€ [n—2].

(4) If V.— M is an ms-bundle, continuous section s : M — V is an ms-section if s|a, is
C?%-smooth for i=n and all i€ [n—2).

The dense open submanifold M of M will be called the smooth base of M. Note that if E— M
is an ms-bundle, then the (complex) projectivization PE of F is an ms-manifold. Furthermore,
the projection map 7g: PE — M is an ms-map, and the tautological line bundle vz — PE is an
ms-bundle.

If V. — M is an ms-bundle, we denote the space of ms-sections of V by I'(M;V). Using (4)
of Definition 3.7, we define an ms-polynomial map between two ms-bundles analogously to (1) of
Definition 3.1. We topologize T'(M; V) as follows. If s;, s€T'(M; V), the sequence {s;} converges
to s if s converges to s in the C%-norm on all of M and in the C?-norm on compact subsets of M;
for i =n and all i€ [n—2]. The C’-norm is defined with respect to the norm on V— M. In
order to define the C%2-norm on compact subsets of M;, we fix a connection in each smooth bundle
in V— M;.

Definition 3.8 Let M be an ms-manifold as in Definition 3.7.

(1) If ZC M; is a smooth oriented submanifold, a normal-bundle model for Z is a tuple (F,Y, 1),
where

(1a) F— Z is a smooth complex normed vector bundle and Y is a small subset of F;

(1b) for some § € C®(Z;RY), ¥: F5— (Y —Z) — M is a continuous map such that

(1b-i) 9: Fs— (Y — Z) — M is a homeomorphism onto an open neighborhood of Z in MU Z;
(1b-ii) V| z is the identity map, and ¥: Fs~(Y—2Z)— M is an orientation preserving diffeomorphism
on an open subset of M.

(2) A closure of normal-bundle model (F,Y,9) is a tuple (£, F, ), where

(2a) Z is an ms-manifold with smooth base Z;

(2b) m: Z— M is an ms-map such that 7|z is the identity;

(2c) F — Z is an ms-bundle such that F|z=F.

If Z is a smooth submanifold of M, an identification of the normal bundle N'Z of Z in M with
a neighborhood of Z in M induces a normal bundle model for Z. Definition 3.8 extends this
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standard construction to the ms-category.

Definition 3.9 Suppose E, O — M are ms-bundles and oc: E— O is an ms-polynomial.

(1) Subset Z of M is a-reqular if there exist a normal bundle model (F,Y,¥) for Z, constant-
rank polynomial p: F®E — O over Z, smooth bundle isomorphisms Vg: 9*'FE — mpE and
Yo: V*O — 7130 covering the identity on Fs—(Y —2), and e € C(F;R) such that

(1a) 9g and Yo are smooth on Fs—Y —Z and restrict to the identity over Z;

(1b) lim,,— 0 e(w)=0;

(1c) [Woa(¥5t (w,v)) — pw,v)| < e(w)|p(w,v)| for all we Fs—(Y —X), veE.

(2) « is a reqular polynomial if M is a union of finitely many a-regular subsets.

Lemma 3.10 Suppose E, O — M are ms-bundles, such that rsz—i—% dimM=7rk0O, anda: E— O
is a regular polynomial, such that o is nondegenerate on M. Let v € T'(M;O) be an ms-section
such that the map

wa,u: E— O, ¢a,u(v) =y + Oé(’U),

does not vanish on E|y_yq and is transversal to the zero set in O|rg. Then 11, (0) is finite, and
N(a) =* 151, (0)] is independent of the choice of v as above.

Proof: (1) We first show that for every € M —M there exists a neighborhood U of z in M such
that 1, does not vanish on E|y. By (2) of Definition 3.9, there exists an a-regular subset Z of
M containing z. Let (F,Y,9), d, p, 9k, Yo, and € be as in (1) of Definition 3.9. It can be assumed
that J is such that

e(w) < and  |vy)| < 2|vw| = 2|, | Vwe F;—(Y —2).

1
2
Then, if 14, (95" (w,v)) =0 for some (w,v) € FOE with we Fs— (Y — Z), |a(w,v)| <4|vy| by (Lc)
of Definition 3.9. Thus, if {(wy,vx)} C F®E is such that 1, (95" (wg, vr) =0 and wy,—z€F,
a subsequence of {a(wy,v)} converges to an element we ;. Since « is a polynomial map of
constant rank, there exists (0,v) € F@® E such that «(0,v)=w. Since a(0,v)=p(0,v), it follows
that 1, (v) =0 contrary to the assumption.

(2) By (1), there exists a compact subset K, of M such that ¢}, (0) C E|g,,. Since ¢q, is
transversal to zero, v(M) Na(Yy) =0, where Yo, C E|pq is as in Lemma 3.4. It follows that ¢ },(0)
is a finite subset of E|q.

(3) The final claim of the lemma is obtained by constructing a cobordism between 1, and 4 ..
More precisely, we take a smooth family {v,;: 7€Z} of ms-sections of O such that vg=v, v1 =1/,
Y. (0) CE|p, and the section

Uy: IXE — O, U,y (1,0) = Y, (v),

Is transversal to the zero set in O. Such a family can always be chosen, since M—M has codimension
two in M. Then, by the same argument as in (1) and (2), ¥;1(0) is a smooth compact oriented
submanifold of E|y with boundary v}, (0)—151,(0).

Definition 3.11 Suppose M is an ms-manifold of dimension 2n, V. — M is an ms-bundle of
rank n, s€T(M;V), and ZC M; N s71(0).

(1) Z is s-hollow if there exist a normal bundle model (F,Y,9) for Z and a bundle isomorphism
Yy PV — 75V, covering the identity on Fs—(Y —Z), such that
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(1a) Vv |ps—y—z is smooth and Vv |z is the identity;

(1b) ¢pg =y 0o ¥*s: F5— (Y —Z)—V is hollow.

(2) Z is s-reqular if there exist a mormal bundle model (F,Y,9) for Z with closure (Z,F,),
regular polynomial o : F — 7V, and a bundle isomorphism 9y : 9*V — RV covering the
identity on Fs—(Y —Z), such that

(2a) Vv |ps—y—z is smooth and Vv |z is the identity;

(2b) a|z is nondegenerate and is the resolvent for ¢g = Yy o¥*s: F5— (Y —2)—V, and Y is
preserved under scalar multiplication in each of the components of F' for the splitting corresponding
to a as in (1) of Definition 3.1.

Lemma 3.12 If(M,V,s) and (Z,F,Y,V) are as in Definition 3.11, there exist a number Cz(s) € Z,
which equals zero if Z is s-hollow, and a dense open subset T'z(s) C T'(M; V) with the following
properties. For every vel'z(s),

(1) there exists €, >0 such that for all t € (0,€,), all the zeros of tv+s are contained in M and
(tu—l—s)|M is transversal to the zero set in 'V ;

(2) there exist a compact subset K, C Z, open neighborhood U,(K) of K in M for each compact
subset K C Z, and €,(U) €(0,¢,) for each open subset U of M such that

E{beU: tw(b)+s(b)=0} =Cz(s)  ifte(0,e,(V)), K,CKCUCU,(K).

Proof: It is clear that we can choose a dense open subset I'; (s) CT'(M; V) such that every v €T;(s)
satisfies requirement (1) of the lemma. If Z is s-hollow, we also need that v = v|z is generic with
respect to the corresponding polynomial o~ in the sense of the proof of Lemma 3.2. We can then
take K, =0. If Z is s-regular, let v=m*v €T(Z;7*V). By Lemma 3.10, the second part of (6) of
Lemma 3.5 is satisfied, as long as tv+s is transversal to the zero set on each smooth strata. The
other requirements on v in Lemma 3.5 are finitely many transversality properties. We then take

Cz(s iHUEF Uy+a(v 0}‘
By Lemma 3.10, this number is well-defined.
The total number of zeros of a section tv+s satisfying condition (1) of Lemma 3.12 is precisely
the euler class e(V) of the bundle V— M. Thus, due to (2) of Lemma 3.12, we call Cz(s) the
s-contribution (or simply contribution) of Z to e(V). If Z is any subset of M such that ZNs~1(0)

satisfies the requirements of Definition 3.11, let Cz(s) = Czns-1(0)(s). In addition, if Z is a closed
subset of M such that s~(0)— Z is also closed, we can easily define Cz(s) by Lemma 3.12.

Corollary 3.13 Let V— M be an ms-bundle of rank n over an ms-manifold of dimension 2n.
Suppose U is an open subset of M and s€T'(M;V) is su_ch that s|y is transversal to the zero set.
(1) If s7(0 )ﬂU is a finite set, *|s71(0) NU| = (e(V), [M]) = Cryy(s).

2) If M—U = |_| Z;, where each Z; is s-hollow or s-regular, then s~1(0) NU is finite, and

i=k

F[s7H0) NU| = (e(V), IM]) = Cppls) = (e(V), [M]) = D Cz,(s).

i=1
If Z; is s-hollow, Cz,(s)=0. If Z; is s-reqular and o : FZ —V is the corresponding polynomial,
Cz,(s) = jE!{UGF Uy +a(v)=0}| =
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where vET(Z;; V) is a generic section. Finally, if a; eT(Z; Ef**@n*V) has constant rank over Z;
and factors through a k-to-1 cover p;: F; —>Fi®k,

Cz,(s) = k{e(m"V/ai(F)), [Z]).

All statements of this corollary have already been proved. A splitting of the zero set as in (2) of
Corollary 3.13 always exists in the complex-analytic category. It should be possible to generalize the
constructions of this subsection to an arbitrary compact oriented topological manifold. However,
Lemma 3.10 will no longer be valid, and another approach will be needed to deal with the zeros of
1a,, that tend to infinity. For the cases that we encounter in Section 5, the version of s-regularity
of Definition 3.11 suffices.

3.3 Zeros of Polynomial Maps

We now present a procedure for computing the number of zeros of a polynomial map between two
complex vector bundles over a compact oriented manifold. All the polynomials we encounter in
Section 5 are of degree-one. Thus, we focus on the degree-one case, but discuss the general case at
the end for the sake of completeness.

Supposg: M is an ms-manifold, E, O — M are ms-bundles such that rk £ +% dim M =rk O, and
aeT(M; E*®0) is an ms-section. Let v €I'(M;O) be such that 7 has no zeros, the map

Yop=v+a: E—O

is transversal to the zero set in O on E|u, and all its zeros are contained in E|r¢. The first step
in our procedure of determining the number of zeros of v, 5 reduces this issue to the case F is a
line bundle. Let PE be the projectivization of E (over C) and let vz — PE be the tautological
line bundle. Then « induces an ms-section ap € I'(PE; v ®750), where g : PE — M is the
bundle projection map. The number of zeros of 1), is the same as the number of zeros of the
induced map

Vor=mpv +ag: g —7g0.

Thus, we can always reduce the computation to the case E is a line bundle.

The second step describes the number of zeros of 1, 5 topologically in the case E' is a line bundle.
Since 7 has no zeros, it spans a trivial subbundle Co of O. Let O be the quotient of @ by this
trivial subbundle. Denote the Co- and O+-components of a by af and a™, respectively. Then the
zeros of 1, 5 are described by
- i) — =
{"’f W) =0CCZ ) M, ve B (3.13)
ap (v) =0€ O
Since U does not vanish, all solutions of the first equations (3.13) are nonzero. The solution of
the second equation with nonzero v is (E—M)|aj_—l(0). Furthermore, if b€ a~1(0) and a(b) #0,
al: E — (Cp), is an isomorphism. Thus, for every beat~1(0)—a~1(0), there exists a unique
v € B, solving the first equation in (3.13), and the sign of (b,v) as a zero of 1, agrees with the
sign of b as a zero of a®. On the other hand, (3.13) has no solutions on E| a-1(0)- 1t follows that
the number of zeros of 9, 5 is the number of zeros of at on M—a~1(0), i.e.

FmH0)] = (e(E*®0%), [M]) = Camr(g)(a); (3.14)
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see Corollary 3.13.

As discussed in the previous subsection, computing Cz(s) in reasonably good cases reduces to
counting the number of zeros of polynomial maps between vector bundles over ms-manifolds, but
with the rank of the target bundle one less than the rank of the bundle O we started with. Thus,
this process will eventually terminate. The lemma below summarizes the last two paragraphs. Let

)\E:cl('y*E).

Lemma 3.14 Suppose M is an ms-manifold and E, O — M are ms-bundles such that
Tk E + %dim/\;t =rk0O.
If a€T(M; E*®0) and v €T (M;O) are such that « is regular, U has no zeros, the map
Yop=rv+a: E— O

is transversal to the zero set on E|ar, and all its zeros are contained in E|rq, then zpa_}(O) is a
finite set, i\zp;,};(O)\ depends only on «, and

N(a) = Hug 5(0)] = (c(O)e(E) "L [M)]) = €1 ) (az).
Proof: Let n =rkE, m =rkO, and Ag = c¢1(7}). From Lemma 3.10, equation (3.14), and the

construction above, we obtain the first two claims of the lemma along with

=m—1

Z {er,(OHNE=17F [PE]) — ca;(o)(ag)
k=0

R (3.15)
m—l—k 1
k=0
On the other hand,
T+ Z (BN % =0€e H*™(PE)  and (3.16)

(uN 1, [IP’E Y= (. [M]) YpeH> ™ (M);
see [BT] for example. The last statement of the lemma follows from (3.15) and (3.16).

Remark: 1If a: E— O is a polynomial, and not just a linear map, the first step in computing
the number of zeros of the map v, 5 =v+a would be to reduce to the case « is a linear map via
a projectivization construction similar to the one in the second paragraph of this subsection. For
example, suppose o = pj +ps, where p; € I'(M; E;@di ®QO) and E = FE;® FE>. Then the number of
zeros of 1, ; is the same as the number of zeros of

FEi * * *
Yoo =T, V+D1,E, + T, P2 VE, O, By — 755, O
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over PE;, where py g, € I'(PE}; fyg?dl) is the section induced by p;. If 7 is generic, this number is
di-times the number of zeros of the map

an_WEly—i_pl E1+7TE1p2 /YEll@ﬂ-El‘Eb - 7TE10

Note that p1 g, is linear on 'y%l '. Taking the projection of 7y, Es over PE; and repeating the above
procedure, we obtain an affine map

Eq,Es ®d1 ®d2
a,v 7TEQ’YE‘ DV E2 - 7T I EQWElo

4 Resolvents for {@D%w} and {@bg,w}

4.1 A Power Series Expansion for 7T (9uu

Throughout this section, we assume that 7 = (E, [N],1;j,d) is a simple bubble type, with dy=0
and ) ;. ;d;=d, and p is an N-tuple of constraints in general position of total codimension

codimcp = d(n+1) —n(g—1) + N.

Our goal is to extract leading-order terms from the bundle map 1[)# 1, of Theorem 2.7 and to de-

scribe the zero set of 1/1% ., as the union of the zero sets of affine maps between finite-rank vector
bundles. The main topological tool is Subsection 3.1.

Nearly all of this subsection is devoted to obtaining the power series expansion for 7T 1 du, of

Proposition 4.4. However, we first state an estimate for wg’l_l/v,t, which is immediate frorn Theo-
rem 2.7.

Let {¢;} denote an orthonormal basis for H%l. Given ¢ € P" and an orthonormal basis {X;} for
T,P", put

zn,]g

Vg = </ (v(z,9), X"L/}]>>X'§b]_ﬂ' o1v(-, )EH%’1®Tq]P’”.

1=1,7=1

Note that v is well-defined.
Lemma 4.1 There exist 9, C’EC’OO(Mg(-));RJF) such that for all ve FOT5 and te(0,6(by)),

70 vt = Buentsn) [l < COO)(E+[0]2).

Suppose v = ((E, [N], I; x,(j,9),u), (Uh)hef) e FOT is such that ¢, is defined. For any h e I, let
h(T)=min{ie:i<h}. By the basic gluing construction of Subsection 2.2 in [Z1],

Up = d(bbu,ﬁ(’f)‘:?:h(v)( Qv Lh‘xh(v doy,. h|o”h 1_[”Z ST
iel ,i<h

)

where ¢y, 1, is a holomorphic identification of neighborhoods of xy, in ¥, ,, and in Fb(i) n = L, 20, b

If Ebv,h:SQ, we also identify T, ¥, », with C with the map gy.
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Lemma 4.2 For all ve FOT such that q, is defined, du, vanishes outside of the annuli Ay
with x7h=1 and Afh with xTh=2. Furthermore, there exists 6 € C*°(M1;R™) such that for all

ve FOT; and hel with xrh=1, on fl;h = {zEF,EOb)U: %|vh|% <|zlp, §|vh|%},

Hb_ul,ﬂu(z)é(uvoq;}h) © d¢b_ul,h‘z

= || "2 ( > (- B\uh|(2\z|))(m_l)pﬁfﬁfz([bv’ (%)]>>8m2|vh|%z’

m>1
where Uy (2) € Teyp, P" is given by
XDy, ev(by) Uy(z) = (qU Lh¢bu, (2 )) = Uh(‘]h,(zh,vh)qbz;jh(z))’ |ﬂv(z)|bv < rpn.

This sum converges uniformly on Av,h

Remark: By construction, ¢, =gy, (z, v,)°v,;, o0 A, o and on ¢y, (A, 1)

v
oo ) (2) = (124521 o) (2)) - where P ) (2) = (1= B Gl nzD) (57 )

Proof: The first claim follows from (G3); see Subsection 2.1. If y € 5, 1, and |g5" (y)| <267 (by),
define 1p,(y) € Tey(p,,)P" by

€XDPp,,,ev(by) up(y) = un(y), |un(y)lp, < ren.

By construction, u, o g, ! = UROQuO qt oy O1 oy, (A ,)- Since Hb g, 0dup, is C-linear on ¢, (A L),

for any z € Av

Hb_v (- )8(uvoq;}h) o d(bb_ul,h‘z = H;jﬂv(.)duh o 5(qvoq;}h) o d¢b_vl,h‘z

4.1)
1 /Up -1 (
— —2lvp|" (—) ! (dupod ;
|Uh| 2 bv7uv(~)( uhO QS) ph’(wh’vh)qb;lh(z) 2|vh\7%z
see Lemma 2.2 in [Z1]. Since gpn, is flat on u, (A, ;) by our choice of metrics,

Hb—vlﬂv (dupodqs) = d(tpoqs) (4.2)
on qglqv(A; ,)- Since 1 0qg is antiholomorphic and the metric gpn, is flat near ev(b,),

_ 0 _ 0 -l odm
d(uhoqs)Lﬁ (%) = d(uthS)|x (8_§) = mZ>:1 7(7%_1)! —dgjm (uhoqg) |(s,t)=0
- (4.3)

—ml Dmld
_Z m 1'd8m ld (uh qS)‘( 1)=0’
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for any x€q,(A, ), where y=s+it€C is the complex coordinate. The second claim follows from
equations (4.1)-(4.3). For the last claim, note that the sum converges uniformly on A, as long as
qv(A, ) is contained in the ball of convergence for the power series expansion for 1, at 0.

If ¢ EH bEMg—), m =1, and the metric g, 5 is flat near =, we define D 1[) eTITE®™ a5 follows.
If (s,t) are conformal coordinates centered at z such that s2-+¢2 is the square of the g, 5-distance

to x, let )
0 D™= 0
1/’}( ) - bw ¢}< %) - {dsm T¥i (s ,t):O}(%)’

m
where the covariant derivatives are taken with respect to the metric g, 5. Since v¢; € H%’l,
;= f(ds—idt) for some anti-holomorphic function f. Since g, is flat near z, it follows that

D,E?;)z/;eT:?’lz@m. If {4;} is an orthonormal basis for HOE’l, let sl(:;) eTYN®m @ H%l be given by

s ) = s @) = 3 (DI w o,

m J€l9l

(m)

The section Spa is always independent of the choice of a basis for HOZ’I, but is dependent on the

(1)

choice of the metric 9.0 if m>1. However, Spa depends only on (X,j); we denote this section

by sx .. By [GH, p246], sy, does not vanish and thus spans a subbundle of X ><HOZ’1 — 2. We
denote this subbundle by H; and its orthogonal complement by Hy,. A slightly different description
of these bundles is given in Subsection 2.3. Let

el (5 (ExHy)* @ HE)

be the corresponding orthogonal projection maps. Denote by Sl()n;”i) the composition 7 osl(fZ’i).

Lemma 4.3 There exists 6 € C°(Mx;R™) such that for allv e FOT: X e Tevp,)P", andyp e HOE’I,

(a0 Bun, RoX V) =~ > Y (DI, X) ({va,zh@ o qbbv,%)ljhw—lﬁh)).

m>1xrh=1

Furthermore, the sum is absolutely convergent.

Proof: Since <(§uv, R, X zp> = 0 outside of the annuli A;’h with y7h =1,

(o Oy, Ry X)) = ((Oup, RuX) = Y /  (Ouy, Ry X1p). (4.4)

xTh=1
. 1 -1 . . - 1 . . _ .
Since 1, OBy, , i holomorphic on Au’h, II, ", is unitary on uU(AU’h), and the inner-product of

(7
9
one-forms is conformally invariant,

/_ (Ouy, Ry X)) = /_ <(§(uvoqu Lh)0d¢b o BoXodg,, Lhodgbb h>
v,h v,h i (45)
_ / (1Y, B(uyoqy ) Yodd, , Xeboda, ! oy,

v,h
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since Hbzl,av R, X¢y=Xvy on A;h. If 1, =0, we identify F,E?b)v =T,,% with Cin a Gy, p-unitary way.
In all cases, we can then write
Yodgy;, o d%_ul,h = fdz.

Since 1 is harmonic and 4o, }hoqbb_vl 5, 1s holomorphic on ‘Zlew f is anti-holomorphic. Using the change

. _1 ; .
of variables 2|vy,| "2z = 7€, we obtain

/Avh<|vh|_%(1_ﬁﬂh|(2|z|)) D(ng([ —})8ﬁ| 1 7x¢odq;’}hod¢b_vl7h>

_ (m) m _1 m—1 / - _m Z =

= (D bv, X)vp /Avh{(l—B(Q\vhl 2|2))) |2‘U| b |}\vh\ 22 mf (4.6)
( 1 27r

= ) Xl [ (150} e o) aoar

Since f is holomorphic, for any >0,

27
/ (re?®)y=m=1 f ( |vh|2re )d@z—i/z_mf(%whﬁz)dz
0

|z|=r (47)
or  dm=1 _

1 1 —(m— m=1 o
= g G| = gl )

Since the metric g, 5 is flat near Ty,

%v?ﬂm—ﬂ(o) = { bv,mh w}(dqu Lh‘xhd(ﬁbv nlovn) (4.8)

- { bv mh w}( d¢bu,rh T)‘zh ) lf)h)-
The claim follows from equations (4.4)-(4.8) and Lemma 4.2.

Proposition 4.4 IfT=(%,[N],I;j,d) is a simple bubble type with dy =0, there exists 6 € C°(Mr;R™)
such that

8“’1} = _R Z Z b < bmh (d¢bwh(7) mhl(u)qjh)> Vo= [b ( )hEI] EF ,ZZS

m>1xrh=1

Furthermore, the sum is absolutely convergent.

Proof: This proposition follows from Lemma 4.3 and equation (2.14).

4.2 First-Order Estimate for 47,

If T=(%,[N],I;j,d) is a bubble type as before, we denote by x(7) the subset of elements h of I
such that yzh=1. For any ve F'T and he x(7), let

k k k ~ k k
o) = (DF b)), (@), o) = Y af, @)
hex(T)

it o= [N I, (5, y),w), (vh) e -

We denote ag})h and ag) by a7, and a7, respectively.
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Lemma 4.5 There exist 6,C € C°(Mz;R") such that for all ve F7T5,

|70t Oy + Roar (v)||, < Cb)v] Y [vla
hex(T)

Proof: This is immediate from Proposition 4.4, since
Hsfh(v) (dqbbvvxﬁ(q') ;hl(u)ﬁh) - SEE(T (On) H2 < C(bv) ‘¢bv7wa<7)53h(v)|bv|ﬁh‘ < C,(bU)WH{]h‘b;

Z ‘D b, |[5n]™ < C(by)| 00,

m>2
for all hel with y7h=1 and ve FT; with § € C®°(M7;R") sufficiently small.

Lemma 4.6 There exist 6,C' € C°(M(u);RY) such that for all ve F'Ty,

H?ZJ%,:V(U)—(tﬂev(bv)%-af[(v))H <C(b )(t+|U| <t+ > |U|h)

hex(T)
Iz 7
where Y7, denotes ¢M7 o

Proof: By Lemma 2.2 and Theorem 2.7,

7% Dutully < €O (D 10h) Dok llops < C'G0)(E+017) D [ola:

hex(T) hex(T)

Combining this estimate with Lemmas 4.1 and 4.5, we obtain

[67.0@) = (e +ar (@) |, < CO) (1) (3 [vln) (4.9)

hex(T)
for all ve FY7;, provided 8 € C°(M; RT) is sufficiently small. On the other hand, if b, € M7 (1),
HSO%tu(U)HbU < C(bo)(t+]vl? )
H (tﬂev(¢;¢;,tu(v)) +aT((I)l7L'90‘L7{,tV (U))) Hbu,(ngDT () (tVeV +aT H
< C(by) (t+ol? <t+ Y |U|h)

hex(T

(4.10)

where go’} w= go’J(AT ., is the section of Theorem 2.7 for any fixed regularization (<I>T = 1d, @‘})
of M7 (u). The claim follows from (4.9) and (4.10).

Our next step is to apply Lemma 3.2 or Corollary 3.6 to the map 1/1% 1, Whenever possible. In terms
of notation of Subsection 3.1, we take

={0}, F =FT, O =Hy'oew'TP", F = P QFT;
hex(T) iel,i<h

qb b U[ = ®Uz b Uh Oé_(qb(l})) = aT(U)a

iel ji<h
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where ¢, denotes the hth component of ¢: F~ — F~. Note that o~ € T(M7; F*®07) is
well-defined. A priori, &~ may not have full rank on every fiber over Mz (u). We will call a
subset K C Mz (u) T-regular if o~ has full rank over K. From Theorem 2.7, Lemma 3.2, and
Corollary 3.6, we then obtain

Corollary 4.7 Suppose d is a positive integer, T = (%, [N|,I; jin], d) is a simple bubble type, with
dy=0 and ) ;c;di=d, and p is an N-tuple of constraints in general position such that

codimcp = d(n+1) —n(g—1) + N.

Let v eT(X x Pn;AO’lﬂgT*Z(@ﬂfmTPn) be a generic section. If v, #0 for some_h € f, for every
reqular compact subset K of Mz (), there exist a neighborhood Uk of K in C(O;_[N])(Z;,u) and

ex > 0 such that for any t € (0,ex), Ux N My g, () =0. If vy, =0 for all h € I, there exists a
compact reqular subset K1 of My () with the following property. If K is a compact reqular subset
of Mz (u) containing K, there exist a neighborhood Uk of K in C_’F;;[N})(EW) and e >0 such
that for all t € (0,€x), the signed cardinality of Ux N My 44, (1) equals to the signed number of
zeros of the map

FT|MT(M) — H%l®ev*TIP’”, U — Vg, ) T (V). (4.11)

Proof: In either case, by Theorem 2.7, there exist a neighborhood Uk of K in C’(O;; [N])(E;,u)
and dx,ex > 0 such that for any t € (0,ex), there exists a sign-preserving bijection between
Uk N My q44,(p) and the zeros of w%tu on FOT;, UM () Provided Ux N M7 (p) is precompact
in M7 (p). Furthermore, dx can be required to be arbitrarily small. If K is regular, Ux can be
chosen so that the closure of Ux N M7 (p) in M7 () is also regular. Then by Lemma 4.6,

Hw'l;’,tu(v) - (tﬂeV(bv)_‘_aT(U)) H2 § CK(t+|U|%) (t + |OZT(’U)|) VUEFQ)%K‘K’

where Ck > 0 depends only on K. Thus, the first claim follows from Lemma 3.2. The second
follows from Corollary 3.6, provided that for a generic v the set of zeros of the map in (4.11) is
T -regular and finite; see below.

The affine maps of Corollaries 4.7, 4.14, 4.18, and 4.22 extend over the natural compactifications of
the spaces M7 (u) and Sz (1) described in Subsection 4.9. Along with counting the zeros of these
affine maps in Section 5, we also show that the linear part of each of the affine maps is regular
in the sense of Definition 3.9. Thus, by Lemma 3.10 these affine maps have a finite numbers of
transverse zeros, which must lie over the subspace of the base where the linear part of the affine
map has full rank.

4.3 Consequences of the First-Order Estimate for ¢,

In this subsection, we show that My (u) is 7-regular for most bubble types 7 under consideration,

and nearly all of them fall under the first case of Corollary 4.7. We call 7 eﬁ‘e_ctive, if for some

generic choice of v and of the constraints p1,..., N, U Mxw,q(p) intersects Mz (p). If K is a
t<1

compact subset of M7 (u), we call K effective if |J Mx 4, q(p) intersects K.
t<1

Lemma 4.8 Let 7 =(%,[N],I;4,d) be a simple bubble type. If j;=0 for some 1€ [N] and K is a
T -regular subset of Mz (u), then K is not effective.
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Proof: By Corollary 4.7, it is sufficient to show that the map
vtor: FT — H%’l@ev*T]P’”

has no zeros for a generic v. For a generic v, the zero set of this section is zero-dimensional.
However, if j;=0 for some I € [N], we can move y; € X freely, without changing the value of v 4a7.
Thus, if the zero-set of the section is nonempty, it must be at least one-dimensional, which is not
the case for a generic v.

Lemma 4.9 Let T=(3,[N],I;j,d) be a bubble type with dy=0. If
ng = |1 = (|HyT| + [MGT |+ 3 (HT+IMT|=2) ) <0 = (T,
iEf,diZO
M () is T-regular. Furthermore, if the number on the left-hand side above is negative, then
Mg (p) is empty.
Proof: (1) The dimension of M(u) is given by
dim M7 (p) = (d(n+1) +n+ N — m) — (d(n+1) =n(g—1) + N) =ng — ).

However, given b= (%, [N], I;z, (j,y),u) € M1 (u), we are free to vary xy, if 1, =0 (i.e. 2, €X) and
yy if jy=0. Similarly, if i € I, d; =0, and |H;T |+|M;T|>2, we can vary |H;T|+|M;T|—2 marked
and singular points on ;. Thus, the space M7 (1) must have dimension at least

din(T) = [HyT |+ | MT |+ > ([HT|+|MT|-2),
ief,di:O
if M7 (p) is nonempty. Therefore, we can assume |x(7)| <n.

(2) Let hy,. .., hyy(7) be the elements of x(7'). The section sy €'(X; 7Y ® HOZ’I) does not vanish;
see [GH, p246]. Thus, the section o~ defined above has rank at least k if the section

@T;k el (MT(M)a ( @ L;’;mT) ® eV*T]Pm)v @T;k ([bv C{hm:mfk}]) = Z DT,hm ([b7 Chm]) s
m<k m<k

has rank k. We prove inductively that under the assumptions of the lemma this is the case for all
kE<|x(7)|. If k=0, there is nothing to prove. So we can assume that k>0 and that the statement
has been shown to be true for k—1. The k—1 statement shows that the image of 'DT;k—l is a
rank k—1 subbundle of ev*TP"™. Let 7rkl_1 denote the orthogonal projection onto the orthogonal
complement of this rank (k—1)-subbundle in ev*TP"™ with respect to the standard metric in P".
We need to show that the section

10Dk € T (Mg (1); L, T* @73 (evy TP™))

does not vanish. By Corollary 6.3, W,ﬁ_lqu—;k is transverse to zero for a generic choice of the
constraints g1, ..., uy. Its zero set must have dimension at least dp,in(7), if nonempty, since the
movements of points described in (1) do not effect w,i_l oDr.j. Thus, w,i_l oDt 1, does not vanish if

dim(M7(p)) — dmin(7) <n — (kK —1).

By the assumption of the lemma, this is the case as long as k<|x(7)|.
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Figure 1: The Two Possibilities for 7" of Corollary 4.10

Corollary 4.10 Let T =(%,[N],1;j,d) be an effective bubble type with dy=0. If g=2 and n=2,
then either

(1) |I|=1 and j;#0 for all L€ [N], or

(2) |I|=2, HyT =1, and j#0 for all [€[N].

Furthermore, in Case (2) ar has full rank over all of M ().

We illustrate the statement of Corollary 4.10 in Figure 1. We represent each of the potentially ef-
fective bubble types 7 by the domain of any stable map in the space M7 (). Each disk represents
a sphere. We shade the component(s) of the domain on which any (or every) map in Mz (u) is
nonconstant. The labels d, dj, and d5 indicate the degree of the map on each of the bubble com-
ponents; we must have d; +ds=d. In the case of Figure 1, all marked points must be distributed
between the shaded components of the domain.

Due to Corollary 4.10, Corollary 4.7 describes topologically the number of elements of the set
Ms 4.+ (1) that lie near a compact subset K of My, 40(u), provided K is disjoint from the space

Sra(n) = az'(0) € Mz (p),

where 7 is the bubble type specified by (1) in Corollary 4.10 and by the first diagram in Figure 1.
By definition of a7, the set S71(p) consists of the elements of My (u) such that the differen-
tial of the bubble map at the attaching node is zero, i.e. the corresponding rational curve in P2
has a cusp at the image of 3. Determining the number of elements of My, 44,(1t) that lie near
S7.1(p) requires higher-order estimates. In Subsection 4.4, we determine the number of elements
of My 44 () that lie near a compact subset K of S7,1(p) such that for no element of K the
corresponding singular point on X is one of the six hyperelliptic points of X. Finally, in Subsec-
tion 4.5, we determine the number of elements of My, 44, (1) that lie near the subset K of Sz 1(1)
such that for every element of K the corresponding singular point on X is a hyperelliptic point of X..

Proof of Corollary 4.10: (1) By Lemma 4.9, Mz (u) is empty, unless ng — |f| >1, ie. |f| < 3.
Suppose |[|=3. If |HyT|>2,

ng —|I| — |HyT| <4-3-2<0,
and thus M7 (u) is empty by Lemma 4.9. If |H,T|=1,
n—|x(T)|=2—- (|- 1) =0=ng— || - |HyT]|,

and by Lemma 4.9 the space My (u) is 7-regular. The space M7 () is compact, since by the
above Mz (u)=0 if 7' < 7. Corollary 4.7 then implies that Mz (u) is not effective, i.e. 7T is not
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effective.
(2) Suppose |I|=2. If |[H;7|=2 and j; =0 for some I € [N],

ng —|I| — |HyT| — |MyT| <4-2-2-1<0,
and thus M7 (i) is empty by Lemma 4.9. If |[Hy7T|=1,
0= X(T)| =2~ 1 =ng — |I| - |HyT],

and it follows from Lemma 4.9 and Corollary 4.7, that every compact subset of My (u) is not
effective. Furthermore, Mz (u) — Mz (p) consists of three-bubble strata, all of which are not
effective by (1) above. Thus, 7 is not effective, unless 1, =0 for all he I and 5; #0 for all [ € [N].
The second statement about the |I|=2 case is immediate from Lemma 4.9.

(3) Finally, suppose |f| =1 and j;=0 for some [ €[N]. Then,

n—x(T)|=2-1>ng—|I| - |HyT| - |MyT]|,

and thus by Lemmas 4.8 and 4.9, every compact subset of Mz () is not effective. Furthermore,
Mz () — Mg (u) consists of two- and three-bubble strata that by (1) and (2) are not effective.
It follows that 7 is not effective.

Corollary 4.11 Let T =(%,[N],I;j,d) be an effective bubble type with dy=0. If g=2 and n=3,
then either

(1) |I|=1, or

(2a) |f|:2, HOT:f, and j;#0 for all L€[N], or

(2b) |I|=2, HyT #1, and j;#0 for all I€[N], or

(3a) |I|=3, H()’Z':f, and 5;#0 for all I€[N], or

(8b) |f|:3, wh=1 for some 1€l and allhef—{i}, d; =0, and §1#0,1 for all L€[N].
Furthermore, in Case (3a) ar has full rank on all of M1 (p).

We illustrate the statement of Corollary 4.11 in Figure 2, using the same conventions as in Figure 1.
In the first case, the genus-two Riemann surface ¥ may carry some of the marked points. In the
remaining four cases, all of the marked points are distributed between the shaded components. In
the third diagram, the lightly shaded disk indicates that the restriction of the maps in My (u)
to the corresponding bubble component may or may not be constant. In the former case, this
component must carry at least one marked point.

By the last remark of Corollary 4.11, Corollary 4.7 describes topologically the number of elements
of the set My 44, (1) that lie near a compact subset K of M7 () for any bubble type 7 as in (3a)
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of Corollary 4.11 and in the fourth diagram in Figure 2. If 7 is a bubble type as in (1) or (2b) of
Corollary 4.11 and in the first or third diagram of Figure 2, respectively, Corollary 4.7 describes
the number of elements of My, 44, (1) that lie near a compact subset K of M7 (), provided K is
disjoint from the space

Sta(p) = az'(0) € Mz ().

The elements of Sz 1(i) are characterized geometrically in exactly the same way as in the n=2
case above. As in the n =2 case, we give a topological description for the number of elements of
Ms 4. (1) that lie near a compact subset K of S71(p) in Subsections 4.4 and 4.5.

If 7 is a bubble type as in (2a) or (3b) of Corollary 4.11 and in the second or last diagram of
Figure 2, respectively, Corollary 4.7 describes the number of elements of My, 44, (@) that lie near
a compact subset K of Mz (u), provided K is disjoint from the space

Sta(n) = a7 (0) € M7 (n).

As discussed in the first paragraph of Subsection 4.6, in the first case Sz 2(u) consists of the stable
maps in M7 (p) such that the image of the differentials at the attaching nodes of the two bubble
components is the same complex line and the two singular points on ¥ are conjugates. The first con-
dition means that the two rational curves form a tacnode at the image of ¥ in P3. For 7 as in (2a)
of Corollary 4.11 and in the second diagram of Figure 2, we determine the number of elements of
Ms; 4.4 (11) that lie near a compact subset K of Sz 2(u) in Subsection 4.6. Finally, if 7 is as in (3b)
of Corollary 4.11 and in the last diagram of Figure 2, S72(p) consists of the stable maps in M (1)
such that the image of the differentials at the attaching nodes of the two shaded bubble components
is the same complex line. In Subsection 4.7, we determine the number of elements of My g4, (1)
that lie near a compact subset K of Sz a(u) such that for no element of K the corresponding
singular point on Y is one of the six hyperelliptic points of . In Subsection 4.8, we determine the
number of elements of My, 44, (1) that lie near the subset K of S7 (1) such that for every element
of K the corresponding singular point on ¥ is a hyperelliptic point of 3. We eventually find that
only the simplest possible bubble types are effective: that in the first diagram of Figure 2 with
no marked points on X and those in the second and fourth diagrams in Figure 2; see Subsection 4.9.

Proof of Corollary 4.11: (1) Similarly to the proof of Corollary 4.10, Mq—( ) is empty unless |f| <5.
If [I|=5, M7 (p) is compact and [Hy7 |=1. Let 1€ be such that 11 =0. If d; >0,

n—[x(T)|=3-1>0=ng—|I| - |HT],

and M (p) is not effective by Lemma 4.9 and Corollary 4.7. Suppose dj =0. Then |[H;T|>2;
otherwise M (u) is empty by Lemma 4.9. It follows that

n—|X(T)| 23~ (I|-2) = 0=ng — | - |[H;T|.

Thus, by Lemma 4.9 and Corollary 4.7, T is not effective. R
(2) Suppose |I| =4. If |[HyT| > 3, Mg (u) is empty by Lemma 4.9. Let 1 € I be as above. If
|HyT|=2,

n—|X(T)| 23~ (|-1) = 0=ng — | - |[H;T|.

If |H()T‘:1 and di >0,

n—|x(T)|=3-1>1=ng—|I| - [HyT|.
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If |H@T‘:1, di:O, and |HiT‘:3,
n—|xX(T)| >3 = (I|-1) = 0=ng — |I| - |HyT| - (|H;T| - 2).
Finally, if |[Hy7T|=1, d;=0, and [H;7T|=2,
n—|xX(T)| >3~ (|[|-2) = 1 = ng— |I| - [H,T|.

Thus, by Corollary 4.7 and Lemma 4.9, in all four cases, no compact subset of Mz () is effective.
Since M (u)— M7 () consists of five-bubble strata that are not effective by (1) above, it follows
that 7 is not effective.

(3) Suppose |I|=3. If H()’Z':f and j; =0 for some 1€ [N],

ng —|I| — |HyT| - |MyT| =6 -3 -3 —1<0,
and thus M7 () is empty by Lemma 4.9. If |H,T|=2,
n—Ix(T)| 23— (| -1) =12>ng—|I| - |HyT|.
If |H@T‘:1 and di >0,
n—|xX(T)|=2=ng—|I| - [HyT|.
n—X(T)| =2 =ng - |I| - |HyT|.

Thus, in all three cases, by Lemma 4.9 and Corollary 4.7, no compact subset of M (u) is effective.
Since M7 (11)— M7 (1) consists of four- and five-bubble strata that are not effective by (1) and (2)
above, 7 is not effective in these three cases. On the other hand, if [Hy7|=2, j =0 or 7 =1 for
some [ € [N], and d; =0,

n—[X(T)| 21> ng — 1| - |HyT| - |MyT| — (|H T|+|M;T| - 2).

Thus, by Lemmas 4.8 and 4.9, no compact subset of M7 (u) is effective. Similarly to the above, it
follows that 7 is not effective.
(4) Suppose |I|=2 and j; =0 for some I € [N]. If |HyT|=2,

n—Ix(T)| >1>ng—|I| - [HyT| - |MyT|.
If |HyT|=1,
n—Ix(T)|=2=ng— |- [HyT| - [MpT]|.

Thus, in either case, no compact subset of M7 (u) is effective by Lemmas 4.8 and 4.9. Furthermore,

Mz (p) = Mr(u) = | Mz (),
TI<T

where 7" is either a four- or five-bubble strata, or a three bubble-strata 7’ = (X, [N], I’; j/,d’) such
that either |Hy7T|=1, or di, =0 and jj =0 or 1’. By (1)-(3) above, none of such bubble types is
effective, and thus 7 is not effective.
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4.4 Second-Order Estimate for ¢7 ,,, Case 1

We now refine the first-order estimate for ¢ , along the sets on which the section o~ defined
above does not have full rank. These are precisely the sets on which the section ﬁT,‘X(T‘ defined
in the proof of Lemma 4.9 does not have full rank.

One set on which 157,‘ (7)) fails to have full rank is the zero set of Dz p,. If n=2,3, by Lemma 4.9,
D7 h, does not vanish unless h; is the only element of the set x(7"). Thus, we assume that this is
the case. We denote the zero-locus of D7 p,, by 871 C M7, which will be abbreviated as S in this
subsection. Since Dy j, is transversal to zero by Corollary 6.3, S is a complex submanifold of M7
of codimension n. Its normal bundle 'S in M7 is the restriction of L,’ZIT®eV*T P™ to S7.1. Let
(Ps, @s) be a regularization of Sz1(1) =S N Mg (p). This regularization can be chosen so that

D1y ds(b, X) =1, 5 40X ¥V (b,X) € NS = ev* TP", (4.12)
where ¢g is the lift of ¢s to the preimage S of S and its normal bundle NS in M(TO); see Subsec-
tion 3.8 in [Z1]. The bundle N'S carries a natural norm induced by the gpn ev-metric on P". Denote

by FS and F?S the bundles described in Subsection 2.4 corresponding to the submanifold ST1.1.
Let 1€ Hy7T be the unique element such that 1<h;. If [b; X, v] EFS=NS®FT, put

@Dar1(X,0) = X(bo)ss,z,0n, + iy, (V).
Lemma 4.12 There ezist 6,C € C®(S;RY) such that for all w=[(b; X,v)]€ FS;,
|7t Btas(e) + Rago Mo gsin) @ara(X,0)|| | < COPI(vE, + X]lvlh,).

Proof: The proof is almost identical to the proof of Lemma 4.5. The only difference is that we use
two terms of the power series of Proposition 4.4. We then make use of the assumption (4.12) on

¢s and smooth dependence of D(;)hl on X.
Lemma 4.13 There exist §,C € C®(Sz.1(u); RY) such that for all w=|[(b; X,v)| € F%Ss,
1
[ (@) = (o +Paza(X,0)]||, < COIE+IP) (@E+0F, +Xv]a,).

Proof: This claim follows from Lemmas 4.1 and 4.12 in a way analogous to the proof of Lemma 4.6.
The only difference is that we need to improve the estimate on 7T2’71_DU£U¢V made in the proof of

Lemma 4.6. Let {¢;} be an orthonormal basis for H%l, such that ¥1 € Hs: (25, (v)), and {X;} an
orthonormal basis for Ty (¢s(x))P". By Theorem 2.7, with v(X) = ®s(w),

(<<7T2’(1;<>,_Du<X>€v<X>,tw Rv(X)Xi%»( = \((fvm,w, DZ(X)RU(X>X2'%>>‘

) (4.13)
< CO)(t+[v[P) D5 x) Rux) Xjjllco-
Since £ €Ty (v), by construction in Subsection 2.3,
<<£”U(X),t1/7 Dz(X)RU(X)XZwl >> = 0. (414)
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On the other hand, since 2]z, () =0 and HV1/12H9¢ (30.0:C° <C(b), by equation (2.12)
S ,00

< O, (4.15)

‘‘D;’;(X)RU(X)‘X“’[)2 HCO(AU(X),hl)

where flv( X),h; 18 the annulus defined in Lemma 2.2. By equations (4.13)-(4.15),

1

0,1

1
o), Do) ,or| < CO)(E+ [v]P)[vff, -

The next step is to apply Lemma 3.2 or Corollary 3.6 whenever possible. Let

Fr=ev'TP'® QFT, F =FT, [ = ( ®F7) P 0t = HEgev TP
ieli<hy i€l i<hy
Oé+ ([Xa U]) = XSZ,xi@hp ¢([b7 Uf]) = [bv ﬁhl ®{7/11] ;o (¢(U)) = 7-‘-u;i(bv)a'(]%) (U)

Note that aeT'(S; FT*®@0T), since 70X sy, =0. Since the map (X, v) — (X®7p,, v) is injective
on F'T . we can view 1/}2‘ ., as a map on an open subset of F~@®F*. Analogously to the first-order
case of Subsection 4.2, subset K C Sz 1(p) will be called second-order regular if a~ has full rank
over K.

Corollary 4.14 Suppose d is a positive integer, T = (X, [N],I;j,d) is a simple bubble type, with
dy=0 and ) ;. ;di=d, and p is an N-tuple of constraints in general position such that

codimcp = d(n+1) —n(g—1) + N.
Let veT(Ex P AQ s T*S @75, TP be a generic section. If |I|>1, for every second-order regular
compact subset K of St1(p), there exist a neighborhood Uk of K in C’(O;[N])(Z; ) and ex >0 such

that for any t € (0,ex), Ux N Msx g, (1) =0. If |f| =1, there exists a compact reqular subset K1
of St1(p) with the following property. If K is a compact subset of St 1(n) containing K11, there
exist a neighborhood Ui of K in C’E’;;[N])(Z;,u) and e€x >0 such that for all t € (0,€ex), the signed
cardinality of Ux N Ms 41, (1t) equals to twice the signed number of zeros of the map

TERQLiT™|g, () — Hy ® TP, [b,o] — 7 + a7 ([b,0]). (4.16)

Proof: In either case, by Theorem 2.7, there exist a neighborhood Uk of K in C_'(O;_ [N])(E;,u)
and dx,ex > 0 such that for any t € (0,ex), there exists a sign-preserving bijection between
UxN Ms 44 (1) and the zeros of ¢, on F@SgK ‘UKOST L) provided UxgN S7,1(1) is precompact

in S71(p). If K is second-order regular, Ux can be chosen so that the closure of UxN S71(p) in
S7.1() is also second-order regular. Since K is regular and ot is injective on all fibers,

[off, =16(v)] < Cx|a™ ()] = [oli, +IX|lvln, < Ck|Paza(X,v)| V(X 0)€ 'S5

where Cg, C} >0 depend only on K. Thus, by Lemma 4.13,
1
[440,(@) = (tespm) +Para@)) || < Cx(t+1]2) (t+ | Para(@)]) Ve FSs |,

where Cg > 0 depends only on K. The first claim now follows from Lemma 3.2. The second
follows from Corollary 3.6, provided that for a generic v the set of zeros of the map in (4.16) is
second-order regular and finite; see the last paragraph of Subsection 4.2.
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4.5 Third-Order Estimate for %, , Case 1

We continue with the case of Subsection 4.4. Then
o~ 2 2,—) /~
™ ([b,5m,]) = (D), B)sis (on,).
By Corollary 6.3, for a generic choice of the constraints puq, ..., uy, Dgg)hl is transversal to zero

along St 1(p) if dp, >2. Since the zero set of D(TQ )hl must have dimension at least dyin (7)) >1 by the

same argument as in the proof of Lemma 4.9, Dg)hl does not vanish along S71(p) if dp, >2. On

the other hand, if dj,, =1, Sy 1 =10, since the differential of any degree-one holomorphic map from
S? to P™ is nowhere zero. In fact, St.1(p) =0 even for dj, =2, since the image of any degree-two
map with a somewhere vanishing differential is a line, and no line intersects uq, ..., uyx if n=2,3.
Thus, we can assume dp, > 3. It follows that the only way the above homomorphism o~ can fail

to have full rank on F~ is if 31()25;1_) =0. While 5(2)

b,Ii
the section s(27) e I‘(Z;T*E@@Hg ) is independent of the metric and is globally defined on ..
This can be seen by a direct computation. It has transverse zeros at the six branch points of the
double cover ¥ — P! induced by sy; see [GH, p246]. Denote by z1,. .., 2¢ these six points. Then

m)

the set on which o~ fails to have full rank is |J S(T 1 (@), where
me[6] '

depends on the choice of the metric g, 5 on X,

S = {peSra )=z}, S5 (W) = S 0 M (p).
The sets Sé—rfll) are obviously disjoint.

Since the normal bundle of Sé—rfll) in S7; is T3, %, the normal bundle NS of 85-"71) in Mg (u) is
T, X®NS;i, where NS is the normal bundle of Sy; in M7 (u), as described in the previous
subsection. Let (@5, @g) be a regularization of Sé—rfll) () induced by the regularization of Sz 1(u)

described in Subsection 4.4. In particular,

Drm@sb,w, X) =1, 5 . X ¥ (bw,X) €T, SONS =T, L@ev TP", (4.17)

b7(Z)S

where ¢g is the lift of ¢sto ./\/lg(-)). We can also assume that <I>f§ is given by the gpn j-parallel
transport on AS;. The bundle N'S carries a natural norm induced by the gpn ev-metric on P and
g. g-metric on 3. Denote by F'S and F’ S the bundles described in Subsection 2.4 corresponding

to the submanifold Séffll). If (b,w,X,v)eF 0S is sufficiently small, let

Zi(w,v) = Z1 (¢s(w, X, v)) = 71 (¢s(w,0,v)) € .

We identify a small neighborhood of 2, in ¥ with a neighborhood of 0 in 7., ¥ via the g, 5-
exponential map. Put

6w, X,0) = (X055, (0,00 O+ T, (D 650, X)) sS04 ) (Br)+ (D, )85 (-

If (b,w, X,v) EF@S|S(m)(u is sufficiently small, let
7,1

)

s N (2 2 N 3 3) -
a“(w,X, N) = (Xb)SE,:Ei(w,U)(vhl) + (Dg,gu) (w7X7U))Sl()7j)i(w7v)(vh1) + (D’g',)hlb)s( ) (vhl)a

b,zm
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where, with ¢/, as in Theorem 2.7,

M7(2) — —1 (2
Ds’w (w, X, v) = H¢s 05 0 (W, X0),0s PSP 4, (0, X v)Hb@Zsoé,w(w,X,v) (DT h1¢5@5¢5 w(w, X, U))

Lemma 4.15 There exist 6, C’EC’OO(‘S'é—ml)7 R™) such that for all w=[(b,w, X, v)] eFlS;,

H Mo (), Ot () T R () h g5 ()@ (10, XU)HQSC(b)IWIIUI%I-

Proof: The proof is the same as that of Lemma 4.12, except here we use the first three terms of
the expansion of Proposition 4.4. Note that |Z;(w,v)| < C(b)(|w|+]v]).

Lemma 4.16 There exist §,C € C’OO(S(T? (1); RT) such that for all w=(b,w, X,v)c F?S;s

64 1, (@) = (P +3# (w, X, 0)) 5 < CO)(t+[0]7) (t+ V[, +1F1 (w, v) [0}, ).

Proof: The proof is similar to the proofs of Lemmas 4.6 and 4.13, but we need to obtain an even
stronger bound on

1755 (). - Db (s ().t

Let {¢;} be an orthonormal basis for H%l such that ¢y € H{ (Zp, (w,v)), and {X;} an orthonormal
basis for Tey(¢s(x,0))P"- Then, as in the proof of Lemma 4.13, with v(w) = ®5(w),

<<D<I>5(w)£v(w),tw Rv(w)Xiwl >> =0; (418)
1 *
(70 - D)ot o) X )| < COYE+1017) | D ) Ruge) Xt

The one-form 9 vanishes at Zp, (w,v) by definition and ||Vi)o

v(w),l

||gb0 co < C|zp, (w,v)|, since the

derivative of the corresponding one-form for z,, vanishes. Thus, by equation (2.12)
1Dt R Xeall,  prca sy < CONE o)l ol +10f b, (420)

as needed for our bound. Finally, we use our assumption that @g is given by the g, 5-parallel
transport on N;S;.

For any (w, X,v) EFb@S|S(m) sufficiently small, let
7,1

(1)
Y (w, X,0) = (XB)$5 2, (w,0) () + (D& (w, X, v))sl(f:*() oy (B Tny);
Dafi)” (w,v) = (PF), )52, (#(w,0), 8y, 00,) + (DF), )51, (0,
rFa) = (PE D)8, 0n), %7 =7,
Corollary 4.17 There exist 0, CECOO(Sg—ml) (1);RT) such that for all w=[(b,w, X, v)] e FYS;
s o (w) VWS 0 (W, X, 0) = (tw;(m Y (w, X, v )+77.1(0))]|,
< CO)(t+lw|) (t+[vl}, +1E1 (w, v)[ ]2, )
177 oyl (0, X, 0) = (b, 7+ D™ (w, 0) ]

< CO)(t+w|?) (t+|v]3, +|Z1(w, v)[v]f, ).
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(2

Proof: The first estimate is clear from Lemma 4.16. For the second, note that since s, Z;) =0,

T (wyw) —m,, |<ClEi(w,v)[?, and thus

-)

i(w,v

T @ (w, X, v) — Dz, (w,v)] < CO)|Ew, X,0)|7 (Jog (w, v)|[on, [2+]in, F)
) 5 Xy T;1 ) = s Wy Ay 1 ) h1 Uhy

x (w,v

(3:-)

2, ~ =) (= ~ o~ ~ 21~ |2
(552 Ly () = 50 (@ (w,0), Ty, By )| < Clag (w, 0) P |on, [P =

Furthermore, |¢%s , (w, X,v)[y < C’(b)(t+|w|%).

The next step is to apply Lemma 3.2 and Corollary 3.6. Let

Ft=H{@ev*TP", F =T, YOFT, O%=MHioev'TP
®3

F—:T2m2®( ®E7)®2@( (X)FZT) :

iel i<hy i€l i<hy
(f)([b; w, vf]) = [b, xi(w,u) ®77h1 ®77h1 , 7~)h1 ®2~)h1 ®2~)h1] ;

ata(w,v) = 7’;—;1(1}), o Y)=7Y, a (¢(w,v)) = (3)05?1)’_(10,1)).
Note that o~ €T(S; F~*®0™) is well-defined. Since the map
(w, X, v) — (Y(w,X,U),’LU,U)
is injective on FQS, we can view zbéiu as a map on an open subset of F~ G F ™.

Corollary 4.18 Suppose d is a positive integer, T = (X, [N],I;j,d) is a simple bubble type, with
dy=0 and ) d;=d, and p is an N-tuple of constraints in general position such that
el
codimcp = d(n+1) —n(g—1) + N.

Let vel' (X x P™; AoﬁlﬂgT*Z Qg TP™) be a generic section. If |f| > 1, for every compact subset K
of Sézq’q’l) (1), there exist a meighborhood Uk of K in C’E’;;[N])(Z;,u) and €x > 0 such that for any
t € (0,ex), Uk N Ms gn(p) = 0. If \I| = 1, there exists a compact subset f(é—ml) of Sé—ﬁ)(u)
with the following property. If K is a compact subset of Sé—nfl) (1) containing f(gnl), there exist a

neighborhood Uy of K in C’(C’;[ND(E; w) and e >0 such that for all t € (0, €x), the signed cardinality
of Uk N My, g, (1) equals to three times the signed number of zeros of the map

T, %30 (LT @ L; T — Hy®er" TP,

‘s;’f? (1)

b,w,vi] — v, + (D(;,)ib) Sl()i;)(w) + (Dg)ib) Sl()i;)(v). (4.21)

Proof: The proof is similar to the proofs of Corollaries 4.7 and 4.14, but two modifications are
needed to be mentioned. First, we need to show that a~ always has full rank. Since we are

assuming that dj, > 3, the sections D(Tl,)hl’ ng)hl, and D?,)hl over My have transverse images

in TP". Thus, the sections of P(ev*TP") — (Tml) (1) induced by Dg)hl and Dg)hl are mutually

transversal. However, the fiber dimension of P(ev*TP") is n—1, while the dimension of S(Tml) (p) is
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n—2. Thus, the two sections do not intersect and o~ has full rank on all fibers over Sg—ml) (1). The
second difference with the proofs of Corollaries 4.7 and 4.14 is that we replace the section wg w by
the map

(’U), v, X) - ijﬂ:i(w’v)¢g7ty(wv v, X) + W;mW;i(w,U)¢g,w(1U, v, X)7

which has exactly the same zeros provided w and v are sufficiently small (depending only on X).

4.6 Second-Order Estimate for ¢7 ,,, Case 2a

We now understand all cases except for (2a) and (3b) of Corollary 4.11. Let {hy,ho} ={1,2} in
Case (2a) and {2, 3} in (3b). By dimension count as in the proof of Lemma 4.9, D7 1,, and Dr p,, do
not vanish on M7 (u) in these two cases. By Corollary 6.3, 7rbL oDt p, is transversal to zero, where
7TbL denotes the projection onto the orthogonal complement F; of the image of D7 p, in ev*TTP".
Since

ar(v) = (D1.nbv)ssay, o, (0n) + (D1 hbo) s5a; ) (Uns)s

a7 can fail to have the full rank only on the zero set of 7rbloD7—7h2. Furthermore, Chon and Chon
1 2

must have the same image in H%’l. This is automatic in Case (3b), since hi(7T)=ho(T)=1, but
in Case (2a), this means that x; and x5 differ by the nontrivial holomorphic automorphism of ¥;
see [GH, p254].

We first treat Case (2a); so we can assume hj = 1, ha=2. Let S = S71,2 denote the subset of M7
on which the section a7 has rank one. By Corollary 6.3, this is a complex submanifold of M.
Furthermore, S =&y x S1, where S; is the subspace of U7 on which the operator 757,2, defined as
in the proof of Lemma 4.9, has rank one,

So = {(l‘i,—l‘i): l‘iEZ*},

—x7 €Y denotes the image of x; under the nontrivial automorphism of ¥, and ¥* is the subset of
> which is not fixed by this automorphism, i.e. the complement of the points zq, ...,z described
in Subsection 4.5. By Corollary 6.3, S; is a complex submanifold of /7. The normal bundle of S
in My is

NS =NSy®NS;, where NSy= WQQTE, NS = LiT®Ex,
and 7y, p,: Sp C LxX — X is the projection on the hth component. Let (®g, @g) be a regularization
of St2(u)=S N M7 (). This regularization can be chosen so that

Tosv.x)Dr20s (b, X) =TI, s X V(b X)ENS = By, (4.22)
where gz~55 is the lift of ¢s to /\/lgg). We also assume that @g is given by the gpn p-parallel transport
on N;,S;. Since the section s is invariant under the automorphism group of ¥, we identify ﬂ; QTE|SO

with 7} s T%s,. If (b;w) ENSp is sufficiently small, let

x5(w) = €XPp 5, W-
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The bundle NS carries a natural norm induced by the gpn cy-metric on P™ and g _;-metric on X.

Denote by FS and F?S the bundles described in Subsection 2.4 corresponding to the submani-
fold S7o. If (w, X, v)e FS=NS®FT, put

&(w) Xa U) = Hb_,;bs(b,X) ((D']',iQSS(bv X))SE,ri (Ui) + (D']',Q¢S(bv X))SE,xé(w) (’UQ))

+ ((Dg,)ib) 51(7,2:21 (vq) + (D%b) 51(7,2521 (vg)) :

If (w, X, v) EF@S|ST’2(M) is sufficiently small, let

at(w, X, v) = ((Dg’w’i(w,X,U))Sg7ri(vi) + (Dg’ty’ﬁ(w,X,U))sE%(w) (vé))
+((Pp)s2), (v7) + (Dp)si2) (v))),
where, with cpgw as in Theorem 2.7,

i _ -1 -1 wop
DS,tV,h(w’ X, U) - H(j)ggogyw(w,X,v),¢S<I>g<pg’tu(w,X,v)Hb,(j)ggogyw(w’X,U) (DT,thSq)SQOS,tV(wa X, U)) .

Lemma 4.19 There exist §,C € C°(S;R") such that for all w=[(b,w, X, v)] e Fls;,

1784 (), - Ot s() + Ravg () Piv.os ) @(w, X, 0)], < CO)lw|lof.

Proof: The proof is analogous to the proof of Lemma 4.15; here we use Proposition 4.4 with two
terms for h=1 and two terms for h=2.

Lemma 4.20 There exist §,C € C®(Sto(u); RY) such that for all w=[(b,w, X,v)] € F’Ss,
. 1
[0 1 (@) = (tPeay +0* (w, X, 0)) ||, < CO)(E+[eo|#) (t+ |0 +[w][vs]).
Proof: As in the proof of Lemmas 4.13 and 4.16, we need to obtain an appropriate estimate on
| D% g () Raos () Xith2] | 11

where 95 is a (0,1)-form vanishing at z; and with norm 1. From equation (2.11), we see that
the L!'-norm over the small annulus centered at x; is bounded by C(b)|v;|?; see also the proof of
Lemma 4.13. Furthermore, since z5 is “dual” to xj, 12 also vanishes at x5. Thus, the L'-norm
over the small annulus centered at x;(w) is bounded by C(b)(|w|+|vs])|vs| as can be seen from
equation (2.11).

Let §§)?3;+) €T;¥ be given by sé?f) (v,v):é’éi’cﬂ (v)ssz(v). For any be St o(p), define
k(b)€ LT ® LiT—{0} and p(b)eL;T®L;7T by
2 1
(D7) = w(b)(Dyb),  m(DPb) = u(b) (DY),

where m, : ev*TP" — Im(D; ;) is the orthogonal projection map. If (w,X,v) € F®S|ST,2(H) is
sufficiently small, let #(w, X, v)€C* be given by

TosPlpls 1, (w,X,0) (,D’T,ngsq)ggog,tu(wﬂ X, U)) = R(w, X, v) (DT’1¢S(I)'§SO§¢V(’LU, X, U))
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Note that by Theorem 2.7, |&(w, X,v)—r(b)| < C(b)(t+]|w|? ) Let

c(
Yiw,X,v)= (Dgt 1(w X, 0)) 850, (v +F(w, X, v)vy+pu(b )sg;)(vi)vi), V(X v5) = X554 (v3);

Pagy (w,v) = (Drib)sys, (w,v5) + (D) sy (k(b)vg) + (DEL0)sprs (va):

1 2 2 2 2 2
rFa(w,v) = (DY 1) sy (w,vg) + i (DY (1) syst” (k(B)vs) + (D, (0)) st (vg)-
Let Y =Y! + Y1 and Dgt = ﬂ;tiﬂb.
Corollary 4.21 There exist §,C € C®°(St2(p); RT) such that for all w=[(b,w, X, v)] eFS;,
1
|74 1, () = (4537 +Y (w, X, 0) 415 5 (w, 0))||, < CO)(E+[e|7) (Jo* +|w]vs| +[Y]);
_ _ 1
72,0 4 (@) = (17, +Pagy(w,v)), < CO)E+|@]7) (Jo]*+ [w]]vs] + [Y]).
Proof: The proof is similar to that of Corollary 4.17, but we use

|55y () (1) = (53,0, (03) + 530 (10,03))] < CB) ] [ug].

We also use \D"; Wi (WX, v)) 2 C(b)~1

The next step is to apply Corollary 3.6. Let
= Hi@ev'TP", F =1 TSORT, OF =Hi@ev'TP", F =1, TS0RT ¢ [T
gb([b;w,vé]) = [b,w@vé,vgéévﬁ], @ (qb(w v2)) (2)0472(10 vy), wrr(w,v) = r};l(w,v).
Note that o~ €T(S; F~*®07) is well-defined. Since the map
(w, X,v) — (Y(w,X,v),w,vi)

is injective on F?S as long as § € C>° (S72(1); RT) is sufficiently small, we can view ¢, as a map
on an open subset of F~ G FT.

Corollary 4.22 Suppose d is a positive integer, T =(X,[N],I;j,d) is a simple bubble type, with
f:{i,é}, MyT =0, dy=0, and Y, ;di=d, and p is an N-tuple of constraints in general position
such that
codimcp = d(n+1) —n(g—1) + N.

Let veT'(¥ x P”;AoﬁleT*Z @ mpn TP™) be a generic section. Then there exists a compact sub-
set f(ﬁg of St 2(1) with the following property. If K is a compact subset of St (1) containing f(ﬁl,
there ewist a neighborhood U of K in C’E’;;[N])(Z;,u) and e >0 such that for any t € (0,€ex), the
signed cardinality of Ux N My, 44, (1) equals to twice the signed number of zeros of the map

TETE%? ® (LyT ® LT ®?) — Hy ®ev* TP,

X875k

[(,0); (w,v)] — 7 + (Dg 5b)s>7) (w,v) + (D(2) b) s >(m(b)v)+(D%b)sg’—)(v). (4.23)

Proof: The proof is similar to that of Corollary 4.14. We only need to see that the section o~
defined above has rank two. If dj =dy =1, the space St 2(1) =0, since any two tangent lines in P"

agree, and no line passes through all of the constraints u1, ..., uy if n=3. Thus, it can be assumed
that d; > 2. Note that S72(n) is one-dimensional, with the only dimension coming from the
singular point z; €X. Thus, by Corollary 6.3, if the constraints f1,. ..,y are in general position,

2)

the image of D(T; ; does not lie in the linear span of DT,Qb and Dg)éb. Furthermore, DTQb;éO.
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4.7 Second-Order Estimate for ¢7 ,,, Case 2b

We now treat Case (3b) of Corollary 4.11; we can assume h1=2, hy=3. Let S =872 denote the
subset of M7 on which the operator D72 of Lemma 4.9 has rank one. Similarly to the case of
Subsection 4.6, S is a regular submanifold of M7 with normal bundle N'S :L§T®E1. As before,

we can choose a regularization (®s, ®) of S72(1) =8 N My (u) such that

Tosbx) D1 3ds(b, X) =TI, 5, s X V(b,X) € N& = Ey, (4.24)

where ¢g is the lift of ¢s to M( ) and <I>f§ is given by the gpn p-parallel transport on N;S. Denote
by F'S and F 0S the bundles descrlbed in Subsection 2.4 corresponding to the submanifold S7 . If
(X,v) is a sufficiently small element of FS=NSGFT, let

a(X,v) = (D 3050, X)) 552, (0)(03) + (D 3650, X)) 85,2, 0) (83);
(X, v) = (D, 5 (X, 0)) 553,00 (03) + (D, 5 (X, 0)) S5, 0) (03),

where, with ¢/, as in Theorem 2.7,

B -1 -1 TN
Dl Xo0) =M (xyosviot,, (X Tboiet, (Xo) (D105 P55 0

X,v)).
Lemma 4.23 There exist §,C € C®°(St 2;R") such that for all w=|[(b, X,v)] eFS;,

|75 (), - Ot () + R (@ @(X,0)||, < CO) (|55 +55]°).
Proof: This lemma is immediate from Proposition 4.4 applied with one term for each h=2, 3.
Lemma 4.24 There exist §,C € C®(St2(u); RY) such that for all w=|(b, X,v)]€ F%Ss,

- 1 - -
[45,0 (@) = (t2p+6 (X, ) ||, < CO)(E+]ew|?) (¢ + [vg](1T5]+105]))-

Proof: As usually, we only need to obtain a good bound on

| D% (o) B s () X2 | L1

where the notation is as in the proof of Lemma 4.20. By equation (2.11), the L'-norm on the
small annulus centered at Z3(v) is bounded by |35]%. Since g, 5-distance between Z5(v) and Z3(v)
is bounded by C(b)|vi|, the Li-norm over the annulus centered at Z3(v) is bounded by |v;||3].

For any b€ St2(p), let k(b) € L3T*®L,yT be given by Dy 3b=~£(b)(D 5b). For (X, v) 6F®S|ST,2(,U«)
sufficiently small, we define the nonzero element x(X,v) of Ly7*®Ls7T by

sl ,(X.0) (D73¢Sq’5805 w(X,v)) = R(X, ’U)(DT 505 Pl tV(X7U))‘
Note that by Theorem 2.7, |k(X,v)—r(b)] < C(b)(t+|w\%). Let
VI, 0) = (Dl 5 (X)) (35,0, (034 R(X, 1)) + s (v, 39+ 37 (0)53));
YE(X,0)= X5, (5), Pag,(v) = (Dysb)si. (vg, 258 +a5s(b)73).

Let Y =Y!+ Yt and 5 —7ri .
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Corollary 4.25 There exist §,C' € C®°(St2(p); RY) such that for all w=][(b, X, v)] € F'S;,
1 - -
170395 4, (X, @) — (t737 +Y (X, 0) ||, < CO)(t+]eo|r) (¢ + [v|(15]+[83]) + [Y (X, 0)]);
1 ~ -
7z % 4 (@) = (7, + Pz, ()], < COE+[e]) (¢ + [g|(15]+173)))-
Proof: This claim is proved similarly to Corollary 4.21.

The next step is to apply Lemma 3.2. Let
Fr=Hi®E), F =FT, Of =Hi{@ev'TP", F =riTYRFT;
¢([b;0]) = [b, vy @ (255 +a36(b)d3)], o (6(v) = Paz,©), aX,v) =Y(X,v)+Paz,(v).
Note that o~ €T(S; F~*®0™) is well-defined. Since the map
(X,v) — (YJ‘(X,U),’U)
is injective on FQS, we can view zbéiu as a map on an open subset of FT@GF .

Corollary 4.26 Suppose d is a positive integer, T = (X, [N],I;j,d) is a simple bubble type, with
I= {1,2,3}, HiT:{Q,f’)}, dy=0, and ;. ;d; =d, and p is an N-tuple of constraints in general
position such that

codimcp = d(n+1) —n(g—1) + N.

Let v €T (ExPY; AM n T*S@ms, TP™) be a generic section. For every compact subset K of St 2 (1),
such that x1(b) € X* for all b € K, there exist a neighborhood Uk of K in C’E);,[ND(Z; ), where and
ex >0 such that for any t€(0,ex), Ux N Ms g4, (1) =0.

Proof: The set S7 (1) ={b€ S72(p): 3 €X*} is an open subset of St,2(x) on which the section o~
has full rank, since D 5 does not vanish on S72(u). Note that the dimension of Sz o(p) is 1, the

rank of F'~ is also 1, while the rank O~ is 3. Thus, the claim follows from Theorem 2.7, Lemma 3.2,
and Corollary 4.25, provided

[0l (131 +173]) < C(0) (|vgllza05 +23(0)T5] + [V (X, v)])
for some C'€ C*(S75(1); RT). By definition of Y*(X,v),
|’L~)Q + K(b)f)3| < |Yt(X, U)| + C(b)|$él~)é+l‘3/{(b)l~13|.
Since x5 # T3,

1| (|T5] + |03]) < C(b)|vg| (|95 + K (b)D5] + 2505 + 255(b)03])
< C'(b)|v; | (|5Ts + z36(b) T3] + [YH(X, v)]).
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4.8 Third-Order Estimate for ¢7 ,,, Case 2

It remains to consider gluing along the subset Sé—mg (p) of St 2() consisting of bubble maps b such
that x4 (b) = z,,, one of the six distinguished points of . Let

S = T2 ={beST2: 2i(b)=2m}.

The normal bundle of Sg—mz) in M7 is NS=T,, X®NS;, where NS is the normal bundle of Sz o

in M7 described in the previous subsection. Let (@5, @g) be a regularization of Sé—n;) () induced

by the regularization of St 2(p) described in Subsection 4.7. In particular,
st P ads(b:w, X) =T, 5 0 X V(bw,X) €T, LONS =T, S0,

where gz~55 is the lift of ¢s to /\/lgq). We also assume that @/ is given by the gpn j-parallel transport
on N;Si. The bundle NS carries a natural norm induced by the gpn ev-metric on P" and g ;-

metric on . Denote by F'S and F?S the bundles described in Subsection 2.4 corresponding to the
submanifold S(Tm; If (b,w,X,v)eF 0S8 is sufficiently small, let

Tp(w,v) = Tp(ds(w, X,v)) = Zp(ds(w,0,v)) €, h=2,3.

We identify a small neighborhood of 2, in ¥ with a neighborhood of 0 in 7., ¥ via the g, 5-
exponential map. Put

d(w, X, U) Hb_qbg(b X) ((DTQ@bS(b’ X))SZ,QEQ(w,U)({]Q) + (D']',SQSS(bv X))SE,ig(w,v) ({]3)
+(DF,05(6.X))s;) (3) + (D) ds(b, X))sy.), (3):
d'u(w,X,U) = ((Dgt 2(w X, U))SE 25 (w, v)(UQ) (Dgt 3(’UJ X U))SE x5 (w, U)(U?,))

(@D 05?2 (@) + (D Dn)s?) (@),

where, with ¢/, as in Theorem 2.7,

145(K) - -1 (k)
Ds’t’j’h(w’ X, U) H¢s%0$ tu (w,X,v), ‘158‘1’5505 (W, X v)Hb,¢§w§,w(w,X v) (DT h¢5q)5g05 tV(w’ X, U)) '

With k(b) as in the previous subsection, let
- - _ 3,-) [~ -
at(v) = (Dﬁgb)s&zm (Ug—i-/i(b)vg), o (w,v) = (DT ib) Sl(y,zm) (xg(w,v), (mi—xg)vi,vg);
0] (w,v) = (Dg 505’2 (F5(w, v), (w5 —33)vy, 53).
Lemma 4.27 There exist 9, CECOO(Sé—mQ), R™) such that for all w=(b,w, X, v) eFS;,
7 g (), Vs () — R () @w, X, 0)||, < CB) | (|55]%+[55]°).
Proof: This lemma follows from Proposition 4.4 applied with first- and second-order terms.

Lemma 4.28 There ezist §,C >0 such that for all w=(b,w, X, v) EF@55|S(m) ()’
7T;2

944, () — (76w, X, 0))||, < Cle|m|) (¢4 (fog ? + logleo]) (551 +155)-
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Proof: Note that the space Sé— 2) (w) is zero-dimensional and compact if n=3. As before, we need
to bound

m
)

HDE‘s(w)R@‘s(w)XﬂpQ HLl’

where the notation is as in the proof of Lemma 4.20. By equation (2.11), the L'-norm on the
annulus centered at #5 = Z5(w, v) is bounded by (|Z5]|05|+|05|%)|05|, while the norm over the other
annulus is bounded by (|Z3|[v;|+|v;|*)|03], since the g, ;-distance between 75 and Z3 is bounded
by Clvj|. See the proof of Lemma 4.16 for more detail. The claim follows from Ty = w+wTsvy.

Lemma 4.29 There exist §,C >0 such that for all w=(b,w, X, v) EF@S5|S(M)(M)’
7T;2

@ (w, X, 0) — ™ (w,v)||, < Clt+[w|?) (|5y] +|55]);
H?T_ )d“(w,X,U)— A ( H

s (w,v ag (w V)
H’]T:Yr_é(w,u)d“(w)Xav) - OZQ_(’U),U)H

1 ~ ~

< C(t+a|r) (fvg |+ [w]) [vg | (195 +185]);
1 ~ ~

< C(t+|w]?) (g ]+ wl) [vg | (193] +1751)

Proof: The first bound is clear from the definition of &*, since

1
(D7 3b) = £(0) (D7 50), lo(w, X,v)[p < C(t+ |=|?).
Since 51(),2;;) =0,
‘wf_ésg“ci)(ﬁhﬂ < C(|~%Q| + |Ui|)|1~lh|2. (4‘25)

where &), = &5 (w,v). Since T3 — T3 = (r3—x3)vj,

~ ~ 2 ~ 3 ~ ~
50,54 (T) = (50,2, (85) 5420, (w3 —w3)v1, )+ 5i, (@3 =g vy, (vg —vg)vy, B5)) | < Clog Pl
Since 7= s»z. = 0 and s g
Ts ) b,Zm ’

_ (@ . 3,-),~ N s N
\%Qsz(),%ﬁ((xg—w@)vijvg) — sy (&g, (25 — w30y, T3)| < CJas vy |73,

®3) (3:-)

|7r528b,f§((:r3—a:g)vi, (x5 —m3)vy,03) — sy (23— 23)05, (aj‘g—;pé)fui’ﬁg)‘ < C|5Z°Q||U1|2|273|-

Putting the last three equations together, we see that
— ~ 3,—) (~ ~ ~ ~ 2\ |~
[, 30 (55) — 5, (B3, (w3 =)0y, 83) | < O (1@l -+ o) (Fallor |+ vy ) 5] (4.26)

The second bound follows from equations (4.25) and (4.26). The last estimate is proved similarly.

Corollary 4.30 There exist 6,C >0 such that for all w=(b,w, X,v) EF@S(;‘S(m)(M),
7T;2

|94, () = (T +a (@), < Clt+]w]2) ¢+ ()]
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Proof: In light of Lemma 4.28 it is sufficient to show that
(foil + lw]) i [(185] + 153]) < O (w, X, v)] (4.27)

for some C'>0. Since (DT7Qb)Sg7zm, (DT,Qb) sl(fz’;) and (DTgb) sl(fz’;) are nonzero, by Lemma 4.29
- - ~ LI -
|05 + K(b)og| < O (|6 (w, X, v)| + (t+|w|?)(|05]+133]));
- - ~ 1 - -
|Zn[vi[[on] < C(|a* (w, X, 0)| + (t+|@|?) (Jog |+ w])vi | (|03]+]T3])).
Since k(b) #0, x5 # x5, and T, =w+x,v;, we obtain
(lvg |+ lwl) [oi [ (193] +[5]) < C(1Z5]+[3]) [0 | (193] +25])
< C'(|%3 o1 [(195]+ |05+ k(b)T5]) + 23] [vg] (|55]+ 05+ (D)T5]))  (4.28)
~ 1 - -
< C"(|a" (w, X, 0)] + (t+ |7 ) (Jog |+ [w])vg] (|95]+53]))-

If 6 is sufficiently small, estimate (4.27) follows from (4.28).

The next step is to apply Lemma 3.2. Let
Ft'=LTQFE), F =T,S®FT, OF=H;@ev'TP", F =r3TS®®L,T%%
o((b:w, v]) = [b, (wrmyv;) @ ((wy—w3)v5) @By
o (p(w,v)) = oy (w,v), a(X,w,v) =X, w,v).
Note that o~ €T(S; F7*®07) is well-defined.

Corollary 4.31 Suppose d is a positive integer, T = (X, [N],I;j,d) is a simple bubble type, with
I= {1,2,3}, HiT:{Q,f’:}, dy=0, and ), ;di=d, and p is an N-tuple of constraints in general
position such that

codimcp = d(n+1) —n(g—1) + N.

Let v € T (ExP™; AY 1wt T*Y@ms, TP™) be a generic section. There exist a neighborhood U ofS(;g) (1)
in C_’@[ND(E; 1), and €>0 such that for any t€(0,€), UN Ms g4 (1) =0.
Proof: Analogously to the proof of Corollary 4.18, we apply Lemma 3.2 to the map

(w,0,X) — 7l 7F )wg’ty(w, v, X)+7, T (w,u)wg,tu(w’ v, X)

x5 (w,v Zm " xy

instead of ngw. The claim then follows from Theorem 2.7, Lemma 3.2, and Corollary 4.30.

4.9 Summary of Section 4

We conclude Section 4 by reviewing the main results so far. Throughout this subsection,
T = (3, [N, 1;5,4)

is a simple bubble type, with d=)"d) and dy =0, and p is an N-tuple of constraints in general
position such that codimcu=d(n+1)—n(g—1)+N.
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If |I| >n, by Corollaries 4.10 and 4.11, there exist a neighborhood Uz of M (i) in C_'(O;_[N])(E; n)

and ez >0 such that for all t € (0, e7), Ur N My 44, (1) =0. This is also true if H()’Z';«éf or MyT #0.
If n=2, this statement is just Corollary 4.10. If n=3, we only need to consider Cases (1), (2b),
and (3b) of Corollary 4.11. Case (3b) follows from Corollaries 4.7, 4.26, and 4.31. The claim for
Case (2b) is obtained from Corollaries 4.7, 4.14, 4.18 and the same claim for Case (3b). Finally,
in Case (1), we use Corollaries 4.7, 4.26, and 4.31, the statement of Corollary 4.11 for \f| >2, and
the just stated result for Case (2b).

If |f| <n, HOT:f, and M7 =0, i.e. T is a primitive bubble type, by the previous paragraph and
Corollaries 4.7, 4.14, 4.18, and 4.22, there exist a neighborhood Uy of Mz (u) in C(O;;[N])(E; w) and
er >0 such that for all t € (0,e7), the signed cardinality ny(u) of Ur N My, g.4,(1) is the sum of
the numbers given by these four corollaries applied to 7. If |f |=1,

() = nr () = 08 (1) + 20 () + 180 (), (4.29)

where the numbers ngk)(,u) are described as follows. The number ngl)(,u) is the signed number of

zeros of the affine map
WV TEQ LT — HE @ev TP, M (a, [b,v1]) = 7+ (Dy 1b)ss.0(v7), (4.30)

where the bundles are considered over ¥ x Uz (1) = M7 (1) and 1 is the unique element of I. Note
that this number is the same as the number of zeros of the map in (4.11), since ¥ x Uz (u) — M7 (p)
is a finite union of smooth manifolds of dimension less than the dimension of Mz (u). Thus, if v
is generic, ngl) has no zeros over X xUz (1) — M7 (p). The number ng2) (1) is the signed number of
zeros of the affine map

P TR L T2 — Hy@ev* TP", P, bvi]) =75 + (DL 0)sE ) (vp),  (431)
where the bundles are considered over ¥ xS; (i) and Sy(u) is the closure in Uz (i) of the space
Si(p) = {belz(p): Dy jlb=0}. (4.32)

If n=2, & (u) is a finite set and thus S1() =81 (). If n=3, Si(ut) is one-dimensional over C. The
boundary S;(p)—Si(p) is a finite set, as can be seen from the estimate on D ; of Theorem 2.8.

Thus, in either case, the maps in (4.31) and (4.16) have the same zeros. Finally, the number n§3) (1)

is the signed number of zeros of the affine map

W TS (LT LT — Hy ©ev TP, (4.33)
3 —— 2 3,— 3 3,—
7 (@, b, vgwi]) = 7y + (DEB)sy (vp) + (DF))sf ) (wy),

where the bundles are considered over S; (1) and z,, is one of the six distinguished points of ¥. By
the same argument as above, this number is precisely the number of zeros of the map in (4.21).

If [I|=2 and n=2, ny(u) :ng})(u) is the signed number of zeros of the affine map
W T @ LT @ TS, 0 LyT — HY @ev TP, (4.34)

WP (1,25, [b,07,v3]) = 75 + (D 10)s5,0, (v7) + (D 5b)s5.0, (v3),
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where the bundles are considered over £ xUz () = Xj x ¥ xUz (1) and 1,2 are the two elements
of I. By the same argument as before, the number ng)(,u) is the same as the number of zeros of
the map (4.7). If |[I|=2 and n=3,

nr () = ni (1) + 208 (), (4.35)

where n(Tl)(,u) is defined the same way as in the n =2 case, while n(T2) () is the signed number of

zeros of the affine map

WP TE9? @ (LT ® L, T%?) — Hy @ev*TP", (4.36)
2 _ 2,— 2 2,— 2 2,—
U (. [b.vs ws)) =, + (D b)sits, ) (wy) + (DF0)s, (s(b)os) + (DEAB)siyr, ) (vs),

where the bundles are viewed over ¥ xS+(u),
Sz(n) = {belz(p): o Dy 5lp=0}, (4.37)

Ey is the quotient of ev*TP™ by Im(D; ;), 7t ev*TP" — E; is the projection map, and
/@(b)ELST@LiT is a nonzero homomorphism. Note that S#(u) is a finite set with our choice

of constraints. Finally, if |I] =3 and n =3, ny(u) = ng)(,u) is the signed number of zeros of the

affine map
OB TS 0T @ TS0 LT © TS0 LT — Hy' @ev TP", (4.38)
1 _
W (w4, 2,33, [b, 01,03, 03]) = B + (D 1b)sw0; (v7) + (D 5D)55.0, (v3) + (D 3b)s53.0, (1),

where the bundles are considered over % xUsz (1) = j x X5 x 83 xUz () and 1,2,3 are the three
(1)

elements of I. As before, the number ny’ (p) is precisely the number of zeros of the map (4.7). If
(k)

m>2 and k>1, we denote by n¥) (u) the sum of the numbers n-’ () over all equivalence classes
of primitive bubble types 7 with |I|=m.

5 Computations

5.1 The Numbers n') (n) with m=n

Our goal now is to compute the numbers n(Tk)(,u) for any primitive bubble type 7 = (3, [N], I; j,d),

and thus the genus-two enumerative invariants for P? and P3. Most of this section is devoted to
expressing the numbers n(Tk) (1) in terms of intersection numbers of tautological classes of various
spaces of stable rational maps that pass through the constraints pu. These are shown to be com-
putable in [P2]. The procedure for counting the zeros of affine maps between vector bundles is

described in Section 3. We start with the easiest cases.

Lemma 5.1 If 7 = (X,[N],I;j,d) is a primitive bubble type with |I|=n and p is an N-tuple of
constraints in general position such that

codimep = (n+1) Y d; —n+ N,
i€l

the set Uz (1) is finite and ng)(,u) = 2" Uz (1))
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Proof: The first statement is clear by dimension counting. By equations (4.34) and (4.38), we need
to apply Lemma 3.14 with

M = ZiXZQXZ/_{j—(/LZ, if n=2; B T21®Li?@TZQ®LQ?, ) if n=2;
ZiXZszzs)XUj—(,u), ifn:3; T21®L17@TZQ®LQT@TES®LST, ifn:3,

O :H%1®ev*TP”, and « given by (4.34) and (4.38). By Lemma 4.9, o € T'(M; E*®0) has full
rank on every fiber of . Thus by Lemma 3.14,

n (1) = (e(O)a(E)), [M]) = (c(0)e(E), [M]). (5.1)

Since Uz (1) is a finite set,
~ TEi@TEQ, if n =2 O~ M x C2"
TS ©TY; ®TY;, ifn=3;

Let y,=c1(T%,). Thus, if n=2, by (5.1)

nSP (1) = (L4 (yi +ya) +yivs) 5 M) = (iys, [Si xStz ()] = 41z ()],

since (yn, [2n]) =—2. If n=3, we similarly obtain

n (1) = (~y1yays, [B1 % Sy x ) Uy ()] = 81z ()],

as claimed.

Let 7,,(11) denote the sum of the numbers |tz (11)| taken over all equivalence classes of primitive
bubble types 7 with |f | =n. This is the number of n-component connected curves of total degree d
passing through the constraints pi,...,uy in P™ with a choice of a node which belongs to all n
components. From Lemma 5.1, we immediately conclude:

Corollary 5.2 Ifn=2, ngl)(,u) =4my(p). If n=3, nél)(,u) = 873(p).

5.2 The Numbers n'7 (1) and n (u) with m=n—1

In this subsection, we describe the numbers n(TQ) (1) and ng’) (1) with |[I|=n—1 topologically. The

similarity between these cases is that Uz (u) is two-dimensional (over C), while S7 (i) is a finite
set; see Subsection 4.9 for notation.

The numbers n(T2) (1) with |I]=n—1=1 and |I|=n—1=2 are the signed cardinalities of the zero
sets of the affine maps in (4.31) and (4.36), respectively. By Subsections 4.4 and 4.6, the linear

part « of the affine map wg?) has full rank in these cases, except over the zero set of 3(22 ). n

order to simplify our computations, we replace P by another section that has no zeros on X,
but so that the corresponding affine maps have the same number of zeros as the maps in (4.31)
and (4.36). The section

s97) e NS TS @ Hy)
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has transverse zeros at the points z1, ..., 26 € 2; see Subsection 4.5. Thus, it induces a nonvanishing
section

07 eT(TY @ Hy), where TS =TS*200(z)@...0 O(x)

and O(zy,) denotes the holomorphic line bundle corresponding to the divisor z,, on ¥. The bun-

dles TS and TY®? can be identified on >*, the complement of the six points, in such a way that
5(22’_) :778(22’_) on X* for some n€ C®°(X*;R1). Let 1[)%?) denote the affine maps obtained by replac-
ing TY%? and 3(22’_) by TY and 5(227_)7 respectively, in (4.31) and (4.36) (depending on 7). Since
1/,%?) and zﬁgg) have no zeros over {z,,} if v is generic and 8(22 ) and §(22 ) differ by a nonzero multi-
ple on ¥* there is a sign-preserving bijection between the zeros of wg?) and of 1[)%?) Furthermore,

the linear part of 1[1%?) has full rank on every fiber.

Denote by Sa(14) the union of the spaces S7(11) defined by equation (4.37) taken over all equivalence
classes of appropriate bubble types 7. This set can be identified with the degree-d two-component
rational curves in P3 that are connected at a tacnode and pass through the constraints p. Similarly,
in the n=2 case, the set S (i) corresponds to the degree-d cuspidal rational curves passing through
the constraints.

Lemma 5.3 If n=2, n{" (11) = 2/S1 ()| and n{® (1) = [S1(w)|. Ifn=3, n§? () = 2Sz()|.

Proof: Let T = (X,[N],I;7,d) be a bubble type that contributes to one of these numbers. By
dimension counting and Corollary 6.3, S7(u) is zero-dimensional and compact. Thus, in all cases
the bundles L, 7 and ev*TP" of equations (4.31), (4.33) and (4.36) are trivial. If n=2 and k=2,
we are in the case of (4.31). By the above, we can apply Lemma 3.14 with

E=T%, O=HsaHs,

and a €N(X xS7(u); E*®QO) that has full rank. We obtain

2

ni (1) = (e1(0) —e1(B), [ExS7(u)]) = (4+(4-6)) [z (w)] = 257 ()
If n=3 and k=2, we are in the case of (4.36) and apply Lemma 3.14 with
E=TSaTY, O=MH;®HyOHsy,

and a €e'(X xS7(n); E*®QO) that again has full rank. Thus,

nP (1) = (c1(0)—c1(B), [SxSr(w)]) = (6-4)S7 (1) = 2/S7(1)].

Finally, if n =2 and k=3, we are in the case of (4.33). Note that all the bundles involved are
trivial and the linear part of 1/15?) is an isomorphism on every fiber. Thus, ng’) ()= Uz ()|

The next step is to compute the cardinalities of the sets S,,—1 (). In order to simplify our answers,
it is convenient to introduce cohomology classes ci(L£;7) closely related to ci;(L;7). Suppose
T =(S?,M,1I;j,d) is a bubble type. and {’Z}; =(S?, Mk,Ik;jk,glk)} are the corresponding simple
types; see [Z1]. For any keI—1I and nonempty subset My of M}, 7, we define bubble types 7 (M)
and 7 /My as follows. Let

T /Mo = (5%, 1, M —Mo: jlar—no. d).-
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Let T(My) = (52, M, 1 Uy 1;4',d') be given by

k, if l€ Moy; 0, ifi=k;
gi=11, ifleMyT—Moy; d, = dy, ifi=1;
J1, otherwise; d;, otherwise.

The tuples 7 /My and 7 (M) are bubble types as long as dj, #0 or My# MyT. Then,

Ut (1) (1) = MO,{i}uMO X Z/_{T/M()( ﬂ HUN); (5.2)
leMy

where /\;107 (iyunm, denotes the Deligne-Mumford moduli space of rational curves with ({0, 1}UMy)-

marked points. If [ € M} T for some k€ I—1I, we denote T({I}) by T(I). If T is a basic bubble
type, by Theorem 2.8 and decomposition (5.2), Z/_{T( M) (1) is an oriented topological suborbifold
of Uz (11) of (real) codimension two. Thus,

ST ZaliT) = S PDyy g ron ()] € H2 (@), 3
Mo C My, Mo#0D

where PDy_ () [L?T( MO)(,u)] denotes the Poincare Dual of [L?T( MO)(,u)] in Uz (p), is a well-defined
cohomology class. Since our constraints y are disjoint, Uz yzy) (1) = 0 if |Mp| >2. Furthermore, it
is well-known in algebraic geometry that for any /€ Mj, the normal bundle of Uz ) (1) in Uz (p) is
L;iT(1); see [P2]. Thus, if p is an M-tuple of disjoint constraints,

[Ury ()] Ner(LiT) = [Urqy ()] N a(LiT()) = Uz ()] N a1 (L5T (1)), (5.4)

since LT |Z/_{T o is the trivial line bundle. The above fact from algebraic geometry is only used to

simplify notation and is not really needed for our computations. In addition, (5.4) can deduced
from Subsection 5.7.

In the n=3 case, we denote by V(i) the disjoint union of the spaces Uz (u1) taken over equivalence
classes of basic bubble types 7 = (52, M, I;j,d) with |I|=2. While the components of Vs(u) are
unordered, we can still define the chern classes

c1(Ly)+er(L3), A(L7)+ei(L3), er(Ly)er(Ls) € H (Va(p))-

In the notation of the previous paragraph, c;(L}) denotes the cohomology class cl(L'}’;i’Z}fi), where
we write T = {ki,kp}. If 7% = (S2,M,{0};0,d), we denote by Vi(u) the space Uz-(u) and by
c1(L£*)€ H2(Vy (1)) the cohomology class a (L5T™).

Lemma 5.4 If d>1, the number of rational degree-d cuspidal curves passing through a tuple p of
3d—2 points in general position in P? is given by

|S1(w)] = (3a®+3aci (L7)+cF (L), [Mi(w)]) — 2(n),

where a = ev*(O(1)).
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Proof: (1) This result is well-known in algebraic geometry; see [V]. Nevertheless, for the sake of
completeness, we include a proof. Let 7* be as above. By definition, S;(p) is the intersection of
the zero set of the section

D =Dy« € F(l_)l(,u); L*®eV*T]P’2), where L=LyT",
with Vi (i) = U= (p). Thus, by Corollary 3.13, with OV () = V1 (1) —WV1(p),

S1(p)| = (2 (L*®GV*TP2), Vi(w)]) — Covy () (D)

_ 5.5
= (3a*+3aci (L*)+c}(L*), [Vi(p)]) — Copy () (D). (5:5)

(2) Suppose 7 = (S?,[N],I;j,d) < T*, where N =3d—2, is a bubble type such that D vanishes
somewhere on U7 (11). Since the complex dimension of U7 (y) is at most one, by Corollary 6.3 dg=0.
Let

pr € T(Ur(p); Polyn(]:T;]:'T)) and a7 € F(Z/{T(,u);Hom(]:"T; L*@ev*TP"))

be the sections defined in equation (2.21). Recall that with appropriate identifications

ID(VE (V) = ar (pr(v))] < Cbo)v[F |pr(v)| VveFTs, (5.6)

where 6,C € C® Uz (n); RT) and 74+ FT 5— Vi (p) is an identification of neighborhoods of Uz (1),
which is smooth on the preimage of Vi(u). Note that |I| € {1,2} if U7 (u) is nonempty. By the
proof of Lemma 4.9, a7 has full rank on every fiber FT — Uz (p). Thus, by equation (5.6) and
Corollary 3.13, )

Cutr(u) (D)=0 it HyT # 1.
(3) Suppose |HyT|= |I|=1. Then T = T*(l) for some [ € [N] and FT =FT ~L;7T. Since aropr
has constant rank over Uz (i), by Corollary 3.13 and Lemma 3.14,

Cur (0 (D) = (er(L* @ev* TP?) — 1 (L3T), [Ur (w)]) = (3a+er(LiT), [Ur(p)]).

If |HT| = |I| = 2, aropr is an isomorphism on every fiber. Thus, Cur (D) = Uz ()| by
Corollary 3.13. Combining these contributions to the euler class of L* ®ev*TP? gives

Cor(Pr) = Y (Bate(LiT ), [Ur-y(W)]) + Y [Ur(w)

LE[N] (7], | Ho T |=|1]=2 57
= Y Bata@IT W), [Ur-o()]) + m2(u).
le[3d—2]

The claim follows by plugging equation (5.7) into (5.5) and using equations (5.3) and (5.4).
Lemma 5.5 Ifd>1, the number of two-component rational degree-d curves connected at a tacnode
and passing through a tuple u of p points and q lines in general position in P2, where 2p+q=4d—3,

1s given by

[S2(p)| = (6a”+4aler(L£7)+er(£3))+ (e (L) +e (£3)) +er(Li)er(£3), [Va(w)]) — 37s(1).
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Proof: (1) Let T* = (S?,[N],I*;j*,d*) be a basic bubble type such that I* = {k;,ko} is a two-
element set, di ,dy, >0, d +dj, =d, and N =p+q. Denote by 7" and 75" the corresponding simple
types. The proof is similar to that of Lemma 5.4, but we pass to the projectivization PE (over C)
of the bundle

E=1L®Ly — Ur«(p), where L;= LT

The section Dz+o of Lemma 4.9 induces a section D € T'(PE; vk ®ev*TP?) such that Sz-(u)
corresponds to the intersection of the zero set of D with PEly, (). If PE’ denotes the restriction
of PE to OU =Ur~ () —Ur=(1), by Corollary 3.13,

|S7+()| = (e3(vp@ev* TP?), [PE]) — Cppr(D) (5.8)
= (6a®+4da(cr (L) +e1(L3))+(F (L) +6 (L3)) +er (LY)er (L3), [Ur+(1)] ) — Cor (D).

The second equality above is obtained by applying (3.16).

(2) Suppose 7= (S?,[N],I;j,d)<T* is a bubble type such that D vanishes somewhere on PEy ()-
Let 77 and 75 be the corresponding simple types. Since the constraints are disjoint, up to inter-
changing the indices, we must have

71 — 71*) 7’2 — (527M2712;j|Mgvd|12) < 7’2)(< with dkz = 0.

Furthermore, Dz x, does not vanish on Uz (1); see the proof of Lemma 4.9. Thus, D vanishes only
the subspace

Zr = ]P)LQ‘MT(“) = {(b, La|p): beUr(p)}.
The map fy# of Theorem 2.8 induces an identification of a neighborhood of 0 in
FS=npFT @& rplsonply — Z1

with a neighborhood of Z7 in PE. Similarly to the n=2 case, with appropriate identifications,

DV (v, w)) = ar(pr(v,u)| < Cbu)lvl? |pr(v)] V(v,u) € FSs, (5.9)
where pr(v,u) = (p7(v),u) € FS=m"FT @ nyLsonyly — 27,

and a7 has full rank on every fiber by (2.21) and Lemma 4.9. Thus, similarly to the proof of

Lemma 5.4, and Cppy| . (D) = 0 if Hy, T # I, and only two cases remain to be considered.

(3) If | H, T |= |f2\ =1, &7op7 has full rank over all of Z7. Thus, by Corollary 3.13 and Lemma 3.14,
Cz,(D) = <cl(ny®ev*T]P’3)—cl(.7-"S), [Z_TD = <4a—|—cl(L’{Tg)+cl(LT), [Z/_{T(,u)D; (5.10)

note that c1(vg) =c1(L3) =0 over Ur(p). If |Hg,T|= |I5|=2, &7op7 is an isomorphism on every
fiber, and thus
Crp|z, (D) = |21 = [Ur (1)]- (5.11)

Note that the sum of [U7 ()| over all equivalence classes of bubble types 7* and 7 <7* is 373(),
since one of the three components of the image of each bubble map in U7 (u) is distinguished by
the bubble type 7. As before, we now sum up equations (5.10) and (5.11) over all equivalence
classes of bubble types 7 < T* of the appropriate form, plug the result back into (5.8) and use
equations (5.3) and (5.4). The claim follows by summing the result over all equivalence classes of
basic simple bubble types 7*.
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5.3 The Numbers n{) with m =n — 1
In this subsection, we give topological formulas for the numbers n(Tl) with |f |=n—1. As before,
the reason these two cases are similar is that the complex dimension of Uz (p) is two.

Lemma 5.6 Ifn =2, ngl)(,u) = 2(6a? + 3aci (L*), V1 (p)])-

Proof: (1) Let N, T*, L, D be as in the proof of Lemma 5.4. Since sy does not vanish on 3, by
equation (4.30) and Lemma 3.14,

k=3

=5 (& TR LY), [SxUr-(1)]) — Coxp-1(0) (),
k=0

= <15(1 —1—12(161 L*)—|—301(L*) [171(,&)]> —ngpq(o)(aj‘),

(5.12)

where (9:7'£%’1(§§>e\f”‘T]P’2 and a €T (ExV; (u); T*XRL*®0) is the linear part of the affine map 1/151)
of (4.30).

(2) We first compute Csys, (1) (al). Since Vi(p) is a complex manifold and D is transverse to the
zero set in L*@ev*TP? by Corollary 6.3, we can identify a neighborhood of 0 in

F=L"®ev'TP? — S (p)
with a neighborhood of S;(i) in Vi () via a map + in such a way that

-1

by(b,X) (D’Y(b7X)) =X V(b,X) € F;. (5.13)

Then with appropriate identifications,
at(y(X)) = 7t o X sy = as(X),

where 71 : © — O* is the quotient projection map. In particular, ais has full rank if 7, & H; ® ev*TP?
for all b€ Sy(u), ie. v is generic. Furthermore,

(T*SeL*®0Y) /(Im as) = T*E ® ((Hy®C?)/C).
Thus, by Corollary 3.13,
Coxsiu (@) = (e(T*E%), [SxS1(n)]) = 6S1(w)]. (5.14)
(3) It remains to compute the contribution to CZX'D—I(O)(O{J_) from X x (V1 () —Vi(p)). Suppose
T = (5[N], L;j.d) < T

is a bubble type such that D vanishes somewhere on Uz (). As in the proof of Lemma 5.4,
|I]€{1,2} and dy=0. Furthermore,

|0 (2,4 () = 7 (2, b5 p7(v))] < CbW)ol7lpr (V)] (2,b0) € F T,

where a7 = wlo(sz ®arg). If v is generic, &7 has full rank on every fiber, since sy has no zeros.
Thus, by Corollary 3.13,
Coxuiro(at) =0 if HT #1.

62



If |[HyT|= |I|=1, &7opr has full rank over all ©x2z (1), and thus by Corollary 3.13 and Lemma 3.14
Co sty () (@) =(c(T*SRON)(L;T) ", [SxUr(p)]) =2(12a+3c1 (LIT), [Ur(1)]).  (5.15)
If |HyT| = 1] =2,
(T*S@L*®@0%) /(Im aropr) ~ T*S @ ((Hy ®C?)/C).
Thus, similarly to the computation in (2) above,

Cstr (uy () = 6|Uz (1)) (5.16)

Summing equations (5.15) and (5.16) over all equivalence classes of 7 <7, we obtain

Coe (- (@) =2 (12a+3e1 (L3 T), [Uz-y ()] ) + 672 (1) (5.17)
l€[N]

The claim follows by plugging (5.14) and (5.17) into (5.12) and using (5.3), (5.4), and Lemma 5.4.
Lemma 5.7 If n=3, ngl)(,u) = 4(10a®+4a(c1 (L])+cr1(L£3)+er (L) (L3), [Valu)])-

Proof: (1) We use the same notation as in the proof of Lemma 5.5. By Section 4.9 and equa-
tion (4.34), ngl)(,u):N(ag), where

as € T(22x Vy(p); Hom(E; 0)), E=TS®L1 & TS9®Ly, O =Hy @ev TP,

a2 (331,332, b; vy ®U177)2®1)2) = (Du1)(sn,2,v1) + (Dv2)(s5,2,02)-

Here the bundles L; — V5(p1) and the sections D; € I'(Va(u); Lf @ ev*TP?) are defined as follows.
If bEUr+ (1) CVa(p), T*=(S?,[N], I*;5*,d*), and I*={ky, ko}, we let Li‘b:LkiT and D; =Dy, .
These bundles and sections are well-defined once we fix a representative for each equivalence class
of such bubble types 7* and order the elements of the corresponding set I*.

(2) By Lemma 3.14,

k=5

n{ (1) =Y (e (@NTF [PE]) — Car o) (@), (5.18)
k=0

— 42862+ 16a(er (L) 1 (L3)+3(¢3 (L) + 3(L5)) et (L)er (£3), [Pa()] ) —Car oy (65),
where & eT'(PE; 7;®0) is the section induced by as. Let
S = {(z1,22) €SI x 5wy =Faz}, RO = {(zm, 2m): me6]};
S8 =2 x Sy(n), S =5 x Sy(u),

where +x9=1x9 and —x5 is the image of x9 under the nontrivial automorphism of Y. The zero set
of & is the union of a section of PE over Séi), Séo), and X2 xUz (i), where 7 is as in the proof of
Lemma 5.5.

(3) The above section over %2 xUz(u) is given by

Zr = 54_1(0) HPE|E2XZ/{T(}L) = {(1‘1,1‘2,(), Tm121®L1|b): (1‘1,1‘2,b)€22><z/{7'(,u)}.
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The map +4 of Theorem 2.8 induces identifications of neighborhoods of Z7 in
FS =mp(FT @ T*"10Li@TEo® Ly)
and in PE as well as of appropriate bundles such that

1
& (v, w)) = @z (pr(v),u)| < Cby)|v]?|pr(v)] Y(v,u)€FSs, where
ar € T(Z2r;Hom(FS:75®0)), FS=7%(FT @ T*510 LTS, Ls),

dT(ZL‘l,ﬂZ’Q, b7’l~),U) = {aT({})}®Sr1 + (D2®5x2) O U.

By the proof of Lemma 4.9, &7 is nondegenerate. The same is true of & as long as DEF(]P’E; 0) is
generic. Thus, if [ #H,T, Zr is &*-hollow and CZT_(dJ-) =0 by Corollary 3.13. If |Hy, T |=|I|=1,
i.e. T=T%(l) for some [ €[N}, &7 has full rank on Z7~%?xUz(u). Thus, by Corollary 3.13,

Cz,(a) = (c(v5®0M)c(FS) ™, [27]) = 4(16a+4cy (L3)+3c1 (LIT), Uz (1)), (5.19)
since FS~L;T ®©T*S1@TS2® Lo. If |Hy,, T|=|I|=2, we similarly obtain
Cz (@) = (c(p®ON)e(FS) ™, [21]) = 120Ur (1)] (5.20)

Note that FS~C?@T*Y;®TY, in this case. Summing up equations (5.19) and (5.20) over all
equivalence classes of bubble types 7 of the appropriate form and using (5.3) and (5.4), we obtain

Coplovan (@) =4 D (16a+3cr (L)) +4er (L)), Uz (1)]) — 36[Va(w)], (5.21)
[T+ 1eM; i#j

where the outer sum is taken over equivalence classes of bubbles 7* as in (1) above.

(4) It remains to compute CPE|S2i (&') and CPE‘SS)) (&1). Note that

5(_1(0) N ]P)E|S§i) = 22(:‘:) = {(IL’, :t$, b, ['U®'U1,'U®'U2]) E]P)E|S§j:) . ’D‘(b;[vl,vg}) :O},

where D is the section of "YE(XJGV*T]P)?’ defined in the proof of Lemma 5.5. Identify neighborhoods
of Zéi) in
FS=TL ®75Qev TP = TE @ C3

and in PE via a map v in such a way that

|d(7(va)) - aS(va)‘ < C(va)(|w| + |X|)|w v(va)EfS(Sa
where ags EF(ZQ;Q;Hom(]:S;'y*E®O)),

{as(w, X)}Ho@v) = (Xv)(spv)+ (Dav2) (sl(f;(w,v)) €0, if vel,X, v=(vi,v2)€EVE.

Since s{?) = o, ‘351(;,232 does not vanish on ¥*, g has full rank on Z2(i2) and extends over Zéi) ~ Y X Sa(p).

This extension is a regular polynomial in the sense of Definition 3.9. Furthermore,

Tras: YpQevi TP — V5 ® T (Hy @ev* TP?)
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is an isomorphism. Thus, by Corollary 3.13, Cz(i)(dL) =N(ag), where
2

ag €T(Zy; Hom(TE; 0z)), Oy =75 © (Hy0ev'TP?) T % T*S @ (Hy©C?) ™,
{ag (w)}(v@vg) = W#;D((D2U2)S;27_)(w7v))-
As in the previous section, we can replace TY with
TYS=TESQ0(z1)® ... O(z)

and ) with §2) el'(%; TS ® Hs,) above to obtain a non-vanishing linear map &g such that
N(ag)=N(dg). Thus, by Lemma 3.14,

Copn, 20 (@) = 21 (02)—en(T'2), [257]) = 2(10-4)1S2 ()| = 121S2(p)] (5.22)

(5) We next show that C (&*)=0. Similarly to (4),

PE|S{”

o™ (0) NPE|g0 = 25" = {(2m, 2, b @1, & 03]) €PE| g0t Dl ) =0}

We can identify neighborhoods of 22(0) in
FS=TY 0T ®v5Qev TP ~ C2a C?
and in PE via a map v in such a way that

|7T;10d(7(w1,w2,X)) - ag(wl,wg,Xﬂ < C|X, wl,w2‘|w1||w1—w2| V(wy, we, X) € FSs,

where  {ag(wi,w2) } (v@V1, VRVy) = (DQUQ)Sgi(wl,wg—wl,v) € My (2) @ev*TPA.

Since the rank of (Hy(zp)®ev*TP?)/Cr ¥ is two, while the rank of T}, % ®1%,, X is one, it

follows that Zéo) is a-hollow, and CP 7SO (&%) =0 by Corollary 3.13. The lemma is obtained by
2

plugging (5.21) and (5.22) into (5.18), using (5.3) and (5.4), and Lemma 5.5.

5.4 Behavior of D and D® near S (i) — S;(p)
(k)

If n=3, the space S;(u) is not compact. In order to be able to compute the numbers n; (1), we
3)

e where

thus must understand the structure of Sj(u) as well as the behavior of Déi? 6 and D
T = (52’ [N]v {O}a 67 d)v near Sl (M)_Sl(:u)

If T=(S?[N],I;j,d)<T*, from Theorem 2.8 one should expect that the normal bundle, or cone,
FS of Sr(p)=Ur(p) NSi(1) in Si(p) is the closure of the set

{lo=0. () €FOT|g 0 D Tlvi(Drab) =0} (5.23)
hex(T) iel,i<h

in F7T. The next lemma shows that this is indeed the case. By a dimension-counting argu-
ment, if the set in (5.23) is not empty, either |x(7)| =1 or x(7)={hi, ha} is a two-element set,
Lhy = lhy, D7 p,b#0, and Dz ,,b#0. In the first case ~7:5:~7:T|87(u)a while in the second FS§ is a
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codimension-one subbundle of 7T |5, (,)-

Let N§ — FS denote the normal bundle of FS in F7 — Uz (n). While for the purposes of
Lemma 5.8, we can use any identification of neighborhoods of S in N'S and in FT — Uz (p),
in order to simplify the statement of Lemma 5.10, we choose a fairly natural one. More precisely,
denote by FS* a subspace of FT|s,(u) complementary to FS and by 7s: NSW — &7 (1) the nor-

mal bundle of S7(ut) in Uz (p). Choose a norm on NS and an identification ¢ NSgl) —S7(p)
of neighborhoods of Sz (1) in NSW and in U7 (). Let ®s: nsFT — FT be a lift of ¢s such that

®s restricts to the identity over Sr(u) C/\/'S((;l). Let m: FT — S7 (1) be the bundle projection.
Then

NS = NSWaFrst, and ¢s: NS; — FT, ¢s((b,v), (X,v1)) = ds((b, X),v+vb),
is an identification of neighborhoods of FS in N'S and F7T — Uz ().

Lemma 5.8 For every bubble type T = (S?,[N],I;5,d)<T*, there exist §,C € C°(St(u); RT) and
a section ps €T (FS5; NS) such that

1 1
les@)l| < CO)WIP,  llepst @) < Cby)|o]*7,
where o g1 denotes the FS*-component of ps, and the map
vs: FSs — Si(p), v5(v) = i (dsps(v)),

is a homeomorphism onto an open neighborhood of St (1) in Sy (), which is smooth and orientation-
preserving on the preimage of Sy(p).

Proof: (1) The proof is similar to that of Lemma 3.32 in [Z1], and so we only describe the differences.
If S7(u)#0, T must have one of the three forms described by Lemma 5.10. In Case (1), we apply
Subsection 3.7 in [Z1], which contains an application of the Implicit Function Theorem, to DT*,()
instead of the evaluation maps. By Theorem 2.8,

1
I, 2 (0 (D7 577 (V) = (D gbo)| S C'D)0l> Vo FSs.

This estimate suffices for applying an argument similar to the proof of Lemma 3.32 in [Z1].
(2) In Case (2) of Lemma 5.10, instead of the section Dr. 5 of LET*®ev*T P3, we consider the

section D of (LOT*®.7-"T)*®eV*TIP’3 on a neighborhood of Uz (1) in Uz« (i) defined by

€ ev*TP3.

D‘.,M(b’vi)(vo,vi) = DT*,O

4 () (%)

This section is well-defined outside of U7 (p) and by Theorem 2.8 extends over Uz (i) by
D, (v5®v1) = v5v (D 1b)-

The restriction of this section to U7 (u) vanishes transversally at Sy (u) by Corollary 6.3, while
its zero set on Ur-(u) is the same as the zero set of DT*,()' By Theorem 2.8, with appropriate
identifications,

D]ty — Dl <C'D)0]r Vo EFSs.

v (b,v
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(3) In the final case of Lemma 5.10, we replace DT*’() by a bundle section over the blowup of F7°
along Ur(p). Let

Qr = {(b,v,0): (bv)eFT, velePFT|p}, Uy ={(b,v,0)eQr:v#£0}, Er =Qr—QF.

Denote by v — Q7 the tautological line bundle. The normal bundle N'S of v — PFS in v — &7
is given by

NS =mimpr NSY & (v @ R FST),
S5 ((0,4,0), X, 0) = (6s(b, X), [@s(v + 0 (v))], 0+ 0(v)),

where 7y : v — {7 is the bundle projection map. The bundle LyT™ pulls back to a bundle L over
a neighborhood €5 of &7 in Q7. We define a section D of (L®7)*®eV*TIP’3 over {15 by

M * 3
D‘(b,%véw (vg,v7,05) = DT*,ﬁ‘&;(b,vi,uﬁ)(vﬁ) € ev'TP”.
This section is well-defined outside of 7 (i) and by Theorem 2.8 extends over E7(u) by
D, (vg, v1:v3) = vg (v (D7 3b) + v3(D7 5b)).

The restriction of this section to E7(u) vanishes transversally at PFS — Sz (u) by Corollary 6.3,
while its zero set on Q2* corresponds to the zero set of D 5 on Ve (fT 5—217(/1)). By Theorem 2.8,
with appropriate identifications,

> ~ 1
1Dl 4,01.,.0) — Pl | < C'(0) )7

Thus, we can apply the arguments of Lemma 3.32 in [Z1] to D to describe its zero set near E7. We
~ 1
obtain a section ¢s €'(vs|prs; N'S) such that ||gs(v)||<C(by)|v|?, and the map

st vslprs — Q1. As(v) = dirs(s(v)),

is a homeomorphism onto an open neighborhood of PFS in ﬁ_l(O). This section ¢s induces the
required section s with the claimed properties.

Corollary 5.9 For every bubble type T =(S?,[N],I;j,d)<T*, there exist § € C*°(St(n);R") and
a map )
Vs - (N'S(l)@}"T)é‘ST(M) — U+ (1)

such that s is a homeomorphism onto an open neighborhood of St(p) in Ur=(p), which is smooth
and orientation-preserving on the preimage of Ur~(p), and with appropriate identifications,

X, in Case (1) with X € L*® ev*TP3;

Dys(X,v) =
1s(X,v) {Xvi, in Case (2) with XEL“{T@ev*TIP’?’,

where the cases are the ones described by Lemma 5.10.
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Proof: The proof is just a modification of the proof of Lemma 5.8. We work with the sections
D=D and D=D in Cases (1) and (2), respectively. Choose an identification ~: N’Sgl) —UT (1)
of neighborhoods of Sz (1) in NSW and in Uz (u) as well as of the appropriate line bundle over
these neighborhoods such that

> _ (1)
Dl x) =X VX eENS;

By the same argument as in the proof of Lemma 5.8, for any (Y,v) € NSW @ FT, there exists a
unique Z e NSW | such that B B
Dl @s(xsvuy = Plx = X-

Furthermore, |Z| SC’(b)(|Y|—|—|U|%),

Lemma 5.10 Ifd> L pisa tuple of p points and q lines in general position in P? with 2p+q=4d—3,
and N =p+gq, the set S1(u)—S1(1), is finite. Furthermore, if

T = (%[N Ijid) < T* and Sz(p) #0,

(1) I= {1}, ds >0, and the images of Dg) 5 and Dg.)’) o are linearly independent in every fiber of
ev* TP3 over St(p);
(2) OR I={1}, dy=0, d; =d, and for all v= [b,vi] e FSs,

1
L, ) (PP (0)) = o (DZ5b)] < Clog 7

[T, ) (DD 35(0)) 321 (D5 (v)) — 3D )| < Cloy 45

bys (v

(3) OR f:{i,?}, dy=0, and for all v=[b,vj,v5]€FS

1
I, L) (PP s (v) = 2(2q05 (D 3b)+a505(Dy b)) | < Clof 75

— 2 2 1
11,2 ) (DD s (1)) =3(y +) (DD s (1)) =3 (w5 —5) (v (D, 1) =03 (D)) | < Clof 7.
Proof: (1) The statement about the possible structures of 7 is easily seen from Theorem 2.8 and

dimension count. The finiteness claim then also follows by dimension count. In Case (1), if d5>3,
by Corollary 6.3, the images of D( ) and Dg.)’) o are transversal and thus linearly independent over

the finite set S7(1). On the other hand if d; <3, S7(1) = 0; see Subsection 4.5.

(2) The four inequalities in the lemma will be obtalned by refining the proof of the analytic estimate
of Theorem 2.8. We use the same notation. Combining equations (2.22), (2.23), (2.24), and (2.26),
we obtain

(D) =m 3 “kvf];() HDEE) o 3 / WL, (5.24)

hex(T) k=1 hEx(T

where the integral is computed by using the same trivializations as before. This equality holds for
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any bubble type. If y7(v)€S1(p) and 7 is as in (2) of the lemma, (5.24) with m=1,2,3 gives

Wy L :
0= (DT 1b) 2me /|5,,_w|:6 Swtht (5.25)
1
(DD37(v) = 2030, (D) + 02(D)p) - - /| G (5.26)
mi—w =€
) 3
(D®57(v)) = 3av; (DYb) + a7 (Db) + 205 (DL)h) — 5 /w e Gowdw.  (5.27)

where e=46(b,) " !|v;|. Subtracting 2z; times the first equation from the second, we obtain
- 2 241
(D@37 (v)) — vg(pgfib)\ < C)|wy 7. (5.28)

Similarly, subtracting 3z; times (5.26) from and adding 3m% times (5.25) to (5.27), we obtain

(P37 (1) =321 (DP37(v))) — 203(DPrb)| < C(b) oy (5.29)

If ve FS is sufficiently small, the claim in Case (2) follows from equations (5.28) and (5.29) along
with Lemma 5.8 and our choice of ¢s. Note that if v e FS, we have to apply (5.28) and (5.29)
with v replaced by ®hh dsps(v), where @4 and @l are as in Subsection 3.9 of [Z1]. However,
applying the bounds on ¢4 and (;35, we obtain the claimed estimates.

(3) In Case (3), we proceed similarly. The analog of equation (5.26) gives

[(DP57(v)) — 2(210(Dy 1b)+2505(Dy 5D)) | < C(0) ||

Subtracting 3(x;+5) times the analog of (5.26) from and adding 6175 times the analog of (5.25)
to twice the analog of (5.27), we obtain

|(2(DPF7(v)) — (21 +25) (DD 77 (v))) —3(a;1—x2)(v2(2>g?>lb) (D(2 ‘<c b)[u] >t

The estimates of Case 3 follow from the last two equations and Lemma 5.8. The finer bound on
@ rgL of Lemma 5.8 is essential here.

5.5 The Numbers n§2) (u) and ng?’) (1) in the n = 3 Case

In this subsection, we express the numbers n§2) (1) and ngg) (1) in the n = 3 case in terms of

intersection numbers on the spaces Vi(u), Va(u), V3(p).

Lemma 5.11 If n=3, n(z)( ) = 4(2a+c1 (L), [S1(p)]) — 2|S2(p)]-

Proof: (1) We continue with the notation of the previous subsection. The number ngz)(,u) is

the number of zeros of the affine map in (4.31). As in the proof of Lemma 5.3, we can replace
( ) by § ~(2 ). Since the linear part of the new affine map does not vanish on X x S1(u) (see

Subsectlon 4 4), by Lemma 3.14,

k=2

=) (G I @ L) (0), [ExSi(1)]) — Coxas, (@)
k=0

= 4<2a+CI(L*)a [51 (M)]> - szasl (O‘J_)v

(5.30)
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where O =Hy ®@ev*TP3, 08 =81 (1) —S1 (1), and « is the linear part of the affine map in (4.31),

with sg’_) replaced by Eg’_).

(2) If T= (S%/[N],I;j,d) <T* and S7(u) # 0, T must have one of the three forms given by
Lemma 5.10. Since D does not vanish on S7(u) in Case (1) of Lemma 5.10, Coxsr(n) (at) =0

in this case. In Case (2), i.e. T =77*(l) for some [ € [N], Dg)i does not vanish over Sr(u); see

Subsection 4.5. Thus, by Corollaries 3.13, 3.6, and the first estimate of Lemma 5.10, Csxs, () (at)
is twice the number of Lemma 3.14 corresponding to

M=%x87(p), Ey=FT?~C, Oy=TS*QL*'00+~TE 00",
and az €T'(M; E3®03) that has full rank on every fiber. It follows that

Coxsr (@) = 2(c1(02) —c1(Es), [SxSr(p)]) = 4|87 (). (5.31)

(3) Suppose T is as in Case (3) of Lemma 5.10. Since xj # x5, Dy ; and D, 5 do not vanish on
St () =Ur (1) NSa(pe) (see Subsection 4.6), and Dy ;4D 5 vanishes on FS, x; Dy j+x5D; 5 does
not vanish on FS. Thus, the third estimate of Lemma 5.10, Corollary 3.13, and Lemma 3.14,

Coxsr(w (@) = (€1(O2) =1 (E), [ExSr(w)]) = 21ST(n)]. (5.32)

Summing up equations (5.31) and (5.32) over all appropriate bubble types 7 < 7* and substituting
the result into (5.30), we obtain the claim.

Lemma 5.12 If n=3, n\¥ (1) = (da+5c1 (L), [S1(1)]) — 3|S2(12)].

3)

Proof: (1) We continue with the notation of Lemma 5.11. The number n;” (1) is the number of
zeros of the affine map in (4.33). Let

E=L1L"2a L% — S (n).

Since the linear part « of the affine map has full rank on S;(u) (see Subsection 4.5),

k=2

_ kzo (N5 R e (0), [PE]) - CpE|o3, (o) (5.33)

<4a+501 (L") [Sl(u)]> — CPE‘agl(aé),

where O =ev*TP3.

(2) As in the proof of Lemma 5.11, Cpp|s, (4 (a) =0 for bubble types 7 of Case (1) of Lemma 5.10.
Suppose T =T*(l) for some [ € [N], i.e. we are in Case (2) of Lemma 5.10. The normal bundle
of PE|s, (. in PE is npFT ~ C. By the first two estimates of Lemma 5.10, with appropriate
identifications,

1
lag(vs(b,v7)) — @z (bvy)| < Clog "7 V(bvy) €FTs,
for some ar €T(PE|s, () FT**22~%®O) which vanishes only on

Zr ={(b,[v,w]) EPE|g, (4 v— 3zjw=0}.
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Thus, by Corollaries 3.13 and 3.6 and Lemma 3.14,

Cor|(Sr(u)-21)(08) = 2({1(VE®OT) —c1(FT), [PE|s, (u)]) — Cz, (67))
= 4|87 ()| — 2Cz, (7).

(2)
Ti and

Dg_)’)i are linearly independent in every fiber of ev*TP? over Sr(u), by the first two estimates of
Lemma 5.10 and Corollary 3.13, Cz, (a3)=3|27|. Thus,

Cepisr(u (ag) = (4ST ()| — 2IS7(1)]) + 3IST ()| = 5|7 (1)) (5.34)

(3) Suppose 7 is as in Case (3). By the last two estimates of Lemma 5.10, with appropriate
identifications,

By the first two estimates of Lemma 5.10, Cz, (&5)=|27|=|S7(1)|. Since the images of D

1
|0z (vs(b,v) — ar (b, v)| < Clog| "> V(b,v)EFS,
for some a7 €T(PE|s, (4); FS*®75®0OF) which vanishes only on
Zr ={(b, [v,w]) EPE|s, () : 2v— 3(x; +w5)w=0}.
Thus, by Corollary 3.13 and Lemma 3.14,

Ce|(s7()-21)(0B) = 1 (FEROT) =1 (FS), [PE|s, (]) — Cz, (a7)
= 2|87 ()| — Cz, (7).

By the last two estimates of Lemma 5.10, Cz, (&) = |27|. Finally, by Lemma 5.10 and Corol-
lary 3.13, Cz, (ag) = 2|Z7|. Thus,

Conjsr(n (@) = (28T ()] = 1ST(1)) +2[S7 (1)] = 3[S7(1)- (5.35)

The claim follows by summing up equations (5.34) and (5.35) over the appropriate equivalence
classes of bubble types 7 <7* and plugging the result back into (5.33).

The next step is to relate (a, [S1(1)]) and {e1(L*),[S1(1)]) to intersection numbers on the spaces
Vi(), Va(u), and V3(u). The approach is similar to the proof of Lemma 5.4, but first we need to
interpret (a, [S1(11)]) and (c1(L£*),[S1(1)]) as the zero sets of some bundle sections. In our case,
the spaces Uz~ (p) and Uz (y(p) for all [ € [N] are topological manifolds (not just orbifolds). Thus,
c1(L*) represents the first chern class of some line bundle £* — U7z (). It is well-known in algebraic
geometry that a slightly weaker statement is in fact true for any choice of constraints, and

[ = [* O( — lez[]:v}b_{fp(l)).

Let Vi=ev*O(1) — Uz (), Vo=L* — Uz~ (1), and ;=c1(V;). Choose sections s; € I'(Uz+(11); V)
such that s; is smooth and transversal to the zero set on all smooth strata Uz (1) C Uz+ (i) and on

S7(p) C Si(p). The second condition implies that s; does not vanish on the finite set 0S;.
Lemma 5.13 Ifd>1, uis a tuple of p points and q lines in general position in P? with 2p+q=4d—3,

(a, [S1(w)]) = (6a’c1 (L) +4a’c (L) +aci (L), V1 (w)]) — (4a® +a(er(£7) +e1(L3)), Da(w)]);
(e1(L7), [S1(w)]) = (da’er (L) +6a%ct (L") +4ac} (L7)+c1(LY), Vi(w)]) — 73(1).
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Proof: (1) Similarly to the proof of Lemma 5.4,
(i, [S1()]) = (mics (L*@ev* TP?), V1 (1)]) — Cop, (0 (DD s1). (5.36)

Suppose T = (52, [N], I; 4, gl) <T* is a bubble type such that Uz (u) # 0. If dy #0, by our assump-
tions on s;, D@s; does not vanish on Uz (u). Thus, for the purposes of computing Capl(“) (D®s;),
we can assume dy=0.

(2) In order to compute the numbers Cy, () (D@ s;), we slightly modify the approach of Subsec-
tion 3.2, since we have a great amount of flexibility in choosing the section s;. We consider a family
Yy = (tv+D, 54) of sections of L*&ev*TP33V;, with v generic with respect to D. Let 7: FT — Uz (p)
be the bundle projection map and fix an identification of 'yg*Vi — FT 5 with #*V;. It can be as-
sumed that the section s; has been chosen so that fyg—*si e'(FTs;m*V;) is constant on the fibers of
FT s over an open subset K7 of Uz () that contains all of the finitely many zeros of the affine map

FT — L*@ev' TP @ V;,  (b,v) — (7 + ar(pr(v)),si()),

over Uz (i), where ar and pr are as in (2.21). Note that by our assumptions on s;, the images
of {Dry: h € x(T)} are linearly independent in every fiber of ev*TP" over s; '(0). Thus by
Theorem 2.8, Corollary 3.13, and Lemma 3.2, Gy, (,) (D@si) =0 if HyT # I. Furthermore, if

HOT:f, Cuir () (D@ s;) is the number of zeros of the affine map

FT — L'@ev'TP?, v = (b,v) — b1y + ar(v), (5.37)

over s; 1(0) NUr (), where o €T (Uz (pn); L*®ev*TP3) is a generic section. Thus, by Lemma 3.14,

k=2
Cur()(PDsi) = ) (N en(L* @ev TP, [PFT| g g o)) = Corrismt ooy (0F1):
k=0
k=2
=Y (N fe(L*@ev* TPy, [PFT)) — Corrist (o)t (), (5.38)
k=0

where OUr =U7 (1) —Ur (1) and apr €T(PFT;ver @ L*®ev*TP?) is the section induced by a7
(3) Suppose i=1, i.e. p;=a. U T=T*(1) and 7' = (52, [N], I’;j,d’) < T is a bubble type such that
s11(0) NUz () Naz(0) # B, T' must have the form

I'—1|=2, H{T' ={2,3}, dj=0,dy#0, dj#0.
By Theorem 2.8 applied to 7’ <7, and Corollary 3.13,

CS;I(O)OMT,(M)(O‘%‘T) = WT'(M) n 31 ‘ = (a, Uz ()])-

Thus, summing up equation (5.38) over 7 =7*(1) with [ €[N], we obtain

> Cltpey@Bs1)= Y (60> +4aer (LT (1) +acd(LiT* (1)), [Ur- ()] ) =75 (1), (5.39)
I€[N] le[N]

(1)

where 75’ (@) is the number of two-component connected degree-d curves passing through the
constraints with the node at the intersection of one of the constraints with a generic plane in P3.
If |HyT|=|I|=2, |MyT|=0, and 7" is as above, up to equivalence of bubble types,

~

I'—11=1, J=1, d;=0,d#0, d,#0,
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i.e. 7'=T(l) for some [ €[N]. By Theorem 2.8 applied to 7’ <7 and Corollary 3.13,
CIP]—'T\sl_l(O)ﬂZ/{T/(u)(aJ}:T) = [t (n) N st 0)] = {a, Uz (1)])-

Thus, summing up equation (5.38) over 7 with |H7|= |I|=2 and |MyT|=0, we obtain

Z (a(4a+ci(L3T) 4+ (L5T)), [Z/_{T(N)]>—2T2(l)(u)
|Hy T |=|1|=2,| M T|=0 (5.40)

= (4a”+a(c1(L1)+e1(L3)), Da(w)])-
If |[HyT|= |I|=2 and |M;T|=1, a7 has full rank on all of U7 (u). Thus, by Corollary 3.13,
Cutr () (D®s:) = (cL(L*@ev* TP?) — 1 (FT), Uz () N s (0)]) = [Uz (w)].

Here we used 77 =L*®(Ly®L;)~L*®L* and Corollary 5.22. Thus, summing up equation (5.38)
over 7 with |HOT|:|f|:2 and |MyT|=1 gives

2. Cur () (P®si) = 750 (). (5.41)
|Hy T |=|11=2,| M T |=1

Finally, if [Hy7T| = |f | =3, 771|a'7(#) = 0. The first claim follows by plugging the sum of equa-
tions (5.39)-(5.41) into (5.36). See also equations (5.3) and (5.4).

(4) Suppose n; =c1(L*). We continue as in (3) above. If 7=7"(1), a7 does not vanish anywhere
on s (0) MUz (1). Thus, by Corollary 3.13,

D Cltpe () (DBs2) =Y (e(L*@ev TP )e(LyT) ™, Uz (1) N 53 (0)])

l€[N] le[N]
* 2 kK 2 k% » (542)
= (er(£7)(6a® +dacy (LIT*(1)+ A (LIT(1))), [Ur-qy(1)])-
lE[N]
If |[HyT|= |I|=3, ar again does not vanish anywhere on s 1(0) N U7z (p), and thus
Cutr (uy(D®s2) = [Ur (1) N 53 (0)] = (er (L), Uz (w)]) = [Uz (). (5.43)

Here we used Corollary 5.22 again. Note that if |[Hy7|= |1]=2, M2, (ny =0. This is immediate in
the case [My7T|=0 and follows from Corollary 5.22 and (5.3) in the case [My7T|=1. The second
claim of the lemma is obtained by summing (5.43) over all equivalence classes of bubble types
T <T* with |HyT|= |I|=3, and plugging the result along with (5.42) into (5.36). Note that

a3|z}7*u)(u) =0 VIE[N] = (4d’cr (L), Vi(w)]) = (4a’ci(L%), Vi (w)])-

5.6 The Number ngl)(,u) in the n = 3 Case
(1)

We finally compute the remaining number ny’ (1). The computation parallels the proof of Lemma 5.6.
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Lemma 5.14 Ifn=3,
n\ () = (10631 (L) + 3> (L), [V (w)]) — 12757 (u),
(2)

where 7,7 () denotes the number of two-component connected degree-d curves that pass through
the constraints and with the node on a generic line in P3.

Proof: (1) We use the same notation as in the proof of Lemma 5.6. By equation (4.30) and
Lemma 3.14,

k=5
n{ (1) = > (er(O)e] HT* S L), [SxUr-(1)]) = Cxup-10) (@),
poard (5.44)
= 2<112a3cl(L*)+84a2c%(L*)+32ac‘;’(L*)—|—5c‘f(L*), [Ur-(1)]) — CEXp_1(0)(aJ‘),
where O:H%1®eV*T]P’3 and a € T(SxUrs (u); T*SRL*®0) is the linear part of the affine map 1/1%1)

of (4.30). Let Oy =T*Y @ L*®0O~.
(2) Similarly to (2) of the proof of Lemma 5.4,

Coxsi(w) = (e(T*S®L*® (Hy ®ev*TP?/C)), [SxS1(1)])

= 2(12a+5¢1 (L*), [S1(1)]). (5.45)

Suppose 7 = (S%,[N],I;4,d) < T* is a bubble type such that Sr(u) # (). By Lemma 5.10, there
are three possibilities for the structure of 7, but szpfl(o)(al) =0 in all three cases. This claim
follows from Corollaries 5.9 and 3.13 and Lemma 3.2.

(3) As before, if T<T* and Csx ur ()—51 (u)) (@) #0, dy=0 and HOT:f. In such a case,

k=4
Coxuro-sr) (@) = ) (Arreu(02), [PFT]) = Cs1 o) (GF7), (5.46)
k=0
where arr €I'(PFT;v5rr®02) is the section induced by the section
mho(arosy) €T (ExUr(u); FT*205).

(4) If T=T*(l) for some [ € [N], FT ~ L;T over Ur (), and a}l(O):ExDq_}i(O). Thus, by (5.46),

Cs Ur () —57 () (") = 2(112a° +-84a® ey (LT ) +32aci (LT)+5¢3 (L3 T), [Ur (1)])

szp (0) (O‘j_-'T)
By Corollaries 6.3 and 3.13,
Coxsr(u(@F7) = ((FT @0y )e(Ly ;©ev'TP?) L, [ExSr(n)]) = 10[S7 (k).

On the other hand, if 77 = (S2,[N],I’;j’,d) < T, we apply Theorem 2.8 to 7’ <7. Then for the
same reason as before, Csxy,, (GF7) =0 unless dy =0 and HyT'=1'—1, i.e.

I'={1,2,3}, J=1,4=1, d =0, d,#0, dj#0.
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In such a case, with E= LyT'®L47", by Corollary 3.13,

Cssty () (aFT) = (c(FT*@0s)c(E)™, [SxUz (1))
= <32a + 5(61 (L;T,) +c (L;)T,)), [Z/_{T/ (/L)] >

Summing equation (5.46) over 7 =7 *(l), we thus obtain

D Oty () -Sry (@) = =647 () = 10{en (L) +ex (L3), [Vea ()] ) (5.47)
l€[N]

+2 ) ( 1120+ 84a”c1 (L) +32act (LY)+5¢3 (LY), [Uzay(1)]) = 5|Uz-a) N St (“)D’
1E[N]
where L; = L;T*(1), Vo1 (1) = UV21(n), and Vo 14(p) denotes the union of the spaces Uz ()
l€[N]

taken over all equivalence classes of basic bubble types 7 = (52, [N]—{1},{1,2};4,d) with d;,ds >0
and di—Fdé =d.

(5) If |HyT | = |I|=2 and |MyT|=0, FT ~ L;T®LsT over Ur(p) and a5 (0) consists of a section
Z1 of PFT over ¥xS7 (i) and the spaces X xUz (1), with 7’ corresponding to the bubble types 7
described in (2) in the proof of Lemma 5.5. By Corollaries 6.3 and 3.13,

Coxsy(w(@Fr) = (c(Vrr©0)e(C*) ™, [SxS7(1)]) = 10|87 ()]
On the other hand, if 7/=(S? [N],I’;j',d')<T and CerTisxu (u) (aFr) #0,
iI'—Ie{1,2}, HyT=I'—-1, dy=0,dj,#0if hel'—{2}.
If |I'—1I]=1, by Corollary 3.13,

C]P]-"T\Exl/{é—(u)(d}"]' <C 02 L T,@L T/) [E Xa']'/(,u)]>
= 2<32a + 5(01 (LiT')—i-cl (L};T,)), [Z/_{T/ (/L)] >;

see the proof of Lemma 5.13 for more details. If [I'—1I|=2, by Corollary 3.13,
~1 3 y — 10177
Corrimxu () (@77) = (1(02) =1 (C?), [ExUr ()] ) = 10|z ()|,

Thus, summing equation (5.46) over 7 <7* with |HyT|= |I|=2 and |MyT|=0, we obtain

> " Copir (-1 (") = —3073(11) — 10|82 (1) (5.48)
(7]
- 2(840% + 32a(er (£]) o1 (£3)) + (L) +A(£3)) + 51 (£)er (£3), [Pa()])
(6) If |HOT|:|f|:2 and |MT|=1, arr does not vanish on ¥ xUz(p). Thus, by Corollary 3.13,

Coxttr () = (e(O2)e(L* @ (LTS LyT)) ™, [SxUr()])
2<32a + 5(01 (L*T)—I—Cl (L;T)), [Z;[T(,u)] >
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Here we used the decomposition (5.2) and Corollary 5.22. Summing equation (5.46) over 7 <7 *
with |HyT|=|I|=2 and |My7T|=1, we obtain

S Conttr (@) = 647" (1) + 10{e1 (L) +er (L), Vit ()])- (5.49)
(7]

(7) Finally, if |Hy7T|= |I|=3, FT ~ L*®L*® L* over Ur(u), and drr again does not vanish over
Y xUz(p). Then by Corollary 3.13,

Coxtir (@) = ((O2)e(L* @L G L*) ™, [SxUr(p)]) = 10Uz (1)].

Thus, summing equation (5.46) over 7 <7* with |Hy7T|= |I]=3, we obtain
> Cosatr (@) = 107 (p), (5.50)
From equations (5.44), (5.45), and (5.47)-(5.50), we conclude that
ngl)(u) =2(112a%c; (L*)+84a’c (L*)+32act (L*) +5c1 (L), [Vi(u)])
— (8402 +32a(e1 (£7) + 1 (£3))+ 5L} +¢3(£3)+5er (£D)er (£3), [Va(w)])
— 2(12a+5c1 (L), [S1()])+10|Sz (1) | + 2073 (). (5.51)

The claim follows by using Lemma 5.5 and 5.13.

5.7 Computation of Chern Classes

In this subsection, we show that all intersection numbers of the spaces Vi (u) involving powers of a
and powers of ¢;(L}) are computable. We can then conclude that the numbers n¥) (1) are com-
putable. The computability of intersection numbers of tautological classes of Vi (i), which include
a and ¢ (L}), has been shown in [P2]. For the sake of completeness, a slightly different approach
is presented below.

If dy and dj are nonnegative integers and yu is an N-tuple of any generic constraints in P", let
M(d, ;) (1) denote the union of the spaces Uz (1), where 7 is a simple bubble type of the form

T = (8% [N,{0.1}1 4, {dg, d }).

Then /\;177(%@1) (p) is a complex codimension-one homology class in the space V; (i) with d= dgtdy.
If d>0, let

> >
> fldgdi) = D fldg,dy), > fldgdi) = ) fldg,dy),
dg+di=d dg+dy=d dy+dj=d dg+dy=d
d@,dizo d07di>0

whenever f is any function defined on the appropriate subset of Z x Z.
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Lemma 5.15 Let T*=(S?,[N],{0};0,d) be a bubble type with d>0. Then in H*(Ur=(11)),

>
* 1 — 2 A
(L") = = (M — 2da + ;d: ddi/\/l(dé,di)(p)),
041

where H denotes the subset of elements in Ur~(u) that pass through a generic codimension-two
linear subspace of P™.

Proof: (1) We restate the proof of [I] in terms of the line bundle L*¥ U4 (1), instead of passing
to a cover of Uz« (p1). Define a section ¢ € T'(Uz-(u); L*®%*) as follows. Let Hy and H; be two fixed
hyperplanes in P”, generic with respect to the constraints u1,...uy. Suppose

[b] = (S [N1,05,(0,),us)] € Uz=(p)

is such that ug is transversal to Ho and Hy. Then,
uo_l(Hi) = {[xgz),ygz]], . [acl(;),yg}]}, i=0,1,

for some [x,gi),yg]] € PL. Define ([b]) by

. RORINCY
b(be) =" ] <% - ﬁ) (5.52)

kleld Yk 1

While this section could be infinite, it is well-defined, i.e. independent of the choice of a represen-
tative b € Bz« for [b]. With an appropriate coordinate change on C""! it can be assumed that
H;={X;=0}. The map ug corresponds to (n+1) homogeneous polynomials of degree d: po, ..., pn.
Since the right-hand side of (5.52) is symmetric in the roots of py and separately in the roots
of p1, ¥ is a rational function in the coefficients of pyp and p;. Thus, 1) extends over all of Uz=(u).
Furthermore, this section extends by zero over Uz () —Uz~(1).

(2) We now identify the zero set of the section . From equation (5.52), it is clear that 1) vanishes
with multiplicity one if po and p; have a common root, i.e. if ug passes through Ho N Hy. The
section 9 also has a pole of order d along the sets of maps

X = {b: y,(go)(b):() for a unique k€[d], pi(1,0)#0},
X, = {b: y,gl)(b)zo for a unique k€ [d], po(1,0)#0}.

Note that X; = ev 1(H;). Finally, while 1 vanishes outside of Uz« (1), Ur(p) has (complex)
codimension one in Uz« (u) if and only if 7 < 7* is a two-bubble strata, i.e. as described just
before the statement of the lemma. Let dy and d; be the corresponding degrees. It follows from
equation (5.52) that ¢ has a zero of order d% along an open subset of U7 (p). Thus, we obtain

>
* 2 — —
(L) =H—-2da+ > Mg q)(n).
d()-i-di:d

Corollary 5.16 With notation as in Lemma 5.15,
1

>
L) = = (H —2dat Y d?M(dm)(u)).
dg+d;=d
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Proof: This is immediate from Lemma 5.15 and (5.3).

If 7 =(S%,[N],I;j,d) is any bubble type, let Ty = (52, My7 UH,T,{0};0,d;). Denote by 7j, for
ke HyT the simple bubble types corresponding to 7. Then,

Ur () = Uz, (1) X [ (evexev) | ] Uz (1 (5.53)
kE€HGT keHsT
= {(bo, (bk)kEH T € Z/{T >< H UTk er )—ev(bh) Vke H; T}
keHyT

Lemma 5.17 With notation as above, if T <T* and dy#0,

(LT g ) = {CI(E*TO)‘Q% w T > Uz, (Mo)(ﬂ)} X T (emxen) ) [ thru
¢ 0 Mo C My T, MoNHy T #0 €HyT kEHT

Proof: Since LyT* |y, () =Lg7T and Uz (1) O Uz (ag) (1) =0 unless Mo C MyT, by (5.3)

(LT gy = AL Dy = D2 Ur() - Ur ) ()
@#M()CM T

=G (LSIZE))‘L‘{T(M) _@¢MZMZ/_{§:(MO)(N)
0CMgy

The claim follows by using equation (5.3) again.

Corollary 5.18 All intersection numbers on Vi(p) involving only the powers of a and ¢1(L}) are
computable.

Proof: Corollary 5.16 and Lemma 5.17 reduce the computation of such numbers to understanding

the restrictions ¢y (£*7g) |y, (1) where My is a subset of M7y intersecting Hy7T. By (5.2),
0

Usyato) ~ Mo, g0.1yunty X U /ato-

We express c1(L*7T5)

comes from a line bundle over Mo {0,1}UMo" In fact,

‘Z/_{T()(]WO) in terms of cohomology classes on /\/l07 (0,1}UMo By definition, LT |l 7. (o)

Cl(L r

*
0 |MO,{0,i}uMo ><1’{7'@/1\40

:QZ}OXL

where 1) is the -class of Mo (0.11uMo corresponding to the marked point 0. Since L*Ts|u T ()
9 ) O
is L*7T5(My),

ATl 0 = AE T, 0 ng o) - Uryon)
0 0
=1hyx1— > Ur, (i Mo— M) = = Py, X 1 N tymty <V

@#M(/)C(Mo—HOT)
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where 75 (M; Mo — M}) ={T;(Mo)}(M}) and for any proper subset J of .J we define the cohomology
class 9 7 on Mo,{ﬁ,i}uJ by

‘/N’J =Py — ZMO,({O}uJ/,{i}u(J—J’))‘
p£J'CJ

Here Mo ({07 {1 }U(T—T7)) is the closure in Mo (0,130 of the two-component strata such that the

marked points on one of the components are {0}LI.J". The numbers

X111 = @ Mg 613000

are given in Corollary 5.20, which is a consequence of the following well-known lemma; see [P2] for
example.

Lemma 5.19 (1) For any j*€J, 1/;J_{j*}:O n H*(MO,{G,i}uJ)'
(2) IfNM 0,({0}u {itu(J—Jr)) 1S the normal bundle of

MO,({O}uJ’,{i}u(J—J’)) ~ MO,{O,i}uJ’ x MO,{O,i}u(J—J/)

in MO,{@,i}ujf )
1 (NMO,({O}uJ’,{i}u(J—J/))) = —thy x 1 =1 x 1.

Corollary 5.20 If m>0, x(m,0)=1. If m>k>0, x(m,k)=0.

For our purposes, we can assume that the constraints j1, ..., uy are disjoint. In the case of P2, the
dimension of the space Vi (1) is at most 2. Thus, by a dimension count, if Uz Mp) (1) is nonempty
and appears in the computation of the intersection numbers of Corollary 5.18 via Lemma 5.17, then
HyT consists of a single element and My= Hy7. The corresponding moduli space ./\/l07 (0,1}UMo is
a single point and thus

<1/}|MO‘HI7'7 [M{O,i}uMo]> =1

In the case of P3, Vi(u) is four-dimensional, and we encounter two cases when /\;107 (O, 18
positive-dimensional. One possibility is that Hy7 is still a single-element set, but My contains
one of the N marked points. In this case, by Corollary 5.20 or simply by the first statement of
Lemma 5.19,

|Mo|-1 v _ _
(Dhty. —Hy T [M{O,i}uMo]> =x(2,1) =0.
In fact, we can replace the first statement of Lemma 5.19 with the direct computation of the degree

1y on ./\;1074 given by Lemma 5.21 below. The other case when ./\;107 (0,11 is positive-dimensional
is Mo=HyT is a two-element set. Then

<¢|MO‘HIT7 (Mo iyunn)) = x(2,0) =

73‘:{(ylay27y3)€(c yi+y2+ys=0, By )+B(ly2)+B(ys))=%}. Then
(0)

Lemma 5.21 Let /\;lé
M04 induced from the standard action on C is free,

the action of S' o
- - (0
Moa = M&i/Sl ~ P!,
and the line bundle associated to this quotient is the tautological line bundle over PL.
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Proof: Identify /\;lé?)l with S3 C C? S'-equivariantly by the map

(y1,92)

(y1 Y2 y3) T
Y ly1] + [y2]

Our assumptions on 3 imply that this map is a diffeomorphism; see Subsection 1.3.
Corollary 5.22 If 7 = (S2%,[3],{0};0,0), (c1(L*), [tr]) = 1.

Remark: In [Z1], we extend the definition of ./\;l(()?)l of Corollary 5.21 to construct spaces ./\;lg(-)) for
all bubble types 7.

5.8 The Final Formulas

We finally put everything together to arrive at formulas for the numbers ng 4(u) for P? and P3.
It can be assumed that y is a tuple of (3d—2) points in the case of P? and of p points and ¢ lines,
with 2p+q = 4d—3, in the case of P3. In the former case, we write ng q for ng q(p) and ng for the
number of rational plane degree d curves passing through 3d—1 points.

If v e D(Ex P AVl T*S @ 75, T*P") is generic, for all ¢ € (0,1), the signed cardinality of the
set My 1 q(pe) is the symplectic invariant RT5 (; ). If t >0 is sufficiently small, every element of
M 1. q(p) lies either in a small neighborhood U of the set Hy, 4(xt) or in a small neighborhood W
of the space of all bubble map with singular domains. Furthermore,

|\ Ms wa(p) NU| = |Hsa(p)| = 2n2,q(n).
On the other hand, by Subsection 4.9,

n () +2n? (1) +18nP) () +n5 (), if n=2;

My wa() VW] =4 0 () +208 () +18n8 () N (5.54)
08" (1) +2n8 (1) + 1§ (1),

Thus, ng q(p) is one-half of the difference between RT3 4(; 1) and the number in (5.54). We write
CR(u) for the number given by (5.54).

We first consider to the n=2 case. We abbreviate M4, 4,)(1t) as Mg, 4, Let

Zoq = ( U Zdl,dg)/Z2a where  Zg, 4, = U U(s2,[N),1:5.{0,d1.d2}) (1)

dq,dy>0 51=1,2
d1+d2=0

and the partial ordering on I = {f), 1,2} is 0<1,2. The set Zy4 is the zero-dimensional space of
three-bubble maps passing through the (3d-2) points u, such that the map is trivial on the principal
component. Note that

1 3d—2
‘Zd;2| = TQ(N) = E Z <3d1_1>d1d2ndlnd2. (555)
d1+da=d
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The binomial coefficient counts the number of possible ways of distributing the constraints between
the two nontrivial bubbles. Without the factor d;ds, the above number would have been precisely
the number of two-component rational curves passing through (3d-2) generic points in P?. However,
we have to account for the image of the evaluation map at 0, which must be one of the d;dy points
of intersection of two rational curves of degrees d; and ds.

Lemma 5.23 In the n=2 case, the total correction is given by
CR(u) = (78a*+T72acy (L*)+22¢1(L*), [Vi(1)]) — 1872(p).

Proof: The four numbers of (5.54) are given by Lemmas 5.6 and 5.3 and by Corollary 5.2. The
cardinality of S;(p) is given by Lemma 5.4.

Lemma 5.24 With notation as above,

{aci (L"), Vi(w)]) = é( —ng+ % Z d3d <§CZ_—21> ndlndQ).

di+do=d
Proof: By Corollary 5.16,
1 >
acy (LF) = ﬁa<H —2dat+ Y dgMdl,@)- (5.56)
di+do=d

Note that

3d—2
> di(a, M)y = D di(dadz)ds <3d1_1>nd1nd2

di1+d2=d di1+d2=d

1 3d—2
= 5d Y didj <3d1_1>nd1nd2.
di+do=d

(5.57)

The reason for the appearance of the factor dids in (5.57) is the same one as in (5.55). On the
other hand, the factor d; appears because we need to count the number of times the first rational
component intersects a line in P2. Since

(aH, Vi(u)]) = dng and (@, V1 (u)]) = na.
the claim follows by plugging (5.57) into (5.56).

Lemma 5.25 With notation as above,

£\ [ 1 3d—2
(), D) =5 Y (3 d_l)dldzndlndz.
ditda=d N1

Proof: By Corollary 5.16,

* 1 *
AL = el )(H —2dat+ Y dgMdl,dz). (5.58)
di+do=d
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Since there are no two-component rational curves of total degree d passing through (3d—1) generic
points in P2 and there are no three-component rational curves of total degree d passing through
(3d—2) generic points in P2, by Corollary 5.16

(Her (L), D1 (1)) = 5 (~2da, D1 (u)]) = ~2n4. (5.59)

Similarly by Corollary 5.16 and Lemma 5.17,

1
<01 Mdl,d2]> = d2< 2d1aH [Mdl do > + |Zd1,d2| = |Zd1,d2|
1
3d—2 (5.60)
— —d1d2 <3d1 _ 1> ng,nd, -
Note that by symmetry
3d—2 1 3d—2
Z d1d3< 1>ndlnd2 = 5 Z dido (d2—2d1d2) <3d _1>ndlnd2. (561)
di+do= di1+d2=d !

The claim now follows from equations (5.58)-(5.61) and Lemma 5.24.

Corollary 5.26 The total correction term is given by
3d—2 3d—2
OR( ) = T8ng + 72— ( ng —I— = Z d2d2< 1) ndlndQ) 20 Z d1d2< 1) Ny Ny -
d +do= di+do=

Proof: This claim is immediate from Lemmas 5.23-5.25 and equation (5.55).

Lemma 5.27 The genus-two degree-d RT-invariant of P? is given by
R, 4(; 1) = RT24(;p ) = 6d°ng + Z dids 3d—2 N, N
s bl - s ) [3d—2} 142 3d1_1 1 2°
di+da=d
Proof: Applying the genus-reducing composition law of [RT] twice, we obtain
RTy 4(;p3a—2)) = 2RT1 a(p, P*; p3a—2)) + RT1,a(L, £; pa—2))

= 4RT.4(p, %, p,P?; pza_s)) + ARTy.a(p,P*, £, £; piza—sy) + RTo.a(l, 0,0, 6; piza—s)) (5.62)
=0+ 4RTO,d(p7 l g;p[3d—2}) + RTO,d(& ¢, e, g;p[3d—2})‘

Since the genus-zero three-point RT-invariant is the usual enumerative invariant, the middle term
above is simply 4d?ng. On the other hand, by the component-splitting composition law of [RT],

RTO,d(ga 67 67 67 p[3d—2}) = 2RT0,0(€7 67 ]P)27 )RTO,d(€7 €7p’ p[3d—2])

+ > > RToa, (6,6,6;p5)RTo.a, (£, 4, 65p1,)
di+do=d J,+Jo=[3d—2] (5.63)

3d—2
=2dng+ Y d§d§<3 p _1>ndlnd2.
dy+da=d 1
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The lemma follows from equations (5.62) and (5.63).

Theorem 1.1 is nearly proved. We can simplify the expression in Corollary 5.26 by using a re-
cursive relation for the numbers ng; see [RT, p363]. The expression of Theorem 1.1 is half of
the difference between the quantity of Lemma 5.27 and Corollary 5.26. Note that the numbers
ng with d=1,2,3 have long been known to be zero; see [ACGH]. Strictly speaking, our compu-
tation does not apply to the cases d=1,2. However, these two cases do provide a consistency check.

The case of P? is significantly harder than the n = 2 case. An explicit recursive formula as in
Theorem 1.1 would be rather long, so we do not provide one. Instead we express ng 4(t) in terms
of the corresponding symplectic invariant and intersection numbers of the spaces Vi (u), Va(u),
and Vs(u).

Theorem 5.28 If d is a positive integer and p is a tuple of p points and q lines in general position
in P3 with 2p+q=4d—3,

2ng.q4(p) = RTo 4(5 1) — CR(p), where
%CR(,u) =(480a°c1 (L*)+476a*ci (L*)+240act (L*)+49¢1 (L¥), V1(w)] ) + 3673(n)
— (324a® +144a(c1 (L) +c1(L3))+27(c] (L) +¢1 (L£3)) +25¢1 (L7)er (£5), [Va(p)])-

Furthermore, RT(-; 1) and all intersection numbers above are computable.

Proof: The six numbers of (5.54) in the n=3 case are given by Lemmas 5.14, 5.11, 5.12, 5.7, 5.3,
and Corollary 5.2, respectively. The numbers (a, [S1(1)]), {c1(L*), [S1(w)]), and |Sa(u)| are given
by Lemmas 5.5 and 5.13. The symplectic invariant RT5 4(-; 1) is well-known to be computable;
see [RT]. The above intersection numbers are computable by Corollary 5.18.

As in the case of P2, we recover the well-known fact that all degree-one, -two, and -three numbers
are zero. The only degree-one number, the number of genus-two degree-one curves through a line,
is zero because there are no holomorphic degree-one maps from a positive-genus curve into P";
see [ACGH]. The eight degree-two and -three numbers are zero because the image of any holo-
morphic map of degree two or three from a genus-two curve into P” is a line, see [ACGH], while
no line passes through the required constraints. The first three degree-four numbers given below
have also been known to be zero, since the image of any holomorphic map of degree four from a
genus-two curve into P™ must lie in a plane. Finally, observe that the fourth degree-four number
is the number no 4 given by Theorem 1.1, as should be the case.

degree 4 )
(p,a) (6,1) | 53) | (45) (3,7) (0,13) (5,7)
RTo q(-;p) | 7,872 | 64,960 | 548,608 | 4,906,304 | 5,130,826,752 | 290,439,680
CR(u) 7,872 | 64,960 | 548,608 | 4,877,504 | 4,998,465,792 | 258,287,360
no.q(p) 0 0 0 14,400 66,180,480 16,076,160
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6 Appendix

6.1 A Short Exact Sequence on P"

If M is a Kahler manifold and £ — M is a holomorphic vector bundle, let O(E) denote the sheaf
of holomorphic sections of E. If E — M is the trivial holomorphic line bundle, we write O for
O(E). Let H—P™ be the hyperplane bundle.

Lemma 6.1 There exists an exact sequence of sheaves over P":
0— O — (n+1)O(H) — O(TP") — 0.

Proof: (1) Let [Xq : ... : X,] denote the homogeneous coordinates on P". Denote by X; the section
of the hyperplane bundle given by

Then we define a sheaf map O — (n+1)O(H) by

f I (fXO, . ,an)

Let U;={[Xo:...: X,,]: X;#0}. On U;, we can use the complex coordinates
Zip = o ke{o,...,n}—{i}

Using these coordinates, we define a sheaf map (n+1)O(H)— O(TP") by
(Pos - -+ pn) — Pr(2i05 -5 2in) — 2ikPi(2005- - - Zin) i, (6.1)
kti Oz

where z; ; = 1. We need to see that this map is well-defined. Suppose j # ¢. Then,

~1 8 . .
—1 — a 8Zj7l 8 ziyj aZj k’ lf ]{‘.#]7 (6 2)
Z]J = Z7Z7'7l = o _ -2 9 . L 1 — 1 :
(2 azz,k l;é] 8zz,k’ 8z]’l Zi,j 8Zj,i + l?%:d Zl,l 3Zj,l ), lf kf—]
Since each p; is a linear functional, if k#1, j, we can write the kth summand in (6.1) as
(Z—l (2 Zin) — 2522 wpi(2 2. ))z—li
jsi PE\Z5,05 -5 Zjn jyi “3,kPi\Z5,05 - -5 Zjn)) % 025k
’ 6.3
= (06(25,0s- -+ 2n) — 25,4 24020, - -»Zj,n))i, o
82]7]6
The remaining, k=j, summand in (6.1) is equal to
_ _ _ 0 0
(252 P3(25.00 -2 2im) = 2500i(2.05 -+ 2jn) ) (=2, ) (g + > zik 8z-k)
3 pzi 7,
#i,J (6.4)
0 0
= (Pi(2,05 - -+ 2jn) = 27,0 (2,05 - -+ Zjn)) (3 + ik )
75 k?él,] Z]7k
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Since zj;2i = zjk, collecting similar terms in (6.3) and (6.4), we obtain equation (6.1) with ¢
replaced by j.

(2) It is clear that the first map is injective, the second is surjective, and the composite is zero.
Finally, if (po,...,pn) is mapped to zero by the second map, then (6.1) implies that X;p; = X;p;
for all 7 and j. Thus, the function f, given by

f([XO*"an])ZIMO’)'(—;"m,

is well-defined and holomorphic wherever (pg,...,p,) is.

6.2 On Regularity of Kernel of D,
Lemma 6.2 If u: S2—P" is a holomorphic map, there is a surjection
(n+1)H'(S*,0(u*H @ (—(k+1)p))) — H*(S* 0w TP"® (—(k+1)p))),

where p denotes the divisor corresponding to a point p € S%. If the degree of u is at least k, then
both cohomology groups are trivial.

Proof: Pulling back the short exact sequence of sheaves of Lemma 6.1 by u, tensoring it with
—(k+1)p, and taking the corresponding long exact sequence, we obtain:

— (n+)H (8% 0w H @ (—(k+1)p))) — H'(S* O TP"® (—(k+1)p)))

— H*(S% 0(—(k+1)p)) — ... (6.5)

Since S? is a one-dimensional complex manifold, the last cohomology group in (6.5) must vanish,
and the first statement of the lemma follows. On the other hand, by Kodaira-Serre duality,

H'(S* 0w H @ (—(k+1)p))) = H' (5% Q' (v H ® (—(k—1)p)) 66)
~ HO(S2; O((w*H® (—(k—l)p))*))*. '
The last group in (6.6) is trivial if O(u*H ® (—(k—1)p)) is positive, i.e. if
{e1(v'H® (—(k—1)p),[S?]) =d — (k—1) >0,

where d is the degree of wu.

Corollary 6.3 If u : S?> — P" is holomorphic map of degree d, for any p € S? and nonzero
’UETpSQ, the map

¢t ker Dy — P TuP", ¢ = (&, DElpws ..., DWIE], ),
me (k)

where DE|, ., denotes the covariant derivative of & along w in the direction of v, is surjective pro-
vided d> k.
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Remark: If one defines D¢ with respect to the metric gpn u(p) on P, D) ¢ Tu(p)]P’"®T*S2®k,
where T*S5? is viewed as a complex line bundle. However, the statement is independent of the
choice of metric on P”.

Proof: Since £ is holomorphic, if ¢§,’f35 is zero, & has a zero of order k + 1 at p. Thus, ¢§,’f3 induces
a short exact sequence of sheaves on S2:

0— O(WTP"® (—(k+1)p)) — O(u*TP") 3 (k+1)O((u"TP")p) — 0,

where we view O((u*TP"),) as a sheaf on S? via extension by 0; see [GH, p38]. Taking the
corresponding long exact sequence in cohomology, we obtain

(5% 0( TP) P (b 1) HO (5% O((w' TP),) (6.7)

— H'(S%; 0w TP" @ (—(k+1)p))) . ..
By Lemma 6.2, the last cohomology group in (6.7) is zero if d > k. It follows that the map ¢§,’2 is
surjective.

6.3 Dimension Counts

Lemma 6.4 Let X be a compact Riemann surface. If u: X — P™ is a holomorphic map, there

exists a surjection
(n+1)H' (Z;0(w*H)) — H'(Z; O(u*TP")).

Proof: Pulling back the short exact sequence of Lemma 6.1 by u gives a long exact sequence in
sheaf cohomology:

. (n+D)HY (S, 0w H)) — H' (0w TP")) — H?*(%;0) ... (6.8)
Since the complex dimension of ¥ is one, the last group vanishes, and the claim follows.

(_jorollary 6.5 Let X be a compact Riemann surface. If u: X — P" is a holomorphic map, the
0-operator for the bundle u*TP",

Dy: T(Z;u*TP") — T'(Z; A T* S @u*TP")

is surjective, provided d+x(X) >0, where d is the degree of w.
Proof: The cokernel of D, is H (%(Z; u*TP™). By Dolbeault Theorem,

H}(S;u*TP") = H' (3; O(u*TP")). (6.9)
On the other hand, by Kodaira-Serre duality (see [GH, p153]),

H'(Z;0(u*H)) = H' (%, QY (TSeu*H))

= H(S;0(TS®u*H)*))" = H(S; (TSeu H)*)".

The bundle (TX®u*H)* does not admit any holomorphic section if it is negative, i.e. if
(a1 (TE@u*H)),[2]) = (a1(TE)+e1 (u*H), [Z]) = x(X) + d > 0.

Thus, the claim follows from equations (6.9) and (6.10) and Lemma 6.4,
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Proposition 6.6 Let > be a Riemann surface of genus 2 and let d and n be positive integers with
n<4. Ifn=4, assume that d # 2. Suppose = (u1,...,un) is an N-tuple of proper complex
submanifolds of P™ of total complex codimension d(n+1)—n+N in general position. If

T=(%,[N],1;j,d") < T*=(%,[N],{0};0,d)

is a bubble type such that dj >0, then Hy(u)=0. Furthermore, if

b = (27 [N]7 {0}7 ) (07 y)7 'LL) S HT* (lu)7
then the map u is not multiply-covered.

Proof: (1) If di >3, by Corollaries 6.3 and 6.5 and standard arguments such as in [MS], the space

‘H7 is a smooth manifold and the maps ev; are smooth. If b€ H7, a neighborhood of b in Hy can
l=n

be modeled on ker Dy, @ @ Ty, Xy ;,- In particular, by the Index Theorem,
=1

dimeHr =Y (dj(n+1) + n(1-g(p,))) — (n=1)|I| + N = d(n+1) = n+ |I| + N.
icl
Thus, if the map
eviyy=evy X ... xevn: Hy — P" x ... xP",

is smooth and transversal to 1 X ... x jun, Hr (1) is a smooth manifold of (complex) dimension |I|.
Since the map ev|yj is invariant under the action of 2||-dimensional group

Gr ={g€PSLy: g(x) = oo}f,

Gr acts smoothly on H7(u). Furthermore, the stabilizer at each point is finite. Thus, Hy(u)=0.
(2) Suppose al’0 =2. If b= (Z, [N], I; z, (4,v), u) € Hr, the map uz must factor through a degree-one
map g : S? —P"; see [ACGH, p116]. Thus, it is enough to show that the space Hz+(u) is empty,
where 7' = (S%,[N], I;4,d"), d} =d} if h € I and dg = 1. By Corollary 6.3, the space Hz is a
smooth manifold of dimension

dime Hyr = (d—1)(n+1) +n + |I| + N.

Similarly to (1) above, it follows that Hz/(u) is a smooth manifold of dimension n — 1+|1] on
which the (2|7 |+3)-dimensional group PSLyxGr acts with only finite stabilizers. It follows that
Hr (1) =0 if n<|I|+4. Note that the case =0 can occur only if d=d;=2. Finally, if dy=1, the
entire space Hy is empty, since there are no holomorphic degree-one maps from ¥ into P".

(3) Suppose b= (%, [N],{0};, (0,y),u) € H7+ (1) and u: ¥ — P" factors through a k-fold cover of
S? where k>2 and k divides d. Then b arises from the space Hz(u), where

T’ = (5%,[N],{0};0,d/k).

Similarly to the above, this space is a smooth manifold of dimension

((d/k)(n+1)+n+ N) — (d(n+1) —n+N) = —%d(n—kl) + 2n.
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Thus, Hz/ (1) =0, provided d>3. In fact, since H7 (1) has a three-dimensional group of symmetry,
Hz () =0 unless d=2 and n >4.

(4) Suppose b is as in (3) and u factors through a k-fold cover of a torus 7', where k> 2 and k
divides d. Then b arises from the space

ﬂl,d/k(,u) = {(&,yinv},u): € is smooth elliptic curve, u: C—P",

= d
Oou =0, uié&] = E)\; u(yy) € w Vi € [N]}

Similarly to the above, Corollary 6.5 implies that 7:{1,,1 k(1) is a smooth space of dimension

((d/k)(n+1) + 1+ N) — (d(n+1) —n+ N) = —(%d - 1) (n+1) < 1.

Since 7%17d/k(,u) has a one-dimensional group of symmetries, 7%17d/k(,u) =0.
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