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Abstract

The main concrete result of this paper is enumeration of genus-two curves with complex struc-
ture fixed in P2 and P3. Along the way, rational curves with certain simple singularities are
counted as well. While the methods described can be used to count positive-genus curves in
some other cases, the most powerful direct applications of the machinery developed are to
enumeration of rational curves with a very large class of singularities in projective spaces.
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1 Introduction

1.1 Background and Results

Let (Σ, jΣ) be a nonsingular Riemann surface of genus g≥2, and let d, n be positive integers with
d≥1 and n≥2. Denote by HΣ,d(P

n) the set of simple holomorphic maps from Σ to P
n of degree d.

Let µ=(µ1, . . . , µN ) be an N -tuple of proper complex submanifolds of P
n such that

l=N∑

l=1

codimCµl = d(n+ 1) − n(g − 1) +N. (1.1)

If these submanifolds are in general position, the cardinality of the set

HΣ,d(µ) = {(y1, . . . , yN ;u) : u∈HΣ,d(P
n); yl∈Σ, u(yl)∈µl ∀l=1, . . . , N} (1.2)

is finite, and its cardinality depends only on the homology classes of µ1, . . . , µN . The group Aut(Σ)
of holomorphic automorphisms of Σ acts freely on HΣ,d(µ). For this reason, algebraic geometers
prefer to consider the ratio of the cardinality of the set HΣ,d(µ) and the order of the group Aut(Σ).
For a dense open subset of complex structures on Σ, the cardinality of the set HΣ,d(µ) has the
same order. The same is true of the set Aut(Σ). If jΣ lies in this open subset, we denote the
above ratio by ng,d(µ). This number is precisely the number of irreducible, nodal degree-d genus-g
curves in P

n with a fixed generic complex structure on the normalization and passing through the
constraints µ1, . . . , µN .
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For g= 0, 1, one can define the numbers ng,d(µ) for constraints of appropriate total codimension
by counting the number of equivalence classes under the action of the now infinite group Aut(Σ)
on the set HΣ,d(µ) defined as in (1.2) above. It is shown in [RT] that

n0,d(µ) = RT0,d(µ1, µ2, µ3;µ4, . . . , µN ),

where RT0,d(·; ·) denotes the symplectic invariant of P
n as defined in [RT]. For g = 1, in [I]

the difference
RTg,d(µ1;µ2, . . . , µN ) − 2ng,d(µ)

is expressed as an intersection number on a blowup of the space of degree-d (N+1)-marked rational
curves passing through the constraints µ1, . . . , µN . This number is shown to be computable, and
explicit formulas are given in the n = 2, 3 cases. On the other hand, the symplectic invariant is
easily computable from the two composition laws of [RT]. A completely different approach for the
n= 2, g= 1 case is given in [P1]. Using this algebraic approach, [KQR] express n2,d in the n= 2
case in terms of the numbers n0,d′ with d′ ≤ d.

In this paper, we extend the approach of [I] to compute the difference

RT2,d(·;µ1, . . . , µN ) − 2n2,d(µ)

in the n=2, 3 cases. The reason for the factor of two above is that the automorphism group of a
generic genus-two Riemann surface has order two. The following two theorems are the main results
of this paper. The two tables list some low-degree genus-two numbers. Evidence in support of the
two formulas is described in Subsection 5.8, where more low-degree numbers for P

3 are also given.

Theorem 1.1 Let n2,d denote the number of genus-two degree-d curves that pass through 3d−2
points in general position in P

2 and have a fixed generic complex structure. With nd =n0,d,

n2,d = 3(d2−1)nd +
1

2

∑

d1+d2=d

(

d2
1d

2
2 + 28 − 16

9d1d2−1

3d− 2

)(
3d−2

3d1−1

)

d1d2nd1nd2 .

d 1 2 3 4 5 6 7

n2,d 0 0 0 14,400 6,350,400 3,931,128,000 3,718,909,209,600

Theorem 1.2 If d is a positive integer and µ is a tuple of p points and q lines in general position
in P

3 with 2p+q=4d−3,
2n2,d(µ) = RT2,d(·;µ) − CR(µ),

where CR(µ) is the sum of the intersection numbers of explicit tautological classes in the space of
stable rational maps into P

3.

degree 4 5 6

(p,q) (3,7) (2,9) (1,11) (8,1) (0,17) (10,1)

n2,d(µ) 14,400 307,200 4,748,160 9,600 7,494,574,433,280 1,301,760
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A formula for CR(µ) is given in Theorem 5.28. Intersection numbers of tautological classes are
shown to be computable in [P2]. In fact, we give a method of computing these numbers along the
lines of that in [I], which is slightly different from the method of [P2]; see Subsection 5.7.

The numbers we obtain in the n=2 case are different from the numbers given in [KQR]. However,
our numbers can be recovered via the approach of [KQR]. In particular,

n2,d = 6
(
nKQR

2,d + τd),

where τd is the number of degree-d tacnodal rational curves passing through (3d−2) points in
general position in P

2. The factor of six is a minor omission on the authors’ part. The contribution
of 6τd arises from a three-component stratum [KQR] rule out by Remark 3.12, which is stated
without a proof. Details can be found in [Z2].

This paper combines the topological tools of Section 3 with the explicit analytic structure theorems
of [Z1]. Together these give a general framework that will hopefully provide a way of computing
positive-genus enumerative invariants from the symplectic ones in any homogeneous Kahler mani-
fold. In fact, the methods of this paper should apply, with very little change, at least up to genus
seven in P

2, to the g=3 case in P
3, and to the g=2 case in P

4. Genus-three plane fixed-complex-
structure curves have been enumerated; see [Z3].

Along the way, we enumerate cuspidal rational curves in P
2 and two-component rational curves

connected at a tacnode in P
3; see Lemmas 5.4 and 5.5. The formula of Lemma 5.4 is not new.

However, the methods of this paper can be used to count rational curves with singularities of “lo-
cal nature.” By “local nature,” we mean that a description of the singularities can be given that
involves at most one point of each component of the normalization of the curve. For example, a
tacnode on a one-component curve is not of “local nature,” but a tacnode at the node common
to two irreducible components of a curve is. So is a cusp of any arbitrary pre-specified form. Un-
like many approaches in algebraic geometry, our methods are not limited to P

2 and apply just as
well to arbitrary-dimensional projective spaces. In fact, the machinery itself can be used on other
homogeneous manifolds to express counts of singular rational curves in terms of intersections of
tautological classes on moduli spaces of rational maps. However, there is no general method of
computing these intersections for homogeneous manifolds other than the projective spaces.

The author is grateful to T. Mrowka for pointing out the paper [I] and many useful discussions, and
G. Tian for first introducing him to Gromov-Witten invariants. The author also thanks R. Vakil
for sharing some of his expertise in enumerative algebraic geometry, and A. J. de Jong and J. Starr
for help with understanding [KQR].

1.2 Summary

If ν ∈Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ ⊗ π∗
PnTP

n), let MΣ,ν,d denote the set of all smooth maps u from Σ to
P

n of degree d such that ∂̄u|z =ν|(z,u(z)) for all z∈Σ. If µ is as above, put

MΣ,ν,d(µ) =
{
(y1, . . . , yN ;u) : u∈MΣ,ν,d; yl∈Σ, u(yl)∈µl ∀l=1, . . . , N

}
.

For a generic ν, MΣ,ν,d is a smooth finite-dimensional oriented manifold, and MΣ,ν,d(µ) is a zero-
dimensional finite submanifold of MΣ,ν,d×ΣN , whose cardinality (with sign) depends only the
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homology classes of µ1, . . . , µN ; see [RT]. The symplectic invariant RTg,d(;µ) is the signed cardi-
nality of the set MΣ,ν,d(µ).

If ‖νi‖C0 −→ 0 and (y
i
;ui)∈MΣ,νi,d(µ), then a subsequence of {(y

i
;ui)}∞i=1 must converge in the

stable-map topology to one of the following:
(1) an element of HΣ,d(µ);
(2) (ΣT , y, u), where ΣT is a bubble tree of S2’s attached to Σ with marked points y1, . . . , yN , and
u : ΣT −→P

n is a holomorphic map such that u(yl)∈µl for l=1, . . . , N , and
(2a) u|Σ is simple and the tree contains at least one S2;
(2b) u|Σ is multiply-covered;
(2c) u|Σ is constant and the tree contains at least one S2.

By Proposition 6.6, the case (2a) does not occur if the constraints are in general position. Fur-
thermore, if g= 2, (2b) cannot occur either if n= 2, 3 or if n= 4 and d 6= 2. It is well-known that
n2,2(µ)=0, and thus the case n=4 and g=d=2 presents no interest. Our approach will be to take
t very small and to count the number of elements of MΣ,tν,d(µ) that lie near the maps of type (2c).
The rest of the elements of MΣ,tν,d(µ) must lie near the space HΣ,d(µ). By Proposition 3.30 in [Z1]
and Corollary 6.5, there is a one-to-one correspondence between the elements of HΣ,d(µ) and the
nearby elements of MΣ,tν,d(µ), at least if d≥ 3. If d= 1, 2, HΣ,d(µ)= ∅; see the proof of Proposi-
tion 6.6. Thus, we are able to compute the cardinality of HΣ,d(µ) by computing the total number
of elements of MΣ,tν,d(µ) that lie near the maps of type (2c).

In Subsection 1.3, we summarize our notation for spaces of bubble maps and vector bundle over
them. For details, the reader is referred to [Z1]. In Section 2, we describe an obstruction-bundle
setup and state Theorem 2.7, which relates the elements of MΣ,d,tν(µ) lying near the maps of
type (2c) to the zero set of a map between two bundles. We also describe the local structure of
certain spaces of stable rational maps. These spaces are very familiar in algebraic geometry, but
for our computations in Section 5 we need the analytic estimate of Theorem 2.8.

In Section 3, we introduce a category of mostly smooth (ms) objects and maps and present the
topological tools used in Section 4. We view moduli spaces of rational maps as ms-manifolds, rather
than as stacks. This approach allows to study the behavior of certain bundle sections over these
topological spaces using the analytic estimate of Theorem 2.8.

In Section 4, we use the topological tools of Subsection 3.1 to show that the number of zeros
of the maps of Theorem 2.7 is the same as the number of zeros of explicit affine maps between
vector bundles over cartesian products of spaces of rational maps with Σk. The results of this
simplification are summarized in Subsection 4.9. In Section 5, we relate the zeros of these affine
maps to the intersection numbers of spaces of stable rational maps into P

n. We use Theorem 2.8
and Section 3 for local excess-intersection type of computations. We conclude with the very explicit
formula of Theorem 1.1 in the n=2 case and a somewhat less explicit one of Theorem 5.28 in the
n=3 case.

1.3 Notation

In this subsection, we give a brief description of the most important notation used in this paper.
See Section 2 in [Z1] for more details.
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Let qN , qS : C−→ S2 ⊂R
3 be the stereographic projections mapping the origin in C to the north

and south poles, respectively. Explicitly,

qN (z) =
( 2z

1 + |z|2 ,
1 − |z|2
1 + |z|2

)

∈ C×R, qS(z) =
( 2z

1 + |z|2 ,
−1 + |z|2
1 + |z|2

)

. (1.3)

We denote the south pole of S2, i.e. the point (0, 0,−1)∈R
3, by ∞. Let

e∞ = (0, 0, 1) = dqS

∣
∣
∣
0

( ∂

∂s

)

∈ T∞S
2, (1.4)

where we write z = s+it ∈ C. We identify C with S2−{∞} via the map qN . If N is any nonnegative
integer, let [N ]={1, . . . , N}.

Definition 1.3 (1) A finite partially ordered set I is a linearly ordered set if for all i1, i2, h∈I
such that i1, i2<h, either i1≤ i2 or i2≤ i1.
(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there exists 0̂∈I
such that 0̂≤ i for all i∈I.

If I is a linearly ordered set, let Î be the subset of the non-minimal elements of I. For every
h ∈ Î, denote by ιh ∈ I the largest element of I which is smaller than h. We call ι : Î −→ I the
attaching map of I. Suppose I =

⊔

k∈K

Ik is the splitting of I into rooted trees such that k is the

minimal element of Ik. If 1̂ 6∈ I, we define the linearly ordered set Itk 1̂ to be the set It{1̂} with
all partial-order relations of I along with the relations

k < 1̂, 1̂ < h if h∈ Îk.

If I is a rooted tree, we write It1̂ for Itk 1̂.

If S=Σ or S=S2 and M is a finite set, a P
n-valued bubble map with M -marked points is a tuple

b =
(
S,M, I;x, (j, y), u

)
,

where I is a linearly ordered set, and

x : Î−→S ∪ S2, j : M−→I, y : M−→S ∪ S2, and u : I−→C∞(S; Pn) ∪C∞(S2; Pn)

are maps such that

xh ∈
{

S2−{∞}, if ιh∈ Î;
S, if ιh 6∈ Î ,

yl ∈
{

S2−{∞}, if jl∈ Î;
S, if jl 6∈ Î ,

ui ∈
{

C∞(S2; Pn), if i∈ Î;
C∞(S; Pn), if i 6∈ Î ,

and uh(∞)=uιh(xh) for all h∈ Î. We associate such a tuple with Riemann surface

Σb =
( ⊔

i∈I

Σb,i

)/

∼, where Σb,i =

{

{i}×S2, if i∈ Î;
{i}×S, if i 6∈ Î ,

and (h,∞) ∼ (ιh, xh) ∀h∈ Î ,
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with marked points (jl, yl) ∈ Σb,jl
, and continuous map ub : Σb −→ P

n, given by ub|Σb,i
= ui for

all i∈I. We require that all the singular points of Σb, i.e. (ιh, xh) ∈ Σb,ιh for h ∈ Î, and all the
marked points be distinct. In addition, if Σb,i =S

2 and ui∗[S2]=0∈H2(P
n; Z), then Σb,i must con-

tain at least two singular and/or marked points of Σb other than (i,∞). Two bubble maps b and b′

are equivalent if there exists a homeomorphism φ : Σb−→Σb′ such that ub =ub′◦φ, φ(jl, yl)=(j′l , y
′
l)

for all l∈M , φ|Σb,i
is holomorphic for all i∈I, and φ|Σb,i

=Id if S=Σ and i∈I−Î.

The general structure of bubble maps is described by tuples T =(S,M, I; j, d), with di∈Z describing
the degree of the map ub on Σb,i. We call such tuples bubble types. Bubble type T is simple if I is

a rooted tree; T is is basic if Î=∅; T is semiprimitive if ιh 6∈ Î for all h∈ Î. We call semiprimitive
bubble type T primitive if jl∈ Î for all jl∈M . The above equivalence relation on the set of bubble
maps induces an equivalence relation on the set of bubble types. For each h, i∈I, let

DiT = {h∈ Î : i<h}, D̄iT = DiT ∪ {i}, HiT = {h∈ Î : ιh = i}, MiT = {l∈M : jl = i},

χT h =







0, if di =0 ∀i≤h;
1, if dh 6=0, but di =0 ∀i<h;
2, otherwise.

Let HT denote the space of all holomorphic bubble maps with structure T .

The automorphism group of every bubble type T we encounter in Sections 4 and 5 is trivial. Thus,
every bubble type discussed below is presumed to be automorphism-free.

If S=Σ, we denote by MT the set of equivalence classes of bubble maps in HT . Then there exists

M(0)
T ⊂HT such that MT is the quotient of M(0)

T by an (S1)Î -action. Corresponding to this action,

we obtain |Î| line orbi-bundles {LhT −→MT : h ∈ Î}. The bundle of gluing parameters in this
case is

FT =
⊕

h∈Î

FhT , where Fh,[b]T =

{

Lh,[b]T ⊗ L∗
ιh,[b]T , if ιh∈ Î;

Lh,[b]T ⊗ Txh
Σ, if ιh 6∈ Î .

Let F ∅T ={υ=(υh)h∈Î ∈FT : υh 6=0 ∀h∈ Î}. Each line orbi-bundle FhT −→MT is the quotient of

a line bundle F
(0)
h T −→M(0)

T by a GT ≡(S1)Î -action. We denote by F (∅)T the preimage of F ∅T
in F (0)T ≡ ⊕

h∈Î

F
(0)
h T . The bundles F ∅T , F (∅)T , and F

(0)
h T are defined even if the automorphism

group of T is nontrivial.

For each bubble type T = (S2,M, I; j, d), let

UT =
{
[b] : b=

(
S2,M, I;x, (j, y), u

)
∈HT , ui1(∞) = ui2(∞) ∀i1, i2∈I−Î

}
.

Similarly to the S=Σ case above, UT is the quotient of a subset BT of HT by a G̃T ≡(S1)I -action.

Denote by U (0)
T the quotient of BT by GT ≡(S1)Î ⊂G̃T . Then UT is the quotient of U (0)

T by the

residual G∗
T ≡ (S1)I−Î ⊂ G̃T action. Corresponding to these quotients, we obtain line orbi-bundles
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{LhT −→U (0)
T : h∈ Î} and {LiT−→UT : i∈I}. Let

FT =
⊕

h∈Î

FhT −→ U (0)
T , where Fh,[b]T =

{

Lh,[b]T ⊗ L∗
ιh,[b]T , if ιh∈ Î;

Lh,[b]T , if ιh 6∈ Î;

FT =
⊕

h∈Î

FhT −→ UT , where Fh,[b]T = Lh,[b]T ⊗ L∗
ιh,[b]T .

The orbi-bundles FhT and FiT are quotients of line bundles over BT similarly to the S=Σ case.

The stable-map topology on the space of equivalence classes of bubble maps induces a partial
ordering on the set of bubble types and their equivalence classes such that the spaces

M̄T =
⋃

T ′≤T
MT ′ , Ū (0)

T =
⋃

T ′≤T
U (0)
T ′ , and ŪT =

⋃

T ′≤T
UT ′

are compact and Hausdorff. The G∗
T -action on U (0)

T extends to an action on Ū (0)
T , and thus line

orbi-bundles LiT −→UT with i∈I−Î extend over ŪT . The evaluation maps

evl : HT −→ P
n, evl

(
(S,M, I;x, (j, y), u)

)
= ujl

(yl),

descend to all the quotients and induce continuous maps on M̄T , ŪT , and Ū (0)
T . If µ=µM is an

M -tuple of submanifolds of P
n, let

MT (µ) = {b∈MT : evl(b)∈µl ∀l∈M}

and define spaces UT (µ), ŪT (µ), etc. in a similar way. If S=S2, we define another evaluation map,

ev : BT −→ P
n by ev

(
(S2,M, I;x, (j, y), u)

)
= u0̂(∞),

where 0̂ is any minimal element of I. This map descends to U (0)
T and UT . If µ = µ{0̂}tM is a tuple

of constraints, let
UT (µ0̂;µM ) = {b∈UT (µM ) : ev(b)∈µ0̂}

and define U (0)
T (µ0̂;µM ), etc. similarly. If S = Σ, T is a simple bubble type, and d0̂ = 0, define

ev : HT −→ P
n by ev

(
(Σ,M, I;x, (j, y), u)

)
= u0̂(Σ).

This map is well-defined, since u0̂ is a degree-zero holomorphic map and thus is constant.

If T is any bubble type, let 〈T 〉 be the basic bubble such that T ≤〈T 〉. If T is a simple bubble type,
let T̄ be the bubble type obtained from T by dropping the minimal element 0̂ from the indexing
set I and the subset M0̂T from M . Note that if T is primitive, T̄ is basic.

Finally, if X is any space, F −→X a normed vector bundle, and δ : X−→R is any function, let

Fδ =
{
(b, v)∈F : |v|b < δ(b)

}
.

Similarly, if Ω is a subset of F , let Ωδ = Fδ ∩ Ω. If υ = (b, v) ∈ F , denote by bυ the image of υ
under the bundle projection map, i.e. b in this case.
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2 Analysis

2.1 The Basic Setup

In this section, we focus on bubble types T =
(
S,M, I; j, d

)
such that either S=S2 or d0̂ = 0. In

the first case, we describe a small neighborhood of UT (µ) in Ū〈T 〉(µ) and the behavior of sections
of certain bundles over Ū〈T 〉(µ) near UT (µ); see Theorem 2.8. This theorem is deduced from The-
orem 3.33 in [Z1]. If T is a simple bubble type, S = Σ, and d0̂ = 0, we describe the elements of
MΣ,tν,d(µ) lying near MT (µ) as the zero set of a map defined on an open subset of the bundle FT ;
see Theorem 2.7. The map takes values in a bundle over MT (µ), which is the analogue of Taubes’s
obstruction bundle of [T] in this setting. Theorem 2.7 is a consequence of Theorem 3.29 in [Z1],
which requires us to make two major choices. This is done in the next two subsections.

If T =
(
S,M, I; j, d

)
and S=S2, by Corollaries 6.3 and 6.5, T is a (Pn, J)-regular bubble type in

the sense of Definition 3.1 in [Z1]. This regularity property implies that
(R1) HT is a smooth manifold;
(R2) for any b =

(
S,M, I;x, (j, y), u

)
∈HT , a neighborhood of b in HT , is modeled on

ker
(
Db : Γ(b)−→Γ0,1(b)

)
⊕

⊕

h∈I

Txh
Σb,ιh ⊕

⊕

l∈M

Tyl
Σb,jl

.

(R3) Db : Γ(b)−→Γ0,1(b) is surjective for all b∈HT .
Here Γ0,1(b) denotes the space of u∗bTPn-valued (0, 1)-forms on the components of Σb, while Γ(b)
is the set of vector fields ξ on the components of Σb that agree at the nodes and such that
ξ(i1,∞)=ξ(i2,∞) for all i1, i2∈I−Î. The operator Db is the linearization of the ∂̄-operator with
respect to a connection in TP

n. Along HΣ, it is independent of the choice of the connection. On
the other hand, if T is a simple bubble type, S=Σ, and d0̂ =0, by the same two corollaries, T is
a (Pn, J)-semiregular bubble type in the sense of Definition 3.2 in [Z1]. This means that (R1) and
(R2) are satisfied, with Γ(b) defined as above but omitting the last condition. Property (R3) is not
satisfied, and in fact by the two corollaries,

coker Db ≈ H0,1
Σ ⊗ Tev(b)P

n ∀b∈HT ,

where H0,1
Σ is the space of harmonic (0, 1)-forms on Σ. This cokernel bundle descends to a bundle

Γ0,1
− −→MT , which will be our obstruction bundle.

If S= Σ, for the gluing construction in [Z1], we choose a smooth family {gb,0̂ : b∈HT } of metrics
on Σ such that for all

b =
(
Σ,M, I;x, (j, y), u

)
∈ HT ,

the metric gb,0̂ is flat on a neighborhood of xh in Σ for all h∈ Î such that ιh =0̂. This family of

metrics, in fact, depends only on the sets {xh : ιh = 0̂}. Along with the standard metric on S2,
the metric gb,0̂ induces a Riemannian metric gb = (gb,i)i∈I on Σb =

⋃

i∈I
Σb,i. If S =S2, we take gb,i

to be the standard metric on Σb,i =S2 for all i∈I. With notation as above, if xh, z∈Σb,0̂ =Σ, let

rb,h(z)=dgb,0̂
(xh, z). If xh, z∈Σb,i =S

2 and z 6=∞, let rb,h(z)= |z−xh|.

For each υ=(b, vh)h∈Î ∈F (0)T sufficiently small, in [Z1] we then define a complex curve Συ, smooth
maps qυ : Συ−→Σb and qυ,i : Συ,0̂−→Σb for i∈I, and Riemannian metric gυ on Σ on Συ such that
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(G1) the linearly ordered set corresponding to Συ is I(υ)≡I−{h∈ Î : vh 6=0};
(G2) the map qυ|Συ,0̂

factors through each of the maps qυ,i;

(G3) qυ : (Συ, gυ)−→(Σb, gb) is an isometry (and thus holomorphic) outside of the annuli

A+
υ,h = q−1

υ,ιh

({
z∈Σb,ιh : |vh|

1
2 ≤ rb,h(z) ≤ 2|vh|

1
2
})

;

A−
υ,h = q−1

υ,ιh

({
z∈Σb,ιh :

1

2
|vh|

1
2 ≤ rb,h(z) ≤ |vh|

1
2
})

.
(2.1)

(G4) qυ,ιh : (A±
υ,h, gυ)−→

(
qυ,ιh(A±

υ,h), gb

)
is an isometry.

The map qυ collapses disjoint circles on Συ and identifies the resulting surfaces with S2 in a
manner encoded by υ. Alternatively, (Συ, gυ) can be viewed as the surface obtained by smoothing
(some of) the nodes of Σb. The maps qυ and qυ,i are constructed explicitly by fixing a smooth
function β : R−→ [0, 1] such that

β(t) =

{

0, if t≤1;

1, if t≥2,
and β′(t) > 0 if t∈(1, 2). (2.2)

If r > 0, let βr ∈C∞(R; R) be given by βr(t)=β(r−
1
2 t). Note that

supp(βr) = [r
1
2 , 2r

1
2 ], ‖β′r‖C0 ≤ Cβr

− 1
2 , and ‖β′′r ‖C0 ≤ Cβr

−1. (2.3)

These cutoff functions will not appear in the main statements of this paper, but they do show up
in the proofs of Lemma 2.1, Theorem 2.8, and Proposition 4.4. Having constructed the maps qυ,
we let b(υ) = (Συ, uυ) = (Συ, ub ◦ qυ). The marked points on Συ are the preimages of the marked
points of Σb under the map qυ.

We also need to choose a smooth family {gPn,b : b ∈M(0)
T } of metrics on P

n invariant under the

equivalence relation on M(0)
T if S=Σ and on BT if S=S2. While taking gPn,b to be the standard

metric on P
n may be the canonical choice, for computational reasons it is more convenient to take

gPn,b =gPn,ev(b), where {gPn,q : q∈P
n} is the family of metrics of Lemma 2.1.

Lemma 2.1 There exist rPn > 0 and a smooth family of Kahler metrics {gPn,q : q ∈ P
n} on P

n

with the following property. If Bq(q
′, r)⊂P

n denotes the gPn,q-geodesic ball about q′ of radius r, the
triple (Bq(q, rPn), J, gPn,q) is isomorphic to a ball in C

n for all q∈P
n.

Proof: On the open set U0 = {[X0 : . . . :Xn] ∈ P
n : X0 6= 0}, the Fubini-Study symplectic form is

given by

ωPn =
i

2π
∂∂̄ ln(1+f0), where f0([X0 : . . . : Xn]) =

∑

k∈[n]

|Xk/X0|2; (2.4)

see [GH, p31]. Let q = [1 : 0 : . . . : 0]. Set

ωPn,q,ε =
i

2π
∂∂̄

{
f0 + (βε2 ◦ f0)

(
ln(1+f0) − f0

)}
. (2.5)

Note that ωPn,q,ε agrees with ωPn outside of the set {f0 ≤ 2ε} and with the standard symplectic
form ωCn on {f0 ≤ ε}. Here we view ωCn as a form on U0 via the coordinates z0,k =Xk/X0, k∈ [n].
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In particular, ωPn,q,ε is globally defined, and the corresponding Riemannian metric on {f0 ≤ ε} is
flat. Furthermore,

ωPn,q,ε =
{
(1 − βε2 ◦ f0)ωCn + (βε2 ◦ f0)ωPn

}

+
i

2π

{(
∂(βε2◦f0)

)(
∂̄f̃0

)
−

(
∂̄(βε2◦f0)

)(
∂f̃0

)
+

(
∂∂̄(βε2◦f0)

)
f̃0

}

,
(2.6)

where f̃0 = ln(1+f0) − f0. On the set {f0 ≤ 2ε} with ε ≤ 1
2 ,

∥
∥f̃0

∥
∥

C0 ≤ Cε2 and
∥
∥df̃0

∥
∥

C0 ≤ Cε
3
2 , (2.7)

where
∥
∥df̃0

∥
∥

C0 denotes the C0-norm with respect to the standard metric on C
n. Furthermore,

by (2.3),
∥
∥d(βε2 ◦f0)

∥
∥

C0 ≤ Cε−1ε
1
2 ,

∥
∥∇2(βε2◦f0)

∥
∥

C0 ≤ C
(
ε−2ε

1
2 ε

1
2 + ε−1

)
, (2.8)

where again all the norms are computed with respect to the standard metric on C
n. Equations

(2.7) and (2.8) imply that the term on the second line of (2.6) tends to 0 as ε goes to 0. Thus by
(2.6), we can choose ε > 0 such that ωPn,q ≡ ωPn,q,ε is a symplectic form on all of P

n. Note that
ωPn,q is invariant under the action of the stabilizer of q in SUn+1, which is the subgroup

Stabp(SUn+1) =

{(
det(h) 0

0 h

)

: h∈Un

}

⊂ SUn+1.

We can define a smooth family of symplectic Kahler forms on P
n by

ωPn,g·q = g∗ωPn,q, g ∈ SUn+1.

The above invariance property of ωPn,q insures that ωPn,g·q depends only on g · q. We can now take
gPn,g·q to be the metric corresponding to the symplectic form ωPn,g·q and the standard complex
structure J on P

n.

We denote by expb and Πb,X for X ∈ TP
n the gPn,b-exponential map and gPn,b-parallel transport

along the gPn,b-geodesic for X, respectively. If υ∈F (0)T , let

gPn,υ = gPn,bυ , expυ = expbυ
, Πυ,X = Πbυ,X .

If υ∈F (0) is sufficiently small, we define L2-norms inner-products on

Γ(υ) ≡ Γ
(
b(υ)

)
and Γ0,1(υ) ≡ Γ0,1

(
b(υ)

)

via the metrics gPn,υ and gυ in the usual way. Denote by Dυ the linearization of the ∂̄-operator with
respect to the metric gPn,υ on P

n and by D∗
υ its formal adjoint with respect to the above (L2, υ)

inner-product. We fix p>2 and denote by ‖ · ‖υ,p,1 and ‖ · ‖υ,p the modified Sobolev (Lp
1, gPn,υ, gυ)

and (Lp, gPn,υ, gυ) norms of [LT] on Γ(υ) and Γ0,1(υ), respectively. Let Lp
1(υ) and Lp(υ) be the

corresponding completions. A description of the modified Sobolev norms in the notation of this
paper can be found in [Z1]. They are needed only for certain technical aspects of this paper.
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2.2 Obstruction Bundle

In this subsection, in the case S=Σ, we choose an obstruction bundle over F (∅)Tδ in the sense of
Definition 3.13 in [Z1] with δ∈C∞(MT ; R+) sufficiently small.

Let δT ∈C∞(MT ; R+) be such that

4δT (b)‖dui‖b,C0 < rPn ∀b =
(
Σ,M, I;x, (j, y), u

)
∈MT , i∈I.

We assume that the above function δ is such that 8δ
1
2<δT . If υ∈F (∅)Tδ and Xψ∈Tev(bυ)P

n⊗H0,1
Σ ,

define RυXψ ∈ Γ0,1(uυ) as follows. If z ∈ Συ = Σ is such that qυ(z) ∈ Σbυ,h for some h ∈ Î with
χT h=1 and

∣
∣q−1

S (qυ(z))
∣
∣ ≤ 2δT (bυ), by our assumption on δT , we can define ūυ(z)∈Tev(bυ)P

n by

expυ,ev(bυ) ūυ(z) = uυ(z), |ūυ(z)| < rPn .

Given z∈Σ, let hz ∈I be such that qυ(z)∈Σbυ ,hz . If w∈TzΣ, put

RυXψ|zw =







0, if χT hz = 2;

β
(
δT (bυ)|qυz|

)
(ψ|zw)Πυ,ūυ(z)X, if χT hz = 1;

(ψ|zw)X, if χT hz = 0.

Let Γ0,1
− (υ) be the image of Tev(bυ)P

n⊗H0,1
Σ under the map Rυ. Denote by π0,1

υ,− the (L2, υ)-orthogonal

projection of Lp(υ) onto Γ0,1
− (υ).

The spaces Γ0,1
− (υ) form our obstruction bundle over F (∅)T . We need to show that these spaces

satisfy the requirements of Definition 3.13 in [Z1]. First, the rate of change of π0,1
υ,− with respect

to changes in υ should be controlled by a function of bυ only. The proof of this fact is similar to
the proof of the second statement of (5) of Lemma 3.6 in [Z1]. The next lemma implies that the
remaining conditions are also satisfied. For any h∈ Î , put

|υ|h =
∏

i∈Î ,i≤h

|vi|.

Lemma 2.2 For any υ∈F (∅)Tδ and Xψ∈T
ev(bυ)P

n⊗H0,1
Σ , D∗

υRυXψ vanishes outside of the annuli

Ãυ,h ≡ q−1
υ

({
(h, z)∈Σbυ ,h : δT (bυ) ≤ |q−1

S (z)| ≤ 2δT (bυ)
})

with h∈ Î such that χT h=1. Furthermore, there exists C∈C∞(MT ; R+) such that

(1) ‖D∗
υRυXψ‖υ,C0 ≤ C(bυ)

(
∑

χT h=1

|υ|h
)

|X|υ‖ψ‖2;

(2)
(
1 − C(bυ)−1|υ|

2
p̃
)
‖Xψ‖υ,p̃ ≤ ‖RυXψ‖υ,p̃ ≤

(
1 + C(bυ)−1|υ|

2
p̃
)
‖Xψ‖υ,p̃, where p̃ = 2, p.

Proof: The first statement and estimate (2) are immediate from the definition of RυXψ and of
the norms; see [Z1]. Let (s, t) be the conformal coordinates on Ãυ,h given by qυ(s, t) = s+ it ∈ C.
Write gυ = θ−2(s, t)(ds2 + dt2). Then

θ =
1

2

(
1 + s2 + t2

)
. (2.9)
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Put
ξ(s, t) =

{
RυXψ

}

(s,t)
∂s = β

(
δT (bυ)

√

s2 + t2
)(
ψ|(s,t)∂s

)
Πυ,ūυ(s,t)X. (2.10)

Then by [MS, p29],

D∗
υRυXψ|z = θ2

(

− D

ds
ξ + J

D

dt
ξ
)

, (2.11)

where D
ds and D

dt denote covariant differentiation with respect to the metric gPn,υ on P
n. Since this

metric is flat on the support of ξ and ψ∈H0,1
Σ , equations (2.9)-(2.11) give

D∗
υRυXψ|z =

(
1+s2+t2

)2

4

{

β′|δT (bυ)
√

s2+t2δT (bυ)
−s+ it√
s2 + t2

}(
ψ|(s,t)∂s

)
Πυ,ūυ(s,t)X. (2.12)

Since the right hand-side of (2.12) vanishes unless δT (bυ)−1≤
√
s2+t2≤2δT (bυ)−1, it follows that

∣
∣D∗

υRυXψ
∣
∣
υ,z

≤ C(bυ)
∣
∣ψ|(s,t)∂s

∣
∣|X|υ ≤ C ′(bυ)|υ|h‖ψ‖2|X| (2.13)

Claim (1) follows from (2.13).

Let R̃υ : H0,1
Σ ⊗ Tev(bυ)P

n−→Γ−(υ) be the adjoint of R−1
υ , i.e.

〈〈
R̃υXψ,RυX

′ψ′〉〉
υ,2

=
〈〈
Xψ,X ′ψ′〉〉

bυ ,2
= 〈X,X ′〉bυ 〈ψ,ψ′〉2 (2.14)

for all X,X ′∈Tev(bυ)P
n and ψ,ψ′∈H0,1

Σ . By Lemma 2.2, ‖R̃υ−Rυ‖2 ≤ C(bυ)|υ|.

2.3 Tangent-Bundle Model

We now describe our choice for a tangent-bundle model, which is the subject of Definition 3.11
in [Z1].

For any υ ∈ F (0)T sufficiently small and ξ ∈ Γ(bυ), define Rυξ∈Lp
1(υ) by {Rυξ}(z) = ξ

(
qυ(z)

)
.

Let Γ−(υ) be the image of ker(Dbυ ) under the map Rυ. Denote by Γ+(υ) its (L2, υ)-orthogonal
complement in Lp

1(υ). Let πυ,± be the (L2, υ)-orthogonal projection onto Γ±(υ).

If x∈Σ, let H−
Σ(x)={ψ∈H0,1

Σ : ψ|x =0}. This is a codimension-one subspace of H0,1
Σ for all x∈Σ;

see [GH]. Denote by H+
Σ(x) its L2-orthogonal complement. The space H+

Σ(x) is independent of the

choice of a Kahler metric on (Σ, jΣ). For any h∈ Î, we put x̃h(υ) = q−1
υ,ιh

(ιh, xh). Fix h∗ ∈ Î such
that χT h∗=1. Let

Γ̄−(υ) = D∗
υRυ

(
H+

Σ(x̃h∗(υ)) ⊗ Tev(bυ)P
n
)
.

Denote by Γ̄+(υ) the (L2, υ)-orthogonal complement of Γ̄−(υ) in Lp
1(υ) and by π̄υ,± the (L2, gυ)-

orthogonal projections onto Γ̄±(υ). Let Γ̃+(υ) be the image of Γ+(υ) under π̄υ,+ and let Γ̃−(υ) be
the (L2, υ)-orthogonal complement of Γ̃+(υ) in Lp

1(uυ).

The spaces Γ̃−(υ) will be our tangent-space model. We need to check that the requirements of
Definition 3.11 in [Z1] are satisfied. Let

{h∈ Î : χT (h)=1} = {h1 =h∗, h2, . . . , hm}.
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If z∈Σb,hr is such that |q−1
S (z)| ≤ 2δ(b), define ūhr(z) ∈ Tev(b)P

n by

expb,ev(b) ūhr(z) = uhr(z), |ūhr(z)|b < rPn .

If X∈Tev(b)P
n, define Rb,hrX∈Γ(uhr) by

Rb,hrX(z) =

{

0, if |z| ≥ 2δT (b)−1;

β′
∣
∣
δT (b)|z|

(1+|z|2)2z
|z| Πb,ūhr (z)X, otherwise.

Since Rb,hrX vanishes at all the nodes of Σb by assumption on δT , we can extend Rb,hrX by zero
to an element of Γ(b). If c=c[m]∈C

[m] is different from zero, let

Γ̄−(b; c) =
{ ∑

r∈[m]

crRb,hrX : X∈Tev(b)P
n
}

.

Denote by Γ̄+(b; c) the (L2, b)-orthogonal complement of Γ̄−(b; c) in Γ(b). Let π̄(b;c),± be the corre-

sponding (L2, b)-orthogonal projection maps. Let Γ̃+(b; c) = π̄(b,c),+

(
Γ+(b)

)
and let Γ̃−(b; c) be its

(b, L2)-orthogonal complement.

Lemma 2.3 There exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈F (∅)Tδ and ξ∈ Γ̄−(υ),

‖ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,2.

In addition, dimC Γ̄−(υ)=dimC Γ̄−(bυ; c)=n for any nonzero c∈C
m. Furthermore, if υk−→b∈M(0)

T
and ξk ∈ Γ̄−(υ) is such that ‖ξk‖υk ,2 = 1, then there exists a nonzero c∈C

m and ξ∈ Γ̄−(b; c) with
‖ξ‖b,2 =1 such that a subsequence of {ξk} C0-converges to ξ.

Remark: The last statement means that a subsequence of {ξk} C0-converges to ξ on compact
subsets of Σ∗

b and the norms ‖ξk‖υk,p,1 are uniformly bounded; see Definition 3.9 in [Z1].

Proof: (1) Let ψ be a generator of H0,1
Σ,+

(
x̃h1(υ)

)
. IfX∈Tev(bυ)P

n and r∈ [m], define Rυ,hrX∈Γ(uυ)
as follows. If qυ(z)∈Σbυ ,hr , let

Rυ,hrX(z) =
( ∑

r∈[m]

∣
∣ψx̃r(υ)d(q

−1
υ,hr

◦qN )∂s

∣
∣

)−1 (1 + |qυz|2)2qυz
|qυz|

×β′
∣
∣
δT (bυ)|qυz|

(
ψzd(q

−1
υ,hr

◦qN )∂s

)
Πbυ,ūυ(z)X.

Note that the sum is not zero, since ψ|x̃h1
(υ) 6=0. If qυ(z) 6∈Σbυ ,hr , we let Rυ,hrX(z)=0. Since the

modified Sobolev norms are equivalent to the standard ones away from the thin necks of (Συ, gυ),

∥
∥Rυ,hrX

∥
∥

υ,p,1
≤ C(bυ)

( ∑

r∈[m]

∣
∣ψx̃r(υ)d(q

−1
υ,hr

◦qN )∂s

∣
∣

)−1∣
∣ψzd(q

−1
υ,hr

◦ qN )∂s

∣
∣|X|υ

≤ C ′(bυ)‖Rυ,hrX‖υ,2.

(2.15)

By the proof of Lemma 2.2, if ξ ∈ Γ̄−(υ),

ξ = RυX ≡
∑

r∈[m]

Rυ,hrX,
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for some X∈Tev(bυ)P
n. Thus, the first two statements of the lemma follow from (2.15).

(2) If υk−→b and ξk =RυXk∈ Γ̄−(υk) is such that ‖ξk‖υk ,2 =1, then it is immediate from (1) that
a subsequence of ξk C

0-converges to
∑

r∈[m]

crRb,hrX, where

X = lim
k−→∞

Xk, cr = lim
k−→∞

( ∑

r∈[m]

∣
∣ψx̃r(υ)d(q

−1
υ,hr

◦qN )∂s

∣
∣

)−1(
ψx̃r(υ)d(q

−1
υ,hr

◦ qN )∂s

)
. (2.16)

The two limits in (2.16) exist after passing to a subsequence of the original sequence. This proves
the last statement of the lemma.

Lemma 2.4 There exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈F (∅)Tδ and ξ∈ Γ̃−(υ),

‖ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,2.

Proof: Let Γ−+(υ) be the (υ,L2)-orthogonal complement of πυ,−
(
Γ̄−(υ)

)
in Γ−(υ). Then

Γ̃−(υ) = Γ−+(υ) ⊕ Γ̄−(υ).

Since this decomposition is (L2, υ)-orthogonal, we can assume that either ξ∈Γ−+(υ) or ξ∈ Γ̄−(υ).
In the first case, the statement is obvious, since Γ−+(υ) ⊂ Γ−(υ). The second case is proved in
Lemma 2.3.

Corollary 2.5 Suppose υk∈F (0)Tδ and υk−→b∈M(0)
T . If {ξυk,l} is an (L2, υ)-orthonormal basis

for Γ̃−(υk), then there exists a nonzero c∈C
m and an (L2, b)-orthonormal basis {ξb,l} for Γ̃−(b; c)

such that after passing to a subsequence ξυk ,l C
0-converges to ξb,l for all l.

Proof: If ξk,l ∈ Γ̄−(υk), by Lemma 2.3 a subsequence of {ξk,l} C0-converges to an element of
ξl ∈ Γ̄−(b; c) for some nonzero c∈C

n dependent on the sequence {υk}. Furthermore, orthonormal
pairs of such elements C0-converge to an orthonormal pair in Γ̄−(b). If ξk,l∈ Γ̄−+(υk)⊂Γ−(υk), then
by definition of Γ−(υk), a subsequence of {ξk,l} C0-converge to an element ξl∈Γ−(b), which must
be orthogonal to Γ̄−(b; c); see Lemma 3.10 in [Z1]. Thus, a subsequence of

{
{ξk,l}

}
C0-converges to

an orthonormal set of vectors in Γ̃−(b), which implies that dimC Γ̃−(b; c) ≥ dimC Γ̃−(υk). However,

dimC Γ̃−(b; c) = dimC Γ−+(b; c) + dimC Γ̄−(b; c)

= dimC Γ−(b) +
(
dimC Γ̄−(b; c) − dimC πb,−Γ̄−(b; c)

)
;

dimC Γ̃−(υk) = dimC Γ−+(υk) + dimC Γ̄−(υk)

= dimC Γ−(υk) +
(
dimC Γ̄−(υk) − dimC πυk,−Γ̄−(υk)

)
,

where Γ−+(b; c) denotes the (L2, b)-complement of πb,−Γ̄−(b; c) in Γ−(b). Since Γ−(υk) and Γ−(b)
have the same dimension, in order to conclude the proof, it is sufficient to show that

πb,− : Γ̄−(b; c) −→ Γ−(b; c)

is an isomorphism; see Lemma 2.6.

Lemma 2.6 There exists C∈C∞(M(0)
T ; R+) such that for all b∈M(0)

T , nonzero c∈C
m, and ξ∈ Γ̄−(b; c)

‖ξ‖b,2 ≤ C(bω)‖πb,−ξ‖b,2.
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Proof: Suppose X∈Tev(b)P
n. We define R̃b,hrX∈Γ0,1(uhr), outside of ∞∈Σb,hr , by

R̃b,hrX
∣
∣
x

= 4β
(
δT (b)|q−1

N (x)|
)(
q−1∗
N dz̄

)
Πb,ūhr (x)X,

where dz̄ is the usual (0, 1)-form on C. By the same computation as in the proof of Lemma 2.2,
Rb,hrX=D∗

b,uhr
R̃b,hrX. Thus, if ξ=ξÎ ∈kerDb and 2δ < δT (b), by integration by parts,

〈〈
ξ,Rb,hrX

〉〉

b
=

〈〈
ξhr ,D

∗
b,uhr

R̃b,hrX
〉〉

b

= 2iδT (b)−1

∫

|q−1
N (x)|=δ−1

〈ξhr(x),Πb,ūhr (x)X〉bq−1∗
N dz, (2.17)

since Db,uhr
ξhr =0. Using the change of variables with x = qN (w−1), we obtain

∫

|q−1
N (x)|=δ−1

〈ξhr(x),Πb,ūhr (x)X〉bq−1∗
N dz = −

∫

|w|=δ

〈ξhr |qN (w−1),Πb,ūhr (qN (w−1))X〉b
dw

w2

= −2πi
d

dw
〈ξh∗ |qN (w−1),Πb,ūhr (qN (w−1))X〉b

∣
∣
∣
w=0

= −2πi
d

dz̄
〈ξhr |qS(z),Πb,ūhr (qS(z))X〉b

∣
∣
∣
z=0

= −2πi
〈D

ds
(ξhr ◦qS)

∣
∣
∣
z=0

,X
〉

,

(2.18)

since Db,uhr
ξhr =0. It follows from (2.17) and (2.18) that for any ξ=ξ[M ]∈ker(Db),

〈〈

ξ,
∑

r∈[m]

crRb,hrX
〉〉

b
= 4πδT (b)−1

∑

r∈[m]

cr

〈D

ds
(ξhr ◦qS)

∣
∣
∣
z=0

,X
〉

. (2.19)

Along with Corollary 6.3, equations (2.19) gives

∥
∥
∥πb,−

∑

r∈[m]

crRb,hrX
∥
∥
∥

b,2
≥ C(b)|cr∗ | sup

ξ[M]∈ker(Db),‖ξ[M]‖=1

〈D

ds
(ξhr∗

◦qS)
∣
∣
∣
z=0

,X
〉

b

≥ C ′(b)|cr∗ ||X| ≥ C ′′(b)
∥
∥
∥

∑

r∈[m]

crRb,hrX
∥
∥
∥

b,2
,

(2.20)

where r∗∈ [m] is such that |cr∗ |=supr |cr|. Since the right-hand side of (2.20) must be a continuous
function of b, the claim follows.

The statement of Corollary 2.5 is precisely Condition (1) of Definition 3.11 in [Z1]. The other
two conditions require that the rate of change of the (L2, υ)-orthogonal projection onto Γ̃−(υ) be
controlled by a function of bυ only. This is a consequence of the convergence described in the
Corollary 2.5, i.e. we can use the same argument as described in the remark following Lemma 3.6
in [Z1], but with Γ−(b) replaced by the appropriate space Γ−(b; c) (depending on υ).

2.4 Structure Theorem, S = Σ

If T =(Σ, [N ], I; j, d) is a simple bubble type and µ is an N -tuple of complex submanifolds of P
n

such that the evaluation map,

ev[N ] ≡ ev1 × . . . × evN : MT −→ (Pn)N ,
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is transversal to µ1×. . .×µN , MT (µ) is a complex submanifold of MT . Let N µT be its normal
bundle. If S is a complex submanifold of M, denote its normal bundle by NS and an identification
of small neighborhoods of S in NS and in MT by φS . For any complex vector bundle V−→MT ,
we denote by ΦS an identification of φ∗SV and π∗NSV such that its restriction to the fibers over S
is the identity. We assume that ΦS preserves F ∅T ⊂ FT . Let

F ∅S = {(b, ~n, υ)∈NS ⊕ FS : (b, υ)∈F ∅T
}
.

If ev[N ]|S is transversal to µ1×. . .×µN , S(µ)≡S∩MT (µ) is a complex submanifold of S with normal
bundle N µT . Let φµ

S and Φµ
S be the analogues of φS and ΦS for the bundle N µT −→S(µ). We

assume the bundle N µT is normed. We call the pair (ΦS ,Φ
µ
S) a regularization of S(µ) if it satisfies

a certain minor compatibility condition. For the purposes of this paper, it suffices to say that once
ΦS is chosen, it is a condition on Φµ

S |FT ; see Subsection 3.8 in [Z1] for details. However, the exact
nature of Φµ

S |FT is irrelevant for our computational purposes. Finally, we denote by C̄∞
(d;N)(Σ;µ) the

space of all bubble maps
(
Σ, [N ], I;x, (j, y), u

)
such that

∑

i∈I ui∗[Σb,i] = dλ, where λ∈H2(P
n;Z)

is the class of a line, and ujl
(yl)∈µl for all l∈ [N ].

Theorem 2.7 Suppose d is a positive integer, T = (Σ, [N ], I; j, d) is a simple bubble type with
d0̂ =0 and

∑

i∈I
di =d, S ⊂ MT is a complex submanifold, and

ν∈Γ0,1
(
Σ × P

n; Λ0,1
J,jπ

∗
ΣT

∗Σ ⊗ π∗PnTP
n
)

is a generic section. Let µ be an N -tuple of complex submanifolds of P
n in general position of total

codimension
codimCµ = d(n + 1) − n(g − 1) +N,

and (ΦS ,Φ
µ
S) a regularization of S(µ). Then for every precompact open subset K of S(µ), there

exist a neighborhood UK of K in C̄∞
(d;N)(Σ;µ) and δ, ε, C >0 with the following property. For every

t∈(0, ε), there exist a section

ϕµ
S,tν ∈ Γ

(
F ∅Sδ|K ;π∗FSN µS

)
, with

∣
∣ϕµ

S,tν(υ)
∣
∣
bυ

≤ C
(
t+ |υ|

1
p
)
,

and a sign-preserving bijection between MΣ,tν,d(µ) ∩ UK and the zero set of the section ψµ
S,tν de-

fined by

ψµ
S,tν ∈Γ

(
F ∅Sδ|K ;π∗FS(H0,1

Σ ⊗ev∗TP
n)

)
, Πbυ,φµ

Sϕµ
S,tν(υ)ψ

µ
S,tν(υ)=ψS,tν

(
Φµ
S(ϕµ

S,tν(υ))
)
;

ψS,tν ∈Γ
(
F ∅Sδ

∣
∣
S∩UK

;π∗FS(H0,1
Σ ⊗ev∗TP

n)
)
, Πbυ,φS(υ)ψS,tν(υ)=ψT ,tν

(
ΦS(υ)

)
;

ψT ,tν ∈Γ
(
F ∅Tδ

∣
∣
MT ∩UK

;π∗FT (H0,1
Σ ⊗ev∗TP

n)
)
, R̃υψT ,tν(υ)=π

0,1
υ,−

(
tνυ,t−∂̄uυ−Dυξυ,tν

)
,

where Πb,b′ denotes the gPn,b-parallel transport along the gPn,b-geodesics from ev(b) to ev(b′) when-
ever dPn

(
ev(b), ev(b′)

)
<rPn, ξυ,tν ∈ Γ̃+(υ),

∥
∥νυ,t − ν

∥
∥

υ,2
≤ C

(
t+ |υ|

1
p
)
, and

∥
∥ξυ,tν

∥
∥

υ,p,1
≤ C

(
t+ |υ|

1
p
)
.

Proof: This theorem follows immediately from Theorem 3.29 in [Z1] applied to the obstruction
bundle setup of Subsections 2.2 and 2.3. The only refinement is that we drop the term η̃υ,tν from

the definition of ψT ,tν . This is because it vanishes on the support of the (0, 1)-forms in Γ0,1
− (υ),

provided δ is sufficiently small. Thus, π0,1
υ,−η̃υ,tν =0.
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2.5 Structure Theorem, S = S2

In this subsection, we define sections D(m)
〈T 〉,k, where k∈ I− Î, of the bundle L∗

kT ⊗m⊗ev∗TP
n over

Ū〈T 〉(µ), and describe their behavior with respect to the gluing maps near each space UT (µ). In
Section 4, the number of elements of MΣ,tν,d(µ) lying near each space MT (µ) will be expressed
as the number of zeros of affine maps between certain bundles. These affine maps will involve

the sections D(m)

T̄ ,k
. Their behavior near various boundary strata is the foundation for the local

computations of Section 5.

If b=
(
S2,M, I;x, (j, y), u

)
∈BT , m≥1, and k∈I, let

D(m)
T ,kb =

2

(m−1)!

Dm−1

dsm−1

d

ds
(uk◦qS)

∣
∣
∣
(s,t)=0

,

where the covariant derivatives are taken with respect to the metric gPn,b and s+ it ∈ C. If T ∗ is a

basic bubble type, the maps D(m)
T ,k with T <T ∗ and k∈I−Î induce a continuous section of ev∗TP

n

over Ū (0)
T ∗ and a continuous section of the bundle L∗

kT ∗⊗m⊗ev∗TP
n over ŪT ∗ , described by

D(m)
T ∗,k[b, ck] = cmk D(m)

T ,kb, if b ∈ U (0)
T , ck ∈ C.

We will often write DT ,k instead of D(1)
T ,k. If T is simple, we will abbreviate D(m)

T ,k as D(m). If

T =(Σ, [N ], I; j, d) is a simple bubble type and k∈ Î, let D(m)
T ,k denote the section D(m)

T̄ ,k
.

Theorem 2.8 If T ∗=(S2,M, I∗; j, d∗) is a basic bubble type and µ is an M -tuple of constraints in

general position, the spaces Ū (0)
T ∗ (µ) and ŪT ∗(µ) are oriented topological orbifolds. If T <T ∗, there

exist GT ∗-invariant functions δ, C ∈ C∞(
U (0)
T (µ); R+

)
and GT ∗-equivariant continuous map

γ̃µ
T : FTδ

∣
∣
U(0)
T (µ)

−→ Ū (0)
T ∗ (µ),

which is an orientation-preserving homeomorphism onto an open neighborhood of U (0)
T (µ) in Ū (0)

T ∗ (µ)

and is identity on U (0)
T (µ). This map is smooth on F ∅Tδ. Furthermore, for any

υ =
[
(b, vh)h∈Î

]
=

[(
S2,M, I;x, (j, y), u

)
, (vh)v∈Î

]
∈ FTδ

∣
∣
U(0)
T (µ)

,
∣
∣
∣Π−1

bυ,ev(γ̃µ
T (υ))

(
DT ∗,k̃γ

µ
T (υ)

)
− 2

∑

h∈Ik,χT h=1

( ∏

i∈Î,i≤h

vi

)(
duh|∞e∞

)
∣
∣
∣

≤ C(bυ)|υ|
1
p

∑

h∈Ik,χT h=1

( ∏

i∈Î ,i≤h

|vi|
)

,

where Ik⊂I is the rooted tree containing k.

Remark: This theorem states that there exists an identification γµ
T : FT δ −→ŪT ∗(µ) of neighbor-
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hoods of UT (µ) in FT and in ŪT ∗(µ). Furthermore, with appropriate identifications,
∣
∣
∣DT ∗,kγ

µ
T (υ) − αT

(
ρT (υ)

)
∣
∣
∣ ≤ C(bυ)|υ|

1
p
∣
∣ρT (υ)

∣
∣, where (2.21)

ρT (υ)=
(
b, (ṽh)χT h=1

)
∈ F̃T ≡

⊕

χT h=1

LhT ⊗L∗
ι̃h
T ; ṽh =

∏

i∈Î,i≤h

vi; ι̃h =min{i∈I : i<h};

αT
(
b, (ṽh)χT h=1

)
=

∑

h∈Ik,χT h=1

DT ,hṽh.

This estimate is used frequently in Section 5. Note that if T is a semiprimitive bubble type, the
bundle FT is defined over ŪT (µ). However, FT is not the normal bundle of ŪT (µ) in Ū〈T 〉(µ)
unless M0̂T tH0̂T is a two-element set; see [P2]. The theorem implies only that the restrictions of
the normal bundle of ŪT (µ) in Ū〈T 〉(µ) and of FT to UT (µ) are isomorphic.

Proof: (1) All statements of this theorem, except for the analytic estimate, follow immediately
from Theorem 3.33 in [Z1]. We deduce the analytic estimate from (2) of Theorem 3.33. Let

γµ
T (υ) =

(
S2,M, I(υ);x(υ), (j(υ), y(υ)), ũυ

)
.

By Theorem 3.33, there exist a holomorphic bubble map

b′=
[
S2,M, I;x′, (j, y′), u′

]

such that dCk(b, b′) ≤ C(bυ)|υ|
1
p and with appropriate identifications, ũυ = expb′,ub′◦qυ

ξ for some

ξ∈Γ(ub′◦qυ) with ‖ξ‖b,C0 ≤C(bυ)|υ|
1
p . Thus, for the purposes of proving the analytic estimate, we

can assume that uυ = expb,ub◦qυ
ξυ for ξ ∈Γ(ub◦qυ) with ‖ξυ‖b,C0 ≤C(bυ)|υ|

1
p , i.e. it is enough to

prove the estimate for the map γ̃T as defined in [Z1] with T a simple bubble type. If dk 6= 0, the
claim is immediate from the usual Sobolev and elliptic estimates near (k,∞). Thus, we assume
that d0̂ =0. For future use, we obtain equations describing the behavior of D(m)γ̃T (υ) for all m≥1.
(2) We identify BgPn,b

(
ev(b), 1

2rPn

)
with an open subset of C

n via the gPn,ev(b)-parallel transport

along the geodesics from ev(b). We assume that δ∈C∞(U (0)
T ; R+) satisfies

C(b)δ(b)
1
2p + δ(b)

1
2

( ∑

i∈M

‖dui‖b,C0

)

<
1

2
rPn .

Let q : B1(0; C) −→ S2 be the local stretching map as in Subsection 2.2 of [Z1] with v =1, defined
with respect to the standard metric on C. Let fυ = uυ ◦q and f̃υ = ũυ ◦q. We denote the usual
complex coordinate on C by z. For any z ∈B1(0; C), let iυ(z) be such that qυ(q(z))∈Σb,iυ(z). If

X∈Tev(b)P
n and m≥1, define RυXψ

(m)∈Γ0,1(f̃υ) by

RυXψ
(m)

∣
∣
z

=







Xz̄m−1dz̄, if χT iυ(z) = 0;

β
(
δ(bυ)|qυ(q(z))|

)
Xz̄m−1dz̄, if χT iυ(z) = 1;

0, if χT iυ(z) = 2.

Note that if χT iυ(z)=0, or χT iυ(z)=1 and β
(
δ(bυ)|qυ(q(z))|

)
6= 0, f̃υ(z) lies in BgPn,b

(
ev(b), 1

2rPn

)
.

Thus, RυXψ
(m) is well-defined. We now compute 〈〈∂̄f̃υ, RυXψ

(m)〉〉 in two ways and compare the
results. First, note that the map f̃υ is holomorphic outside of the annulus

A0̂(υ) ≡ B1(0; C) −B 1
2
(0; C).
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Thus, by the same computation as in the proof of Lemma 4.3, we see that

〈〈∂̄f̃υ, RυXψ
(m)〉〉 = − π

m

〈
D(m)γ̃T (υ),X

〉
. (2.22)

(3) Since f̃υ =expev(b),fυ
(ξυ◦q) and fυ is constant on A0̂(υ),

2i
〈〈
∂̄f̃υ, RυXψ

(m)
〉〉

=

∫

A0̂(υ)

〈 ∂̄

∂z̄
(ξυ◦q),X

〉

zm−1dz̄ ∧ dz (2.23)

Denote by A+
0̂
(υ) and A−

0̂
(υ) the outer and inner boundary of A0̂(υ), respectively. For every h∈ Î

with χT h=1, let

Ah(υ) = q−1
υ,ιh

({
z∈Σbυ,ιh : 4δ(bυ)−1|vh|≤|φ−1

b,hz|≤|vh|
1
2
})

⊂ Σbυ,0̂.

Denote by A±
h (υ) the outer and inner boundary of Ah(υ). Let w be the complex coordinate on

C⊂Σbυ,0̂ =S2. Note that q is holomorphic inside of A−
0̂
(υ) and outside of q−1(A−

h (υ)). Furthermore,
since ub and ũυ are both holomorphic, on the image of this set under q

∂̄

∂w̄
ξυ = − ∂̄

∂w̄
uυ.

The last quantity vanishes outside of the annuli Ah(υ). Thus by integration by parts,

∫

A0̂(υ)

〈 ∂̄

∂z̄
(ξυ◦q),X

〉

zm−1dz̄ ∧ dz

=
∑

χT h=1

( ∫

q−1(Ah(υ))

〈( ∂̄uυ

∂w̄

)(∂q

∂z

)

,X
〉

zm−1dz̄ ∧ dz +

∫

q−1(A−
h (υ))

〈
ξυ◦q,X

〉
zm−1dz

)

=
∑

χT h=1

(∫

Ah(υ)

〈 ∂̄uυ

∂w̄
,X

〉

g dw̄ ∧ dw +

∫

A−
h (υ)

〈
ξυ,X

〉
g dw

)

,

(2.24)

where g(w)=wm−1. Since ξυ◦q is constant on A+
0̂
(υ), the second boundary term is zero. Note that

the radius of A−
h (υ) in C⊂ S2 is bounded by C(bυ)|ṽh|. Furthermore, |g| ≤Cm(bυ) on A−

h (υ). It
follows that ∣

∣
∣

∫

A−
h (υ)

〈
ξυ,X

〉
gdw

∣
∣
∣ ≤ Cm(bυ)|υ|

1
p |ṽh|. (2.25)

On the other hand, by the same computation as in the proof of Lemma 4.3,

∫

Ah(υ)

〈 ∂̄uυ

∂w̄
,X

〉

g dw̄ ∧ dw = −2i

m′=m∑

m′=1

πam′,h(υ)

m′

(
m−1

m′−1

)

ṽm′

h

(
D(m′)

T ,h b
)
. (2.26)

Combining equations (2.22)-(2.26), we see that

∣
∣
∣

〈
D(m)γ̃T (υ),X

〉
− 2m

∑

χT h=1

ṽh

(
duh

∣
∣
∞e∞

)
∣
∣
∣ ≤ C(bυ)|υ|

1
p

( ∑

χT h=1

|ṽh|
)

. (2.27)
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3 Topology

3.1 Maps Between Vector Bundles

In Section 4, we express the number of zeros of the maps ψµ
T ,tν (and ψµ

S,tν for certain submanifolds
S of MT ) of Theorem 2.7 in terms of the number of zeros of affine maps between the same vector
bundles. The topological justification for this reduction is discussed in this subsection. Subsec-
tions 3.2 and 3.3 are used in the explicit computations of Section 5. For simplicity, we state all the
results for smooth vector bundles over smooth manifolds, but similar statements apply in the orb-
ifold category. However, in the cases of g=2, n=2, 3, 4, the spaces involved are actually manifolds.

Let I denote the unit interval [0, 1]. If Z is a compact oriented zero-dimensional manifold, we
denote the signed cardinality of Z by ±|Z|. All vector bundles we encounter in this subsection will
be assumed to be smooth, complex, and normed.

Definition 3.1 Suppose M is a smooth manifold and F,O−→M are vector bundles.

(1) If F =
i=k⊕

i=1
Fi, bundle map α : F −→O is a polynomial of degree d[k] if for each i∈ [k] there exists

pi∈Γ(M;F ∗⊗di
i ⊗O) for i∈ [k] s.t. α(υ) =

i=k∑

i=1

pi

(
υdi

i

)
∀υ = (υi)i∈[k] ∈

i=k⊕

i=1

Fi.

(2) If α : F −→O is a polynomial, the rank of α is the number

rk α ≡ max{rkbα : b∈M}, where rkbα = dimC

(
Im αb

)
.

Polynomial α : F −→O is of constant rank if rkbα = rk α for all b ∈M; α is nondegenerate if
rkbα = rk F for all b∈M.
(3) If Ω is an open subset of I×F , O is a vector bundle, and

{φt} =
{
φt : {υ∈F : (t, υ)∈Ω} −→ O

}

is a family of smooth bundle maps, bundle map α : F −→O is a dominant term for {φt} if there
exists ε∈C0(I×F ; R) such that

∣
∣φt(υ) − α(υ)

∣
∣ ≤ ε(t, υ)

(
t+ |α(υ)|

)
∀(t, υ)∈Ω and lim

(t,υ)−→0
ε(t, υ) = 0.

Dominant term α : F −→O of {φt} is the resolvent of {φt} if α is a polynomial of constant rank.

In (2) above, by dimC(Im αb) we mean the dimension of the image of αb as an analytic subvariety
of the fiber Ob. Note that if Ω̄⊂I×F contains a neighborhood of {0}×M, the resolvent of {φt}
is unique (if it exists).

Lemma 3.2 Suppose M is a smooth manifold,
(1) F ≡ F−⊕ F+−→M and O ≡ O−⊕O+−→M are vector bundles;
(2) Ω is an open subset of I×F and

{
φt : {υ∈F : (t, υ)∈Ω}−→O

}
is a family of smooth maps;

(3) α : F −→O is a dominant term for {φt} s.t. α(F+)⊂O+, α− ≡π−◦ α|F− is a constant-rank
polynomial, where π− : O−⊕O+−→O− is the projection map, and (dimM+2rk α−)<2rk O−;
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(4) ν̄=(ν̄−, ν̄+)∈Γ(M;O−⊕O+) is generic with respect to α−.
Then for every compact subset K of M, there exist δK >0 and a neighborhood UF (K) of K in F
such that the map

ψt : {υ∈F : (t, υ)∈Ω} −→ O, ψt(υ) = tν̄υ + φt(υ),

has no zeros on {υ∈UF (K) : (t, υ)∈Ω} for all t∈(0, δK).

Proof: (1) Suppose υ̃∈ΩδK
|K and ψt(υ̃)=0. Then by our assumptions on φt,

|α(υ̃)| ≤ CK

(
t+ ε̄K(δK)|α(υ̃)|

)
,

where CK>0 depends only on K (and ν̄) and ε̄K is a continuous function vanishing at zero. Thus,
if δK>0 is sufficiently small,

|α(υ̃)| ≤ 2CKt ∀t < δK , υ̃∈FδK
|K s.t. ψt(υ̃) = 0. (3.1)

(2) Let F− =
i=k⊕

i=1
Fi −→ M be the bundles and pi∈Γ(M;F ∗⊗di

i ⊗O−) the sections as in (1) of

Definition 3.1 corresponding to α−. Define

ϕt ∈ Γ
(
M; End(F−)

)
by ϕt(υi) = t−1/diυi if υi∈Fi.

Then by our assumption on φt and equation (3.1),

∣
∣ν̄− + α−(ϕt(υ̃

−))
∣
∣ ≤ C̃K ε̄K(δK) ∀t < δK , υ̃∈FδK

|K s.t. ψt(υ̃) = 0, (3.2)

where C̃K is determined by K. Since α− has constant rank, the image of α− is closed and is the
total space of a bundle of affine analytic varieties of complex dimension rk α−< rk O−− 1

2 dimM.
Thus, by assumption (4) of the lemma, ν̄− does not intersect the image of α−, and there exists
εK>0 such that

∣
∣ν̄− + α−(υ−)

∣
∣ ≥ εK ∀υ∈F−|K . (3.3)

If εK > C̃K ε̄K(δK), by (3.2) and (3.3), π−◦ ψt (and thus ψt) has no zeros on FδK
|K .

We will call family
{
φt : {υ∈F : (t, υ)∈Ω}−→O

}
of smooth maps hollow if it admits a dominant

term α that satisfies hypothesis (3) of Lemma 3.2.

Definition 3.3 Suppose M is a smooth manifold and F −→M is a vector bundle.
(1) Subset Y of F is small if Y contains no fiber of F and there exists a smooth manifold Z of
dimension (dimF−1) and a smooth map f : Z −→ F such that the image of f is closed in F and
contains Y .
(2) If F, F̃−→M are smooth complex vector bundles, ρ∈Γ(M;F ∗⊗d ⊗ F̃ ) induces a d̃-to-1 cover
F−→ F̃ if the map

Fb −→ F̃b, υ −→ ρ(υ) ≡ ρ
(
υd

)
,

is d̃-to-1 on a dense open subset of every fiber Fb of F .
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Lemma 3.4 Suppose M is a smooth manifold, F =
i=k⊕

i=1
Fi and O are vector bundles over M, and

α =
i=k∑

i=1

pi : F −→ O, where pi∈Γ
(
M;F ∗⊗di

i ⊗O
)
,

is a nondegenerate polynomial. Then there exists a small subset Yα of F =
i=k⊕

i=1
Fi, which is invariant

under scalar multiplication in each component separately, with the following property. If K is a
compact subset of O − α(Yα), there exists CK>0 such that

|υ| ≤ CK |α(υ)| ∀ υ∈F s.t. α(υ)∈K.

Proof: (1) Let Yα⊂F be the closed subset on which the differential of the fiberwise map υ−→α(υ)
does not have full rank, i.e. its rank is less than rk F . Since α is nondegenerate, Yα contains no
fiber of F . By our assumptions on α,

D(α|Fb
)
∣
∣
υ

=
(
D(p1|F1,b

)
∣
∣
υ1
, . . . ,D(pk|Fk,b

)
∣
∣
υk

)
: F1⊕. . .⊕Fk −→ O, ∀ b∈M, υ=υ[k]∈

i=k⊕

i=1

Fi.

Since pi|Fi,b
is a homogeneous polynomial of degree di, its derivative is a homogeneous polynomial

of degree (di−1). Thus, Yα is preserved under scalar multiplication in each component separately.
It also clearly satisfies the second condition of (1) of Definition 3.3.
(2) On F −Yα, α is a covering map onto its image with the number of leaves bounded by some
number Nα. Thus, if K is any compact subset of O−α(Yα), α−1(K) is a compact subset of F .
Therefore, there exists CK such that

|υ| ≤ CK |α(υ)| ∀υ∈F s.t. α(υ)∈K.

Note that if 0 6∈α(Yα), then α is a linear injection on every fiber, and the above inequality holds
on all of F .

Lemma 3.5 Suppose M is a smooth manifold,

(1) F =
i=k⊕

i=1
Fi and O are vector bundles over M with rkF+ 1

2 dimM=rkO;

(2) Y is a small subset of F =
i=k⊕

i=1
Fi, which is invariant under the scalar multiplication in each

component separately;
(3) Ω is an open subset of I×F such that Ω∪({0}×X) is a neighborhood of {0}×X in I×

(
F−(Y −X)

)
;

(4)
{
φt : {υ∈F : (t, υ)∈Ω}−→O

}
is a family of smooth maps;

(5) nondegenerate polynomial α : F −→O is the resolvent of {φt};
(6) ν̄∈Γ(M;O) is generic with respect to (Y, α), and the map

F −→ O, υ −→ ν̄υ + α(υ), (3.4)

has a finite number of (transverse) zeros.
If ψt is transversal to zero for all t, there exists a compact subset Kα,ν̄ of M with the following
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property. If K is a precompact open subset of M containing Kα,ν̄, there exist δK , εK>0 such that
for all t∈(0, εK),

±∣
∣
{
υ∈FδK

|K : (t, υ)∈Ω, ψt(υ)=0
}∣
∣ =± ∣

∣
{
υ∈F : ν̄υ+α(υ) = 0

}∣
∣,

where ψt(υ) = tν̄υ+φt(υ) as before. Furthermore, all the zeros of ψt

∣
∣
FδK

|K lie over Kα,ν̄ .

Proof: (1) Since the map in (3.4) has a finite number of zeros, all of them lie in the interior
of FCα,ν̄ |Kα,ν̄ for some compact subset Kα,ν̄ of M and number Cα,ν̄ > 0. Suppose K ⊂ M is a
precompact open subset containing Kα,ν̄ , δK >0 is such that FδK

|K−Y ⊂Ω, and υ̃∈ΩδK
|K is such

that ψt(υ̃)=0. By the same argument as in the proof of Lemma 3.2, if δK>0 is sufficiently small,

∣
∣α(υ̃)

∣
∣ ≤ CKt and

∣
∣tν̄υ̃ + α(υ̃)

∣
∣ ≤ ε̄K(δK)t ∀t < δK , υ̃∈FδK

|K s.t. ψt(υ̃) = 0, (3.5)

where CK and ε̄K = ε̄K(δK) depend only on K, and ε̄K(δK) tends to zero with δK . Let φt : F −→F
be the map defined in (2) of the proof of Lemma 3.2, with F− replaced by F . By (3.5),

α(φt(υ̃)) ∈ Kν̄

(
K;CK , ε̄K(δK)

)
≡

{
$∈OCK

: |ν̄$+$|≤ ε̄K(δK)
}

∀t < δK , υ̃∈FδK
|K s.t. ψt(υ̃) = 0.

(3.6)

(2) If ν̄ is generic, the map in (3.4) does not vanish on Yα, where Yα is as in Lemma 3.4. Since
α(Yα) is a closed subset of O, there exists εK>0 such that

∣
∣ν̄υ + α(υ)

∣
∣ > εK ∀ υ∈Yα|K .

Thus, if ε̄K(δK)<εK , Kν̄

(
K;CK , ε̄K(δK)

)
is a compact subset of O disjoint from α(Yα). Then by

(3.6) and Lemma 3.4,

∣
∣φt(υ̃)

∣
∣ ≤ C∗

K ∀t < δK , υ̃∈FδK
|K s.t. ψt(υ̃) = 0, (3.7)

where C∗
K depends only on K.

(3) There is a one-to-one sign-preserving correspondence between the zeros of ψt on ΩδK
|K and the

zeros of

ψ̃t : ΩδK
(K, t) ≡

{
υ∈F : (t, φ−1

t (υ))∈ΩδK
|K

}
−→ O, ψ̃t(υ) = t−1ψt

(
φ−1

t (υ)
)
.

By (3.7), all the zeros of ψ̃t on ΩδK
(K, t) are in fact contained in FC∗

K
|K . We can assume that

C∗
K>Cα,ν̄ . By our assumptions on φt,

∣
∣ψ̃t(υ) − (ν̄υ+α(υ))

∣
∣ ≤ CK ε̄K(δK) ∀υ ∈ ΩδK

(K, t) ∩ FC∗
K
|K , (3.8)

where CK>0 depends only on K. We define a cobordism between the zeros of ψ̃t and the zeros of
ν̄+α on ΩδK

(K, t) ∩ FC∗
K
|K by

Ψ: I×ΩδK
(K, t) ∩ FC∗

K
|K −→ O, Ψτ (υ) = τψ̃t(υ) + (1−τ)

(
ν̄υ + α(υ)

)
+ ητ (υ),

where η : I×ΩδK
(K, t)−→O is any smooth function with very small C0-norm such that η0 =η1 =0

and Ψ is transversal to zero. It remains to see that Ψ−1(0) is compact. Suppose Ψτr(υr)=0
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and (τr, υr) converges (τ̃ , υ̃)∈I×F2C∗
K
|K̄ ; we need to show that υ̃∈ΩδK

(K, t) ∩ FC∗
K
|K . By equa-

tion (3.8),
∣
∣ν̄υr +α(υr)

∣
∣ ≤ CK ε̄K(δK) + ‖η‖C0 ∀r =⇒

∣
∣ν̄υ̃+α(υ̃)

∣
∣ ≤ CK ε̄K(δK) + ‖η‖C0 . (3.9)

On the other hand, since ν̄ is generic, the map in (3.4) does not vanish on Y . Furthermore, all the
zeros of this map are contained in the interior of FCα,ν̄ |Kα,ν̄ . Thus, by compactness,

ε̃K ≡ inf
{∣

∣ν̄υ+α(υ)
∣
∣ : υ∈

(
Y ∩ F2C∗

K

)
∪

(
FC∗

K
|K−FCα,ν̄ |Kα,ν̄

)}

>0, (3.10)

where ε̃K depends only on K. If ε̃K > CK ε̄K(δK)+‖η‖C0 , by (3.9) and (3.10),

υ̃ ∈ FCα,ν̄ |Kα,ν̄ ⊂ FC∗
K
|K − Y ⊂ ΩδK

(K, t).

The last inclusion follows from the very first assumption on δK above. We conclude that Ψ−1(0)
is compact.

Corollary 3.6 Suppose M is a smooth oriented manifold,
(1) F ≡F−⊕ F+, F̃−, and O≡O−⊕O+ are vector bundles over M with

rk F− = rk F̃− = rkO− − 1

2
dimM and rkF+ = rkO+;

(2) ρ∈Γ(M;F−∗⊗k⊗F̃−) induces a d̃-to-1 cover F −→ F̃ , and α−∈Γ(M; F̃−∗⊗O−);
(3) α : F −→ O is a nondegenerate polynomial such that α+ ≡ α|F+ : F+−→ O+ is linear and
π−◦α=α−◦ρ;
(4) Y is a small subset of F , which is invariant under the scalar multiplication in each component
separately;
(5) Ω is an open subset of I×F such that Ω∪X is a neighborhood of {0}×X in I×

(
F−(Y −X)

)
;

(6)
{
φt : {υ∈F : (t, υ)∈Ω}−→O

}
is a family of smooth maps with resolvent α;

(7) ν̄=(ν̄−, ν̄+)∈Γ(M;O−⊕O+) is generic with respect to (α+, α−, ρ, Y ), and the map

F̃− −→ O−, $ −→ ν̄−$ + α−($), (3.11)

has a finite number of (transverse) zeros.
If ψt is transversal to zero for all t, there exists a compact subset Kα,ν̄ of M with the following
property. If K is precompact open subset of M containing Kα,ν̄ , there exist δK , εK > 0 such that
for all t∈(0, εK),

±∣
∣
{
υ∈FδK

|K : (t, υ)∈Ω, ψt(υ)=0
}∣
∣ = d̃ · ±

∣
∣
{
$∈ F̃− : ν̄−$+α−($) = 0

}∣
∣,

where ψt(υ) = tν̄υ+φt(υ). Furthermore, all the zeros of ψt

∣
∣
FδK

|K lie over Kα,ν̄.

Proof: Let Kα,ν̄ and δK > 0 be as in Lemma 3.5. Then if K is a precompact open subset of M,
for all t∈ (0, εK) the signed number of zeros of ψt on ΩδK

|K is the same as the signed number of
solutions of

F |K −→ O,
{

ν̄−υ + α−(ρ(υ−)) = 0 ∈ O−;

ν̄+
υ + α+(υ+) + π+(α(υ−)) = 0 ∈ O+.

(3.12)

For every solution of the first equation, there is a unique solution of the second equation. Since α+

is complex-linear on the fibers, the signed number of solutions of (3.12) is the same as the signed
number of solutions of the first equation. Since the first equation has no solutions on Yα− if ν̄ is
generic and ρ is d̃-to-1 outside of Yα− , ρ induces a d̃-to-1 sign-preserving map from the set of zeros
of (3.11) to the set of solutions of the first equation.
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3.2 Contributions to the Euler Class

If M̄ is a smooth oriented compact n-manifold and V −→M̄ is an oriented vector bundle of rank n,
the euler class of V is the number of zeros of any section s : M̄−→ V which is transverse to the
zero set. In this subsection, under slightly more topological assumptions on M̄ and V , we discuss
a relationship between subsets of the zero set of a non-transverse section and the euler class of V .

Definition 3.7 (1) Compact oriented topological manifold M̄=Mn t
i=n−2⊔

i=0
Mi of dimension n is

mostly smooth, or ms, if
(1a) each Mi is a smooth manifold of dimension i, and M≡Mn is a dense open subset of M̄;

(1b) for each i∈ [n−2], M̄i−Mi ⊂
j−2⋃

j=0
Mj ;

(2) If Z̄ = Z t ⊔Zj and M̄ = M t ⊔Mi are ms-manifolds, continuous map π : Z−→M is an
ms-map if for each j there exists i such that π : Zj −→Mi is a smooth map.
(3) If M̄ is an ms-manifold, topological vector bundle V −→M̄ is an ms-bundle if V |Mi is a smooth
vector bundle for i=n and all i∈ [n−2].
(4) If V −→ M̄ is an ms-bundle, continuous section s : M −→ V is an ms-section if s|Mi is
C2-smooth for i=n and all i∈ [n−2].

The dense open submanifold M of M̄ will be called the smooth base of M̄. Note that if E−→M̄
is an ms-bundle, then the (complex) projectivization PE of E is an ms-manifold. Furthermore,
the projection map πE : PE−→M̄ is an ms-map, and the tautological line bundle γE −→PE is an
ms-bundle.

If V −→ M̄ is an ms-bundle, we denote the space of ms-sections of V by Γ(M̄;V ). Using (4)
of Definition 3.7, we define an ms-polynomial map between two ms-bundles analogously to (1) of
Definition 3.1. We topologize Γ(M̄;V ) as follows. If sk, s∈Γ(M̄;V ), the sequence {sk} converges
to s if sk converges to s in the C0-norm on all of M̄ and in the C2-norm on compact subsets of Mi

for i = n and all i∈ [n−2]. The C0-norm is defined with respect to the norm on V −→ M̄. In
order to define the C2-norm on compact subsets of Mi, we fix a connection in each smooth bundle
in V−→Mi.

Definition 3.8 Let M̄ be an ms-manifold as in Definition 3.7.
(1) If Z⊂Mi is a smooth oriented submanifold, a normal-bundle model for Z is a tuple (F, Y, ϑ),
where
(1a) F −→Z is a smooth complex normed vector bundle and Y is a small subset of F ;
(1b) for some δ∈C∞(Z; R+), ϑ : Fδ−(Y −Z) −→M̄ is a continuous map such that
(1b-i) ϑ : Fδ−(Y −Z)−→M̄ is a homeomorphism onto an open neighborhood of Z in M∪Z;
(1b-ii) ϑ|Z is the identity map, and ϑ : Fδ−(Y−Z)−→M is an orientation preserving diffeomorphism
on an open subset of M.
(2) A closure of normal-bundle model (F, Y, ϑ) is a tuple (Z̄ , F̃ , π), where
(2a) Z̄ is an ms-manifold with smooth base Z;
(2b) π : Z̄ −→M̄ is an ms-map such that π|Z is the identity;
(2c) F̃ −→Z̄ is an ms-bundle such that F̃ |Z =F .

If Z is a smooth submanifold of M, an identification of the normal bundle NZ of Z in M with
a neighborhood of Z in M induces a normal bundle model for Z. Definition 3.8 extends this
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standard construction to the ms-category.

Definition 3.9 Suppose E,O−→M̄ are ms-bundles and α : E−→O is an ms-polynomial.
(1) Subset Z of M is α-regular if there exist a normal bundle model (F, Y, ϑ) for Z, constant-
rank polynomial p : F ⊕E −→ O over Z, smooth bundle isomorphisms ϑE : ϑ∗E −→ π∗FE and
ϑO: ϑ∗O−→π∗FO covering the identity on Fδ−(Y −Z), and ε∈C(F ; R) such that
(1a) ϑE and ϑO are smooth on Fδ−Y −Z and restrict to the identity over Z;
(1b) limw−→0 ε(w)=0;
(1c) |ϑOα(ϑ−1

E (w, υ)) − p(w, υ)| ≤ ε(w)|p(w, υ)| for all w∈Fδ−(Y −X), υ∈E.
(2) α is a regular polynomial if M̄ is a union of finitely many α-regular subsets.

Lemma 3.10 Suppose E,O−→M̄ are ms-bundles, such that rkE+1
2 dimM̄=rkO, and α : E−→O

is a regular polynomial, such that α is nondegenerate on M. Let ν ∈ Γ(M̄;O) be an ms-section
such that the map

ψα,ν : E −→ O, ψα,ν(υ) = νυ + α(υ),

does not vanish on E|M̄−M and is transversal to the zero set in O|M. Then ψ−1
α,ν(0) is finite, and

N(α) ≡± |ψ−1
α,ν(0)| is independent of the choice of ν as above.

Proof: (1) We first show that for every x∈M̄−M there exists a neighborhood U of x in M̄ such
that ψα,ν does not vanish on E|U . By (2) of Definition 3.9, there exists an α-regular subset Z of
M̄ containing x. Let (F, Y, ϑ), δ, p, ϑE , ϑO, and ε be as in (1) of Definition 3.9. It can be assumed
that δ is such that

ε(w) <
1

2
and

∣
∣νϑ(w)

∣
∣ ≤ 2

∣
∣νw

∣
∣ ≡ 2

∣
∣νbw

∣
∣ ∀w∈Fδ−(Y −Z).

Then, if ψα,ν(ϑ
−1
E (w, υ))=0 for some (w, υ)∈F⊕E with w∈Fδ−(Y −Z), |α(w, υ)|≤4|νw | by (1c)

of Definition 3.9. Thus, if {(wk, υk)} ⊂F⊕E is such that ψα,ν(ϑ−1
E (wk, υk) = 0 and wk−→x∈F ,

a subsequence of {α(wk, υk)} converges to an element $∈Ox. Since α is a polynomial map of
constant rank, there exists (0, υ) ∈ F ⊕E such that α(0, υ)=$. Since α(0, υ)=p(0, υ), it follows
that ψα,ν(υ)=0 contrary to the assumption.
(2) By (1), there exists a compact subset Kα,ν of M such that ψ−1

α,ν(0) ⊂ E|Kα,ν . Since ψα,ν is
transversal to zero, ν(M)∩α(Yα)=∅, where Yα ⊂ E|M is as in Lemma 3.4. It follows that ψ−1

α,ν(0)
is a finite subset of E|M.
(3) The final claim of the lemma is obtained by constructing a cobordism between ψα,ν and ψα,ν′ .
More precisely, we take a smooth family {ντ : τ ∈I} of ms-sections of O such that ν0 = ν, ν1 = ν ′,
ψ−1

α,ντ
(0)⊂E|M, and the section

Ψα : I×E −→ O, Ψα(τ, υ) = ψα,ντ (υ),

is transversal to the zero set in O. Such a family can always be chosen, since M̄−M has codimension
two in M̄. Then, by the same argument as in (1) and (2), Ψ−1

α (0) is a smooth compact oriented
submanifold of E|M with boundary ψ−1

α,ν1
(0)−ψ−1

α,ν0
(0).

Definition 3.11 Suppose M̄ is an ms-manifold of dimension 2n, V −→ M̄ is an ms-bundle of
rank n, s∈Γ(M̄;V ), and Z⊂Mi ∩ s−1(0).
(1) Z is s-hollow if there exist a normal bundle model (F, Y, ϑ) for Z and a bundle isomorphism
ϑV : ϑ∗V −→π∗FV , covering the identity on Fδ−(Y −Z), such that
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(1a) ϑV |Fδ−Y −Z is smooth and ϑV |Z is the identity;
(1b) φ0 ≡ ϑV ◦ ϑ∗s : Fδ−(Y −Z)−→V is hollow.
(2) Z is s-regular if there exist a normal bundle model (F, Y, ϑ) for Z with closure (Z̄ , F̃ , π),
regular polynomial α : F̃ −→ π∗V , and a bundle isomorphism ϑV : ϑ∗V −→ π∗FV covering the
identity on Fδ−(Y −Z), such that
(2a) ϑV |Fδ−Y −Z is smooth and ϑV |Z is the identity;
(2b) α|Z is nondegenerate and is the resolvent for φ0 ≡ ϑV ◦ϑ∗s : Fδ−(Y −Z) −→ V , and Y is
preserved under scalar multiplication in each of the components of F for the splitting corresponding
to α as in (1) of Definition 3.1.

Lemma 3.12 If (M̄, V, s) and (Z, F, Y, ϑ) are as in Definition 3.11, there exist a number CZ(s)∈Z,
which equals zero if Z is s-hollow, and a dense open subset ΓZ(s) ⊂ Γ(M̄;V ) with the following
properties. For every ν∈ΓZ(s),
(1) there exists εν > 0 such that for all t∈ (0, εν), all the zeros of tν+s are contained in M and
(tν+s)

∣
∣
M is transversal to the zero set in V ;

(2) there exist a compact subset Kν ⊂Z, open neighborhood Uν(K) of K in M̄ for each compact
subset K⊂Z, and εν(U)∈(0, εν) for each open subset U of M̄ such that

±∣
∣{b∈U : tν(b)+s(b)=0}

∣
∣ = CZ(s) if t∈(0, εν(U)), Kν ⊂K⊂U⊂Uν(K).

Proof: It is clear that we can choose a dense open subset Γ′
Z(s)⊂Γ(M̄;V ) such that every ν∈Γ′

Z(s)
satisfies requirement (1) of the lemma. If Z is s-hollow, we also need that ν̄ ≡ ν|Z is generic with
respect to the corresponding polynomial α− in the sense of the proof of Lemma 3.2. We can then
take Kν =∅. If Z is s-regular, let ν̄=π∗ν ∈Γ(Z̄;π∗V ). By Lemma 3.10, the second part of (6) of
Lemma 3.5 is satisfied, as long as tν+s is transversal to the zero set on each smooth strata. The
other requirements on ν̄ in Lemma 3.5 are finitely many transversality properties. We then take

CZ(s) = ±∣∣{υ∈F : ν̄υ+α(υ)=0
}∣
∣.

By Lemma 3.10, this number is well-defined.

The total number of zeros of a section tν+s satisfying condition (1) of Lemma 3.12 is precisely
the euler class e(V ) of the bundle V −→M̄. Thus, due to (2) of Lemma 3.12, we call CZ(s) the
s-contribution (or simply contribution) of Z to e(V ). If Z is any subset of M̄ such that Z ∩ s−1(0)
satisfies the requirements of Definition 3.11, let CZ(s) = CZ∩s−1(0)(s). In addition, if Z is a closed
subset of M̄ such that s−1(0)−Z is also closed, we can easily define CZ(s) by Lemma 3.12.

Corollary 3.13 Let V −→M̄ be an ms-bundle of rank n over an ms-manifold of dimension 2n.
Suppose U is an open subset of M and s∈Γ(M̄;V ) is such that s|U is transversal to the zero set.
(1) If s−1(0) ∩ U is a finite set, ±|s−1(0) ∩ U| = 〈e(V ), [M̄]〉 − CM̄−U (s).

(2) If M̄ − U =
i=k⊔

i=1
Zi, where each Zi is s-hollow or s-regular, then s−1(0) ∩ U is finite, and

±|s−1(0) ∩ U| =
〈
e(V ), [M̄]

〉
− CM̄−U (s) =

〈
e(V ), [M̄]

〉
−

i=k∑

i=1

CZi(s).

If Zi is s-hollow, CZi(s)=0. If Zi is s-regular and αi : F̃i−→V is the corresponding polynomial,

CZi(s) = ±∣∣{υ∈ F̃i : ν̄υ+αi(υ)=0}
∣
∣ ≡ N(αi),
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where ν̄∈Γ(Z̄i;V ) is a generic section. Finally, if αi∈Γ(Z̄i; F̃
∗⊗k
i ⊗π∗V ) has constant rank over Z̄i

and factors through a k̃-to-1 cover ρi : F̃i−→ F̃⊗k
i ,

CZi(s) = k̃
〈
e
(
π∗V/αi(F̃i)

)
, [Z̄i]

〉
.

All statements of this corollary have already been proved. A splitting of the zero set as in (2) of
Corollary 3.13 always exists in the complex-analytic category. It should be possible to generalize the
constructions of this subsection to an arbitrary compact oriented topological manifold. However,
Lemma 3.10 will no longer be valid, and another approach will be needed to deal with the zeros of
ψα,ν that tend to infinity. For the cases that we encounter in Section 5, the version of s-regularity
of Definition 3.11 suffices.

3.3 Zeros of Polynomial Maps

We now present a procedure for computing the number of zeros of a polynomial map between two
complex vector bundles over a compact oriented manifold. All the polynomials we encounter in
Section 5 are of degree-one. Thus, we focus on the degree-one case, but discuss the general case at
the end for the sake of completeness.

Suppose M̄ is an ms-manifold, E,O−→M̄ are ms-bundles such that rk E+ 1
2 dimM̄=rk O, and

α∈Γ(M̄;E∗⊗O) is an ms-section. Let ν̄∈Γ(M̄;O) be such that ν̄ has no zeros, the map

ψα,ν̄ ≡ ν̄+α : E−→O
is transversal to the zero set in O on E|M, and all its zeros are contained in E|M. The first step
in our procedure of determining the number of zeros of ψα,ν̄ reduces this issue to the case E is a
line bundle. Let PE be the projectivization of E (over C) and let γE −→PE be the tautological
line bundle. Then α induces an ms-section αE ∈ Γ(PE; γ∗E ⊗π∗EO), where πE : PE −→ M̄ is the
bundle projection map. The number of zeros of ψα,ν̄ is the same as the number of zeros of the
induced map

ψE
α,ν̄ ≡π∗E ν̄ + αE : γE −→π∗EO.

Thus, we can always reduce the computation to the case E is a line bundle.

The second step describes the number of zeros of ψα,ν̄ topologically in the case E is a line bundle.
Since ν̄ has no zeros, it spans a trivial subbundle Cν̄ of O. Let O⊥ be the quotient of O by this
trivial subbundle. Denote the Cν̄- and O⊥-components of α by αt and α⊥, respectively. Then the
zeros of ψα,ν̄ are described by

{

ν̄b + αt
b(v) = 0 ∈ Cν̄;

α⊥
b (v) = 0 ∈ O⊥;

b∈ barM, v∈Eb. (3.13)

Since ν̄ does not vanish, all solutions of the first equations (3.13) are nonzero. The solution of
the second equation with nonzero v is (E−M̄)|α⊥−1(0). Furthermore, if b∈α⊥−1(0) and α(b) 6=0,

αt : E −→ (Cν̄)b is an isomorphism. Thus, for every b∈α⊥−1(0)−α−1(0), there exists a unique
v ∈Eb solving the first equation in (3.13), and the sign of (b, v) as a zero of ψα,ν̄ agrees with the
sign of b as a zero of α⊥. On the other hand, (3.13) has no solutions on E|α−1(0). It follows that

the number of zeros of ψα,ν̄ is the number of zeros of α⊥ on M̄−α−1(0), i.e.

±|ψ−1(0)| =
〈
e(E∗⊗O⊥), [M̄]

〉
− Cα−1(0)(α

⊥); (3.14)
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see Corollary 3.13.

As discussed in the previous subsection, computing CZ(s) in reasonably good cases reduces to
counting the number of zeros of polynomial maps between vector bundles over ms-manifolds, but
with the rank of the target bundle one less than the rank of the bundle O we started with. Thus,
this process will eventually terminate. The lemma below summarizes the last two paragraphs. Let
λE =c1(γ

∗
E).

Lemma 3.14 Suppose M̄ is an ms-manifold and E,O −→ M̄ are ms-bundles such that

rkE +
1

2
dimM̄ = rkO.

If α∈Γ(M̄;E∗⊗O) and ν̄∈Γ(M̄;O) are such that α is regular, ν̄ has no zeros, the map

ψα,ν̄ ≡ ν̄+α : E −→ O

is transversal to the zero set on E|M, and all its zeros are contained in E|M, then ψ−1
α,ν̄(0) is a

finite set, ±|ψ−1
α,ν̄(0)| depends only on α, and

N(α) ≡ ±|ψ−1
α,ν̄(0)| =

〈
c(O)c(E)−1, [M̄)]

〉
− Cα−1

E (0)(α
⊥
E).

Proof: Let n = rkE, m = rkO, and λE = c1(γ
∗
E). From Lemma 3.10, equation (3.14), and the

construction above, we obtain the first two claims of the lemma along with

N(α) =
k=m−1∑

k=0

〈
ck(O⊥)λm−1−k

E , [PE]
〉
− Cα−1

E (0)(α
⊥
E)

=

k=m−1∑

k=0

〈
ck(O)λm−1−k

E , [PE]
〉
− Cα−1

E (0)(α
⊥
E).

(3.15)

On the other hand,

λn
E +

k=n∑

k=1

ck(E)λn−k
E = 0 ∈ H2n(PE) and

〈
µλn−1

E , [PE]
〉

=
〈
µ, [M̄]

〉
∀µ∈H2m−2n(M̄);

(3.16)

see [BT] for example. The last statement of the lemma follows from (3.15) and (3.16).

Remark: If α : E −→O is a polynomial, and not just a linear map, the first step in computing
the number of zeros of the map ψα,ν̄ = ν̄+α would be to reduce to the case α is a linear map via
a projectivization construction similar to the one in the second paragraph of this subsection. For
example, suppose α= p1+p2, where pi ∈Γ(M̄;E∗⊗di

i ⊗O) and E =E1⊕E2. Then the number of
zeros of ψα,ν̄ is the same as the number of zeros of

ψE1
α,ν̄ ≡π∗E1

ν̄+p1,E1+π
∗
E1
p2 : γE1⊕π∗E1

E2 −→ π∗E1
O
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over PE1, where p1,E1 ∈Γ(PE1; γ
∗⊗d1
E1

) is the section induced by p1. If ν̄ is generic, this number is
d1-times the number of zeros of the map

ψ̃E1
α,ν̄ ≡π∗E1

ν̄+p1,E1+π
∗
E1
p2 : γ⊗d1

E1
⊕π∗E1

E2 −→ π∗E1
O.

Note that p1,E1 is linear on γ⊗d1
E1

. Taking the projection of π∗E1
E2 over PE1 and repeating the above

procedure, we obtain an affine map

ψE1,E2
α,ν̄ : π∗E2

γ⊗d1
E1

⊕γ⊗d2
π∗

E1
E2

−→ π∗π∗
E1

E2
π∗E1

O.

4 Resolvents for {ψµT ,tν} and {ψµS,tν}

4.1 A Power Series Expansion for π
0,1
υ,−∂̄uυ

Throughout this section, we assume that T = (Σ, [N ], I; j, d) is a simple bubble type, with d0̂ = 0
and

∑

i∈I di =d, and µ is an N -tuple of constraints in general position of total codimension

codimCµ = d(n+1) − n(g−1) +N.

Our goal is to extract leading-order terms from the bundle map ψµ
T ,tν of Theorem 2.7 and to de-

scribe the zero set of ψµ
T ,tν as the union of the zero sets of affine maps between finite-rank vector

bundles. The main topological tool is Subsection 3.1.

Nearly all of this subsection is devoted to obtaining the power series expansion for π0,1
υ,−∂̄uυ of

Proposition 4.4. However, we first state an estimate for π0,1
υ,−νυ,t, which is immediate from Theo-

rem 2.7.

Let {ψj} denote an orthonormal basis for H0,1
Σ . Given q ∈P

n and an orthonormal basis {Xi} for
TqP

n, put

ν̄q =

i=n,j=g
∑

i=1,j=1

(∫

z∈Σ

〈
ν(z, q),Xiψj

〉

z

)

Xiψj ≡ πH0,1
Σ
ν(·, q) ∈ H0,1

Σ ⊗ TqP
n.

Note that ν̄ is well-defined.

Lemma 4.1 There exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈F (∅)Tδ and t∈(0, δ(bυ)),

∥
∥π0,1

υ,−νυ,t − R̃υ ν̄ev(bυ)

∥
∥

υ,2
≤ C(bυ)

(
t+ |υ|

1
p
)
.

Suppose υ=
(
(Σ, [N ], I;x, (j, y), u), (vh)h∈Î

)
∈F (∅)T is such that qυ is defined. For any h∈ Î, let

h̃(T )=min{i∈ Î : i≤h}. By the basic gluing construction of Subsection 2.2 in [Z1],

ṽh = dφbυ ,h̃(T )

∣
∣
x̃h(υ)

(
dq−1

υ,ιh

∣
∣
x̃h(υ)

dφ−1
bυ ,h

∣
∣
0
vh

)
=

∏

i∈Î ,i≤h

vi ∈ Txh̃(T )
Σ,

where φbυ,h is a holomorphic identification of neighborhoods of xh in Σbυ,ιh and in F
(0)
bυ ,h ≡ Txh

Σbυ,h.

If Σbυ,h =S2, we also identify Txh
Σbυ,h with C with the map qN .
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Lemma 4.2 For all υ ∈ F (∅)T such that qυ is defined, ∂̄uυ vanishes outside of the annuli A−
υ,h

with χT h=1 and A±
υ,h with χT h=2. Furthermore, there exists δ∈C∞(MT ; R+) such that for all

υ∈F (∅)Tδ and h∈ Î with χT h=1, on Ã−
υ,h ≡

{
z∈F (0)

h,bυ
: 1

2 |vh|
1
2 ≤|z|bυ ≤|vh|

1
2

}
,

Π−1
bυ ,ūυ(z)∂̄

(
uυ◦q−1

υ,ιh

)
◦ dφ−1

bυ ,h

∣
∣
∣
z

= −|vh|−
1
2

(
∑

m≥1

(
1 − β|vh|(2|z|)

)(m−1)D(m)
T ,h

([

bυ,
(vh

z

)]))

∂̄β
∣
∣
2|vh|−

1
2 z
,

where ūυ(z)∈T
ev(bυ)P

n is given by

expbυ,ev(bυ) ūυ(z) = uυ

(
q−1
υ,ιh

φ−1
bυ ,h(z)

)
= uh

(
qh,(xh,vh)φ

−1
bυ,h(z)

)
, |ūυ(z)|bυ < rPn .

This sum converges uniformly on Ã−
υ,h.

Remark: By construction, qυ =qυ,(xh,vh)◦qυ,ιh on A−
υ,h, and on qυ,ιh(A−

υ,h)

qυ,(xh,vh)(z) =
(
h, qSph,(xh,vh)(z)

)
, where ph,(xh,vh)(z) =

(
1 − β|vh|(2|φbυ ,hz|)

)( vh

φbυ ,hz

)

.

Proof: The first claim follows from (G3); see Subsection 2.1. If y ∈Σbυ,h and |q−1
S (y)|≤2δT (bυ),

define ūh(y)∈Tev(bυ)P
n by

expbυ ,ev(bυ) ūh(y) = uh(y), |ūh(y)|bυ < rPn .

By construction, uυ ◦ q−1
υ,ιh

= uh ◦ qυ ◦ q−1
υ,ιh

on qυ,ιh(A−
υ,h). Since Π−1

bυ,ūυ
◦duh is C-linear on qυ(A−

υ,h),

for any z∈ Ã−
υ,h

Π−1
bυ,ūυ(·)∂̄(uυ◦q−1

υ,ιh
) ◦ dφ−1

bυ ,h

∣
∣
∣
z

= Π−1
bυ ,ūυ(·)duh ◦ ∂̄(qυ◦q−1

υ,ιh
) ◦ dφ−1

bυ ,h

∣
∣
∣
z

= −2|vh|−
1
2

(vh

z

)

Π−1
bυ ,ūυ(·)(duh◦dqS)

∣
∣
∣
ph,(xh,vh)φ

−1
υ,h(z)

◦ ∂β
∣
∣
∣
2|vh|−

1
2 z

;
(4.1)

see Lemma 2.2 in [Z1]. Since gPn,bυ is flat on uυ(A−
υ,h) by our choice of metrics,

Π−1
bυ ,ūυ

(duh◦dqS) = d(ūh◦qS) (4.2)

on q−1
S qυ(A−

υ,h). Since ūh◦qS is antiholomorphic and the metric gPn,bυ is flat near ev(bυ),

d(ūh◦qS)
∣
∣
x

( ∂

∂s

)

= d(ūh◦qS)
∣
∣
x

( ∂

∂ȳ

)

=
∑

m≥1

xm−1

(m−1)!

dm

dȳm

(
ūh◦qS

)∣
∣
(s,t)=0

=
∑

m≥1

xm−1

(m−1)!

Dm−1

dsm−1

d

ds
(uh◦qS)

∣
∣
(s,t)=0

,

(4.3)
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for any x∈qυ(A−
υ,h), where y=s+it∈C is the complex coordinate. The second claim follows from

equations (4.1)-(4.3). For the last claim, note that the sum converges uniformly on Ã−
υ,h as long as

qυ(A−
υ,h) is contained in the ball of convergence for the power series expansion for ūh at 0.

If ψ∈H0,1
Σ , b∈M(0)

T , m≥1, and the metric gb,0̂ is flat near x, we define D
(m)
b,x ψ∈T 0,1

x Σ⊗m as follows.

If (s, t) are conformal coordinates centered at x such that s2+t2 is the square of the gb,0̂-distance
to x, let

{D(m)
b,x ψ}

( ∂

∂s

)

≡ {D(m)
b,x ψ}

(
∂

∂s
, . . . ,

∂

∂s
︸ ︷︷ ︸

m

)

=
π

m!

{Dm−1

dsm−1
ψj

∣
∣
∣
(s,t)=0

}( ∂

∂s

)

,

where the covariant derivatives are taken with respect to the metric gb,0̂. Since ψj ∈ H0,1
Σ ,

ψj =f(ds−idt) for some anti-holomorphic function f . Since gb,0̂ is flat near x, it follows that

D
(m)
b,x ψ∈T 0,1

x Σ⊗m. If {ψj} is an orthonormal basis for H0,1
Σ , let s

(m)
b,x ∈T ∗

xΣ⊗m ⊗H0,1
Σ be given by

s
(m)
b,x (v) ≡ s

(m)
b,x (v, . . . , v

︸ ︷︷ ︸

m

) =
∑

j∈[g]

{

D
(m)
b,x ψj

}

(v)ψj .

The section s
(m)
b,x is always independent of the choice of a basis for H0,1

Σ , but is dependent on the

choice of the metric gb,0̂ if m>1. However, s
(1)
b,x depends only on (Σ, j); we denote this section

by sΣ,x. By [GH, p246], sΣ,x does not vanish and thus spans a subbundle of Σ×H0,1
Σ −→Σ. We

denote this subbundle by H+
Σ and its orthogonal complement by H−

Σ . A slightly different description
of these bundles is given in Subsection 2.3. Let

π+, π− ∈ Γ
(
Σ; (Σ×H0,1

Σ )∗ ⊗H±
Σ

)

be the corresponding orthogonal projection maps. Denote by s
(m,±)
b,x the composition π±x ◦s(m,±)

b,x .

Lemma 4.3 There exists δ∈C∞(MT ; R+) such that for all υ∈F (∅)Tδ, X∈T
ev(bυ)P

n, and ψ∈H0,1
Σ ,

〈〈
π0,1

υ,−∂̄uυ, RυXψ
〉〉

υ,2
= −

∑

m≥1

∑

χT h=1

〈
D(m)

T ,hbυ,X
〉({

D
(m)
bυ ,x̃h(υ)ψ

}(
(dφbυ ,xh̃(T )

|x̃h(υ))−1ṽh

))

.

Furthermore, the sum is absolutely convergent.

Proof: Since
〈
∂̄uυ, RυXψ

〉
= 0 outside of the annuli A−

υ,h with χT h = 1,

〈〈
π0,1

υ,−∂̄uυ, RυXψ
〉〉

=
〈〈
∂̄uυ, RυXψ

〉〉
=

∑

χT h=1

∫

A−
υ,h

〈
∂̄uυ, RυXψ

〉
. (4.4)

Since q−1
υ,ιh

◦φ−1
bυ ,h is holomorphic on Ã−

υ,h, Π−1
bυ,ūυ

is unitary on uυ(A−
υ,h), and the inner-product of

one-forms is conformally invariant,
∫

A−
υ,h

〈
∂̄uυ, RυXψ

〉
=

∫

Ã−
υ,h

〈
∂̄(uυ◦q−1

υ,ιh
)◦dφ−1

bυ ,h, RυXψ◦dq−1
υ,ιh

◦dφ−1
bυ ,h

〉

=

∫

Ã−
υ,h

〈
Π−1

bυ,ūυ
∂̄(uυ◦q−1

υ,ιh
)◦dφ−1

bυ ,h,Xψ◦dq−1
υ,ih

◦φ−1
bυ ,h

〉
,

(4.5)
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since Π−1
bυ ,ūυ

RυXψ=Xψ on A−
υ,h. If ιh =0̂, we identify F

(0)
h,bυ

=Txh
Σ with C in a gbυ ,0̂-unitary way.

In all cases, we can then write
ψ ◦ dq−1

υ,ιh
◦ dφ−1

bυ ,h = fdz̄.

Since ψ is harmonic and q−1
υ,ιh

◦φ−1
bυ ,h is holomorphic on Ãυ,h, f is anti-holomorphic. Using the change

of variables 2|vh|−
1
2 z = reiθ, we obtain

∫

Ãυ,h

〈

|vh|−
1
2
(
1−β|vh|(2|z|)

)m−1D(m)
T ,h

([

bυ,
vh

z

])

∂̄β
∣
∣
2|vh|−

1
2 z
,Xψ◦dq−1

υ,ιh
◦dφ−1

bυ ,h

〉

=
〈
D(m)

T ,hbυ,X
〉
vm
h

∫

Ãυ,h

{(
1−β(2|vh|−

1
2 |z|)

)m−1
β′

∣
∣
2|vh|−

1
2 |z|

}

|vh|−
1
2 z−m z

|z| f̄ (4.6)

=
〈
D(m)

T ,hbυ,X
〉
vm
h |vh|−

m−1
2 2m−2 1

m

∫ 2

1

∫ 2π

0

{(
1−β(r)

)m
}′

(reiθ)−(m−1)f̄
(1

2
|vh|

1
2 reiθ

)
dθdr.

Since f̄ is holomorphic, for any r>0,
∫ 2π

0
(reiθ)−(m−1)f̄

(1

2
|vh|

1
2 reiθ

)
dθ = −i

∫

|z|=r

z−mf̄
(1

2
|vh|

1
2 z

)
dz

=
2π

(m−1)!

d(m−1)

dz(m−1)
f̄
(1

2
|vh|

1
2 z

)
∣
∣
∣
z=0

=
2π

(m−1)!
2−(m−1)|vh|

m−1
2 f̄ 〈m−1〉(0).

(4.7)

Since the metric gb,0̂ is flat near x̃h,

π

m!
vm
h f̄

〈m−1〉(0) =
{
D

(m)
bυ ,x̃h(υ)ψ

}(
dq−1

υ,ιh

∣
∣
xh
dφ−1

bυ ,h

∣
∣
0
vh

)

=
{
D

(m)
bυ ,x̃h(υ)ψ

}(
(dφbυ ,xh̃(T )

|x̃h(υ))−1ṽh

)
.

(4.8)

The claim follows from equations (4.4)-(4.8) and Lemma 4.2.

Proposition 4.4 If T =(Σ, [N ], I; j, d) is a simple bubble type with d0̂ =0, there exists δ∈C∞(MT ; R+)
such that

π0,1
υ,−∂̄uυ = −R̃υ

∑

m≥1

∑

χT h=1

(
D(m)

T ,hb
)(

s
(m)
b,x̃h(υ)

(
dφb,xh̃(T )

|−1
x̃h(υ)ṽh

))

∀ υ=
[
b, (vh)h∈Î

]
∈F ∅Tδ.

Furthermore, the sum is absolutely convergent.

Proof: This proposition follows from Lemma 4.3 and equation (2.14).

4.2 First-Order Estimate for ψ
µ
T ,tν

If T =(Σ, [N ], I; j, d) is a bubble type as before, we denote by χ(T ) the subset of elements h of I
such that χT h=1. For any υ∈FT and h∈χ(T ), let

α
(k)
T ,h(υ) =

(
D(k)

T ,hbυ
)
s
(k)
bυ,xh̃(T )

(ṽh), α
(k)
T (υ) =

∑

h∈χ(T )

α
(k)
T ,h(υ),

if υ =
[
(Σ, [N ], I;x, (j, y), u), (vh)h∈Î

]
.

We denote α
(1)
T ,h and α

(1)
T by αT ,h and αT , respectively.
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Lemma 4.5 There exist δ, C∈C∞(MT ; R+) such that for all υ∈F ∅Tδ,

∥
∥π0,1

υ,−∂̄uυ + R̃υαT (υ)
∥
∥

2
≤ C(bυ)|υ|

∑

h∈χ(T )

|υ|h.

Proof: This is immediate from Proposition 4.4, since

∥
∥sx̃h(υ)

(
dφbυ ,xh̃(T )

|−1
x̃h(υ)ṽh

)
− sxh̃(T )

(ṽh)
∥
∥

2
≤ C(bυ)

∣
∣φbυ ,xh̃(T )

x̃h(υ)
∣
∣
bυ

∣
∣ṽh

∣
∣ ≤ C ′(bυ)|υ|

∣
∣ṽh

∣
∣
b
;

∑

m≥2

∣
∣D(m)

T ,hbυ
∣
∣|ṽh|m ≤ C(bυ)|ṽh|2,

for all h∈ Î with χT h=1 and υ∈FTδ with δ∈C∞(MT ; R+) sufficiently small.

Lemma 4.6 There exist δ, C∈C∞(MT (µ); R+) such that for all υ∈F ∅Tδ,
∥
∥
∥ψ

µ
T ,tν(υ) −

(
tν̄

ev(bυ)+αT (υ)
)
∥
∥
∥

2
≤ C(bυ)

(
t+|υ|

1
p
)(

t+
∑

h∈χ(T )

|υ|h
)

,

where ψµ
T ,tν denotes ψµ

MT ,tν.

Proof: By Lemma 2.2 and Theorem 2.7,

∥
∥π0,1

υ,−Dυξυ,tν

∥
∥

2
≤ C(bυ)

( ∑

h∈χ(T )

|υ|h
)

‖Dυξυ,tν‖υ,p,1 ≤ C ′(bυ)
(
t+|υ|

1
p
) ∑

h∈χ(T )

|υ|h.

Combining this estimate with Lemmas 4.1 and 4.5, we obtain
∥
∥
∥ψT ,tν(υ) −

(
tν̄ev(bυ)+αT (υ)

)∥∥
∥

2
≤ C(bυ)

(
t+|υ|

1
p
)(

t+
∑

h∈χ(T )

|υ|h
)

(4.9)

for all υ∈F ∅Tδ, provided δ∈C∞(MT ; R+) is sufficiently small. On the other hand, if bυ∈MT (µ),

∥
∥ϕµ

T ,tν(υ)
∥
∥

bυ
≤ C(bυ)

(
t+|υ|

1
p
)

=⇒
∥
∥
∥

(
tν̄ev(φµ

T ϕµ
T ,tν(υ))+αT (Φµ

T ϕ
µ
T ,tν(υ))

)
− Πbυ ,φµ

T ϕµ
T ,tν(υ)

(
tν̄ev(bυ)+αT (υ)

)
∥
∥
∥

2

≤ C(bυ)
(
t+|υ|

1
p
)(

t+
∑

h∈χ(T )

|υ|h
)

,
(4.10)

where ϕµ
T ,tν = ϕµ

MT ,tν is the section of Theorem 2.7 for any fixed regularization
(
ΦT ≡ Id,Φµ

T
)

of MT (µ). The claim follows from (4.9) and (4.10).

Our next step is to apply Lemma 3.2 or Corollary 3.6 to the map ψµ
T ,tν whenever possible. In terms

of notation of Subsection 3.1, we take

F+ = O+ = {0}, F−= FT , O−= H0,1
Σ ⊗ev∗TP

n, F̃−=
⊕

h∈χ(T )

⊗

i∈Î ,i≤h

FiT ;

φh

(
[b, vÎ ]

)
=

[
b,

⊗

i∈Î ,i≤h

vi

]
=

[
b, ṽh

]
, α−(φ(υ)) ≡ αT (υ),
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where φh denotes the hth component of φ : F−−→ F̃−. Note that α− ∈ Γ(MT ; F̃−∗⊗O−) is
well-defined. A priori, α− may not have full rank on every fiber over MT (µ). We will call a
subset K ⊂ MT (µ) T -regular if α− has full rank over K. From Theorem 2.7, Lemma 3.2, and
Corollary 3.6, we then obtain

Corollary 4.7 Suppose d is a positive integer, T =(Σ, [N ], I; j[N ], d) is a simple bubble type, with
d0̂ =0 and

∑

i∈I di =d, and µ is an N -tuple of constraints in general position such that

codimCµ = d(n+1) − n(g−1) +N.

Let ν ∈ Γ(Σ × P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnTP

n) be a generic section. If ιh 6= 0̂ for some h ∈ Î, for every
regular compact subset K of MT (µ), there exist a neighborhood UK of K in C̄∞

(d;[N ])(Σ;µ) and

εK > 0 such that for any t ∈ (0, εK), UK ∩MΣ,d,tν(µ)=∅. If ιh = 0̂ for all h ∈ Î, there exists a
compact regular subset KT of MT (µ) with the following property. If K is a compact regular subset
of MT (µ) containing KT , there exist a neighborhood UK of K in C̄∞

(d;[N ])(Σ;µ) and εK > 0 such

that for all t ∈ (0, εK), the signed cardinality of UK ∩ MΣ,d,tν(µ) equals to the signed number of
zeros of the map

FT
∣
∣
MT (µ)

−→ H0,1
Σ ⊗ev∗TP

n, υ −→ ν̄
ev(bυ)+αT (υ). (4.11)

Proof: In either case, by Theorem 2.7, there exist a neighborhood UK of K in C̄∞
(d;[N ])(Σ;µ)

and δK , εK > 0 such that for any t ∈ (0, εK), there exists a sign-preserving bijection between
UK ∩MΣ,d,tν(µ) and the zeros of ψµ

T ,tν on F ∅TδK
|UK∩MT (µ), provided UK ∩MT (µ) is precompact

in MT (µ). Furthermore, δK can be required to be arbitrarily small. If K is regular, UK can be
chosen so that the closure of UK ∩MT (µ) in MT (µ) is also regular. Then by Lemma 4.6,

∥
∥
∥ψ

µ
T ,tν(υ) −

(
tν̄ev(bυ)+αT (υ)

)
∥
∥
∥

2
≤ CK

(
t+|υ|

1
p
)(
t+ |αT (υ)|

)
∀υ∈F ∅TδK

∣
∣
K
,

where CK > 0 depends only on K. Thus, the first claim follows from Lemma 3.2. The second
follows from Corollary 3.6, provided that for a generic ν the set of zeros of the map in (4.11) is
T -regular and finite; see below.

The affine maps of Corollaries 4.7, 4.14, 4.18, and 4.22 extend over the natural compactifications of
the spaces MT (µ) and ST ;k(µ) described in Subsection 4.9. Along with counting the zeros of these
affine maps in Section 5, we also show that the linear part of each of the affine maps is regular
in the sense of Definition 3.9. Thus, by Lemma 3.10 these affine maps have a finite numbers of
transverse zeros, which must lie over the subspace of the base where the linear part of the affine
map has full rank.

4.3 Consequences of the First-Order Estimate for ψ
µ
T ,tν

In this subsection, we show that MT (µ) is T -regular for most bubble types T under consideration,
and nearly all of them fall under the first case of Corollary 4.7. We call T effective, if for some
generic choice of ν and of the constraints µ1, . . . , µN ,

⋃

t<1
MΣ,tν,d(µ) intersects M̄T (µ). If K is a

compact subset of M̄T (µ), we call K effective if
⋃

t<1
MΣ,tν,d(µ) intersects K.

Lemma 4.8 Let T =(Σ, [N ], I; j, d) be a simple bubble type. If jl =0̂ for some l∈ [N ] and K is a
T -regular subset of MT (µ), then K is not effective.
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Proof: By Corollary 4.7, it is sufficient to show that the map

ν̄+αT : FT −→ H0,1
Σ ⊗ev∗TP

n

has no zeros for a generic ν. For a generic ν, the zero set of this section is zero-dimensional.
However, if jl =0̂ for some l∈ [N ], we can move yl∈Σ freely, without changing the value of ν̄+αT .
Thus, if the zero-set of the section is nonempty, it must be at least one-dimensional, which is not
the case for a generic ν.

Lemma 4.9 Let T =(Σ, [N ], I; j, d) be a bubble type with d0̂ =0. If

ng − |Î| −
(

|H0̂T | + |M0̂T |+
∑

i∈Î ,di=0

(
|HiT |+|MiT |−2

))

≤ n− |χ(T )|,

MT (µ) is T -regular. Furthermore, if the number on the left-hand side above is negative, then
MT (µ) is empty.

Proof: (1) The dimension of M(µ) is given by

dimMT (µ) =
(
d(n+1) + n+N − |Î|

)
−

(
d(n+1) − n(g−1) +N

)
= ng − |Î|.

However, given b=
(
Σ, [N ], I;x, (j, y), u

)
∈MT (µ), we are free to vary xh if ιh =0̂ (i.e. xh∈Σ) and

yl if jl =0̂. Similarly, if i∈ Î, di = 0, and |HiT |+|MiT |>2, we can vary |HiT |+|MiT |−2 marked
and singular points on Σb,i. Thus, the space MT (µ) must have dimension at least

dmin(T ) ≡ |H0̂T | + |M0̂T | +
∑

i∈Î,di=0

(
|HiT |+|MiT |−2

)
,

if MT (µ) is nonempty. Therefore, we can assume |χ(T )|≤n.
(2) Let h1, . . . , h|χ(T )| be the elements of χ(T ). The section sΣ∈Γ(Σ;T ∗Σ⊗H0,1

Σ ) does not vanish;
see [GH, p246]. Thus, the section α− defined above has rank at least k if the section

D̄T ;k∈Γ
(

MT (µ);
( ⊕

m≤k

L∗
hm

T
)

⊗ ev∗TP
n
)

, D̄T ;k

([
b, c{hm:m≤k}

])
=

∑

m≤k

DT ,hm ([b, chm ]) ,

has rank k. We prove inductively that under the assumptions of the lemma this is the case for all
k≤|χ(T )|. If k=0, there is nothing to prove. So we can assume that k>0 and that the statement
has been shown to be true for k−1. The k−1 statement shows that the image of D̄T ;k−1 is a
rank k−1 subbundle of ev∗TP

n. Let π⊥k−1 denote the orthogonal projection onto the orthogonal
complement of this rank (k−1)-subbundle in ev∗TP

n with respect to the standard metric in P
n.

We need to show that the section

π⊥k−1◦DT ;k ∈ Γ
(
MT (µ);Lhk

T ∗⊗π⊥k−1(ev
∗
T TP

n)
)

does not vanish. By Corollary 6.3, π⊥k−1 ◦DT ;k is transverse to zero for a generic choice of the
constraints µ1, . . . , µN . Its zero set must have dimension at least dmin(T ), if nonempty, since the
movements of points described in (1) do not effect π⊥k−1 ◦DT ;k. Thus, π⊥k−1 ◦DT ,k does not vanish if

dim(MT (µ)) − dmin(T ) < n− (k − 1).

By the assumption of the lemma, this is the case as long as k≤|χ(T )|.
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d d1̂ d2̂

Figure 1: The Two Possibilities for T of Corollary 4.10

Corollary 4.10 Let T =(Σ, [N ], I; j, d) be an effective bubble type with d0̂ =0. If g=2 and n=2,
then either
(1) |Î|=1 and jl 6=0̂ for all l∈ [N ], or
(2) |Î|=2, H0̂T = Î, and jl 6=0̂ for all l∈ [N ].
Furthermore, in Case (2) αT has full rank over all of MT (µ).

We illustrate the statement of Corollary 4.10 in Figure 1. We represent each of the potentially ef-
fective bubble types T by the domain of any stable map in the space MT (µ). Each disk represents
a sphere. We shade the component(s) of the domain on which any (or every) map in MT (µ) is
nonconstant. The labels d, d1̂, and d2̂ indicate the degree of the map on each of the bubble com-
ponents; we must have d1̂+d2̂ =d. In the case of Figure 1, all marked points must be distributed
between the shaded components of the domain.

Due to Corollary 4.10, Corollary 4.7 describes topologically the number of elements of the set
MΣ,d,tν(µ) that lie near a compact subset K of MΣ,d,0(µ), provided K is disjoint from the space

ST ,1(µ) ≡ α−1
T (0) ⊂ MT (µ),

where T is the bubble type specified by (1) in Corollary 4.10 and by the first diagram in Figure 1.
By definition of αT , the set ST ,1(µ) consists of the elements of MT (µ) such that the differen-
tial of the bubble map at the attaching node is zero, i.e. the corresponding rational curve in P

2

has a cusp at the image of Σ. Determining the number of elements of MΣ,d,tν(µ) that lie near
ST ,1(µ) requires higher-order estimates. In Subsection 4.4, we determine the number of elements
of MΣ,d,tν(µ) that lie near a compact subset K of ST ,1(µ) such that for no element of K the
corresponding singular point on Σ is one of the six hyperelliptic points of Σ. Finally, in Subsec-
tion 4.5, we determine the number of elements of MΣ,d,tν(µ) that lie near the subset K of ST ,1(µ)
such that for every element of K the corresponding singular point on Σ is a hyperelliptic point of Σ.

Proof of Corollary 4.10: (1) By Lemma 4.9, MT (µ) is empty, unless ng − |Î| ≥ 1, i.e. |Î| ≤ 3.
Suppose |Î|=3. If |H0̂T |≥2,

ng − |Î| − |H0̂T | ≤ 4 − 3 − 2 < 0,

and thus MT (µ) is empty by Lemma 4.9. If |H0̂T |=1,

n− |χ(T )| ≥ 2 − (|Î | − 1) = 0 = ng − |Î | − |H0̂T |,

and by Lemma 4.9 the space MT (µ) is T -regular. The space MT (µ) is compact, since by the
above MT ′(µ)=∅ if T ′<T . Corollary 4.7 then implies that MT (µ) is not effective, i.e. T is not
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l1

l2

Figure 2: The Five Possibilities for T of Corollary 4.11

effective.
(2) Suppose |Î |=2. If |H0̂T |=2 and jl =0̂ for some l∈ [N ],

ng − |Î | − |H0̂T | − |M0̂T | ≤ 4 − 2 − 2 − 1 < 0,

and thus MT (µ) is empty by Lemma 4.9. If |H0̂T |=1,

n− |χ(T )| = 2 − 1 = ng − |Î | − |H0̂T |,

and it follows from Lemma 4.9 and Corollary 4.7, that every compact subset of MT (µ) is not
effective. Furthermore, M̄T (µ)−MT (µ) consists of three-bubble strata, all of which are not
effective by (1) above. Thus, T is not effective, unless ιh =0̂ for all h∈ Î and jl 6=0̂ for all l∈ [N ].
The second statement about the |Î|=2 case is immediate from Lemma 4.9.
(3) Finally, suppose |Î|=1 and jl =0̂ for some l∈ [N ]. Then,

n− |χ(T )| = 2 − 1 ≥ ng − |Î | − |H0̂T | − |M0̂T |,

and thus by Lemmas 4.8 and 4.9, every compact subset of MT (µ) is not effective. Furthermore,
M̄T (µ)−MT (µ) consists of two- and three-bubble strata that by (1) and (2) are not effective.
It follows that T is not effective.

Corollary 4.11 Let T =(Σ, [N ], I; j, d) be an effective bubble type with d0̂ =0. If g=2 and n=3,
then either
(1) |Î|=1, or
(2a) |Î|=2, H0̂T = Î, and jl 6=0̂ for all l∈ [N ], or

(2b) |Î |=2, H0̂T 6= Î, and jl 6=0̂ for all l∈ [N ], or

(3a) |Î|=3, H0̂T = Î, and jl 6=0̂ for all l∈ [N ], or

(3b) |Î |=3, ιh =1̂ for some 1̂∈ Î and all h∈ Î−{1̂}, d1̂ =0, and jl 6=0̂, 1̂ for all l∈ [N ].
Furthermore, in Case (3a) αT has full rank on all of MT (µ).

We illustrate the statement of Corollary 4.11 in Figure 2, using the same conventions as in Figure 1.
In the first case, the genus-two Riemann surface Σ may carry some of the marked points. In the
remaining four cases, all of the marked points are distributed between the shaded components. In
the third diagram, the lightly shaded disk indicates that the restriction of the maps in MT (µ)
to the corresponding bubble component may or may not be constant. In the former case, this
component must carry at least one marked point.

By the last remark of Corollary 4.11, Corollary 4.7 describes topologically the number of elements
of the set MΣ,d,tν(µ) that lie near a compact subset K of MT (µ) for any bubble type T as in (3a)
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of Corollary 4.11 and in the fourth diagram in Figure 2. If T is a bubble type as in (1) or (2b) of
Corollary 4.11 and in the first or third diagram of Figure 2, respectively, Corollary 4.7 describes
the number of elements of MΣ,d,tν(µ) that lie near a compact subset K of MT (µ), provided K is
disjoint from the space

ST ,1(µ) ≡ α−1
T (0) ⊂ MT (µ).

The elements of ST ,1(µ) are characterized geometrically in exactly the same way as in the n= 2
case above. As in the n= 2 case, we give a topological description for the number of elements of
MΣ,d,tν(µ) that lie near a compact subset K of ST ,1(µ) in Subsections 4.4 and 4.5.

If T is a bubble type as in (2a) or (3b) of Corollary 4.11 and in the second or last diagram of
Figure 2, respectively, Corollary 4.7 describes the number of elements of MΣ,d,tν(µ) that lie near
a compact subset K of MT (µ), provided K is disjoint from the space

ST ,2(µ) ≡ α−1
T (0) ⊂ MT (µ).

As discussed in the first paragraph of Subsection 4.6, in the first case ST ,2(µ) consists of the stable
maps in MT (µ) such that the image of the differentials at the attaching nodes of the two bubble
components is the same complex line and the two singular points on Σ are conjugates. The first con-
dition means that the two rational curves form a tacnode at the image of Σ in P

3. For T as in (2a)
of Corollary 4.11 and in the second diagram of Figure 2, we determine the number of elements of
MΣ,d,tν(µ) that lie near a compact subset K of ST ,2(µ) in Subsection 4.6. Finally, if T is as in (3b)
of Corollary 4.11 and in the last diagram of Figure 2, ST ,2(µ) consists of the stable maps in MT (µ)
such that the image of the differentials at the attaching nodes of the two shaded bubble components
is the same complex line. In Subsection 4.7, we determine the number of elements of MΣ,d,tν(µ)
that lie near a compact subset K of ST ,2(µ) such that for no element of K the corresponding
singular point on Σ is one of the six hyperelliptic points of Σ. In Subsection 4.8, we determine the
number of elements of MΣ,d,tν(µ) that lie near the subset K of ST ,2(µ) such that for every element
of K the corresponding singular point on Σ is a hyperelliptic point of Σ. We eventually find that
only the simplest possible bubble types are effective: that in the first diagram of Figure 2 with
no marked points on Σ and those in the second and fourth diagrams in Figure 2; see Subsection 4.9.

Proof of Corollary 4.11: (1) Similarly to the proof of Corollary 4.10, MT (µ) is empty unless |Î|≤5.
If |Î |=5, MT (µ) is compact and |H0̂T |=1. Let 1̂∈ Î be such that ι1̂ =0̂. If d1̂>0,

n− |χ(T )| = 3 − 1 > 0 = ng − |Î| − |H0̂T |,

and MT (µ) is not effective by Lemma 4.9 and Corollary 4.7. Suppose d1̂ = 0. Then |H1̂T | ≥ 2;
otherwise MT (µ) is empty by Lemma 4.9. It follows that

n− |χ(T )| ≥ 3 − (|Î |−2) = 0 = ng − |Î| − |H0̂T |.

Thus, by Lemma 4.9 and Corollary 4.7, T is not effective.
(2) Suppose |Î| = 4. If |H0̂T | ≥ 3, MT (µ) is empty by Lemma 4.9. Let 1̂ ∈ Î be as above. If
|H0̂T |=2,

n− |χ(T )| ≥ 3 − (|Î |−1) = 0 = ng − |Î| − |H0̂T |.
If |H0̂T |=1 and d1̂>0,

n− |χ(T )| = 3 − 1 > 1 = ng − |Î| − |H0̂T |.
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If |H0̂T |=1, d1̂ =0, and |H1̂T |=3,

n− |χ(T )| ≥ 3 − (|Î |−1) = 0 = ng − |Î| − |H0̂T | − (|H1̂T | − 2).

Finally, if |H0̂T |=1, d1̂ =0, and |H1̂T |=2,

n− |χ(T )| ≥ 3 − (|Î |−2) = 1 = ng − |Î| − |H0̂T |.

Thus, by Corollary 4.7 and Lemma 4.9, in all four cases, no compact subset of MT (µ) is effective.
Since M̄T (µ)−MT (µ) consists of five-bubble strata that are not effective by (1) above, it follows
that T is not effective.
(3) Suppose |Î |=3. If H0̂T = Î and jl =0̂ for some l∈ [N ],

ng − |Î | − |H0̂T | − |M0̂T | = 6 − 3 − 3 − 1 < 0,

and thus MT (µ) is empty by Lemma 4.9. If |H0̂T |=2,

n− |χ(T )| ≥ 3 − (|Î | − 1) = 1 ≥ ng − |Î | − |H0̂T |.

If |H0̂T |=1 and d1̂>0,

n− |χ(T )| = 2 = ng − |Î| − |H0̂T |.
If |H0̂T |=1 and |H1̂T |=1,

n− |χ(T )| = 2 = ng − |Î| − |H0̂T |.

Thus, in all three cases, by Lemma 4.9 and Corollary 4.7, no compact subset of MT (µ) is effective.
Since M̄T (µ)−MT (µ) consists of four- and five-bubble strata that are not effective by (1) and (2)
above, T is not effective in these three cases. On the other hand, if |H0̂T |=2, jl = 0̂ or jl = 1̂ for
some l∈ [N ], and d1̂ =0,

n− |χ(T )| ≥ 1 ≥ ng − |Î| − |H0̂T | − |M0̂T | −
(
|H1̂T |+|M1̂T |−2

)
.

Thus, by Lemmas 4.8 and 4.9, no compact subset of MT (µ) is effective. Similarly to the above, it
follows that T is not effective.
(4) Suppose |Î |=2 and jl =0̂ for some l∈ [N ]. If |H0̂T |=2,

n− |χ(T )| ≥ 1 ≥ ng − |Î| − |H0̂T | − |M0̂T |.

If |H0̂T |=1,

n− |χ(T )| = 2 ≥ ng − |Î| − |H0̂T | − |M0̂T |.
Thus, in either case, no compact subset of MT (µ) is effective by Lemmas 4.8 and 4.9. Furthermore,

M̄T (µ) −MT (µ) =
⋃

T ′<T
MT ′(µ),

where T ′ is either a four- or five-bubble strata, or a three bubble-strata T ′ = (Σ, [N ], I ′; j′, d′) such
that either |H0̂T |= 1, or d′

1̂′
= 0 and j′l = 0̂ or 1̂′. By (1)-(3) above, none of such bubble types is

effective, and thus T is not effective.
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4.4 Second-Order Estimate for ψ
µ
T ,tν, Case 1

We now refine the first-order estimate for ψµ
T ,tν along the sets on which the section α− defined

above does not have full rank. These are precisely the sets on which the section D̄T ,|χ(T | defined
in the proof of Lemma 4.9 does not have full rank.

One set on which D̄T ,|χ(T )| fails to have full rank is the zero set of DT ,h1. If n=2, 3, by Lemma 4.9,
DT ,h1 does not vanish unless h1 is the only element of the set χ(T ). Thus, we assume that this is
the case. We denote the zero-locus of DT ,h1 by ST ,1⊂MT , which will be abbreviated as S in this
subsection. Since DT ,h1 is transversal to zero by Corollary 6.3, S is a complex submanifold of MT
of codimension n. Its normal bundle NS in MT is the restriction of L∗

k1
T ⊗ev∗TP

n to ST ,1. Let
(ΦS ,Φ

µ
S) be a regularization of ST ,1(µ)≡S ∩MT (µ). This regularization can be chosen so that

DT ,h1φ̃S(b,X) = Πb,φ̃S(b,X)X ∀ (b,X) ∈ NS̃ = ev∗TP
n, (4.12)

where φ̃S is the lift of φS to the preimage S̃ of S and its normal bundle NS̃ in M(0)
T ; see Subsec-

tion 3.8 in [Z1]. The bundle NS carries a natural norm induced by the gPn,ev-metric on P
n. Denote

by FS and F ∅S the bundles described in Subsection 2.4 corresponding to the submanifold ST ,1.
Let 1̂∈H0̂T be the unique element such that 1̂≤h1. If

[
b;X,υ

]
∈FS=NS⊕FT , put

(2)αT ;1(X,υ) = X(bυ)sΣ,x1̂
ṽh1 + α

(2)
T ,h1

(υ).

Lemma 4.12 There exist δ, C∈C∞(S; R+) such that for all $=[(b;X,υ)]∈F ∅Sδ,

∥
∥
∥π

0,1
ΦS($),−∂̄uΦS($) + R̃ΦS($)Πb,φS(X)

(2)αT ;1(X,υ)
∥
∥
∥

2
≤ C(b)|υ|

(
|υ|2h1

+ |X||υ|h1

)
.

Proof: The proof is almost identical to the proof of Lemma 4.5. The only difference is that we use
two terms of the power series of Proposition 4.4. We then make use of the assumption (4.12) on

φS and smooth dependence of D(2)
T ,h1

on X.

Lemma 4.13 There exist δ, C∈C∞(ST ,1(µ); R+) such that for all $=[(b;X,υ)]∈F ∅Sδ,

∥
∥
∥ψ

µ
S,tν($) −

(
tν̄

ev(b)+
(2)αT ;1(X,υ)

)
∥
∥
∥

2
≤ C(b)

(
t+|υ|

1
p
)(
t+|υ|2h1

+|X||υ|h1

)
.

Proof: This claim follows from Lemmas 4.1 and 4.12 in a way analogous to the proof of Lemma 4.6.
The only difference is that we need to improve the estimate on π0,1

υ,−Dυξυ,tν made in the proof of

Lemma 4.6. Let {ψj} be an orthonormal basis for H0,1
Σ , such that ψ1 ∈H+

Σ(x̃h1(υ)), and {Xi} an
orthonormal basis for Tev(φS(X))P

n. By Theorem 2.7, with υ(X) = ΦS($),

∣
∣
∣

〈〈
π0,1

υ(X),−Dυ(X)ξυ(X),tν , Rυ(X)Xiψj

〉〉
∣
∣
∣ =

∣
∣
∣

〈〈
ξυ(X),tν ,D

∗
υ(X)Rυ(X)Xiψj

〉〉
∣
∣
∣

≤ C(b)(t+|υ|
1
p )‖D∗

υ(X)Rυ(X)Xjψj‖C0 .
(4.13)

Since ξ∈ Γ̃+(υ), by construction in Subsection 2.3,

〈〈
ξυ(X),tν ,D

∗
υ(X)Rυ(X)Xiψ1

〉〉
= 0. (4.14)
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On the other hand, since ψ2|x̃h1
(υ) =0 and ‖∇ψ2‖gφS(X),0̂,C0 ≤C(b), by equation (2.12)

∥
∥D∗

υ(X)Rυ(X)Xiψ2

∥
∥

C0(Ãυ(X),h1
)
≤ C(b)|υ|2h1

, (4.15)

where Ãυ(X),h1
is the annulus defined in Lemma 2.2. By equations (4.13)-(4.15),

∣
∣
∣π

0,1
υ(X),−Dυξυ(X),tν

∣
∣
∣ ≤ C(b)(t+ |υ|

1
p )|υ|2h1

.

The next step is to apply Lemma 3.2 or Corollary 3.6 whenever possible. Let

F+ = ev∗TP
n⊗

⊗

i∈Î,i≤h1

FiT , F−=FT , F̃−=
( ⊗

i∈Î ,i≤h1

FiT
)⊗2

, O±= H±
Σ⊗ev∗TP

n;

α+
(
[X,υ]

)
= XsΣ,x1̂

ṽh1 , φ
(
[b, vÎ ]

)
=

[
b, ṽh1⊗ṽh1

]
, α−(

φ(υ)
)
≡ π−x1̂(bυ)α

(2)
T (υ).

Note that α+∈Γ(S;F+∗⊗O+), since π−◦XsΣ =0. Since the map (X,υ)−→(X⊗ṽh1, υ) is injective
on F ∅T , we can view ψµ

S,tν as a map on an open subset of F−⊕F+. Analogously to the first-order

case of Subsection 4.2, subset K ⊂ST ,1(µ) will be called second-order regular if α− has full rank
over K.

Corollary 4.14 Suppose d is a positive integer, T = (Σ, [N ], I; j, d) is a simple bubble type, with
d0̂ =0 and

∑

i∈Idi =d, and µ is an N -tuple of constraints in general position such that

codimCµ = d(n+1) − n(g−1) +N.

Let ν∈Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnTP

n) be a generic section. If |Î |>1, for every second-order regular
compact subset K of ST ,1(µ), there exist a neighborhood UK of K in C̄∞

(d;[N ])(Σ;µ) and εK>0 such

that for any t∈ (0, εK), UK ∩MΣ,d,tν(µ)=∅. If |Î|=1, there exists a compact regular subset KT ,1

of ST ,1(µ) with the following property. If K is a compact subset of ST ,1(µ) containing KT ,1, there
exist a neighborhood UK of K in C̄∞

(d;[N ])(Σ;µ) and εK > 0 such that for all t∈ (0, εK), the signed

cardinality of UK ∩MΣ,d,tν(µ) equals to twice the signed number of zeros of the map

TΣ⊗2⊗L1̂T ⊗2
∣
∣
ST ,1(µ)

−→ H−
Σ ⊗ ev∗TP

n, [b, v] −→ ν̄−b + α(2,−)
(
[b, v]

)
. (4.16)

Proof: In either case, by Theorem 2.7, there exist a neighborhood UK of K in C̄∞
(d;[N ])(Σ;µ)

and δK , εK > 0 such that for any t ∈ (0, εK), there exists a sign-preserving bijection between
UK∩MΣ,d,tν(µ) and the zeros of ψµ

S,tν on F ∅SδK

∣
∣
UK∩ST ,1(µ)

, provided UK∩ ST ,1(µ) is precompact

in ST ,1(µ). If K is second-order regular, UK can be chosen so that the closure of UK∩ ST ,1(µ) in
ST ,1(µ) is also second-order regular. Since K is regular and α+ is injective on all fibers,

|υ|2h1
= |φ(υ)| ≤ CK

∣
∣α−(φ(υ))

∣
∣ =⇒ |υ|2h1

+|X||υ|h1 ≤ C ′
K

∣
∣(2)αT ;1(X,υ)

∣
∣ ∀(X,υ)∈F ∅SδK

∣
∣
K
,

where CK , C
′
K>0 depend only on K. Thus, by Lemma 4.13,

∥
∥
∥ψ

µ
S,tν($) −

(
tν̄ev(b$)+

(2)αT ;1($)
)
∥
∥
∥

2
≤ CK

(
t+ |$|

1
p
)(
t+

∣
∣(2)αT ;1($)

∣
∣
)

∀$∈F ∅SδK

∣
∣
K
,

where CK > 0 depends only on K. The first claim now follows from Lemma 3.2. The second
follows from Corollary 3.6, provided that for a generic ν the set of zeros of the map in (4.16) is
second-order regular and finite; see the last paragraph of Subsection 4.2.
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4.5 Third-Order Estimate for ψ
µ
T ,tν, Case 1

We continue with the case of Subsection 4.4. Then

α−([b, ṽh1 ]) = (D(2)
T ,h1

b)s
(2,−)
b,x1̂

(ṽh1).

By Corollary 6.3, for a generic choice of the constraints µ1, . . . , µN , D(2)
T ,h1

is transversal to zero

along ST ,1(µ) if dh1 ≥2. Since the zero set of D(2)
T ,h1

must have dimension at least dmin(T )≥1 by the

same argument as in the proof of Lemma 4.9, D(2)
T ,h1

does not vanish along ST ,1(µ) if dh1 ≥2. On
the other hand, if dh1 =1, ST ,1 =∅, since the differential of any degree-one holomorphic map from
S2 to P

n is nowhere zero. In fact, ST ,1(µ)=∅ even for dh1 =2, since the image of any degree-two
map with a somewhere vanishing differential is a line, and no line intersects µ1, . . . , µN if n=2, 3.
Thus, we can assume dh1 ≥ 3. It follows that the only way the above homomorphism α− can fail

to have full rank on F̃− is if s
(2,−)
b,x1̂

=0. While s
(2)
b,x1̂

depends on the choice of the metric gb,0̂ on Σ,

the section s(2,−) ∈ Γ
(
Σ;T ∗Σ⊗2⊗H−

Σ

)
is independent of the metric and is globally defined on Σ.

This can be seen by a direct computation. It has transverse zeros at the six branch points of the
double cover Σ−→P

1 induced by sΣ; see [GH, p246]. Denote by z1, . . . , z6 these six points. Then

the set on which α− fails to have full rank is
⋃

m∈[6]

S(m)
T ,1 (µ), where

S(m)
T ,1 =

{
b∈ST ,1 : x1̂(b)=zm}, S(m)

T ,1 (µ) = S(m)
T ,1 ∩MT (µ).

The sets S(m)
T ,1 are obviously disjoint.

Since the normal bundle of S(m)
T ,1 in ST ,1 is TzmΣ, the normal bundle NS of S(m)

T ,1 in MT (µ) is
TzmΣ⊕NS1, where NS1 is the normal bundle of ST ,1 in MT (µ), as described in the previous

subsection. Let
(
ΦS ,Φ

µ
S
)

be a regularization of S(m)
T ,1 (µ) induced by the regularization of ST ,1(µ)

described in Subsection 4.4. In particular,

DT ,h1φ̃S(b, w,X) = Πb,φ̃S(b,w,X)X ∀ (b, w,X) ∈ TzmΣ⊕NS̃1 = TzmΣ⊕ev∗TP
n, (4.17)

where φ̃S is the lift of φSto M(0)
T . We can also assume that Φµ

S is given by the gPn,b-parallel
transport on NbS1. The bundle NS carries a natural norm induced by the gPn,ev-metric on P

n and
g·,0̂-metric on Σ. Denote by FS and F ∅S the bundles described in Subsection 2.4 corresponding

to the submanifold S(m)
T ,1 . If (b, w,X, υ)∈F ∅S is sufficiently small, let

x̃1̂(w, υ) = x̃1̂

(
φS(w,X, υ)

)
= x̃1̂

(
φS(w, 0, υ)

)
∈ Σ.

We identify a small neighborhood of zm in Σ with a neighborhood of 0 in TzmΣ via the gb,0̂-
exponential map. Put

α̃(w,X, υ)=(Xb)sΣ,x̃1̂(w,υ)(ṽh1)+ Π−1
b,φS(b,X)

(
D(2)

T ,h1
φS(b,X)

)
s
(2)
b,x̃1̂(w,υ)(ṽh1)+

(
D(3)

T ,h1
b
)
s
(3)
b,zm

(ṽh1).

If (b, w,X, υ)∈F ∅S|S(m)
T ,1 (µ)

is sufficiently small, let

α̃µ(w,X, µ) = (Xb)sΣ,x̃1̂(w,υ)(ṽh1) +
(
Dµ,(2)

S,tν (w,X, υ)
)
s
(2)
b,x̃1̂(w,υ)(ṽh1) +

(
D(3)

T ,h1
b
)
s
(3)
b,zm

(ṽh1),
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where, with ϕµ
S,tν as in Theorem 2.7,

Dµ,(2)
S,tν (w,X, υ) = Π−1

φµ
Sϕµ

S,tν(w,X,υ),φSΦµ
Sϕµ

S,tν(w,X,υ)
Π−1

b,φµ
Sϕµ

S,tν(w,X,υ)

(
D(2)

T ,h1
φSΦµ

Sϕ
µ
S,tν(w,X, υ)

)
.

Lemma 4.15 There exist δ, C∈C∞(S(m)
T ,1 ; R+) such that for all $=[(b, w,X, υ)]∈F ∅Sδ,

∥
∥
∥π

0,1
ΦS($),−∂̄uΦS($) + R̃ΦS($)Πb,φS(X)α̃(w,X, υ)

∥
∥
∥

2
≤ C(b)|$||υ|3h1

.

Proof: The proof is the same as that of Lemma 4.12, except here we use the first three terms of
the expansion of Proposition 4.4. Note that |x̃1̂(w, υ)| ≤ C(b)(|w|+|υ|).

Lemma 4.16 There exist δ, C∈C∞(S(m)
T ,1 (µ); R+) such that for all $=(b, w,X, υ)∈F ∅Sδ

∥
∥ψµ

S,tν($) − (tν̄
ev(b)+α̃

µ(w,X, υ))
∥
∥

2
≤ C(b)(t+|$|

1
p )

(
t+|υ|3h1

+|x̃1(w, υ)||υ|2h1

)
.

Proof: The proof is similar to the proofs of Lemmas 4.6 and 4.13, but we need to obtain an even
stronger bound on

∥
∥π0,1

ΦS($),−DΦS($)ξΦS($),tν

∥
∥

2
.

Let {ψj} be an orthonormal basis for H0,1
Σ such that ψ1∈H+

Σ

(
x̃h1(w, υ)

)
, and {Xi} an orthonormal

basis for Tev(φS(X,υ))P
n. Then, as in the proof of Lemma 4.13, with υ($) = ΦS($),

〈〈
DΦS($)ξυ($),tν , Rυ($)Xiψ1

〉〉
= 0; (4.18)

∣
∣
∣

〈〈
π0,1

υ($),−DΦS($)ξυ($),tν , Rυ($)X
〉〉

∣
∣
∣ ≤ C(b)

(
t+|υ|

1
p
)∥
∥D∗

υ($)Rυ($)Xiψ2

∥
∥

υ($),1
. (4.19)

The one-form ψ2 vanishes at x̃h1(w, υ) by definition and ‖∇ψ2‖gb,0̂,C0 ≤ C|x̃h1(w, υ)|, since the

derivative of the corresponding one-form for zm vanishes. Thus, by equation (2.12)
∥
∥D∗

υ($)Rυ($)Xiψ2

∥
∥

gυ($),L1(Ãυ($),h)
≤ C(b)(|x̃h1(w, υ)||υ|h1 +|υ|2h1

)|υ|h1 , (4.20)

as needed for our bound. Finally, we use our assumption that Φµ
S is given by the gb,0̂-parallel

transport on NbS1.

For any (w,X, υ)∈F ∅
b S|S(m)

T ,1 (µ)
sufficiently small, let

Y (w,X, υ) = (Xb)sΣ,x̃1(w,υ)(ṽh1) +
(
Dµ,(2)

S,tν (w,X, υ)
)
s
(2,+)
b,x̃1̂(w,υ)(ṽh1 , ṽh1);

(3)α
(m),−
T ;1 (w, υ) =

(
D(2)

T ,h1
b
)
s
(3,−)
b,zm

(
x̃1̂(w, υ), ṽh1 , ṽh1

)
+

(
D(3)

T ,h1
b
)
s
(3,−)
b,zm

(ṽh1);

r+T ;1(υ) =
(
D(3)

T ,h1
b
)
s
(3,+)
b,zm

(ṽh1), ν̄±b = πzm ν̄b.

Corollary 4.17 There exist δ, C∈C∞(S(m)
T ,1 (µ); R+) such that for all $=[(b, w,X, υ)]∈F ∅Sδ

∥
∥π+

x1̂(w,υ)ψ
µ
S,tν(w,X, υ) − (tπ+

x1̂(w,υ)ν̄b+Y (w,X, υ)+r+T ;1(υ))
∥
∥

2

≤ C(b)(t+|$|
1
p )

(
t+|υ|3h1

+|x̃1(w, υ)||υ|2h1

)
;

∥
∥π−x1̂(w,υ)ψ

µ
S,tν(w,X, υ) − (tπ−zm

ν̄b+
(3)α

(m),−
T ;1 (w, υ)

)∥
∥

2

≤ C(b)(t+|$|
1
p )

(
t+|υ|3h1

+|x̃1(w, υ)||υ|2h1

)
.
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Proof: The first estimate is clear from Lemma 4.16. For the second, note that since s
(2,−)
b,zm

= 0,

|π−x̃1̂(w,υ)−π−zm
|≤C|x̃1(w, υ)|2, and thus

∣
∣s

(2,−)
b,x̃1̂(w,υ)(ṽh1) − s

(3,−)
b,zm

(x̃1̂(w, υ), ṽh1 , ṽh1)
∣
∣ ≤ C|x̃1̂(w, υ)|2|ṽh1 |2 =⇒

∣
∣π−x1̂(w,υ)α̃

µ(w,X, υ) − (3)α−
T ;1(w, υ)

∣
∣ ≤ C(b)|(t, w,X, υ)|

1
p
(
|x1̂(w, υ)||ṽh1 |2+|ṽh1 |3

)

Furthermore, |ϕµ
S,tν(w,X, υ)|b ≤ C(b)(t+|$|

1
p ).

The next step is to apply Lemma 3.2 and Corollary 3.6. Let

F+ = H+
Σ⊗ev∗TP

n, F−= TzmΣ⊕FT , O± = H±
Σ⊗ev∗TP

n;

F̃− = TzmΣ ⊗
( ⊗

i∈Î ,i≤h1

FiT
)⊗2

⊕
( ⊗

i∈Î ,i≤h1

FiT
)⊗3

;

φ
(
[b;w, vÎ ]

)
=

[
b, x1̂(w,υ)⊗ṽh1⊗ṽh1 , ṽh1⊗ṽh1⊗ṽh1

]
;

π+α(w, υ) = r+T ;1(υ), α+(Y ) = π+
zm
Y, α−(φ(w, υ)) ≡ (3)α

(m),−
T ,1 (w, υ).

Note that α−∈Γ(S; F̃−∗⊗O−) is well-defined. Since the map

(w,X, υ)−→
(
Y (w,X, υ), w, υ

)

is injective on F ∅S, we can view ψµ
S,tν as a map on an open subset of F−⊕F+.

Corollary 4.18 Suppose d is a positive integer, T = (Σ, [N ], I; j, d) is a simple bubble type, with
d0̂ =0 and

∑

i∈I
di =d, and µ is an N -tuple of constraints in general position such that

codimCµ = d(n+1) − n(g−1) +N.

Let ν∈Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnTP

n) be a generic section. If |Î|>1, for every compact subset K

of S(m)
T ,1 (µ), there exist a neighborhood UK of K in C̄∞

(d;[N ])(Σ;µ) and εK > 0 such that for any

t ∈ (0, εK), UK ∩ MΣ,d,tν(µ) = ∅. If |Î| = 1, there exists a compact subset K̃
(m)
T ,1 of S(m)

T ,1 (µ)

with the following property. If K is a compact subset of S(m)
T ,1 (µ) containing K̃

(m)
T ,1 , there exist a

neighborhood UK of K in C̄∞
(d;[N ])(Σ;µ) and εK>0 such that for all t∈(0, εK), the signed cardinality

of UK∩MΣ,d,tν(µ) equals to three times the signed number of zeros of the map

TzmΣ⊗3⊗
(
L1̂T ⊗2⊕L1̂T ⊗3

)∣
∣
S(m)
T ,1 (µ)

−→ H−
Σ⊗ev∗TP

n,

[b, w, v1̂] −→ ν̄−b +
(
D(2)

T ,1̂
b
)
s
(3,−)
b,zm

(w) +
(
D(3)

T ,1̂
b
)
s
(3,−)
b,zm

(v). (4.21)

Proof: The proof is similar to the proofs of Corollaries 4.7 and 4.14, but two modifications are
needed to be mentioned. First, we need to show that α− always has full rank. Since we are

assuming that dh1 ≥ 3, the sections D(1)
T ,h1

, D(2)
T ,h1

, and D(3)
T ,h1

over MT have transverse images

in TP
n. Thus, the sections of P(ev∗TP

n) −→ S
(m)
T ,1 (µ) induced by D(2)

T ,h1
and D(3)

T ,h1
are mutually

transversal. However, the fiber dimension of P(ev∗TP
n) is n−1, while the dimension of S

(m)
T ,1 (µ) is
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n−2. Thus, the two sections do not intersect and α− has full rank on all fibers over S
(m)
T ,1 (µ). The

second difference with the proofs of Corollaries 4.7 and 4.14 is that we replace the section ψµ
S,tν by

the map
(w, υ,X) −→ π+

zm
π+

x1̂(w,υ)ψ
µ
S,tν(w, υ,X) + π−zm

π−x1̂(w,υ)ψ
µ
S,tν(w, υ,X),

which has exactly the same zeros provided w and υ are sufficiently small (depending only on Σ).

4.6 Second-Order Estimate for ψ
µ
T ,tν, Case 2a

We now understand all cases except for (2a) and (3b) of Corollary 4.11. Let {h1, h2}= {1̂, 2̂} in
Case (2a) and {2̂, 3̂} in (3b). By dimension count as in the proof of Lemma 4.9, DT ,h1 and DT ,h2 do
not vanish on MT (µ) in these two cases. By Corollary 6.3, π⊥b ◦DT ,h2 is transversal to zero, where
π⊥b denotes the projection onto the orthogonal complement E1 of the image of DT ,h1 in ev∗TP

n.
Since

αT (υ) =
(
DT ,h1bυ

)
sΣ,xh̃1(T )

(ṽh1) +
(
DT ,h2bυ

)
sΣ,xh̃2(T )

(ṽh2),

αT can fail to have the full rank only on the zero set of π⊥b ◦DT ,h2. Furthermore, sΣ,xh̃1
and sΣ,xh̃2

must have the same image in H0,1
Σ . This is automatic in Case (3b), since h̃1(T )= h̃2(T )=1̂, but

in Case (2a), this means that x1̂ and x2̂ differ by the nontrivial holomorphic automorphism of Σ;
see [GH, p254].

We first treat Case (2a); so we can assume h1 = 1̂, h2 = 2̂. Let S ≡ST ,2 denote the subset of MT
on which the section αT has rank one. By Corollary 6.3, this is a complex submanifold of MT .
Furthermore, S =S0×S1, where S1 is the subspace of UT̄ on which the operator D̄T ,2, defined as
in the proof of Lemma 4.9, has rank one,

S0 =
{
(x1̂,−x1̂) : x1̂∈Σ∗},

−x1̂∈Σ denotes the image of x1̂ under the nontrivial automorphism of Σ, and Σ∗ is the subset of
Σ which is not fixed by this automorphism, i.e. the complement of the points z1, . . . , z6 described
in Subsection 4.5. By Corollary 6.3, S1 is a complex submanifold of UT̄ . The normal bundle of S
in MT is

NS = NS0⊕NS1, where NS0 = π∗
Σ,2̂
TΣ, NS1 = L∗

2̂
T ⊗E1,

and πΣ,h : S0⊂Σ×Σ−→Σ is the projection on the hth component. Let (ΦS ,Φ
µ
S) be a regularization

of ST ,2(µ)≡S ∩MT (µ). This regularization can be chosen so that

π⊥φS(b,X)DT ,2̂φ̃S(b,X) = Πb,φ̃S(b,X)X ∀(b,X)∈NS̃1 = E1, (4.22)

where φ̃S is the lift of φS to M(0)
T . We also assume that Φµ

S is given by the gPn,b-parallel transport
on NbS1. Since the section s is invariant under the automorphism group of Σ, we identify π∗

Σ,2̂
TΣ|S0

with π∗
Σ,1̂
TΣ|S0. If (b;w)∈NS0 is sufficiently small, let

x2̂(w) = expb,x2̂
w.
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The bundle NS carries a natural norm induced by the gPn,ev-metric on P
n and g·,0̂-metric on Σ.

Denote by FS and F ∅S the bundles described in Subsection 2.4 corresponding to the submani-
fold ST ,2. If (w,X, υ)∈FS =NS⊕FT , put

α̃(w,X, υ) = Π−1
b,φS(b,X)

((
DT ,1̂φS(b,X)

)
sΣ,x1̂

(v1̂) +
(
DT ,2̂φS(b,X)

)
sΣ,x2̂(w)(v2̂)

)

+
((

D(2)

T ,1̂
b
)
s
(2)
b,x1̂

(v1̂) +
(
D(2)

T ,2̂
b
)
s
(2)
b,x1̂

(v2̂)
)

.

If (w,X, υ)∈F ∅S|ST ,2(µ) is sufficiently small, let

α̃µ(w,X, υ) =
((

Dµ

S,tν,1̂
(w,X, υ)

)
sΣ,x1̂

(v1̂) +
(
Dµ

S,tν,2̂
(w,X, υ)

)
sΣ,x2̂(w)(v2̂)

)

+
((

D(2)

T ,1̂
b
)
s
(2)
b,x1̂

(v1̂) +
(
D(2)

T ,2̂
b
)
s
(2)
b,x1̂

(v2̂)
)

,

where, with ϕµ
S,tν as in Theorem 2.7,

Dµ
S,tν,h(w,X, υ) = Π−1

φµ
Sϕµ

S,tν(w,X,υ),φSΦµ
Sϕµ

S,tν(w,X,υ)
Π−1

b,φµ
Sϕµ

S,tν(w,X,υ)

(
DT ,hφSΦµ

Sϕ
µ
S,tν(w,X, υ)

)
.

Lemma 4.19 There exist δ, C∈C∞(S; R+) such that for all $=[(b, w,X, υ)]∈F ∅Sδ,
∥
∥π0,1

ΦS($),−∂̄uΦS($) + R̃ΦS($)Pib,φS(X)α̃(w,X, υ)
∥
∥

2
≤ C(b)|$||υ|2.

Proof: The proof is analogous to the proof of Lemma 4.15; here we use Proposition 4.4 with two
terms for h=1̂ and two terms for h=2̂.

Lemma 4.20 There exist δ, C∈C∞(ST ,2(µ); R+) such that for all $=[(b, w,X, υ)]∈F ∅Sδ,

∥
∥ψµ

S,tν($) − (tν̄
ev(b)+α̃

µ(w,X, υ))
∥
∥

2
≤ C(b)(t+|$|

1
p )

(
t+|υ|2+|w||v2̂|

)
.

Proof: As in the proof of Lemmas 4.13 and 4.16, we need to obtain an appropriate estimate on
∥
∥D∗

ΦS($)RΦS($)Xiψ2

∥
∥

L1,

where ψ2 is a (0, 1)-form vanishing at x1̂ and with norm 1. From equation (2.11), we see that
the L1-norm over the small annulus centered at x1̂ is bounded by C(b)|v1̂|2; see also the proof of
Lemma 4.13. Furthermore, since x2̂ is “dual” to x1̂, ψ2 also vanishes at x2̂. Thus, the L1-norm
over the small annulus centered at x2̂(w) is bounded by C(b)(|w|+ |v2̂|)|v2̂| as can be seen from
equation (2.11).

Let s̃
(2,+)
b,x ∈T ∗

xΣ be given by s
(2,+)
b,x (v, v)= s̃

(2,+)
b,x (v)sΣ,x(v). For any b∈ST ,2(µ), define

κ(b)∈L∗
2̂
T ⊗ L1̂T −{0} and µ(b)∈L∗

2̂
T ⊗L1̂T by

(
DT ,2̂b

)
= κ(b)

(
DT ,1̂b

)
, πb

(
D(2)

T ,1̂
b
)

= µ(b)
(
D(1)

T ,1̂
b
)
,

where πb : ev∗TP
n −→ Im(DT ,1̂) is the orthogonal projection map. If (w,X, υ) ∈ F ∅S|ST ,2(µ) is

sufficiently small, let κ̃(w,X, υ)∈C
∗ be given by

πφSΦµ
Sϕµ

S,tν(w,X,υ)

(
DT ,2̂φSΦµ

Sϕ
µ
S,tν(w,X, υ)

)
= κ̃(w,X, υ)

(
DT ,1̂φSΦµ

Sϕ
µ
S,tν(w,X, υ)

)
.
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Note that by Theorem 2.7, |κ̃(w,X, υ)−κ(b)| ≤ C(b)(t+|$|
1
p ). Let

Y t(w,X, υ)=
(
Dµ

S,tν,1̂
(w,X, υ)

)
sΣ,x1̂

(
v1̂+κ̃(w,X, υ)v2̂+µ(b)s̃

(2,+)
Σ,x1̂

(v1̂)v1̂
)
, Y ⊥(

X, v2̂
)
=XsΣ,x1̂

(
v2̂

)
;

(2)α−
T ;2

(
w, v2̂

)
=

(
DT ,1̂b

)
s
(2,−)
b,x1̂

(
w, v2̂

)
+

(
D(2)

T ,1̂
b
)
s
(2,−)
b,x1̂

(
κ(b)v2̂

)
+

(
D(2)

T ,2̂
b
)
s
(2,−)
b,x1̂

(
v2̂

)
;

r+T ;2(w, υ) =
(
D(1)

T ,1̂
(b)

)
s
(2,+)
b,x1̂

(
w, v2̂

)
+ π⊥b

(
D(2)

T ,1̂
(b)

)
s
(2,+)
b,x1̂

(
κ(b)v2̂

)
+

(
D(2)

T ,2̂
(b)

)
s
(2,+)
b,x1̂

(
v2̂

)
.

Let Y = Y t + Y ⊥ and ν̄±b = π±x1̂
ν̄b.

Corollary 4.21 There exist δ, C∈C∞(ST ,2(µ); R+) such that for all $=[(b, w,X, υ)]∈F ∅Sδ,
∥
∥π+

x1̂
ψµ
S,tν($)−(tν̄+

b +Y (w,X, υ)+r+T ;2(w, υ))
∥
∥

2
≤ C(b)(t+|$|

1
p )

(
|υ|2+|w||v2̂|+|Y |

)
;

∥
∥π−x1̂

ψµ
S,tν($)−(tν̄−b +(2)α−

T ;2(w, v2̂))
∥
∥

2
≤ C(b)(t+|$|

1
p )

(
|υ|2+ |w||v2̂|+ |Y |

)
.

Proof: The proof is similar to that of Corollary 4.17, but we use
∣
∣sΣ,x2̂(w)(v2̂) − (sΣ,x1̂

(v2̂)+s
(2)
b,x1̂

(w, v2̂))
∣
∣ ≤ C(b)|w|2|v2̂|.

We also use |Dµ

S,tν,1̂
(w,X, υ)| ≥ C(b)−1.

The next step is to apply Corollary 3.6. Let

F+ = H+
Σ⊗ev∗TP

n, F−= π∗
Σ,1̂
TΣ⊕F2̂T , O± = H±

Σ⊗ev∗TP
n, F̃−= π∗

Σ,1̂
TΣ⊗F2̂T ⊕ F2̂T ⊗2;

φ
(
[b;w, v2̂]

)
=

[
b, w⊗v2̂, v2̂⊗v2̂

]
, α−(

φ(w, v2̂)
)
≡ (2)α−

T ,2(w, v2̂), π+r(w, υ) = r+T ;1(w, υ).

Note that α−∈Γ(S; F̃−∗⊗O−) is well-defined. Since the map

(w,X, υ) −→
(
Y (w,X, υ), w, v2̂

)

is injective on F ∅S as long as δ∈C∞(ST ,2(µ); R+) is sufficiently small, we can view ψµ
S,tν as a map

on an open subset of F−⊕F+.

Corollary 4.22 Suppose d is a positive integer, T = (Σ, [N ], I; j, d) is a simple bubble type, with
Î={1̂, 2̂}, M0̂T =∅, d0̂ =0, and

∑

i∈Idi =d, and µ is an N -tuple of constraints in general position
such that

codimCµ = d(n+1) − n(g−1) +N.

Let ν ∈ Γ(Σ × P
n; Λ0,1π∗ΣT

∗Σ ⊗ π∗
PnTP

n) be a generic section. Then there exists a compact sub-
set K̃T ,2 of ST ,2(µ) with the following property. If K is a compact subset of ST ,2(µ) containing K̃T ,1,
there exist a neighborhood UK of K in C̄∞

(d;[N ])(Σ;µ) and εK > 0 such that for any t∈ (0, εK), the

signed cardinality of UK∩MΣ,d,tν(µ) equals to twice the signed number of zeros of the map

π∗ΣTΣ⊗2 ⊗
(
L2̂T̄ ⊕L2̂T̄ ⊗2

)∣
∣
Σ∗×ST̄ ;2(µ)

−→ H−
Σ⊗ev∗TP

n,

[
(x, b); (w, v)

]
−→ ν̄−b +

(
DT̄ ,2̂b

)
s(2,−)
x (w, v) +

(
D(2)

T̄ ,1̂
b
)
s(2,−)
x

(
κ(b)v

)
+

(
D(2)

T̄ ,2̂
b
)
s(2,−)
x (v). (4.23)

Proof: The proof is similar to that of Corollary 4.14. We only need to see that the section α−

defined above has rank two. If d1̂ =d2̂ =1, the space ST ,2(µ)=∅, since any two tangent lines in P
n

agree, and no line passes through all of the constraints µ1, . . . , µN if n=3. Thus, it can be assumed
that d1̂ ≥ 2. Note that ST ,2(µ) is one-dimensional, with the only dimension coming from the
singular point x1̂∈Σ. Thus, by Corollary 6.3, if the constraints µ1, . . . , µN are in general position,

the image of D(2)

T ;1̂
does not lie in the linear span of DT ,2̂b and D(2)

T ,2̂
b. Furthermore, DT ,2̂b 6=0.
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4.7 Second-Order Estimate for ψ
µ
T ,tν, Case 2b

We now treat Case (3b) of Corollary 4.11; we can assume h1 =2̂, h2 =3̂. Let S ≡ST ,2 denote the
subset of MT on which the operator D̄T ,2 of Lemma 4.9 has rank one. Similarly to the case of
Subsection 4.6, S is a regular submanifold of MT with normal bundle NS=L∗

3̂
T ⊗E1. As before,

we can choose a regularization
(
ΦS ,Φ

µ
S
)

of ST ,2(µ)≡S ∩MT (µ) such that

π⊥φS(b,X)DT ,3̂φ̃S(b,X) = Πb,φ̃S(b,X)X ∀(b,X) ∈ NS̃1 = E1, (4.24)

where φ̃S is the lift of φS to M(0)
T , and Φµ

S is given by the gPn,b-parallel transport on NbS. Denote
by FS and F ∅S the bundles described in Subsection 2.4 corresponding to the submanifold ST ,2. If
(X,υ) is a sufficiently small element of FS=NS⊕FT , let

α̃(X,υ) =
(
DT ,2̂φS(b,X)

)
sΣ,x̃2̂(υ)(ṽ2̂) +

(
DT ,3̂φS(b,X)

)
sΣ,x̃3̂(υ)(ṽ3̂);

α̃µ(X,υ) =
(
Dµ

S,tν,2̂
(X,υ)

)
sΣ,x̃2̂(υ)(ṽ2̂) +

(
Dµ

S,tν,3̂
(X,υ)

)
sΣ,x3̂(υ)(v3̂),

where, with ϕµ
S,tν as in Theorem 2.7,

Dµ
S,tν,h(X,υ) = Π−1

φµ
Sϕµ

S,tν(X,υ),φSΦµ
Sϕµ

S,tν(X,υ)
Π−1

b,φµ
Sϕµ

S,tν(X,υ)

(
DT ,hφSΦµ

Sϕ
µ
S,tν(X,υ)

)
.

Lemma 4.23 There exist δ, C∈C∞(ST ,2; R
+) such that for all $=[(b,X, υ)]∈F ∅Sδ,

∥
∥π0,1

ΦS($),−∂̄uΦS($) + R̃ΦS($)α̃(X,υ)
∥
∥

2
≤ C(b)

(
|ṽ2̂|2+|ṽ3̂|2

)
.

Proof: This lemma is immediate from Proposition 4.4 applied with one term for each h=2̂, 3̂.

Lemma 4.24 There exist δ, C∈C∞(ST ,2(µ); R+) such that for all $=[(b,X, υ)]∈F ∅Sδ,

∥
∥ψµ

S,tν($) − (tν̄b+α̃
µ(X,υ))

∥
∥

2
≤ C(b)(t+|$|

1
p )

(
t+ |v1̂|(|ṽ2̂|+|ṽ3̂|)

)
.

Proof: As usually, we only need to obtain a good bound on
∥
∥D∗

ΦS($)RΦS($)Xiψ2‖L1 ,

where the notation is as in the proof of Lemma 4.20. By equation (2.11), the L1-norm on the
small annulus centered at x̃2̂(υ) is bounded by |ṽ2̂|2. Since gb,0̂-distance between x̃2̂(υ) and x̃3̂(υ)
is bounded by C(b)|v1̂|, the L1-norm over the annulus centered at x̃3̂(υ) is bounded by |v1̂||ṽ3̂|.

For any b∈ST ,2(µ), let κ(b)∈L3̂T ∗⊗L2̂T be given by DT ,3̂b=κ(b)(DT ,2̂b). For (X,υ)∈F ∅S|ST ,2(µ)

sufficiently small, we define the nonzero element κ̃(X,υ) of L3̂T ∗⊗L2̂T by

πφSΦµ
Sϕµ

S,tν(X,υ)

(
DT ,3̂φSΦµ

Sϕ
µ
S,tν(X,υ)

)
= κ̃(X,υ)

(
DT ,2̂φSΦµ

Sϕ
µ
S,tν(X,υ)

)
.

Note that by Theorem 2.7, |κ̃(X,υ)−κ(b)| ≤ C(b)(t+|$|
1
p ). Let

Y t(X,υ)=
(
Dµ

S,tν,2̂
(X,υ)

)(
sΣ,x1̂

(ṽ2̂+κ̃(X,υ)ṽ3̂) + s
(2,+)
b,x1̂

(v1̂, x2̂ṽ2̂+x3̂κ̃(b)ṽ3̂));

Y ⊥(X,υ)=XsΣ,x1̂
(ṽ3̂),

(2)α−
T ;2(υ) =

(
DT ,2̂b

)
s
(2,−)
b,x1̂

(
v1̂, x2̂ṽ2̂+x3̂κ(b)ṽ3̂

)
.

Let Y = Y t + Y ⊥ and ν̄±b = π±x1̂
ν̄b.
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Corollary 4.25 There exist δ, C∈C∞(ST ,2(µ); R+) such that for all $=[(b,X, υ)]∈F ∅Sδ,

∥
∥πx1̂

ψµ
S,tν(X,$) − (tν̄+

b +Y (X,υ))
∥
∥

2
≤ C(b)(t+|$|

1
p )

(
t+ |v1̂|(|ṽ2̂|+|ṽ3̂|) + |Y ⊥(X,υ)|

)
;

∥
∥π−x1̂

ψµ
S,tν($) − (tν̄−b +(2)α−

T ;2(υ))
∥
∥

2
≤ C(b)(t+|$|

1
p )

(
t+ |v1̂|(|ṽ2̂|+|ṽ3̂|)

)
.

Proof: This claim is proved similarly to Corollary 4.21.

The next step is to apply Lemma 3.2. Let

F+ = H+
Σ⊗E1, F−=FT , O± = H±

Σ⊗ev∗TP
n, F̃−= π∗ΣTΣ⊗F2̂T ;

φ
(
[b;υ]

)
=

[
b, v1̂⊗(x2̂ṽ2̂+x3̂κ(b)ṽ3̂)

]
, α−(φ(υ)) ≡ (2)α−

T ,2(υ), α(X,υ) = Y (X,υ)+(2)α−
T ,2(υ).

Note that α−∈Γ(S; F̃−∗⊗O−) is well-defined. Since the map

(X,υ) −→
(
Y ⊥(X,υ), υ

)

is injective on F ∅S, we can view ψµ
S,tν as a map on an open subset of F+⊕F−.

Corollary 4.26 Suppose d is a positive integer, T = (Σ, [N ], I; j, d) is a simple bubble type, with
Î = {1̂, 2̂, 3̂}, H1̂T = {2̂, 3̂}, d0̂ = 0, and

∑

i∈Idi = d, and µ is an N -tuple of constraints in general
position such that

codimCµ = d(n+1) − n(g−1) +N.

Let ν∈Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnTP

n) be a generic section. For every compact subset K of ST ,2(µ),
such that x1̂(b) ∈ Σ∗ for all b ∈ K, there exist a neighborhood UK of K in C̄∞

(d;[N ])(Σ;µ), where and

εK>0 such that for any t∈(0, εK), UK∩MΣ,d,tν(µ)=∅.

Proof: The set S∗
T ,2(µ)≡{b∈ST ,2(µ) : x1̂∈Σ∗} is an open subset of ST ,2(µ) on which the section α−

has full rank, since DT ,2̂ does not vanish on ST ,2(µ). Note that the dimension of ST ,2(µ) is 1, the

rank of F̃− is also 1, while the rank O− is 3. Thus, the claim follows from Theorem 2.7, Lemma 3.2,
and Corollary 4.25, provided

|v1̂|
(
|ṽ2̂|+|ṽ3̂|

)
≤ C(b)

(
|v1̂||x2̂ṽ2̂+x3̂κ(b)ṽ3̂| + |Y t(X,υ)|

)

for some C∈C∞(S∗
T ,2(µ); R+). By definition of Y t(X,υ),

|ṽ2̂ + κ(b)ṽ3̂| ≤ |Y t(X,υ)| +C(b)|x2̂ṽ2̂+x3̂κ(b)ṽ3̂|.

Since x2̂ 6=x3̂,

|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)
≤ C(b)|v1̂|

(
|ṽ2̂ + κ(b)ṽ3̂| + |x2̂ṽ2̂ + x3̂κ(b)ṽ3̂|

)

≤ C ′(b)|v1̂|
(
|x2̂ṽ2̂ + x3̂κ(b)ṽ3̂| + |Y t(X,υ)|

)
.
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4.8 Third-Order Estimate for ψ
µ
T ,tν, Case 2

It remains to consider gluing along the subset S(m)
T ,2 (µ) of ST ,2(µ) consisting of bubble maps b such

that x1̂(b)=zm, one of the six distinguished points of Σ. Let

S = S(m)
T ,2 = {b∈ST ,2 : x1̂(b)=zm}.

The normal bundle of S(m)
T ,2 in MT is NS=TzmΣ⊕NS1, where NS1 is the normal bundle of ST ,2

in MT described in the previous subsection. Let
(
ΦS ,Φ

µ
S
)

be a regularization of S(m)
T ,2 (µ) induced

by the regularization of ST ,2(µ) described in Subsection 4.7. In particular,

π⊥φS(b,X)DT ,3̂φ̃S(b, w,X) = Πb,φ̃S(b,w,X)X ∀(b, w,X) ∈ TzmΣ⊕NS̃1 = TzmΣ⊕E1,

where φ̃S is the lift of φS to M(0)
T . We also assume that Φµ

S is given by the gPn,b-parallel transport
on NbS1. The bundle NS carries a natural norm induced by the gPn,ev-metric on P

n and g·,0̂-

metric on Σ. Denote by FS and F ∅S the bundles described in Subsection 2.4 corresponding to the

submanifold S(m)
T ,2 . If (b, w,X, υ)∈F ∅S is sufficiently small, let

x̃h(w, υ) = x̃h(φS(w,X, υ)) = x̃h(φS(w, 0, υ)) ∈ Σ, h = 2̂, 3̂.

We identify a small neighborhood of zm in Σ with a neighborhood of 0 in TzmΣ via the gb,0̂-
exponential map. Put

α̃(w,X, υ) = Π−1
b,φS(b,X)

(
(DT ,2̂φS(b,X))sΣ,x̃2̂(w,υ)(ṽ2̂) + (DT ,3̂φS(b,X))sΣ,x̃3̂(w,υ)(ṽ3̂)

+(D(2)

T ,2̂
φS(b,X))s

(2)
b,zm

(ṽ2̂) + (D(2)

T ,3̂
φS(b,X))s

(2)
b,zm

(ṽ3̂)
)
;

α̃µ(w,X, υ) =
(
(Dµ

S,tν,2̂
(w,X, υ))sΣ,x̃2̂(w,υ)(ṽ2̂) + (Dµ

S,tν,3̂
(w,X, υ))sΣ,x3̂(w,υ)(v3̂)

)

+
(
(Dµ,(2)

S,tν,2̂
b)s

(2)
b,zm

(ṽ2̂) + (Dµ,(2)

S,tν,3̂
b)s

(2)
b,zm

(ṽ3̂)
)
,

where, with ϕµ
S,tν as in Theorem 2.7,

Dµ,(k)
S,tν,h(w,X, υ) = Π−1

φµ
Sϕµ

S,tν(w,X,υ),φSΦµ
Sϕµ

S,tν(w,X,υ)
Π−1

b,φµ
Sϕµ

S,tν(w,X,υ)

(
D(k)

T ,hφSΦµ
Sϕ

µ
S,tν(w,X, υ)

)
.

With κ(b) as in the previous subsection, let

α+(υ) =
(
DT ,2̂b

)
sΣ,zm

(
ṽ2̂+κ(b)ṽ3̂

)
, α−

2̂
(w, υ) =

(
DT ,2̂b

)
s
(3,−)
b,zm

(
x̃2̂(w, υ), (x2̂−x3̂)v1̂, ṽ2̂

)
;

α−
3̂
(w, υ) =

(
DT ,3̂b

)
s
(3,−)
b,zm

(
x̃3̂(w, υ), (x3̂−x2̂)v1̂, ṽ3̂

)
.

Lemma 4.27 There exist δ, C∈C∞(S(m)
T ,2 ; R+) such that for all $=(b, w,X, υ)∈F ∅Sδ,

∥
∥π0,1

ΦS($),−∂̄uΦS($) − R̃ΦS($)α̃(w,X, υ)
∥
∥

2
≤ C(b)|$|

(
|ṽ2̂|2+|ṽ3̂|2

)
.

Proof: This lemma follows from Proposition 4.4 applied with first- and second-order terms.

Lemma 4.28 There exist δ, C >0 such that for all $=(b, w,X, υ)∈F ∅Sδ

∣
∣
S(m)
T ;2 (µ)

,

∥
∥ψµ

S,tν($) − (tν̄b+α̃
µ(w,X, υ))

∥
∥

2
≤ C(t+|$|

1
p )

(
t+ (|v1̂|2 + |v1̂||w|)(|ṽ2̂|+|ṽ3̂|)

)
.
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Proof: Note that the space S(m)
T ,2 (µ) is zero-dimensional and compact if n=3. As before, we need

to bound
∥
∥D∗

ΦS($)RΦS($)Xiψ2

∥
∥

L1,

where the notation is as in the proof of Lemma 4.20. By equation (2.11), the L1-norm on the
annulus centered at x̃2̂ = x̃2̂(w, υ) is bounded by (|x̃2̂||ṽ2̂|+|ṽ2̂|2)|ṽ2̂|, while the norm over the other
annulus is bounded by (|x̃2̂||v1̂|+ |v1̂|2)|ṽ3̂|, since the gb,0̂-distance between x̃2̂ and x̃3̂ is bounded
by C|v1̂|. See the proof of Lemma 4.16 for more detail. The claim follows from x̃2̂ = w+x2̂v1̂.

Lemma 4.29 There exist δ, C >0 such that for all $=(b, w,X, υ)∈F ∅Sδ

∣
∣
S(m)
T ;2 (µ)

,

∥
∥α̃µ(w,X, υ) − α+(w, υ)

∥
∥

2
≤ C(t+|$|

1
p )

(
|ṽ2̂|+|ṽ3̂|

)
;

∥
∥π−x̃2̂(w,υ)α̃

µ(w,X, υ) − α−
3̂
(w, υ)

∥
∥ ≤ C(t+|$|

1
p )

(
|v1̂|+|w|

)
|v1̂|

(
|ṽ2̂|+|ṽ3̂|

)
;

∥
∥π−x̃3̂(w,υ)α̃

µ(w,X, υ) − α−
2̂
(w, υ)

∥
∥ ≤ C(t+|$|

1
p )

(
|v1̂|+|w|

)
|v1̂|

(
|ṽ2̂|+|ṽ3̂|

)
.

Proof: The first bound is clear from the definition of α̃µ, since

(
DT ,3̂b

)
= κ(b)

(
DT ,2̂b

)
, |ϕ(w,X, υ)|b ≤ C(t+ |$|

1
p ).

Since s
(2,−)
b,zm

=0,
∣
∣π−x̃2̂

s
(2)
x̃h

(ṽh)
∣
∣ ≤ C

(
|x̃2̂| + |v1̂|

)
|ṽh|2. (4.25)

where x̃h = x̃h(w, υ). Since x̃3̂ − x̃2̂ = (x3̂−x2̂)v1̂,

∣
∣
∣sb,x̃3̂

(ṽ3̂)−
(
sb,x̃2̂

(
ṽ3̂)+s

(2)
b,x̃2̂

((x3̂−x2̂)v1̂, ṽ3̂)+s
(3)
b,x̃2̂

((x3̂−x2̂)v1̂, (v3̂−v2̂)v1̂, ṽ3̂)
)
∣
∣
∣≤C|v1̂|3|ṽ3̂|.

Since π−x̃2̂
sΣ,x̃2̂

= 0 and s
(2,−)
b,zm

=0,

∣
∣π−x̃2̂

s
(2)
b,x̃2̂

((x3̂−x2̂)v1̂, ṽ3̂) − s
(3,−)
b,zm

(x̃2̂, (x3̂ − x2̂)v1̂, ṽ3̂)
∣
∣ ≤ C|x̃2̂|2|v1̂||ṽ3̂|;

∣
∣π−x̃2̂

s
(3)
b,x̃2̂

((x3̂−x2̂)v1̂, (x3̂−x2̂)v1̂, ṽ3̂) − s
(3,−)
b,zm

((x3̂−x2̂)v1̂, (x3̂−x2̂)v1̂, ṽ3̂)
∣
∣ ≤ C|x̃2̂||v1̂|2|ṽ3̂|.

Putting the last three equations together, we see that

∣
∣π−x̃2̂

sb,x̃3̂
(ṽ3̂) − s

(3,−)
b,zm

(
x̃3̂, (x3̂−x2̂)v1̂, ṽ3̂

)
∣
∣
∣ ≤ C

(
|x̃2̂|+|v1̂|

)(
|x̃2̂||v1|+|v1̂|2

)
|ṽ3̂|. (4.26)

The second bound follows from equations (4.25) and (4.26). The last estimate is proved similarly.

Corollary 4.30 There exist δ, C >0 such that for all $=(b, w,X, υ)∈F ∅Sδ

∣
∣
S(m)
T ;2 (µ)

,

∥
∥ψµ

S,tν($) − (tν̄b+α̃
µ($))

∥
∥

2
≤ C(t+|$|

1
p )

(
t+ |α̃µ($)|

)
.
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Proof: In light of Lemma 4.28, it is sufficient to show that

(
|v1̂| + |w|

)
|v1̂|

(
|ṽ2̂| + |ṽ3̂|

)
≤ C

∣
∣α̃µ(w,X, υ)

∣
∣ (4.27)

for some C>0. Since
(
DT ,2̂b

)
sΣ,zm,

(
DT ,2̂b

)
s
(3,−)
b,zm

and
(
DT ,3̂b

)
s
(3,−)
b,zm

are nonzero, by Lemma 4.29

∣
∣ṽ2̂ + κ(b)ṽ3̂

∣
∣ ≤ C

(
|α̃µ(w,X, υ)| + (t+|$|

1
p )(|ṽ2̂|+|ṽ3̂|)

)
;

|x̃h||v1̂||ṽh| ≤ C
(
|α̃µ(w,X, υ)| + (t+|$|

1
p )(|v1̂|+|w|)|v1̂|(|ṽ2̂|+|ṽ3̂|)

)
.

Since κ(b) 6=0, x2̂ 6=x3̂, and x̃h =w+xhv1̂, we obtain

(
|v1̂|+|w|

)
|v1̂|

(
|ṽ2̂|+|ṽ3̂|

)
≤ C

(
|x̃2̂|+|x̃3̂|

)
|v1̂|

(
|ṽ2̂|+|ṽ3̂|

)

≤ C ′(|x̃2̂||v1̂|(|ṽ2̂|+|ṽ2̂+κ(b)ṽ3̂|) + |x̃3̂||v1̂|(|ṽ3̂|+|ṽ3̂+κ(b)ṽ3̂|)
)

≤ C ′′(|α̃µ(w,X, υ)| + (t+|$|
1
p )(|v1̂|+|w|)|v1̂|(|ṽ2̂|+|ṽ3̂|)

)
.

(4.28)

If δ is sufficiently small, estimate (4.27) follows from (4.28).

The next step is to apply Lemma 3.2. Let

F+ = L∗
3̂
T ⊗E1, F−= TzmΣ⊕FT , O± = H±

Σ⊗ev∗TP
n, F̃−= π∗ΣTΣ⊗3⊗L2̂T ⊗3;

φ
(
[b, w, υ]

)
=

[
b, (w+x2̂v1̂)⊗((x2̂−x2̂)v1̂)⊗ṽ2̂

]
;

α−(
φ(w, υ)

)
≡ α−

2̂
(w, υ), α(X,w, υ) = αµ(X,w, υ).

Note that α−∈Γ(S; F̃−∗⊗O−) is well-defined.

Corollary 4.31 Suppose d is a positive integer, T = (Σ, [N ], I; j, d) is a simple bubble type, with
Î = {1̂, 2̂, 3̂}, H1̂T = {2̂, 3̂}, d0̂ = 0, and

∑

i∈Idi = d, and µ is an N -tuple of constraints in general
position such that

codimCµ = d(n+1) − n(g−1) +N.

Let ν∈Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnTP

n) be a generic section. There exist a neighborhood U of S(m)
T ,2 (µ)

in C̄∞
(d;[N ])(Σ;µ), and ε>0 such that for any t∈(0, ε), U ∩MΣ,d,tν(µ)=∅.

Proof: Analogously to the proof of Corollary 4.18, we apply Lemma 3.2 to the map

(w, υ,X) −→ π+
zm
π+

x3̂(w,υ)ψ
µ
S,tν(w, υ,X) + π−zm

π−x3̂(w,υ)ψ
µ
S,tν(w, υ,X)

instead of ψµ
S,tν . The claim then follows from Theorem 2.7, Lemma 3.2, and Corollary 4.30.

4.9 Summary of Section 4

We conclude Section 4 by reviewing the main results so far. Throughout this subsection,

T = (Σ, [N ], I; j, d)

is a simple bubble type, with d=
∑
dh and d0̂ = 0, and µ is an N -tuple of constraints in general

position such that codimCµ=d(n+1)−n(g−1)+N .
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If |Î|>n, by Corollaries 4.10 and 4.11, there exist a neighborhood UT of M̄T (µ) in C̄∞
(d;[N ])(Σ;µ)

and εT >0 such that for all t∈(0, εT ), UT ∩MΣ,d,tν(µ)=∅. This is also true if H0̂T 6= Î or M0̂T 6=∅.
If n=2, this statement is just Corollary 4.10. If n=3, we only need to consider Cases (1), (2b),
and (3b) of Corollary 4.11. Case (3b) follows from Corollaries 4.7, 4.26, and 4.31. The claim for
Case (2b) is obtained from Corollaries 4.7, 4.14, 4.18 and the same claim for Case (3b). Finally,
in Case (1), we use Corollaries 4.7, 4.26, and 4.31, the statement of Corollary 4.11 for |Î |≥2, and
the just stated result for Case (2b).

If |Î |≤n, H0̂T= Î, and M0̂T =∅, i.e. T is a primitive bubble type, by the previous paragraph and
Corollaries 4.7, 4.14, 4.18, and 4.22, there exist a neighborhood UT of M̄T (µ) in C̄∞

(d;[N ])(Σ;µ) and

εT > 0 such that for all t∈ (0, εT ), the signed cardinality nT (µ) of UT ∩MΣ,d,tν(µ) is the sum of

the numbers given by these four corollaries applied to T . If |Î|=1,

n1(µ) ≡ nT (µ) = n
(1)
1 (µ) + 2n

(2)
1 (µ) + 18n

(3)
1 (µ), (4.29)

where the numbers n
(k)
1 (µ) are described as follows. The number n

(1)
1 (µ) is the signed number of

zeros of the affine map

ψ
(1)
1 : TΣ⊗L1̂T̄ −→ H0,1

Σ ⊗ev∗TP
n, ψ

(1)
1 (x, [b, v1̂]) = ν̄b + (DT ,1̂b)sΣ,x(v1̂), (4.30)

where the bundles are considered over Σ×ŪT̄ (µ)=M̄T (µ) and 1̂ is the unique element of Î. Note
that this number is the same as the number of zeros of the map in (4.11), since Σ×ŪT̄ (µ)−MT (µ)
is a finite union of smooth manifolds of dimension less than the dimension of MT (µ). Thus, if ν

is generic, ψ
(1)
1 has no zeros over Σ×ŪT̄ (µ)−MT (µ). The number n

(2)
1 (µ) is the signed number of

zeros of the affine map

ψ
(2)
1 : TΣ⊗2⊗L1̂T̄ ⊗2 −→ H−

Σ⊗ev∗TP
n, ψ

(2)
2 (x, [b, v1̂]) = ν̄−b + (D(2)

T ,1̂
b)s

(2,−)
Σ,x (v1̂), (4.31)

where the bundles are considered over Σ×S̄1(µ) and S̄1(µ) is the closure in ŪT̄ (µ) of the space

S1(µ) =
{
b∈UT̄ (µ) : DT ,1̂|b =0

}
. (4.32)

If n=2, S1(µ) is a finite set and thus S̄1(µ)=S1(µ). If n=3, S1(µ) is one-dimensional over C. The
boundary S̄1(µ)−S1(µ) is a finite set, as can be seen from the estimate on DT̄ ,1̂ of Theorem 2.8.

Thus, in either case, the maps in (4.31) and (4.16) have the same zeros. Finally, the number n
(3)
1 (µ)

is the signed number of zeros of the affine map

ψ
(3)
1 : TΣ⊗3⊗

(
L1̂T̄ ⊗2⊕L1̂T̄ ⊗3

)
−→ H−

Σ⊗ev∗TP
n, (4.33)

ψ
(3)
1 (x, [b, v1̂, w1̂]) = ν̄−b + (D(2)

T ,1̂
b)s

(3,−)
b,zm

(v1̂) + (D(3)

T ,1̂
)s

(3,−)
b,zm

(w1̂),

where the bundles are considered over S̄1(µ) and zm is one of the six distinguished points of Σ. By
the same argument as above, this number is precisely the number of zeros of the map in (4.21).

If |Î |=2 and n=2, nT (µ)=n
(1)
T (µ) is the signed number of zeros of the affine map

ψ
(1)
T : TΣ1̂⊗L1̂T̄ ⊕ TΣ2̂⊗L2̂T̄ −→ H0,1

Σ ⊗ev∗TP
n, (4.34)

ψ
(1)
T

(
x1̂, x2̂, [b, v1̂, v2̂]

)
= ν̄b + (DT ,1̂b)sΣ,x1̂

(v1̂) + (DT ,2̂b)sΣ,x2̂
(v2̂),
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where the bundles are considered over Σ2×ŪT̄ (µ) = Σ1̂×Σ2̂×ŪT̄ (µ) and 1̂, 2̂ are the two elements

of Î. By the same argument as before, the number n
(1)
T (µ) is the same as the number of zeros of

the map (4.7). If |Î |=2 and n=3,

nT (µ) = n
(1)
T (µ) + 2n

(2)
T (µ), (4.35)

where n
(1)
T (µ) is defined the same way as in the n= 2 case, while n

(2)
T (µ) is the signed number of

zeros of the affine map

ψ
(2)
T : TΣ⊗2 ⊗

(
L2̂T̄ ⊕L2̂T̄ ⊗2

)
−→ H−

Σ⊗ev∗TP
n, (4.36)

ψ
(2)
T

(
x, [b, v2̂, w2̂]

)
= ν̄−b + (DT ,2̂b)s

(2,−)
Σ,x (w2̂) + (D(2)

T ,1̂
b)s

(2,−)
Σ,x (κ(b)v2̂) + (D(2)

T ,2̂
b)s

(2,−)
Σ,x (v2̂),

where the bundles are viewed over Σ×ST̄ (µ),

ST̄ (µ) =
{
b∈UT̄ (µ) : π⊥[b]◦ DT ,2̂|b =0

}
, (4.37)

E1 is the quotient of ev∗TP
n by Im(DT ,1̂), π

⊥ : ev∗TP
n −→ E1 is the projection map, and

κ(b)∈L∗
2̂
T̄ ⊗L1̂T̄ is a nonzero homomorphism. Note that ST̄ (µ) is a finite set with our choice

of constraints. Finally, if |Î |= 3 and n= 3, nT (µ) = n
(1)
T (µ) is the signed number of zeros of the

affine map

ψ
(1)
T : TΣ1̂⊗L1̂T̄ ⊕ TΣ2̂⊗L2̂T̄ ⊕ TΣ3̂⊗L3̂T̄ −→ H0,1

Σ ⊗ev∗TP
n, (4.38)

ψ
(1)
T

(
x1̂, x2̂, x3̂, [b, v1̂, v2̂, v3̂]

)
= ν̄b + (DT ,1̂b)sΣ,x1̂

(v1̂) + (DT ,2̂b)sΣ,x2̂
(v2̂) + (DT ,3̂b)sΣ,x3̂

(v3̂),

where the bundles are considered over Σ3×ŪT̄ (µ) = Σ1̂×Σ2̂×Σ3̂×ŪT̄ (µ) and 1̂, 2̂, 3̂ are the three

elements of Î. As before, the number n
(1)
T (µ) is precisely the number of zeros of the map (4.7). If

m≥2 and k≥1, we denote by n
(k)
m (µ) the sum of the numbers n

(k)
T (µ) over all equivalence classes

of primitive bubble types T with |Î |=m.

5 Computations

5.1 The Numbers n
(1)
m (µ) with m = n

Our goal now is to compute the numbers n
(k)
T (µ) for any primitive bubble type T =(Σ, [N ], I; j, d),

and thus the genus-two enumerative invariants for P
2 and P

3. Most of this section is devoted to

expressing the numbers n
(k)
T (µ) in terms of intersection numbers of tautological classes of various

spaces of stable rational maps that pass through the constraints µ. These are shown to be com-
putable in [P2]. The procedure for counting the zeros of affine maps between vector bundles is
described in Section 3. We start with the easiest cases.

Lemma 5.1 If T = (Σ, [N ], I; j, d) is a primitive bubble type with |Î|=n and µ is an N -tuple of
constraints in general position such that

codimCµ = (n+1)
∑

i∈I

di − n+N,

the set ŪT̄ (µ) is finite and n
(1)
T (µ) = 2n|ŪT̄ (µ)|.
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Proof: The first statement is clear by dimension counting. By equations (4.34) and (4.38), we need
to apply Lemma 3.14 with

M̄ =

{

Σ1̂×Σ2̂×ŪT̄ (µ), if n=2;

Σ1̂×Σ2̂×Σ3̂×ŪT̄ (µ), if n=3;
E =

{

TΣ1̂⊗L1̂T̄ ⊕ TΣ2̂⊗L2̂T̄ , if n=2;

TΣ1̂⊗L1̂T̄ ⊕ TΣ2̂⊗L2̂T̄ ⊕ TΣ3̂⊗L3̂T̄ , if n=3,

O =H0,1
Σ ⊗ev∗TP

n, and α given by (4.34) and (4.38). By Lemma 4.9, α∈ Γ(M̄;E∗⊗O) has full
rank on every fiber of E. Thus by Lemma 3.14,

n
(1)
T (µ) =

〈
e(O/α(E)), [M̄]

〉
=

〈
c(O)c(E)−1, [M̄]

〉
. (5.1)

Since ŪT̄ (µ) is a finite set,

E ≈
{

TΣ1̂ ⊕ TΣ2̂, if n = 2;

TΣ1̂ ⊕ TΣ2̂ ⊕ TΣ3̂, if n = 3;
O ≈ M̄ × C

2n.

Let yh =c1(TΣh). Thus, if n=2, by (5.1)

n
(1)
T (µ) =

〈
(1+(y1̂+y2̂)+y1̂y2̂)

−1, [M̄]
〉

=
〈
y1̂y2̂,

[
Σ1̂×Σ2̂]

〉
|ŪT̄ (µ)| = 4|ŪT̄ (µ)|,

since 〈yh, [Σh]〉=−2. If n=3, we similarly obtain

n
(1)
T (µ) =

〈
−y1̂y2̂y3̂,

[
Σ1̂×Σ2̂×Σ3̂]

〉
|ŪT̄ (µ)| = 8|ŪT̄ (µ)|,

as claimed.

Let τn(µ) denote the sum of the numbers |ŪT̄ (µ)| taken over all equivalence classes of primitive
bubble types T with |Î|=n. This is the number of n-component connected curves of total degree d
passing through the constraints µ1, . . . , µN in P

n with a choice of a node which belongs to all n
components. From Lemma 5.1, we immediately conclude:

Corollary 5.2 If n=2, n
(1)
2 (µ) = 4τ2(µ). If n=3, n

(1)
3 (µ) = 8τ3(µ).

5.2 The Numbers n
(2)
m (µ) and n

(3)
m (µ) with m = n− 1

In this subsection, we describe the numbers n
(2)
T (µ) and n

(3)
T (µ) with |Î |=n−1 topologically. The

similarity between these cases is that UT̄ (µ) is two-dimensional (over C), while ST̄ (µ) is a finite
set; see Subsection 4.9 for notation.

The numbers n
(2)
T (µ) with |Î |= n−1=1 and |Î|=n−1=2 are the signed cardinalities of the zero

sets of the affine maps in (4.31) and (4.36), respectively. By Subsections 4.4 and 4.6, the linear

part α of the affine map ψ
(2)
T has full rank in these cases, except over the zero set of s

(2,−)
Σ . In

order to simplify our computations, we replace s
(2,−)
Σ by another section that has no zeros on Σ,

but so that the corresponding affine maps have the same number of zeros as the maps in (4.31)
and (4.36). The section

s
(2,−)
Σ ∈ Γ(Σ;T ∗Σ⊗2 ⊗H−

Σ)
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has transverse zeros at the points z1, . . . , z6∈Σ; see Subsection 4.5. Thus, it induces a nonvanishing
section

s̃
(2,−)
Σ ∈ Γ(Σ; T̃Σ∗ ⊗H−

Σ), where T̃Σ = TΣ⊗2 ⊗O(z1) ⊗ . . .⊗O(z6)

and O(zm) denotes the holomorphic line bundle corresponding to the divisor zm on Σ. The bun-
dles T̃Σ and TΣ⊗2 can be identified on Σ∗, the complement of the six points, in such a way that

s̃
(2,−)
Σ =ηs

(2,−)
Σ on Σ∗ for some η∈C∞(Σ∗; R+). Let ψ̃

(2)
T denote the affine maps obtained by replac-

ing TΣ⊗2 and s
(2,−)
Σ by T̃Σ and s̃

(2,−)
Σ , respectively, in (4.31) and (4.36) (depending on T ). Since

ψ
(2)
T and ψ̃

(2)
T have no zeros over {zm} if ν is generic and s

(2,−)
Σ and s̃

(2,−)
Σ differ by a nonzero multi-

ple on Σ∗, there is a sign-preserving bijection between the zeros of ψ
(2)
T and of ψ̃

(2)
T . Furthermore,

the linear part of ψ̃
(2)
T has full rank on every fiber.

Denote by S2(µ) the union of the spaces ST̄ (µ) defined by equation (4.37) taken over all equivalence
classes of appropriate bubble types T . This set can be identified with the degree-d two-component
rational curves in P

3 that are connected at a tacnode and pass through the constraints µ. Similarly,
in the n=2 case, the set S1(µ) corresponds to the degree-d cuspidal rational curves passing through
the constraints.

Lemma 5.3 If n=2, n
(2)
1 (µ) = 2|S1(µ)| and n

(3)
1 (µ) = |S1(µ)|. If n=3, n

(2)
2 (µ) = 2|S2(µ)|.

Proof: Let T = (Σ, [N ], I; j, d) be a bubble type that contributes to one of these numbers. By
dimension counting and Corollary 6.3, ST̄ (µ) is zero-dimensional and compact. Thus, in all cases
the bundles LhT̄ and ev∗TP

n of equations (4.31), (4.33) and (4.36) are trivial. If n=2 and k=2,
we are in the case of (4.31). By the above, we can apply Lemma 3.14 with

E = T̃Σ, O = H−
Σ ⊕H−

Σ ,

and α∈Γ(Σ×ST̄ (µ);E∗⊗O) that has full rank. We obtain

n
(2)
T (µ) =

〈
c1(O)−c1(E),

[
Σ×ST̄ (µ)]

〉
=

(
4+(4−6)

)
|ST̄ (µ)| = 2|ST̄ (µ)|.

If n=3 and k=2, we are in the case of (4.36) and apply Lemma 3.14 with

E = T̃Σ ⊕ T̃Σ, O = H−
Σ ⊕H−

Σ ⊕H−
Σ ,

and α∈Γ(Σ×ST̄ (µ);E∗⊗O) that again has full rank. Thus,

n
(2)
T (µ) =

〈
c1(O)−c1(E),

[
Σ×ST̄ (µ)]

〉
= (6−4)|ST̄ (µ)| = 2|ST̄ (µ)|.

Finally, if n = 2 and k = 3, we are in the case of (4.33). Note that all the bundles involved are

trivial and the linear part of ψ
(2)
T is an isomorphism on every fiber. Thus, n

(3)
T (µ)= |UT̄ (µ)|.

The next step is to compute the cardinalities of the sets Sn−1(µ). In order to simplify our answers,
it is convenient to introduce cohomology classes c1(L∗

kT ) closely related to c1(L
∗
kT ). Suppose

T = (S2,M, I; j, d) is a bubble type. and
{
Tk = (S2,Mk, Ik; jk, dk)

}
are the corresponding simple

types; see [Z1]. For any k∈I−Î and nonempty subset M0 of MkT , we define bubble types T (M0)
and T /M0 as follows. Let

T /M0 =
(
S2, I,M−M0; j|M−M0 , d

)
.
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Let T (M0) ≡ (S2,M, Î tk 1̂; j′, d′) be given by

j′l =







k, if l∈M0;

1̂, if l∈MkT −M0;

jl, otherwise;

d′i =







0, if i=k;

dk, if i=1̂;

di, otherwise.

The tuples T /M0 and T (M0) are bubble types as long as dk 6=0 or M0 6=M0̂T . Then,

ŪT (M0)(µ) = M̄0,{1̂}tM0
× ŪT /M0

( ⋂

l∈M0

µl;µ
)

, (5.2)

where M̄0,{1̂}tM0
denotes the Deligne-Mumford moduli space of rational curves with ({0̂, 1̂}tM0)-

marked points. If l ∈MkT for some k ∈ I− Î, we denote T ({l}) by T (l). If T is a basic bubble
type, by Theorem 2.8 and decomposition (5.2), ŪT (M0)(µ) is an oriented topological suborbifold
of ŪT (µ) of (real) codimension two. Thus,

c1(L∗
kT ) ≡ c1(L

∗
kT ) −

∑

M0⊂Mk,M0 6=∅
PDŪT (µ)

[
ŪT (M0)(µ)

]
∈ H2

(
ŪT (µ)

)
, (5.3)

where PDŪT (µ)

[
ŪT (M0)(µ)

]
denotes the Poincare Dual of

[
ŪT (M0)(µ)

]
in ŪT (µ), is a well-defined

cohomology class. Since our constraints µ are disjoint, ŪT (M0)(µ) = ∅ if |M0|≥2. Furthermore, it
is well-known in algebraic geometry that for any l∈Mk the normal bundle of ŪT (l)(µ) in ŪT (µ) is
L1̂T (l); see [P2]. Thus, if µ is an M -tuple of disjoint constraints,

[
ŪT (l)(µ)

]
∩ c1(L∗

kT ) =
[
ŪT (l)(µ)

]
∩ c1(L∗

1̂
T (l)) =

[
ŪT (l)(µ)

]
∩ c1(L∗

1̂
T (l)), (5.4)

since LkT |ŪT (l)
is the trivial line bundle. The above fact from algebraic geometry is only used to

simplify notation and is not really needed for our computations. In addition, (5.4) can deduced
from Subsection 5.7.

In the n=3 case, we denote by V̄2(µ) the disjoint union of the spaces ŪT (µ) taken over equivalence
classes of basic bubble types T = (S2,M, I; j, d) with |I|=2. While the components of V̄2(µ) are
unordered, we can still define the chern classes

c1(L∗
1)+c1(L∗

2), c
2
1(L∗

1)+c
2
1(L∗

2), c1(L∗
1)c1(L∗

2) ∈ H∗(V̄2(µ)
)
.

In the notation of the previous paragraph, c1(L∗
i ) denotes the cohomology class c1(L∗

ki
Tki

), where

we write I = {k1, k2}. If T ∗ = (S2,M, {0̂}; 0̂, d), we denote by V̄1(µ) the space ŪT ∗(µ) and by
c1(L∗)∈H2(V̄1(µ)) the cohomology class c1(L∗

0̂
T ∗).

Lemma 5.4 If d≥1, the number of rational degree-d cuspidal curves passing through a tuple µ of
3d−2 points in general position in P

2 is given by

∣
∣S1(µ)

∣
∣ =

〈
3a2+3ac1(L∗)+c21(L∗),

[
V̄1(µ)

]〉
− τ2(µ),

where a = ev∗(O(1)).
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Proof: (1) This result is well-known in algebraic geometry; see [V]. Nevertheless, for the sake of
completeness, we include a proof. Let T ∗ be as above. By definition, S1(µ) is the intersection of
the zero set of the section

D ≡ DT ∗ ∈ Γ
(
V̄1(µ);L∗⊗ev∗TP

2
)
, where L=L0̂T ∗,

with V1(µ) = UT ∗(µ). Thus, by Corollary 3.13, with ∂V̄1(µ) = V̄1(µ)−V1(µ),

|S1(µ)| =
〈
c2

(
L∗⊗ev∗TP

2),
[
V̄1(µ)

]〉
− C∂V̄1(µ)(D)

=
〈
3a2+3ac1(L

∗)+c21(L
∗),

[
V̄1(µ)

]〉
− C∂V̄1(µ)(D).

(5.5)

(2) Suppose T = (S2, [N ], I; j, d)< T ∗, where N = 3d−2, is a bubble type such that D vanishes
somewhere on UT (µ). Since the complex dimension of UT (µ) is at most one, by Corollary 6.3 d0̂ =0.
Let

ρT ∈ Γ
(
UT (µ); Polyn(FT ; F̃T )

)
and αT ∈ Γ

(
UT (µ);Hom(F̃T ;L∗⊗ev∗TP

n)
)

be the sections defined in equation (2.21). Recall that with appropriate identifications

∣
∣D(γµ

T (υ)) − αT (ρT (υ))
∣
∣ ≤ C(bυ)|υ|

1
p
∣
∣ρT (υ)

∣
∣ ∀υ∈FT δ, (5.6)

where δ, C∈C∞(UT (µ); R+) and γµ
T : FT δ−→V̄1(µ) is an identification of neighborhoods of UT (µ),

which is smooth on the preimage of V1(µ). Note that |Î | ∈ {1, 2} if UT (µ) is nonempty. By the
proof of Lemma 4.9, αT has full rank on every fiber F̃T −→UT (µ). Thus, by equation (5.6) and
Corollary 3.13,

CUT (µ)(D) = 0 if H0̂T 6= Î .

(3) Suppose |H0̂T |= |Î|=1. Then T = T ∗(l) for some l∈ [N ] and F̃T =FT ≈L1̂T . Since αT ◦ρT
has constant rank over ŪT (µ), by Corollary 3.13 and Lemma 3.14,

CUT (µ)(D) =
〈
c1(L

∗⊗ev∗TP
2) − c1

(
L1̂T

)
,
[
ŪT (µ)

]〉
=

〈
3a+c1(L

∗
1̂
T ),

[
ŪT (µ)

]〉
.

If |H0̂T | = |Î | = 2, αT ◦ ρT is an isomorphism on every fiber. Thus, CUT (µ)(D) = |UT (µ)| by
Corollary 3.13. Combining these contributions to the euler class of L∗⊗ev∗TP2 gives

C∂Ū (DT ∗) =
∑

l∈[N ]

〈
3a+c1(L

∗
1̂
T ∗(l)),

[
UT ∗(l)(µ)

]〉
+

∑

[T ],|H0̂T |=|Î|=2

|ŪT (µ)|

=
∑

l∈[3d−2]

〈
3a+c1(L

∗
1̂
T ∗(l)),

[
UT ∗(l)(µ)

]〉
+ τ2(µ).

(5.7)

The claim follows by plugging equation (5.7) into (5.5) and using equations (5.3) and (5.4).

Lemma 5.5 If d≥1, the number of two-component rational degree-d curves connected at a tacnode
and passing through a tuple µ of p points and q lines in general position in P

3, where 2p+q=4d−3,
is given by

|S2(µ)| =
〈
6a2+4a(c1(L∗

1)+c1(L∗
2))+(c21(L∗

1)+c
2
1(L∗

2))+c1(L∗
1)c1(L∗

2),
[
V̄2(µ)

]〉
− 3τ3(µ).
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Proof: (1) Let T ∗ = (S2, [N ], I∗; j∗, d∗) be a basic bubble type such that I∗ = {k1, k2} is a two-
element set, d∗k1

, d∗k2
>0, d∗k1

+d∗k2
=d, and N=p+q. Denote by T ∗

1 and T ∗
2 the corresponding simple

types. The proof is similar to that of Lemma 5.4, but we pass to the projectivization PE (over C)
of the bundle

E = L1 ⊕ L2 −→ ŪT ∗(µ), where Li = Lki
T ∗

i .

The section D̄T ∗,2 of Lemma 4.9 induces a section D ∈ Γ(PE; γ∗E ⊗ ev∗TP
3) such that ST ∗(µ)

corresponds to the intersection of the zero set of D with PE|UT ∗(µ). If PE′ denotes the restriction
of PE to ∂Ū ≡ŪT ∗(µ)−UT ∗(µ), by Corollary 3.13,

|S̄T ∗(µ)| =
〈
c3(γ

∗
E⊗ev∗TP

3),
[
PE

]〉
− CPE′(D) (5.8)

=
〈
6a2+4a(c1(L

∗
1)+c1(L

∗
2))+(c21(L

∗
1)+c

2
1(L

∗
2))+c1(L

∗
1)c1(L

∗
2),

[
ŪT ∗(µ)

]〉
− CPE′(D).

The second equality above is obtained by applying (3.16).
(2) Suppose T=(S2, [N ], I; j, d)<T ∗ is a bubble type such that D vanishes somewhere on PE|UT (µ).
Let T1 and T2 be the corresponding simple types. Since the constraints are disjoint, up to inter-
changing the indices, we must have

T1 = T ∗
1 , T2 =

(
S2,M2, I2; j|M2 , d|I2

)
< T ∗

2 with dk2 = 0.

Furthermore, DT ∗
1 ,k1 does not vanish on UT (µ); see the proof of Lemma 4.9. Thus, D vanishes only

the subspace
ZT ≡ PL2

∣
∣
UT (µ)

=
{(
b, L2|b

)
: b∈UT (µ)

}
.

The map γµ
T of Theorem 2.8 induces an identification of a neighborhood of 0 in

FS ≡ π∗EFT ⊕ π∗EL
∗
2⊗π∗EL1 −→ ZT

with a neighborhood of ZT in PE. Similarly to the n=2 case, with appropriate identifications,

∣
∣D(γµ

T (υ, u)) − α̃T (ρ̃T (υ, u))
∣
∣ ≤ C(bυ)|υ|

1
p
∣
∣ρT (υ)

∣
∣ ∀(υ, u) ∈ FSδ, (5.9)

where ρ̃T (υ, u) =
(
ρT (υ), u

)
∈ F̃S ≡ π∗F̃T ⊕ π∗EL

∗
2⊗π∗EL1 −→ ZT ,

and α̃T has full rank on every fiber by (2.21) and Lemma 4.9. Thus, similarly to the proof of
Lemma 5.4, and CPE′|ZT

(D) = 0 if Hk2T 6= Î2, and only two cases remain to be considered.

(3) If |Hk2T |= |Î2|=1, α̃T◦ρ̃T has full rank over all of Z̄T . Thus, by Corollary 3.13 and Lemma 3.14,

CZT
(D) =

〈
c1(γ

∗
E⊗ev∗TP

3)−c1(FS),
[
Z̄T

]〉
=

〈
4a+c1(L

∗
1̂
T2)+c1(L

∗
1),

[
ŪT (µ)

]〉
; (5.10)

note that c1(γ
∗
E)= c1(L

∗
2)=0 over ŪT (µ). If |Hk2T |= |Î2|=2, α̃T ◦ρ̃T is an isomorphism on every

fiber, and thus
CPE′|ZT

(D) = |ZT | = |UT (µ)|. (5.11)

Note that the sum of |UT (µ)| over all equivalence classes of bubble types T ∗ and T <T ∗ is 3τ3(µ),
since one of the three components of the image of each bubble map in UT (µ) is distinguished by
the bubble type T . As before, we now sum up equations (5.10) and (5.11) over all equivalence
classes of bubble types T < T ∗ of the appropriate form, plug the result back into (5.8) and use
equations (5.3) and (5.4). The claim follows by summing the result over all equivalence classes of
basic simple bubble types T ∗.
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5.3 The Numbers n
(1)
m with m = n− 1

In this subsection, we give topological formulas for the numbers n
(1)
T with |Î|= n−1. As before,

the reason these two cases are similar is that the complex dimension of UT (µ) is two.

Lemma 5.6 If n = 2, n
(1)
1 (µ) = 2

〈
6a2 + 3ac1(L∗),

[
V̄1(µ)

]〉
.

Proof: (1) Let N , T ∗, L, D be as in the proof of Lemma 5.4. Since sΣ does not vanish on Σ, by
equation (4.30) and Lemma 3.14,

n
(1)
1 (µ) =

k=3∑

k=0

〈
ck(O)c3−k

1 (T ∗Σ⊗L∗),
[
Σ×ŪT ∗(µ)

]〉
− CΣ×D−1(0)(α

⊥),

= 2
〈
15a2+12ac1(L

∗)+3c21(L
∗),

[
V̄1(µ)

]〉
− CΣ×D−1(0)(α

⊥),

(5.12)

where O=H0,1
Σ ⊗ev∗TP

2 and α∈Γ(Σ×V̄1(µ);T ∗Σ⊗L∗⊗O) is the linear part of the affine map ψ
(1)
1

of (4.30).
(2) We first compute CΣ×S1(µ)(α

⊥). Since V1(µ) is a complex manifold and D is transverse to the
zero set in L∗⊗ev∗TP

2 by Corollary 6.3, we can identify a neighborhood of 0 in

F ≡ L∗ ⊗ ev∗TP
2 −→ S1(µ)

with a neighborhood of S1(µ) in V1(µ) via a map γ in such a way that

Π−1
b,γ(b,X)

(
Dγ(b,X)

)
= X ∀(b,X) ∈ Fδ. (5.13)

Then with appropriate identifications,

α⊥(γ(X)) = π⊥ ◦XsΣ ≡ αS(X),

where π⊥ : O−→O⊥ is the quotient projection map. In particular, αS has full rank if ν̄b 6∈ H+
Σ ⊗ ev∗TP

2

for all b∈S1(µ), i.e. ν is generic. Furthermore,

(
T ∗Σ⊗L∗⊗O⊥)/(

Im αS
)
≈ T ∗Σ ⊗

(
(H−

Σ⊗C
2)/C

)
.

Thus, by Corollary 3.13,

CΣ×S1(µ)(α
⊥) =

〈
e(T ∗Σ⊗3), [Σ×S1(µ)]

〉
= 6|S1(µ)|. (5.14)

(3) It remains to compute the contribution to CΣ×D−1(0)(α
⊥) from Σ×(V̄1(µ)−V1(µ)). Suppose

T = (S2, [N ], I; j, d) < T ∗

is a bubble type such that D vanishes somewhere on UT (µ). As in the proof of Lemma 5.4,
|Î |∈{1, 2} and d0̂ =0. Furthermore,

∣
∣α⊥(x, γµ

T (υ)) − α̃T (x, b; ρT (υ))
∣
∣ ≤ C(bυ)|υ|

1
p |ρT (υ)| (x, b;υ)∈FT δ,

where α̃T =π⊥◦(sΣ⊗αT ). If ν is generic, α̃T has full rank on every fiber, since sΣ has no zeros.
Thus, by Corollary 3.13,

CΣ×UT (µ)(α
⊥) = 0 if H0̂T 6= Î .
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If |H0̂T |= |Î |=1, α̃T◦ρ̃T has full rank over all Σ×ŪT (µ), and thus by Corollary 3.13 and Lemma 3.14

CΣ×UT (µ)(α
⊥)=

〈
c(T ∗Σ⊗O⊥)c(L1̂T )−1,

[
Σ×ŪT (µ)

]〉
=2

〈
12a+3c1(L

∗
1̂
T ),

[
ŪT (µ)

]〉
. (5.15)

If |H0̂T |= |Î |=2,

(
T ∗Σ⊗L∗⊗O⊥)/(

Im α̃T ◦ρ̃T
)
≈ T ∗Σ ⊗

(
(H−

Σ⊗C
2)/C

)
.

Thus, similarly to the computation in (2) above,

CΣ×UT (µ)(α
⊥) = 6|UT (µ)|. (5.16)

Summing equations (5.15) and (5.16) over all equivalence classes of T <T ∗, we obtain

CΣ×(V̄1(µ)−V1(µ))(α
⊥) = 2

∑

l∈[N ]

〈
12a+3c1(L

∗
1̂
T ),

[
UT ∗(l)(µ)

]〉
+ 6τ2(µ). (5.17)

The claim follows by plugging (5.14) and (5.17) into (5.12) and using (5.3), (5.4), and Lemma 5.4.

Lemma 5.7 If n=3, n
(1)
2 (µ) = 4

〈
10a2+4a(c1(L∗

1)+c1(L∗
2))+c1(L∗

1)c1(L∗
2),

[
V̄2(µ)

]〉
.

Proof: (1) We use the same notation as in the proof of Lemma 5.5. By Section 4.9 and equa-

tion (4.34), n
(1)
2 (µ)=N(α2), where

α2 ∈ Γ
(
Σ2×V̄2(µ);Hom(Ẽ;O)

)
, Ẽ = TΣ1⊗L1 ⊕ TΣ2⊗L2, O = H0,1

Σ ⊗ev∗TP
3,

α2

(
x1, x2, b; v1⊗υ1, v2⊗υ2

)
= (Dυ1)(sΣ,x1v1) + (Dυ2)(sΣ,x2v2).

Here the bundles Li −→V̄2(µ) and the sections Di ∈Γ
(
V̄2(µ);L∗

i ⊗ev∗TP
2
)

are defined as follows.
If b∈UT ∗(µ)⊂V2(µ), T ∗=(S2, [N ], I∗; j∗, d∗), and I∗={k1, k2}, we let Li

∣
∣
b
=Lki

T and Di =DT ,ki
.

These bundles and sections are well-defined once we fix a representative for each equivalence class
of such bubble types T ∗ and order the elements of the corresponding set I∗.
(2) By Lemma 3.14,

n
(1)
1 (µ) =

k=5∑

k=0

〈
ck(O)λ5−k

Ẽ
,
[
PẼ

]〉
− Cα̃−1(0)(α̃

⊥), (5.18)

=4
〈
28a2+16a(c1(L

∗
1)+c1(L

∗
2))+3(c21(L

∗
1)+c

2
1(L

∗
2))+4c1(L

∗
1)c1(L

∗
2),

[
V̄2(µ)

]〉
−Cα̃−1(0)(α̃

⊥),

where α̃∈Γ(PẼ; γ∗
Ẽ
⊗O) is the section induced by α2. Let

Σ(±) =
{
(x1, x2)∈Σ∗

1×Σ∗
2 : x1 =±x2}, Σ(0) =

{
(zm, zm) : m∈ [6]

}
;

S(±)
2 = Σ(±) × S2(µ), S(0)

2 = Σ(0) × S2(µ),

where +x2≡x2 and −x2 is the image of x2 under the nontrivial automorphism of Σ. The zero set

of α̃ is the union of a section of PẼ over S(±)
2 , S(0)

2 , and Σ2×UT (µ), where T is as in the proof of
Lemma 5.5.
(3) The above section over Σ2×UT (µ) is given by

ZT ≡ α̃−1(0) ∩ PẼ|Σ2×UT (µ) =
{
(x1, x2, b, Tx1Σ1⊗L1|b) : (x1, x2, b)∈Σ2×UT (µ)

}
.
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The map γµ
T of Theorem 2.8 induces identifications of neighborhoods of ZT in

FS = π∗
Ẽ

(
FT ⊕ T ∗Σ1⊗L∗

1⊗TΣ2⊗L2

)

and in PẼ as well as of appropriate bundles such that

∣
∣α̃(γµ

T (υ, u)) − α̃T (ρT (υ), u)
∣
∣ ≤ C(bυ)|υ|

1
p |ρT (υ)| ∀(υ, u)∈FSδ, where

α̃T ∈ Γ
(
ZT ; Hom(F̃S; γ∗

Ẽ
⊗O)

)
, F̃S = π∗

Ẽ

(
F̃T ⊕ T ∗Σ1⊗L∗

1⊗TΣ2⊗L2

)
,

α̃T (x1, x2, b; υ̃, u) = {αT (υ̃)}⊗sx1 + (D2⊗sx2) ◦ u.

By the proof of Lemma 4.9, α̃T is nondegenerate. The same is true of α̃⊥ as long as ν̄∈Γ(PẼ;O) is
generic. Thus, if Î 6=H0̂T , ZT is α̃⊥-hollow and CZT

(α̃⊥)=0 by Corollary 3.13. If |Hk1T |= |Î|=1,
i.e. T =T ∗(l) for some l∈ [N ], α̃T has full rank on Z̄T ≈Σ2×ŪT (µ). Thus, by Corollary 3.13,

CZT
(α̃⊥) =

〈
c(γ∗

Ẽ
⊗O⊥)c

(
FS)−1, [Z̄T ]

〉
= 4

〈
16a+4c1(L

∗
2)+3c1(L

∗
1̂
T ),

[
ŪT (µ)

]〉
, (5.19)

since FS≈L1̂T ⊕T ∗Σ1⊗TΣ2⊗L2. If |Hk1T |= |Î |=2, we similarly obtain

CZT
(α̃⊥) =

〈
c(γ∗

Ẽ
⊗O⊥)c

(
FS)−1, [Z̄T ]

〉
= 12|UT (µ)| (5.20)

Note that FS ≈ C
2⊕T ∗Σ1⊗TΣ2 in this case. Summing up equations (5.19) and (5.20) over all

equivalence classes of bubble types T of the appropriate form and using (5.3) and (5.4), we obtain

C
PẼ|∂V2(µ)(α̃

⊥)=4
∑

[T ∗]

∑

l∈M∗
i ,i6=j

〈
16a+3c1(L∗

i )+4c1(L∗
j),

[
UT ∗(l)(µ)

]〉
− 36

∣
∣V3(µ)

∣
∣, (5.21)

where the outer sum is taken over equivalence classes of bubbles T ∗ as in (1) above.
(4) It remains to compute C

PẼ|S±
2

(α̃⊥) and C
PẼ|S(0)

2

(α̃⊥). Note that

α̃−1(0) ∩ PẼ|S(±)
2

= Z(±)
2 ≡

{
(x,±x, b; [v⊗υ1, v⊗υ2])∈PẼ|S(±)

2

: D|(b;[υ1,υ2]) =0
}
,

where D is the section of γ∗E⊗ev∗TP
3 defined in the proof of Lemma 5.5. Identify neighborhoods

of Z(±)
2 in

FS ≡ TΣ ⊕ γ∗E⊗ev∗TP
3 ≈ TΣ ⊕ C

3

and in PẼ via a map γ in such a way that

∣
∣α̃(γ(w,X)) − αS(w,X)

∣
∣ ≤ C(x, b)

(
|w| + |X|

)
|w ∀(w,X)∈FSδ,

where αS ∈Γ
(
Z2;2; Hom(FS ; γ∗

Ẽ
⊗O)

)
,

{
αS(w,X)}(v⊗υ) = (Xυ)(sxv)+

(
D2υ2

)(
s
(2)
b,x(w, v)

)
∈ O, if v∈TxΣ, υ=(υ1, υ2)∈γE .

Since s
(2)
x =π−x◦s(2)b,x does not vanish on Σ∗, αS has full rank on Z(±)

2;2 and extends over Z̄(±)
2 ≈Σ×S2(µ).

This extension is a regular polynomial in the sense of Definition 3.9. Furthermore,

π⊥ν̄ αS : γ∗E⊗ev∗TP
3 −→ γ∗

Ẽ
⊗ π⊥ν̄

(
H+

Σ⊗ev∗TP
3
)
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is an isomorphism. Thus, by Corollary 3.13, CZ(±)
2

(α̃⊥)=N(α−
S ), where

α−
S ∈Γ

(
Z̄2; Hom(TΣ;O2)

)
, O2 = γ∗

Ẽ
⊗

(
H−

Σ⊗ev∗TP
3
)⊥ ≈ T ∗Σ ⊗

(
H−

Σ⊗C
3
)⊥
,

{
α−
S (w)

}
(v⊗υ2) = π⊥

π−
x ν̄

(
(D2υ2)s

(2,−)
x (w, v)

)
.

As in the previous section, we can replace TΣ with

T̃ ′Σ ≡ TΣ ⊗O(z1) ⊗ . . .⊗O(z6)

and s(2,−) with s̃(2,−)∈Γ(Σ; T̃ ′Σ∗ ⊗H−
Σ) above to obtain a non-vanishing linear map α̃−

S such that
N(α−

S )=N(α̃−
S ). Thus, by Lemma 3.14,

CZ(+)
2 ∪Z(−)

2
(α̃⊥) = 2

〈
c1(O2)−c1(T̃ ′Σ), [Z(+)

2 ]
〉

= 2(10−4)|S2(µ)| = 12|S2(µ)|. (5.22)

(5) We next show that C
PẼ|S(0)

2
(α̃⊥)=0. Similarly to (4),

α−1(0) ∩ PẼ|S(0)
2

= Z(0)
2 ≡

{
(zm, zm, b; [v⊗υ1, v⊗υ2])∈PẼ|S(0)

2

: D|(b;[υ1,υ2]) =0
}
.

We can identify neighborhoods of Z(0)
2 in

FS ≡ TΣ1 ⊕ TΣ2 ⊕ γ∗E⊗ev∗TP
3 ≈ C

2 ⊕ C
3

and in PẼ via a map γ in such a way that

∣
∣π−w1

◦α̃(γ(w1, w2,X)) − α−
S (w1, w2,X)

∣
∣ ≤ C

∣
∣X,w1, w2

∣
∣|w1||w1−w2| ∀(w1, w2,X)∈FSδ,

where
{
α−
S (w1, w2)

}
(v⊗υ1, v⊗υ2) = (D2υ2)s

(3)
zm

(w1, w2−w1, v) ∈ H−
Σ(zm)⊗ev∗TP

3.

Since the rank of (H−
Σ(zm)⊗ev∗TP

3)/Cπ−zm
ν̄ is two, while the rank of TzmΣ1⊗TzmΣ2 is one, it

follows that Z(0)
2 is α̃⊥-hollow, and C

PẼ|S(0)
2

(α̃⊥)=0 by Corollary 3.13. The lemma is obtained by

plugging (5.21) and (5.22) into (5.18), using (5.3) and (5.4), and Lemma 5.5.

5.4 Behavior of D(2) and D(3) near S̄1(µ) − S1(µ)

If n=3, the space S1(µ) is not compact. In order to be able to compute the numbers n
(k)
1 (µ), we

thus must understand the structure of S̄1(µ) as well as the behavior of D(2)

T ∗,0̂
and D(3)

T ∗,0̂
, where

T ∗=(S2, [N ], {0̂}; 0̂, d), near S̄1(µ)−S1(µ).

If T =(S2, [N ], I; j, d)<T ∗, from Theorem 2.8 one should expect that the normal bundle, or cone,
FS of ST (µ)≡UT (µ) ∩ S̄1(µ) in S̄1(µ) is the closure of the set

{
[υ=(b, (vh)h∈Î)]∈F (∅)T

∣
∣
ST (µ)

:
∑

h∈χ(T )

∏

i∈Î ,i≤h

vi (DT ,hb) = 0
}

(5.23)

in FT . The next lemma shows that this is indeed the case. By a dimension-counting argu-
ment, if the set in (5.23) is not empty, either |χ(T )|= 1 or χ(T ) = {h1, h2} is a two-element set,
ιh1 = ιh2 , DT ,h1b 6=0, and DT ,h2b 6=0. In the first case FS=FT |ST (µ), while in the second FS is a
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codimension-one subbundle of FT |ST (µ).

Let NS −→ FS denote the normal bundle of FS in FT −→ UT (µ). While for the purposes of
Lemma 5.8, we can use any identification of neighborhoods of FS in NS and in FT −→UT (µ),
in order to simplify the statement of Lemma 5.10, we choose a fairly natural one. More precisely,
denote by FS⊥ a subspace of FT |ST (µ) complementary to FS and by πS : NS(1)−→ST (µ) the nor-

mal bundle of ST (µ) in UT (µ). Choose a norm on NS(1) and an identification φS : NS(1)
δ −→ST (µ)

of neighborhoods of ST (µ) in NS(1) and in UT (µ). Let ΦS : π∗SFT −→FT be a lift of φS such that

ΦS restricts to the identity over ST (µ)⊂NS(1)
δ . Let π : FT −→ST (µ) be the bundle projection.

Then

NS = π∗NS(1)⊕FS⊥, and φ̃S : NSδ −→ FT , φ̃S
(
(b, v), (X, v⊥)

)
= ΦS

(
(b,X), v+v⊥

)
,

is an identification of neighborhoods of FS in NS and FT −→UT (µ).

Lemma 5.8 For every bubble type T =(S2, [N ], I; j, d)<T ∗, there exist δ, C∈C∞(ST (µ); R+) and
a section ϕS ∈Γ(FSδ;NS) such that

‖ϕS(υ)‖ ≤ C(bυ)|υ|
1
p , ‖ϕFS⊥(υ)‖ ≤ C(bυ)|υ|1+

1
p ,

where ϕFS⊥ denotes the FS⊥-component of ϕS , and the map

γS : FSδ −→ S̄1(µ), γS(υ) = γµ
T
(
φ̃SϕS(υ)

)
,

is a homeomorphism onto an open neighborhood of ST (µ) in S̄1(µ), which is smooth and orientation-
preserving on the preimage of S1(µ).

Proof: (1) The proof is similar to that of Lemma 3.32 in [Z1], and so we only describe the differences.
If ST (µ) 6=∅, T must have one of the three forms described by Lemma 5.10. In Case (1), we apply
Subsection 3.7 in [Z1], which contains an application of the Implicit Function Theorem, to DT ∗,0̂

instead of the evaluation maps. By Theorem 2.8,

∣
∣Π−1

b,γ̃µ
T (υ)

(DT ∗,0̂γ̃
µ
T (υ)) − (DT ∗,0̂bυ)

∣
∣ ≤ C ′(b)|υ|

1
p ∀υ∈FSδ.

This estimate suffices for applying an argument similar to the proof of Lemma 3.32 in [Z1].
(2) In Case (2) of Lemma 5.10, instead of the section DT ∗,0̂ of L∗

0̂
T ∗⊗ev∗TP

3, we consider the

section D̃ of
(
L0̂T ∗⊗FT

)∗⊗ev∗TP
3 on a neighborhood of UT (µ) in ŪT ∗(µ) defined by

D̃
∣
∣
γ̃µ
T (b,v1̂)

(v0̂, v1̂) = DT ∗,0̂

∣
∣
γ̃µ
T (b,v1̂)

(v0̂) ∈ ev∗TP
3.

This section is well-defined outside of UT (µ) and by Theorem 2.8 extends over UT (µ) by

D̃
∣
∣
b
(v0̂⊗v1̂) = v0̂v1̂

(
DT ,1̂b

)
.

The restriction of this section to UT (µ) vanishes transversally at ST (µ) by Corollary 6.3, while
its zero set on UT ∗(µ) is the same as the zero set of DT ∗,0̂. By Theorem 2.8, with appropriate
identifications,

∣
∣D̃|γµ

T (b,υ) − D̃|b
∣
∣ ≤ C ′(b)|υ|

1
p ∀υ∈FSδ.
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(3) In the final case of Lemma 5.10, we replace DT ∗,0̂ by a bundle section over the blowup of FT
along UT (µ). Let

ΩT =
{
(b, v, `) : (b, v)∈FT , v∈`∈PFT |b

}
, Ω∗

T =
{
(b, v, `)∈ΩT : v 6=0

}
, ET = ΩT − Ω∗

T .

Denote by γ−→ΩT the tautological line bundle. The normal bundle ÑS of γ−→PFS in γ−→ET
is given by

ÑS = π∗γπ
∗
FT NS(1) ⊕ π∗γ

(
γ∗ ⊗ π∗FT FS⊥)

,

φ̃ÑS
(
(b, `, v),X, σ

)
=

(
φS(b,X),

[
ΦS(v + σ(v))

]
, v + σ(v)

)
,

where πγ : γ−→ΩT is the bundle projection map. The bundle L0̂T ∗ pulls back to a bundle L̃ over
a neighborhood Ωδ of ET in ΩT . We define a section D̃ of

(
L̃⊗γ)∗⊗ev∗TP

3 over Ωδ by

D̃
∣
∣
(b,v1̂,v2̂,`)

(
v0̂, v1̂, v2̂

)
= DT ∗,0̂

∣
∣
γ̃µ
T (b,v1̂,v2̂)

(v0̂) ∈ ev∗TP
3.

This section is well-defined outside of ET (µ) and by Theorem 2.8 extends over ET (µ) by

D̃
∣
∣
b

(
v0̂, v1̂, v2̂

)
= v0̂

(
v1̂(DT ,1̂b) + v2̂(DT ,2̂b)

)
.

The restriction of this section to ET (µ) vanishes transversally at PFS−→ST (µ) by Corollary 6.3,
while its zero set on Ω∗ corresponds to the zero set of DT ∗,0̂ on γµ

T
(
FT δ−UT (µ)

)
. By Theorem 2.8,

with appropriate identifications,

∣
∣D̃|(b,v1̂,v2̂,`) − D̃|(b,`)

∣
∣ ≤ C ′(b)|υ|

1
p .

Thus, we can apply the arguments of Lemma 3.32 in [Z1] to D̃ to describe its zero set near ET . We

obtain a section ϕ̃S ∈Γ(γδ|PFS ; Ñ S) such that ‖ϕ̃S(υ)‖≤C(bυ)|υ|
1
p , and the map

γ̃S : γδ|PFS −→ ΩT , γ̃S(υ) = φ̃ÑS(ϕS(υ)),

is a homeomorphism onto an open neighborhood of PFS in D̃−1(0). This section ϕ̃S induces the
required section ϕS with the claimed properties.

Corollary 5.9 For every bubble type T =(S2, [N ], I; j, d)<T ∗, there exist δ∈C∞(ST (µ); R+) and
a map

γS :
(
NS(1)⊕FT

)

δ

∣
∣
ST (µ)

−→ ŪT ∗(µ)

such that γS is a homeomorphism onto an open neighborhood of ST (µ) in ŪT ∗(µ), which is smooth
and orientation-preserving on the preimage of UT ∗(µ), and with appropriate identifications,

DγS(X,υ) =

{

X, in Case (1) with X∈L∗⊗ev∗TP
3;

Xυ1̂, in Case (2) with X∈L∗
1̂
T ⊗ev∗TP

3,

where the cases are the ones described by Lemma 5.10.
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Proof: The proof is just a modification of the proof of Lemma 5.8. We work with the sections

D̄ ≡D and D̄ ≡ D̃ in Cases (1) and (2), respectively. Choose an identification γ : NS(1)
δ −→UT (µ)

of neighborhoods of ST (µ) in NS(1) and in UT (µ) as well as of the appropriate line bundle over
these neighborhoods such that

D̄
∣
∣
(b,X)

= X ∀X ∈ NS(1)
δ .

By the same argument as in the proof of Lemma 5.8, for any (Y, υ)∈NS(1)⊕FT , there exists a
unique Z∈NS(1), such that

D̄
∣
∣
γµ
T (ΦS(X+Y ;υ))

= D̄
∣
∣
X

= X.

Furthermore, |Z|≤C(b)
(
|Y |+|υ|

1
p
)
.

Lemma 5.10 If d≥1, µ is a tuple of p points and q lines in general position in P
3 with 2p+q=4d−3,

and N=p+q, the set S̄1(µ)−S1(µ), is finite. Furthermore, if

T = (S2, [N ], I; j, d) < T ∗ and ST (µ) 6= ∅,

(1) Î = {1̂}, d0̂ > 0, and the images of D(2)

T ∗,0̂
and D(3)

T ∗,0̂
are linearly independent in every fiber of

ev∗TP
3 over ST (µ);

(2) OR Î={1̂}, d0̂ =0, d1̂ =d, and for all υ=
[
b, v1̂

]
∈FSδ,

∣
∣Π−1

b,γS(υ)(D
(2)γS(υ)) − v2

1̂
(D(2)

T ,1̂
b)

∣
∣ ≤ C|v1̂|

2+ 1
p ;

∣
∣Π−1

b,γS(υ)

(
(D(3)γS(υ))−3x1̂(D(2)γS(υ))

)
− v3

1̂
(D(3)

T ,1̂
b)

∣
∣ ≤ C|v1̂|

3+ 1
p ;

(3) OR Î={1̂, 2̂}, d0̂ =0, and for all υ=[b, v1̂, v2̂]∈FS
∣
∣Π−1

b,γS(υ)(D
(2)γS(υ)) − 2

(
x1̂v1̂(DT ,1̂b)+x2̂v2̂(DT ,2̂b)

)∣
∣ ≤ C|υ|1+

1
p ;

∣
∣Π−1

b,γS(υ)

(
2(D(3)γS(υ))−3(x1̂+x2̂)(D(2)γS(υ))

)
−3

(
x1̂−x2̂)

(
v2
1̂
(D(2)

T ,1̂
b)−v2

2̂
(D(2)

T ,2̂
b)

)∣
∣≤C|υ|2+

1
p .

Proof: (1) The statement about the possible structures of T is easily seen from Theorem 2.8 and
dimension count. The finiteness claim then also follows by dimension count. In Case (1), if d0̂≥3,

by Corollary 6.3, the images of D(2)

T ∗,0̂
and D(3)

T ∗,0̂
are transversal and thus linearly independent over

the finite set ST (µ). On the other hand, if d0̂<3, ST (µ) = ∅; see Subsection 4.5.
(2) The four inequalities in the lemma will be obtained by refining the proof of the analytic estimate
of Theorem 2.8. We use the same notation. Combining equations (2.22), (2.23), (2.24), and (2.26),
we obtain

(
D(m)γ̃T (υ)

)
= m

∑

h∈χ(T )

k=m∑

k=1

ak,h(υ)

k
ṽk

(
D(k)

T ,hb
)
− m

2πi

∑

h∈χ(T )

∫

A−
h (υ)

ξυw
m−1dw, (5.24)

where the integral is computed by using the same trivializations as before. This equality holds for
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any bubble type. If γT (υ)∈S1(µ) and T is as in (2) of the lemma, (5.24) with m=1, 2, 3 gives

0 = v1̂
(
D(1)

T ,1̂
b
)
− 1

2πi

∫

|x1̂−w|=ε
ξυdw; (5.25)

(
D(2)γ̃T (υ)

)
= 2x1̂v1̂

(
D(1)

T ,1̂
b
)

+ v2
1̂

(
D(2)

T ,1̂
b
)
− 1

πi

∫

|x1̂−w|=ε
ξυwdw; (5.26)

(
D(3)γ̃T (υ)

)
= 3x2

1̂
v1̂

(
D(1)

T ,1̂
b
)

+ 3x1̂v
2
1̂

(
D(2)

T ,1̂
b
)

+ 2v3
1̂

(
D(3)

T ,1̂
b
)
− 3

2πi

∫

|x1̂−w|=ε
ξυw

2dw. (5.27)

where ε=4δ(bυ)−1|v1̂|. Subtracting 2x1̂ times the first equation from the second, we obtain

∣
∣(D(2)γ̃T (υ)) − v2

1̂
(D(2)

T ,1̂
b)

∣
∣ ≤ C(b)|v1̂|

2+ 1
p . (5.28)

Similarly, subtracting 3x1̂ times (5.26) from and adding 3x2
1̂

times (5.25) to (5.27), we obtain

∣
∣
(
(D(3)γ̃T (υ))−3x1̂(D(2)γ̃T (υ))

)
− 2v3

1̂
(D(3)

T ,1̂
b)

∣
∣ ≤ C(b)|v1̂|

3+ 1
p . (5.29)

If υ∈FS is sufficiently small, the claim in Case (2) follows from equations (5.28) and (5.29) along
with Lemma 5.8 and our choice of φ̃S . Note that if υ ∈FS , we have to apply (5.28) and (5.29)
with υ replaced by Φµ

T ϕ
µ
T φ̃SϕS(υ), where Φµ

T and ϕµ
T are as in Subsection 3.9 of [Z1]. However,

applying the bounds on ϕµ
T and φ̃S , we obtain the claimed estimates.

(3) In Case (3), we proceed similarly. The analog of equation (5.26) gives

∣
∣(D(2)γ̃T (υ)) − 2

(
x1̂v1̂(DT ,1̂b)+x2̂v2̂(DT ,2̂b)

)∣
∣ ≤ C(b)|υ|1+

1
p .

Subtracting 3(x1̂+x2̂) times the analog of (5.26) from and adding 6x1̂x2̂ times the analog of (5.25)
to twice the analog of (5.27), we obtain

∣
∣
(
2(D(3)γ̃T (υ)) − 3(x1̂+x2̂)(D(2)γ̃T (υ))

)
− 3

(
x1̂−x2̂)

(
v2
1̂
(D(2)

T ,1̂
b)−v2

2̂
(D(2)

T ,2̂
b)

)
∣
∣
∣ ≤ C(b)|υ|2+

1
p .

The estimates of Case 3 follow from the last two equations and Lemma 5.8. The finer bound on
ϕFS⊥ of Lemma 5.8 is essential here.

5.5 The Numbers n
(2)
1 (µ) and n

(3)
1 (µ) in the n = 3 Case

In this subsection, we express the numbers n
(2)
1 (µ) and n

(3)
1 (µ) in the n = 3 case in terms of

intersection numbers on the spaces V̄1(µ), V̄2(µ), V̄3(µ).

Lemma 5.11 If n=3, n
(2)
1 (µ) = 4〈2a+c1(L∗), [S̄1(µ)]〉 − 2|S2(µ)|.

Proof: (1) We continue with the notation of the previous subsection. The number n
(2)
1 (µ) is

the number of zeros of the affine map in (4.31). As in the proof of Lemma 5.3, we can replace

s
(2,−)
Σ by s̃

(2,−)
Σ . Since the linear part of the new affine map does not vanish on Σ×S1(µ) (see

Subsection 4.4), by Lemma 3.14,

n
(2)
1 (µ) =

k=2∑

k=0

〈
c2−k
1 (T̃Σ∗⊗L∗⊗2)ck(O),

[
Σ×S̄1(µ)

]〉
− CΣ×∂S̄1

(α⊥)

= 4
〈
2a+c1(L

∗),
[
S̄1(µ)

]〉
− CΣ×∂S̄1

(α⊥),

(5.30)
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where O=H−
Σ⊗ev∗TP

3, ∂S̄1 = S̄1(µ)−S1(µ), and α is the linear part of the affine map in (4.31),

with s
(2,−)
Σ replaced by s̃

(2,−)
Σ .

(2) If T = (S2, [N ], I; j, d) < T ∗ and ST (µ) 6= ∅, T must have one of the three forms given by
Lemma 5.10. Since D(2) does not vanish on ST (µ) in Case (1) of Lemma 5.10, CΣ×ST (µ)(α

⊥) = 0

in this case. In Case (2), i.e. T = T ∗(l) for some l ∈ [N ], D(2)

T ,1̂
does not vanish over ST (µ); see

Subsection 4.5. Thus, by Corollaries 3.13, 3.6, and the first estimate of Lemma 5.10, CΣ×ST (µ)(α
⊥)

is twice the number of Lemma 3.14 corresponding to

M̄ = Σ×ST (µ), E2 = FT ⊗2 ≈ C, O2 = T̃Σ∗⊗L∗⊗O⊥ ≈ T̃Σ∗⊗O⊥,

and α2∈Γ(M̄;E∗
2⊗O2) that has full rank on every fiber. It follows that

CΣ×ST (µ)(α
⊥) = 2

〈
c1(O2)−c1(E2),

[
Σ×ST (µ)

]〉
= 4|ST (µ)|. (5.31)

(3) Suppose T is as in Case (3) of Lemma 5.10. Since x1̂ 6= x2̂, DT ,1̂ and DT ,2̂ do not vanish on
ST (µ)=UT (µ)∩S2(µ) (see Subsection 4.6), and DT ,1̂+DT ,2̂ vanishes on FS, x1̂DT ,1̂+x2̂DT ,2̂ does
not vanish on FS. Thus, the third estimate of Lemma 5.10, Corollary 3.13, and Lemma 3.14,

CΣ×ST (µ)(α
⊥) =

〈
c1(O2)−c1(E),

[
Σ×ST (µ)

]〉
= 2|ST (µ)|. (5.32)

Summing up equations (5.31) and (5.32) over all appropriate bubble types T < T ∗ and substituting
the result into (5.30), we obtain the claim.

Lemma 5.12 If n=3, n
(3)
1 (µ) = 〈4a+5c1(L∗), [S̄1(µ)]〉 − 3|S2(µ)|.

Proof: (1) We continue with the notation of Lemma 5.11. The number n
(3)
1 (µ) is the number of

zeros of the affine map in (4.33). Let

E = L⊗2 ⊕ L⊗3 −→ S̄1(µ).

Since the linear part α of the affine map has full rank on S1(µ) (see Subsection 4.5),

n
(3)
1 (µ) =

k=2∑

k=0

〈
λ2−k

E ck(O),
[
PE

]〉
− CPE|∂S̄1

(α⊥
E)

=
〈
4a+5c1(L

∗),
[
S̄1(µ)

]〉
− CPE|∂S̄1

(α⊥
E),

(5.33)

where O=ev∗TP
3.

(2) As in the proof of Lemma 5.11, CPE|ST (µ)(α
⊥
E)=0 for bubble types T of Case (1) of Lemma 5.10.

Suppose T = T ∗(l) for some l ∈ [N ], i.e. we are in Case (2) of Lemma 5.10. The normal bundle
of PE|ST (µ) in PE is π∗EFT ≈ C. By the first two estimates of Lemma 5.10, with appropriate
identifications,

∣
∣α⊥

E(γS(b, v1̂)) − α̃T (b, v1̂)
∣
∣ ≤ C|v1̂|

2+ 1
p ∀(b, v1̂)∈FT δ,

for some α̃T ∈Γ(PE|ST (µ);FT ∗⊗2⊗γ∗E⊗O⊥) which vanishes only on

ZT ≡
{
(b, [v,w])∈PE|ST (µ) : v− 3x1̂w=0

}
.
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Thus, by Corollaries 3.13 and 3.6 and Lemma 3.14,

CPE|(ST (µ)−ZT )(α
⊥
E) = 2

(〈
c1(γ

∗
E⊗O⊥)−c1(FT ),

[
PE|ST (µ)

]〉
− CZT

(α̃⊥
T )

)

= 4|ST (µ)| − 2CZT
(α̃⊥

T ).

By the first two estimates of Lemma 5.10, CZT
(α̃⊥

T )= |ZT |= |ST (µ)|. Since the images of D(2)

T ,1̂
and

D(3)

T ,1̂
are linearly independent in every fiber of ev∗TP

3 over ST (µ), by the first two estimates of

Lemma 5.10 and Corollary 3.13, CZT
(α⊥

E)=3|ZT |. Thus,

CPE|ST (µ)(α
⊥
E) =

(
4|ST (µ)| − 2|ST (µ)|

)
+ 3|ST (µ)| = 5|ST (µ)|. (5.34)

(3) Suppose T is as in Case (3). By the last two estimates of Lemma 5.10, with appropriate
identifications,

∣
∣α⊥

E(γS(b, v)) − α̃T (b, v)
∣
∣ ≤ C|v1̂|

1+ 1
p ∀(b, v)∈FSδ ,

for some α̃T ∈Γ(PE|ST (µ);FS∗⊗γ∗E⊗O⊥) which vanishes only on

ZT ≡ {(b, [v,w])∈PE|ST (µ) : 2v− 3(x1̂+x2̂)w=0}.

Thus, by Corollary 3.13 and Lemma 3.14,

CPE|(ST (µ)−ZT )(α
⊥
E) =

〈
c1(γ

∗
E⊗O⊥)−c1(FS),

[
PE|ST (µ)

]〉
− CZT

(α̃⊥
T )

= 2|ST (µ)| − CZT
(α̃⊥

T ).

By the last two estimates of Lemma 5.10, CZT
(α̃⊥

T ) = |ZT |. Finally, by Lemma 5.10 and Corol-
lary 3.13, CZT

(α⊥
E) = 2|ZT |. Thus,

CPE|ST (µ)(α
⊥) =

(
2|ST (µ)| − |ST (µ)|

)
+ 2|ST (µ)| = 3|ST (µ)|. (5.35)

The claim follows by summing up equations (5.34) and (5.35) over the appropriate equivalence
classes of bubble types T <T ∗ and plugging the result back into (5.33).

The next step is to relate 〈a, [S̄1(µ)]〉 and 〈c1(L∗), [S̄1(µ)]〉 to intersection numbers on the spaces
V̄1(µ), V̄2(µ), and V̄3(µ). The approach is similar to the proof of Lemma 5.4, but first we need to
interpret 〈a, [S̄1(µ)]〉 and 〈c1(L∗), [S̄1(µ)]〉 as the zero sets of some bundle sections. In our case,
the spaces ŪT ∗(µ) and ŪT ∗(l)(µ) for all l∈ [N ] are topological manifolds (not just orbifolds). Thus,
c1(L∗) represents the first chern class of some line bundle L∗−→ŪT (µ). It is well-known in algebraic
geometry that a slightly weaker statement is in fact true for any choice of constraints, and

L∗ = L∗ ⊗O
(

−
∑

l∈[N ]

ŪT ∗(l)

)

.

Let V1 =ev∗O(1)−→ŪT ∗(µ), V2 =L∗−→ŪT ∗(µ), and ηi =c1(Vi). Choose sections si∈Γ(ŪT ∗(µ);Vi)
such that si is smooth and transversal to the zero set on all smooth strata UT (µ) ⊂ ŪT ∗(µ) and on
ST (µ) ⊂ S̄1(µ). The second condition implies that si does not vanish on the finite set ∂S̄1.

Lemma 5.13 If d≥1, µ is a tuple of p points and q lines in general position in P
3 with 2p+q=4d−3,

〈a, [S̄1(µ)]〉 =
〈
6a3c1(L∗)+4a2c21(L∗)+ac31(L∗), [V̄1(µ)]

〉
−

〈
4a2+a(c1(L∗

1)+c1(L∗
2)), [V̄2(µ)]

〉
;

〈c1(L∗), [S̄1(µ)]〉 =
〈
4a3c1(L∗)+6a2c21(L∗)+4ac31(L∗)+c41(L∗), [V̄1(µ)]

〉
− τ3(µ).
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Proof: (1) Similarly to the proof of Lemma 5.4,

〈ηi, [S̄1(µ)]〉 =
〈
ηic3

(
L∗⊗ev∗TP

3
)
, [V̄1(µ)]

〉
− C∂V̄1(µ)(D⊕si). (5.36)

Suppose T =
(
S2, [N ], I; j, d

)
<T ∗ is a bubble type such that UT (µ) 6= ∅. If d0̂ 6=0, by our assump-

tions on si, D⊕si does not vanish on UT (µ). Thus, for the purposes of computing C∂V̄1(µ)(D⊕si),
we can assume d0̂ =0.
(2) In order to compute the numbers CUT (µ)(D⊕si), we slightly modify the approach of Subsec-
tion 3.2, since we have a great amount of flexibility in choosing the section si. We consider a family
ψt =(tν+D, si) of sections of L∗⊗ev∗TP

3⊕Vi, with ν generic with respect to D. Let π : FT −→UT (µ)
be the bundle projection map and fix an identification of γµ∗

T Vi −→FT δ with π∗Vi. It can be as-
sumed that the section si has been chosen so that γµ∗

T si∈Γ(FT δ;π
∗Vi) is constant on the fibers of

FT δ over an open subset KT of UT (µ) that contains all of the finitely many zeros of the affine map

FT −→ L∗⊗ev∗TP
3 ⊕ Vi, (b, υ) −→

(
ν̄b + αT (ρT (υ)), si(b)

)
,

over ŪT (µ), where αT and ρT are as in (2.21). Note that by our assumptions on si, the images
of {DT ,h : h ∈ χ(T )} are linearly independent in every fiber of ev∗TP

n over s−1
i (0). Thus by

Theorem 2.8, Corollary 3.13, and Lemma 3.2, CUT (µ)(D⊕ si

)
= 0 if H0̂T 6= Î. Furthermore, if

H0̂T = Î, CUT (µ)(D⊕si) is the number of zeros of the affine map

FT −→ L∗⊗ev∗TP
3, υ = (b, v) −→ ν̄T ,b + αT (υ), (5.37)

over s−1
i (0) ∩ ŪT (µ), where ν̄T ∈Γ(ŪT (µ);L∗⊗ev∗TP

3) is a generic section. Thus, by Lemma 3.14,

CUT (µ)(D⊕si) =
k=2∑

k=0

〈
λ2−k
FT ck(L

∗⊗ev∗TP
3),

[
PFT

∣
∣
s−1
i (0)∩ŪT (µ)

]〉
− C

PFT |s−1
i (0)∩∂ŪT

(α⊥
FT ),

=

k=2∑

k=0

〈
λ2−k
FT ck(L

∗⊗ev∗TP
3)ηi,

[
PFT ]

〉
− C

PFT |s−1
i (0)∩∂ŪT

(α⊥
FT ), (5.38)

where ∂ŪT = ŪT (µ)−UT (µ) and αFT ∈Γ(PFT ; γ∗FT ⊗L∗⊗ev∗TP
3) is the section induced by αT .

(3) Suppose i=1, i.e. ηi =a. If T =T ∗(l) and T ′=
(
S2, [N ], I ′; j, d′

)
<T is a bubble type such that

s−1
1 (0) ∩ UT ′(µ) ∩ α−1

T (0) 6= ∅, T ′ must have the form

|I ′ − I| = 2, H1̂T ′ = {2̂, 3̂}, d′
1̂

= 0, d′
2̂
6= 0, d′

3̂
6= 0.

By Theorem 2.8 applied to T̄ ′< T̄ , and Corollary 3.13,

Cs−1
1 (0)∩UT ′ (µ)(α

⊥
FT ) =

∣
∣UT ′(µ) ∩ s−1

1 (0)
∣
∣ = 〈a, [ŪT ′(µ)]〉.

Thus, summing up equation (5.38) over T =T ∗(l) with l∈ [N ], we obtain
∑

l∈[N ]

CUT ∗(l)(µ)(D⊕s1)=
∑

l∈[N ]

〈
6a3+4a2c1(L

∗
1̂
T ∗(l))+ac21(L

∗
1̂
T ∗(l)),

[
ŪT ∗(l)(µ)

]〉
−τ (1)

2 (µ), (5.39)

where τ
(1)
2 (µ) is the number of two-component connected degree-d curves passing through the

constraints with the node at the intersection of one of the constraints with a generic plane in P
3.

If |H0̂T |= |Î |=2, |M0̂T |=0, and T ′ is as above, up to equivalence of bubble types,

|I ′ − I| = 1, ι′
3̂

= 1̂, d′
1̂

= 0, d′
2̂
6= 0, d′

3̂
6= 0,
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i.e. T̄ ′= T̄ (l) for some l∈ [N ]. By Theorem 2.8 applied to T̄ ′< T̄ and Corollary 3.13,

C
PFT |s−1

1 (0)∩UT ′(µ)(α
⊥
FT ) =

∣
∣UT ′(µ) ∩ s−1

1 (0)
∣
∣ = 〈a, [ŪT ′(µ)]〉.

Thus, summing up equation (5.38) over T with |H0̂T |= |Î|=2 and |M0̂T |=0, we obtain

∑

|H0̂T |=|Î|=2,|M0̂T |=0

〈
a
(
4a+c1(L

∗
1̂
T )+c1(L

∗
2̂
T )

)
,
[
ŪT (µ)

]〉
−2τ

(1)
2 (µ)

=
〈
4a2+a(c1(L∗

1)+c1(L∗
2)),

[
V̄2(µ)

]〉
.

(5.40)

If |H0̂T |= |Î |=2 and |M0̂T |=1, αT has full rank on all of ŪT (µ). Thus, by Corollary 3.13,

CUT (µ)(D⊕si) =
〈
c1(L

∗⊗ev∗TP
3)−c1(FT ), [ŪT (µ) ∩ s−1

1 (0)]
〉

= |UT̄ (µ)|.

Here we used FT =L∗⊗
(
L1̂⊕L2̂

)
≈L∗⊕L∗ and Corollary 5.22. Thus, summing up equation (5.38)

over T with |H0̂T |= |Î|=2 and |M0̂T |=1 gives

∑

|H0̂T |=|Î|=2,|M0̂T |=1

CUT (µ)(D⊕si) = τ
(1)
2 (µ). (5.41)

Finally, if |H0̂T | = |Î | = 3, η1|Ū ′
T (µ) = 0. The first claim follows by plugging the sum of equa-

tions (5.39)-(5.41) into (5.36). See also equations (5.3) and (5.4).
(4) Suppose ηi = c1(L∗). We continue as in (3) above. If T =T ∗(l), αT does not vanish anywhere
on s−1

2 (0) ∩ ŪT (µ). Thus, by Corollary 3.13,

∑

l∈[N ]

CUT ∗(l)(µ)(D⊕s2) =
∑

l∈[N ]

〈
c(L∗⊗ev∗TP

3)c(L1̂T )−1,
[
ŪT ∗(l)(µ) ∩ s−1

2 (0)
]〉

=
∑

l∈[N ]

〈
c1(L∗)

(
6a2+4ac1(L

∗
1̂
T ∗(l))+c21(L

∗
1̂
T ∗(l))

)
,
[
ŪT ∗(l)(µ)

]〉
.

(5.42)

If |H0̂T |= |Î |=3, αT again does not vanish anywhere on s−1
2 (0) ∩ ŪT (µ), and thus

CUT (µ)(D⊕s2) =
∣
∣ŪT (µ) ∩ s−1

2 (0)
∣
∣ =

〈
c1(L∗), [ŪT (µ)]

〉
=

∣
∣ŪT̄ (µ)

∣
∣. (5.43)

Here we used Corollary 5.22 again. Note that if |H0̂T |= |Î|=2, η2|ŪT (µ) =0. This is immediate in
the case |M0̂T |= 0 and follows from Corollary 5.22 and (5.3) in the case |M0̂T |= 1. The second
claim of the lemma is obtained by summing (5.43) over all equivalence classes of bubble types
T <T ∗ with |H0̂T |= |Î |=3, and plugging the result along with (5.42) into (5.36). Note that

a3
∣
∣
ŪT ∗(l)(µ)

= 0 ∀ l∈ [N ] =⇒
〈
4a3c1(L

∗), [V̄1(µ)]
〉

=
〈
4a3c1(L∗), [V̄1(µ)]

〉
.

5.6 The Number n
(1)
1 (µ) in the n = 3 Case

We finally compute the remaining number n
(1)
1 (µ). The computation parallels the proof of Lemma 5.6.
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Lemma 5.14 If n=3,

n
(1)
1 (µ) = 4

〈
10a3c1(L∗) + 3a2c21(L∗),

[
V̄1(µ)

]〉
− 12τ

(2)
2 (µ),

where τ
(2)
2 (µ) denotes the number of two-component connected degree-d curves that pass through

the constraints and with the node on a generic line in P
3.

Proof: (1) We use the same notation as in the proof of Lemma 5.6. By equation (4.30) and
Lemma 3.14,

n
(1)
1 (µ) =

k=5∑

k=0

〈
ck(O)c5−k

1 (T ∗Σ⊗L∗),
[
Σ×ŪT ∗(µ)

]〉
− CΣ×D−1(0)(α

⊥),

= 2
〈
112a3c1(L

∗)+84a2c21(L
∗)+32ac31(L

∗)+5c41(L
∗),

[
ŪT ∗(µ)

]〉
− CΣ×D−1(0)(α

⊥),

(5.44)

where O=H0,1
Σ ⊗ev∗TP

3 and α∈Γ(Σ×ŪT ∗(µ);T ∗Σ⊗L∗⊗O) is the linear part of the affine map ψ
(1)
1

of (4.30). Let O2 =T ∗Σ⊗L∗⊗O⊥.
(2) Similarly to (2) of the proof of Lemma 5.4,

CΣ×S1(µ)(α
⊥) =

〈
e
(
T ∗Σ⊗L∗⊗ (H−

Σ⊗ev∗TP
3/C)

)
,
[
Σ×S̄1(µ)

]〉

= 2
〈
12a+5c1(L

∗), [S̄1(µ)]
〉
.

(5.45)

Suppose T = (S2, [N ], I; j, d)< T ∗ is a bubble type such that ST (µ) 6= ∅. By Lemma 5.10, there
are three possibilities for the structure of T , but CΣ×D−1(0)(α

⊥)=0 in all three cases. This claim
follows from Corollaries 5.9 and 3.13 and Lemma 3.2.
(3) As before, if T <T ∗ and CΣ×(UT (µ)−ST (µ))(α

⊥) 6=0, d0̂ =0 and H0̂T = Î. In such a case,

CΣ×(UT (µ)−ST (µ))(α
⊥) =

k=4∑

k=0

〈
λ4−k
FT ck(O2),

[
PFT

]〉
− Cα̃−1

FT (0)(α̃
⊥
FT ), (5.46)

where α̃FT ∈Γ(PFT ; γ∗FT ⊗O2) is the section induced by the section

π⊥◦(αT ◦sΣ)∈Γ
(
Σ×ŪT (µ);FT ∗⊗O2

)
.

(4) If T =T ∗(l) for some l∈ [N ], FT ≈L1̂T over ŪT (µ), and α−1
T (0)=Σ×D−1

T ,1̂
(0). Thus, by (5.46),

CΣ×(UT (µ)−ST (µ))(α
⊥) = 2

〈
112a3+84a2c1(L

∗
1̂
T )+32ac21(L

∗
1̂
T )+5c31(L

∗
1̂
T ),

[
ŪT (µ)

]〉

−CΣ×D−1

T ,1̂
(0)(α̃

⊥
FT ).

By Corollaries 6.3 and 3.13,

CΣ×ST (µ)(α̃
⊥
FT ) =

〈
c(FT ∗⊗O⊥

2 )c(L∗
T ,1̂

⊗ev∗TP
3)−1,

[
Σ×ST (µ)

]〉
= 10

∣
∣ST (µ)

∣
∣.

On the other hand, if T ′ = (S2, [N ], I ′; j′, d′)< T , we apply Theorem 2.8 to T̄ ′< T̄ . Then for the
same reason as before, CΣ×UT ′ (α̃

⊥
FT )=0 unless d1̂ =0 and H1̂T ′=I ′−I, i.e.

Î ′ = {1̂, 2̂, 3̂}, ι′
2̂

= 1̂, ι′
3̂

= 1̂, d′
1̂

= 0, d′
2̂
6= 0, d′

3̂
6= 0.
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In such a case, with E= L2̂T ′⊕L3̂T ′, by Corollary 3.13,

CΣ×UT ′(µ)(α̃
⊥
FT ) =

〈
c(FT ∗⊗O2)c(E)−1,

[
Σ×ŪT ′(µ)

]〉

=
〈
32a+ 5(c1(L

∗
2̂
T ′)+c1(L

∗
3̂
T ′)),

[
ŪT ′(µ)

]〉
.

Summing equation (5.46) over T =T ∗(l), we thus obtain

∑

l∈[N ]

CΣ×(UT ∗(l)(µ)−ST ∗(l)(µ))(α
⊥) = −64τ

(1)
2 (µ) − 10

〈
c1(L

∗
1)+c1(L

∗
2),

[
V̄2,1(µ)

]〉
(5.47)

+ 2
∑

l∈[N ]

(〈
112a3+84a2c1(L

∗
1̂
)+32ac21(L

∗
1̂
)+5c31(L

∗
1̂
),

[
ŪT ∗(l)(µ)

]〉
− 5

∣
∣ŪT ∗(l) ∩ S̄1(µ)

∣
∣

)

,

where L1̂ = L1̂T ∗(l), V̄2,1(µ) =
⋃

l∈[N ]

V̄2,1;l(µ), and V̄2,1;l(µ) denotes the union of the spaces ŪT (µ)

taken over all equivalence classes of basic bubble types T =(S2, [N ]−{l}, {1̂, 2̂}; j, d) with d1̂, d2̂>0
and d1̂+d2̂ =d.

(5) If |H0̂T |= |Î |=2 and |M0̂T |=0, FT ≈ L1̂T ⊕L2̂T over ŪT (µ) and α̃−1
FT (0) consists of a section

ZT of PFT over Σ×ST (µ) and the spaces Σ×ŪT ′(µ), with T̄ ′ corresponding to the bubble types T
described in (2) in the proof of Lemma 5.5. By Corollaries 6.3 and 3.13,

CΣ×ST (µ)(α̃
⊥
FT ) =

〈
c(γ∗FT ⊗O⊥

2 )c(C3)−1,
[
Σ×ST (µ)

]〉
= 10

∣
∣ST (µ)

∣
∣.

On the other hand, if T ′=(S2, [N ], I ′; j′, d′)<T and CPFT |Σ×U ′
T (µ)(α̃

⊥
FT ) 6=0,

|I ′ − I| ∈ {1, 2}, H2̂T = I ′ − I, d′
2̂

= 0, d′h 6= 0 if h∈ Î ′−{2̂}.

If |I ′−I|=1, by Corollary 3.13,

CPFT |Σ×U ′
T (µ)(α̃

⊥
FT ) =

〈
c(O2)c(L1̂T ′⊕L3̂T ′)−1

,
[
Σ×ŪT ′(µ)

]〉

= 2
〈
32a + 5(c1(L

∗
1̂
T ′)+c1(L

∗
3̂
T ′)),

[
ŪT ′(µ)

]〉
;

see the proof of Lemma 5.13 for more details. If |I ′−I|=2, by Corollary 3.13,

CPFT |Σ×U ′
T (µ)(α̃

⊥
FT ) =

〈
c1(O2)−c1(C3),

[
Σ×ŪT ′(µ)

]〉
= 10

∣
∣ŪT ′(µ)

∣
∣.

Thus, summing equation (5.46) over T <T ∗ with |H0̂T |= |Î|=2 and |M0̂T |=0, we obtain

∑

[T ]

CΣ×(UT (µ)−ST (µ))(α
⊥) = −30τ3(µ) − 10|S2(µ)| (5.48)

+ 2
〈
84a2 + 32a(c1(L∗

1)+c1(L∗
2)) + 5(c21(L∗

1)+c
2
1(L∗

2)) + 5c1(L∗
1)c1(L∗

2),
[
V̄2(µ)

]〉

(6) If |H0̂T |= |Î|=2 and |M0̂T |=1, α̃FT does not vanish on Σ×ŪT̄ (µ). Thus, by Corollary 3.13,

CΣ×UT (µ)(α
⊥) =

〈
c(O2)c

(
L∗ ⊗ (L1̂T ⊕L2̂T )

)−1
,
[
Σ×ŪT (µ)

]〉

= 2
〈
32a+ 5(c1(L

∗
1̂
T )+c1(L

∗
2̂
T )),

[
ŪT̄ (µ)

]〉
.
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Here we used the decomposition (5.2) and Corollary 5.22. Summing equation (5.46) over T <T ∗

with |H0̂T |= |Î |=2 and |M0̂T |=1, we obtain

∑

[T ]

CΣ×UT (µ)(α
⊥) = 64τ

(1)
2 (µ) + 10

〈
c1(L

∗
1)+c1(L

∗
2), [V̄2,1(µ)]

〉
. (5.49)

(7) Finally, if |H0̂T |= |Î |=3, FT ≈L∗⊕L∗⊕L∗ over ŪT (µ), and α̃FT again does not vanish over
Σ×ŪT̄ (µ). Then by Corollary 3.13,

CΣ×UT (µ)(α
⊥) =

〈
c(O2)c(L

∗⊕L∗⊕L∗)−1,
[
Σ×ŪT (µ)

]〉
= 10|ŪT̄ (µ)|.

Thus, summing equation (5.46) over T <T ∗ with |H0̂T |= |Î|=3, we obtain

∑

|H0̂T |=3

CΣ×UT (µ)(α
⊥) = 10τ3(µ). (5.50)

From equations (5.44), (5.45), and (5.47)-(5.50), we conclude that

n
(1)
1 (µ) =2

〈
112a3c1(L∗)+84a2c21(L∗)+32ac31(L∗)+5c41(L∗),

[
V̄1(µ)

]〉

− 2
〈
84a2+32a(c1(L∗

1)+c1(L∗
2))+5(c21(L∗

1)+c
2
1(L∗

2))+5c1(L∗
1)c1(L∗

2),
[
V̄2(µ)

]〉

− 2
〈
12a+5c1(L∗), [S̄1(µ)]

〉
+10

∣
∣S2(µ)

∣
∣ + 20τ3(µ). (5.51)

The claim follows by using Lemma 5.5 and 5.13.

5.7 Computation of Chern Classes

In this subsection, we show that all intersection numbers of the spaces V̄k(µ) involving powers of a

and powers of c1(L∗
i ) are computable. We can then conclude that the numbers n

(k)
m (µ) are com-

putable. The computability of intersection numbers of tautological classes of V̄k(µ), which include
a and c1(L∗

i ), has been shown in [P2]. For the sake of completeness, a slightly different approach
is presented below.

If d0̂ and d1̂ are nonnegative integers and µ is an N -tuple of any generic constraints in P
n, let

M̄(d0̂,d1̂)
(µ) denote the union of the spaces ŪT (µ), where T is a simple bubble type of the form

T =
(
S2, [N ], {0̂, 1̂}; j, {d0̂, d1̂}

)
.

Then M̄T ,(d0̂,d1̂)
(µ) is a complex codimension-one homology class in the space V̄1(µ) with d=d0̂+d1̂.

If d>0, let

≥∑

d0̂+d1̂=d

f(d0̂, d1̂) =
∑

d
0̂
+d

1̂
=d

d0̂,d1̂≥0

f(d0̂, d1̂),
>∑

d0̂+d1̂=d

f(d0̂, d1̂) =
∑

d
0̂
+d

1̂
=d

d0̂,d1̂>0

f(d0̂, d1̂),

whenever f is any function defined on the appropriate subset of Z×Z.
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Lemma 5.15 Let T ∗=(S2, [N ], {0̂}; 0̂, d) be a bubble type with d>0. Then in H∗(ŪT ∗(µ)),

c1(L
∗) =

1

d2

(

H− 2da+

≥
∑

d0̂+d1̂=d

d2
1̂
M̄(d0̂,d1̂)(µ)

)

,

where H denotes the subset of elements in ŪT ∗(µ) that pass through a generic codimension-two
linear subspace of P

n.

Proof: (1) We restate the proof of [I] in terms of the line bundle L∗⊗d2−→ŪT ∗(µ), instead of passing
to a cover of ŪT ∗(µ). Define a section ψ∈Γ(ŪT ∗(µ);L∗⊗d2

) as follows. Let H0 and H1 be two fixed
hyperplanes in P

n, generic with respect to the constraints µ1, . . . µN . Suppose

[b] =
[
(S2, [N ], 0̂; , (0̂, y), u0̂)

]
∈ UT ∗(µ)

is such that u0̂ is transversal to H0 and H1. Then,

u−1
0̂

(Hi) =
{
[x

(i)
1 , y

[i]
1 ], . . . , [x

(i)
d , y

[i]
d ]

}
, i = 0, 1,

for some [x
(i)
k , y

[i]
k ] ∈ P

1. Define ψ([b]) by

ψ([b, c]) = cd
2

∏

k,l∈[d]

(
x

(0)
k

y
(0)
k

− x
(1)
l

y
(1)
l

)

. (5.52)

While this section could be infinite, it is well-defined, i.e. independent of the choice of a represen-
tative b ∈ BT ∗ for [b]. With an appropriate coordinate change on C

n+1, it can be assumed that
Hi ={Xi =0}. The map u0̂ corresponds to (n+1) homogeneous polynomials of degree d: p0, . . . , pn.
Since the right-hand side of (5.52) is symmetric in the roots of p0 and separately in the roots
of p1, ψ is a rational function in the coefficients of p0 and p1. Thus, ψ extends over all of UT ∗(µ).
Furthermore, this section extends by zero over ŪT ∗(µ)−UT ∗(µ).
(2) We now identify the zero set of the section ψ. From equation (5.52), it is clear that ψ vanishes
with multiplicity one if p0 and p1 have a common root, i.e. if u0̂ passes through H0 ∩ H1. The
section ψ also has a pole of order d along the sets of maps

X0 = {b : y(0)
k (b)=0 for a unique k∈ [d], p1(1, 0) 6=0},

X1 = {b : y(1)
k (b)=0 for a unique k∈ [d], p0(1, 0) 6=0}.

Note that X̄i = ev−1(Hi). Finally, while ψ vanishes outside of UT ∗(µ), ŪT (µ) has (complex)
codimension one in ŪT ∗(µ) if and only if T < T ∗ is a two-bubble strata, i.e. as described just
before the statement of the lemma. Let d0̂ and d1̂ be the corresponding degrees. It follows from
equation (5.52) that ψ has a zero of order d2

1̂
along an open subset of UT (µ). Thus, we obtain

c1
(
L∗⊗d2)

= H− 2da+

≥∑

d0̂+d1̂=d

d2
1̂
M̄(d0̂,d1̂)(µ).

Corollary 5.16 With notation as in Lemma 5.15,

c1(L∗) =
1

d2

(

H− 2da+

>∑

d0̂+d1̂=d

d2
1̂
M̄(d0̂,d1̂)

(µ)
)

.
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Proof: This is immediate from Lemma 5.15 and (5.3).

If T = (S2, [N ], I; j, d) is any bubble type, let T0̂ = (S2,M0̂T tH0̂T , {0̂}; 0̂, d0̂). Denote by Tk for
k∈H0̂T the simple bubble types corresponding to T̄ . Then,

ŪT (µ) = ŪT0̂
(µ) × ∏

k∈H
0̂
T

(evk×ev)

∏

k∈H0̂T
ŪTk

(µ) (5.53)

≡
{(
b0̂, (bk)k∈H0̂T

)
∈ ŪT0̂

(µ) ×
∏

k∈H0̂T
ŪTk

(µ) : evk(b0̂)=ev(bh) ∀k∈H0̂T
}

.

Lemma 5.17 With notation as above, if T <T ∗ and d0̂ 6=0,

c1(L∗T ∗)
∣
∣
ŪT (µ)

=
{

c1(L∗T0̂)
∣
∣
ŪT

0̂
(µ)

+
∑

∅6=M0⊂M0̂T0̂,M0∩H0̂T 6=∅
ŪT0̂(M0)(µ)

}

× ∏

k∈H
0̂
T

(evk×ev)

∏

k∈H0̂T
ŪTk

(µ).

Proof: Since L0̂T ∗|ŪT (µ) =L0̂T and ŪT (µ) ∩ ŪT ∗(M0)(µ)=∅ unless M0⊂M0̂T , by (5.3)

c1(L∗T ∗)
∣
∣
ŪT (µ)

= c1(L
∗T )

∣
∣
ŪT (µ)

−
∑

∅6=M0⊂M0̂T
ŪT (µ) · ŪT ∗(M0)(µ)

= c1(L
∗
0̂
T0̂)

∣
∣
ŪT (µ)

−
∑

∅6=M0⊂M0̂T
ŪT (M0)(µ).

The claim follows by using equation (5.3) again.

Corollary 5.18 All intersection numbers on V̄k(µ) involving only the powers of a and c1(L∗
k) are

computable.

Proof: Corollary 5.16 and Lemma 5.17 reduce the computation of such numbers to understanding
the restrictions c1(L∗T0̂)|ŪT

0̂
(M0)

, where M0 is a subset of M0̂T0̂ intersecting H0̂T . By (5.2),

ŪT0̂(M0) ≈ M̄0,{0̂,1̂}tM0
× ŪT0̂/M0

.

We express c1(L∗T0̂)|ŪT
0̂
(M0)

in terms of cohomology classes on M̄0,{0̂,1̂}tM0
. By definition, LT0̂|ŪT

0̂
(M0)

comes from a line bundle over M̄0,{0̂,1̂}tM0
. In fact,

c1(L
∗T0̂)

∣
∣
M̄0,{0̂,1̂}tM0

×ŪT
0̂

/M0

= ψ0̂ × 1,

where ψ0̂ is the ψ-class of M̄0,{0̂,1̂}tM0
corresponding to the marked point 0̂. Since L∗T0̂|ŪT

0̂
(M0)

is L∗T0̂(M0),

c1(L∗T0̂)
∣
∣
ŪT

0̂
(M0)

= c1(L
∗T0̂)

∣
∣
ŪT

0̂
(M0)

−
∑

∅6=M ′
0⊂M0̂T

ŪT0̂(M
′
0) · ŪT0̂(M0)

= ψ0̂×1 −
∑

∅6=M ′
0⊂(M0−H0̂T )

ŪT0̂(M ′
0;M0−M ′

0)
= ψ̃M0−H0̂T ×1

∣
∣
M̄{0̂,1̂}tM0

×ŪT
0̂

/M0

,

78



where T0̂(M
′
0;M0−M ′

0)≡{T0̂(M0)}(M ′
0) and for any proper subset J̃ of J we define the cohomology

class ψ̃J̃ on M̄0,{0̂,1̂}tJ by

ψ̃J̃ = ψ0̂ −
∑

∅6=J ′⊂J̃

M̄0,({0̂}tJ ′,{1̂}t(J−J ′)).

Here M̄0,({0̂}tJ ′,{1̂}t(J−J ′)) is the closure in M̄0,{0̂,1̂}tJ of the two-component strata such that the

marked points on one of the components are {0̂}tJ ′. The numbers

χ
(
|J |, |J̃ |

)
≡

〈
ψ̃
|J |−1

J̃
,
[
M̄0,{0̂,1̂}tJ

]〉

are given in Corollary 5.20, which is a consequence of the following well-known lemma; see [P2] for
example.

Lemma 5.19 (1) For any j∗∈J , ψ̃J−{j∗}=0 in H∗(M̄0,{0̂,1̂}tJ).

(2) If NM̄0,({0̂}tJ ′,{1̂}t(J−J ′)) is the normal bundle of

M̄0,({0̂}tJ ′,{1̂}t(J−J ′)) ≈ M̄0,{0̂,1̂}tJ ′ × M̄0,{0̂,1̂}t(J−J ′)

in M̄0,{0̂,1̂}tJ ,

c1
(
NM̄0,({0̂}tJ ′,{1̂}t(J−J ′))

)
= −ψ1̂ × 1 − 1 × ψ0̂.

Corollary 5.20 If m>0, χ(m, 0)=1. If m>k>0, χ(m,k)=0.

For our purposes, we can assume that the constraints µ1, . . . , µN are disjoint. In the case of P
2, the

dimension of the space V̄k(µ) is at most 2. Thus, by a dimension count, if ŪT0̂(M0)(µ) is nonempty
and appears in the computation of the intersection numbers of Corollary 5.18 via Lemma 5.17, then
H0̂T consists of a single element and M0 =H0̂T . The corresponding moduli space M̄0,{0̂,1̂}tM0

is
a single point and thus

〈
ψ̃
|M0|−1
M0−H0̂T ,

[
M̄{0̂,1̂}tM0

]〉
= 1.

In the case of P
3, V̄1(µ) is four-dimensional, and we encounter two cases when M̄0,{0̂,1̂}tM0

is
positive-dimensional. One possibility is that H0̂T is still a single-element set, but M0 contains
one of the N marked points. In this case, by Corollary 5.20 or simply by the first statement of
Lemma 5.19,

〈
ψ̃
|M0|−1
M0−H0̂T

,
[
M̄{0̂,1̂}tM0

]〉
= χ(2, 1) = 0.

In fact, we can replace the first statement of Lemma 5.19 with the direct computation of the degree
ψ0̂ on M̄0,4 given by Lemma 5.21 below. The other case when M̄0,{0̂,1̂}tM0

is positive-dimensional
is M0 =H0̂T is a two-element set. Then

〈
ψ̃
|M0|−1
M0−H0̂T

,
[
M̄{0̂,1̂}tM0

]〉
= χ(2, 0) = 1.

Lemma 5.21 Let M̄(0)
0,4 =

{
(y1, y2, y3)∈C

3 : y1+y2+y3 = 0, β(|y1|)+β(|y2|)+β(|y3|) = 1
2

}
. Then

the action of S1 on M̄(0)
0,4 induced from the standard action on C is free,

M̄0,4 = M̄(0)
0,4/S

1 ≈ P
1,

and the line bundle associated to this quotient is the tautological line bundle over P
1.

79



Proof: Identify M̄(0)
0,4 with S3 ⊂ C

2 S1-equivariantly by the map

(y1, y2, y3) −→
(y1, y2)

|y1| + |y2|
.

Our assumptions on β imply that this map is a diffeomorphism; see Subsection 1.3.

Corollary 5.22 If T = (S2, [3], {0̂}; 0̂, 0), 〈c1(L∗), [ŪT ]〉 = 1.

Remark: In [Z1], we extend the definition of M̄(0)
0,4 of Corollary 5.21 to construct spaces M̄(0)

T for
all bubble types T .

5.8 The Final Formulas

We finally put everything together to arrive at formulas for the numbers n2,d(µ) for P
2 and P

3.
It can be assumed that µ is a tuple of (3d−2) points in the case of P

2 and of p points and q lines,
with 2p+q = 4d−3, in the case of P

3. In the former case, we write n2,d for n2,d(µ) and nd for the
number of rational plane degree d curves passing through 3d−1 points.

If ν ∈ Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnT ∗

P
n) is generic, for all t ∈ (0, 1), the signed cardinality of the

set MΣ,tν,d(µ) is the symplectic invariant RT2,d(;µ). If t>0 is sufficiently small, every element of
MΣ,tν,d(µ) lies either in a small neighborhood U of the set HΣ,d(µ) or in a small neighborhood W
of the space of all bubble map with singular domains. Furthermore,

±∣
∣MΣ,tν,d(µ) ∩ U

∣
∣ =

∣
∣HΣ,d(µ)

∣
∣ = 2n2,d(µ).

On the other hand, by Subsection 4.9,

∣
∣MΣ,tν,d(µ) ∩W

∣
∣=







n
(1)
1 (µ)+2n

(2)
1 (µ)+18n

(3)
1 (µ)+n

(1)
2 (µ), if n=2;

n
(1)
1 (µ)+2n

(2)
1 (µ)+18n

(3)
1 (µ)

+n
(1)
2 (µ)+2n

(2)
2 (µ) + n

(1)
3 (µ),

if n=3.
(5.54)

Thus, n2,d(µ) is one-half of the difference between RT2,d(;µ) and the number in (5.54). We write
CR(µ) for the number given by (5.54).

We first consider to the n=2 case. We abbreviate M(d1,d2)(µ) as Md1,d2 . Let

Z2;d =
( ⋃

d1,d2>0

d1+d2=0

Zd1,d2

)/
Z2, where Zd1,d2 =

⋃

jl=1,2

Ū(S2,[N ],I;j,{0,d1,d2})(µ),

and the partial ordering on I = {0̂, 1, 2} is 0< 1, 2. The set Z2;d is the zero-dimensional space of
three-bubble maps passing through the (3d-2) points µ, such that the map is trivial on the principal
component. Note that

∣
∣Zd;2

∣
∣ = τ2(µ) =

1

2

∑

d1+d2=d

(
3d−2

3d1−1

)

d1d2nd1nd2. (5.55)
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The binomial coefficient counts the number of possible ways of distributing the constraints between
the two nontrivial bubbles. Without the factor d1d2, the above number would have been precisely
the number of two-component rational curves passing through (3d−2) generic points in P

2. However,
we have to account for the image of the evaluation map at 0̂, which must be one of the d1d2 points
of intersection of two rational curves of degrees d1 and d2.

Lemma 5.23 In the n=2 case, the total correction is given by

CR(µ) =
〈
78a2+72ac1(L∗)+22c21(L∗),

[
V̄1(µ)

]〉
− 18τ2(µ).

Proof: The four numbers of (5.54) are given by Lemmas 5.6 and 5.3 and by Corollary 5.2. The
cardinality of S1(µ) is given by Lemma 5.4.

Lemma 5.24 With notation as above,

〈
ac1(L∗), [V̄1(µ)]

〉
=

1

d

(

− nd +
1

2

∑

d1+d2=d

d2
1d

2
2

(
3d−2

3d1−1

)

nd1nd2

)

.

Proof: By Corollary 5.16,

ac1(L∗) =
1

d2
a
(

H− 2da+
>∑

d1+d2=d

d2
2Md1,d2

)

. (5.56)

Note that

∑

d1+d2=d

d2
2

〈
a, [Md1,d2]

〉
=

∑

d1+d2=d

d1(d1d2)d
2
2

(
3d−2

3d1−1

)

nd1nd2

=
1

2
d

∑

d1+d2=d

d2
1d

2
2

(
3d−2

3d1−1

)

nd1nd2.

(5.57)

The reason for the appearance of the factor d1d2 in (5.57) is the same one as in (5.55). On the
other hand, the factor d1 appears because we need to count the number of times the first rational
component intersects a line in P

2. Since

〈
aH, [V̄1(µ)]

〉
= dnd and

〈
a2, [V̄1(µ)]

〉
= nd,

the claim follows by plugging (5.57) into (5.56).

Lemma 5.25 With notation as above,

〈
c21(L∗), [V̄1(µ)]

〉
= −1

2

∑

d1+d2=d

(
3d−2

3d1−1

)

d1d2nd1nd2.

Proof: By Corollary 5.16,

c21(L∗) =
1

d2
c1(L∗)

(

H− 2da+
∑

d1+d2=d

d2
2Md1,d2

)

. (5.58)
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Since there are no two-component rational curves of total degree d passing through (3d−1) generic
points in P

2 and there are no three-component rational curves of total degree d passing through
(3d−2) generic points in P

2, by Corollary 5.16

〈
Hc1(L∗), [V̄1(µ)]

〉
=

1

d2

〈
−2daH, [V̄1(µ)]

〉
= −2nd. (5.59)

Similarly by Corollary 5.16 and Lemma 5.17,

〈
c1(L∗), [Md1,d2 ]

〉
=

1

d2
1

〈
−2d1aH, [Md1,d2 ]

〉
+

∣
∣Zd1,d2

∣
∣ = −

∣
∣Zd1,d2

∣
∣

= −d1d2

(
3d−2

3d1−1

)

nd1nd2 .

(5.60)

Note that by symmetry

∑

d1+d2=d

d1d
3
2

(
3d−2

3d1−1

)

nd1nd2 =
1

2

∑

d1+d2=d

d1d2

(
d2−2d1d2

)
(

3d−2

3d1−1

)

nd1nd2. (5.61)

The claim now follows from equations (5.58)-(5.61) and Lemma 5.24.

Corollary 5.26 The total correction term is given by

CR(µ) = 78nd + 72
1

d

(

−nd +
1

2

∑

d1+d2=d

d2
1d

2
2

(
3d−2

3d1−1

)

nd1nd2

)

− 20
∑

d1+d2=d

d1d2

(
3d−2

3d1−1

)

nd1nd2 .

Proof: This claim is immediate from Lemmas 5.23-5.25 and equation (5.55).

Lemma 5.27 The genus-two degree-d RT-invariant of P
2 is given by

RT2,d(;µ) ≡ RT2,d(; p[3d−2]) = 6d2nd +
∑

d1+d2=d

d3
1d

3
2

(
3d−2

3d1−1

)

nd1nd2.

Proof: Applying the genus-reducing composition law of [RT] twice, we obtain

RT2,d(; p[3d−2]) = 2RT1,d(p,P
2; p[3d−2]) +RT1,d(`, `; p[3d−2])

= 4RT0,d(p,P
2, p,P2; p[3d−2]) + 4RT0,d(p,P

2, `, `; p[3d−2]) +RT0,d(`, `, `, `; p[3d−2])

= 0 + 4RT0,d(p, `, `; p[3d−2]) +RT0,d(`, `, `, `; p[3d−2]).

(5.62)

Since the genus-zero three-point RT-invariant is the usual enumerative invariant, the middle term
above is simply 4d2nd. On the other hand, by the component-splitting composition law of [RT],

RT0,d(`, `, `, `; p[3d−2]) = 2RT0,0(`, `,P
2; )RT0,d(`, `, p; p[3d−2])

+
∑

d1+d2=d

∑

J1+J2=[3d−2]

RT0,d1(`, `, `; pJ1)RT0,d2(`, `, `; pJ2)

= 2d2nd +
∑

d1+d2=d

d3
1d

3
2

(
3d−2

3d1−1

)

nd1nd2 .

(5.63)
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The lemma follows from equations (5.62) and (5.63).

Theorem 1.1 is nearly proved. We can simplify the expression in Corollary 5.26 by using a re-
cursive relation for the numbers nd; see [RT, p363]. The expression of Theorem 1.1 is half of
the difference between the quantity of Lemma 5.27 and Corollary 5.26. Note that the numbers
nd with d= 1, 2, 3 have long been known to be zero; see [ACGH]. Strictly speaking, our compu-
tation does not apply to the cases d=1, 2. However, these two cases do provide a consistency check.

The case of P
3 is significantly harder than the n = 2 case. An explicit recursive formula as in

Theorem 1.1 would be rather long, so we do not provide one. Instead we express n2,d(µ) in terms
of the corresponding symplectic invariant and intersection numbers of the spaces V̄1(µ), V̄2(µ),
and V̄3(µ).

Theorem 5.28 If d is a positive integer and µ is a tuple of p points and q lines in general position
in P

3 with 2p+q=4d−3,

2n2,d(µ) = RT2,d(·;µ) − CR(µ), where

1

2
CR(µ) =

〈
480a3c1(L∗)+476a2c21(L∗)+240ac31(L∗)+49c41(L∗),

[
V̄1(µ)

]〉
+ 36τ3(µ)

−
〈
324a2+144a(c1(L∗

1)+c1(L∗
2))+27(c21(L∗

1)+c
2
1(L∗

2))+25c1(L∗
1)c1(L∗

2),
[
V̄2(µ)]

〉
.

Furthermore, RT (·;µ) and all intersection numbers above are computable.

Proof: The six numbers of (5.54) in the n=3 case are given by Lemmas 5.14, 5.11, 5.12, 5.7, 5.3,
and Corollary 5.2, respectively. The numbers 〈a, [S̄1(µ)]〉, 〈c1(L∗), [S̄1(µ)]〉, and

∣
∣S̄2(µ)

∣
∣ are given

by Lemmas 5.5 and 5.13. The symplectic invariant RT2,d(·;µ) is well-known to be computable;
see [RT]. The above intersection numbers are computable by Corollary 5.18.

As in the case of P
2, we recover the well-known fact that all degree-one, -two, and -three numbers

are zero. The only degree-one number, the number of genus-two degree-one curves through a line,
is zero because there are no holomorphic degree-one maps from a positive-genus curve into P

n;
see [ACGH]. The eight degree-two and -three numbers are zero because the image of any holo-
morphic map of degree two or three from a genus-two curve into P

n is a line, see [ACGH], while
no line passes through the required constraints. The first three degree-four numbers given below
have also been known to be zero, since the image of any holomorphic map of degree four from a
genus-two curve into P

n must lie in a plane. Finally, observe that the fourth degree-four number
is the number n2,4 given by Theorem 1.1, as should be the case.

degree 4 5

(p,q) (6,1) (5,3) (4,5) (3,7) (0,13) (5,7)

RT2,d(·;µ) 7,872 64,960 548,608 4,906,304 5,130,826,752 290,439,680

CR(µ) 7,872 64,960 548,608 4,877,504 4,998,465,792 258,287,360

n2,d(µ) 0 0 0 14,400 66,180,480 16,076,160
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6 Appendix

6.1 A Short Exact Sequence on Pn

If M is a Kahler manifold and E−→M is a holomorphic vector bundle, let O(E) denote the sheaf
of holomorphic sections of E. If E −→M is the trivial holomorphic line bundle, we write O for
O(E). Let H−→P

n be the hyperplane bundle.

Lemma 6.1 There exists an exact sequence of sheaves over P
n:

0 −→ O −→ (n+1)O(H) −→ O(TP
n) −→ 0.

Proof: (1) Let [X0 : . . . : Xn] denote the homogeneous coordinates on P
n. Denote by X̄i the section

of the hyperplane bundle given by

X̄i|[X0:...:Xn](X0, . . . ,Xn) = Xi ∈ C.

Then we define a sheaf map O −→ (n+1)O(H) by

f −→ (fX̄0, . . . , fX̄n).

Let Ui ={[X0 : . . . :Xn] : Xi 6=0}. On Ui, we can use the complex coordinates

zi,k =
Xk

Xi
, k ∈ {0, . . . , n} − {i}.

Using these coordinates, we define a sheaf map (n+1)O(H)−→O(TP
n) by

(p0, . . . , pn) −→
∑

k 6=i

(
pk(zi,0, . . . , zi,n) − zi,kpi(zi,0, . . . , zi,n)

) ∂

∂zi,k
, (6.1)

where zi,i = 1. We need to see that this map is well-defined. Suppose j 6= i. Then,

zj,l = z−1
i,j zi,l =⇒ ∂

∂zi,k
=

∑

l 6=j

∂zj,l
∂zi,k

∂

∂zj,l
=







z−1
i,j

∂
∂zj,k

, if k 6=j;
−z−2

i,j

(
∂

∂zj,i
+

∑

l 6=i,j

zi,l
∂

∂zj,l

)

, if k=j.
(6.2)

Since each pl is a linear functional, if k 6= i, j, we can write the kth summand in (6.1) as

(
z−1
j,i pk(zj,0, . . . , zj,n) − z−2

j,i zj,kpi(zj,0, . . . , zj,n)
)
z−1
i,j

∂

∂zj,k

=
(
pk(zj,0, . . . , zj,n) − z−1

j,i zj,kpi(zj,0, . . . , zj,n)
) ∂

∂zj,k
.

(6.3)

The remaining, k=j, summand in (6.1) is equal to

(
z−1
j,i pj(zj,0, . . . , zj,n) − z−2

j,i pi(zj,0, . . . , zj,n)
)
(−z−2

i,j )
( ∂

∂zj,i
+

∑

k 6=i,j

zi,k
∂

∂zj,k

)

=
(
pi(zj,0, . . . , zj,n) − zj,ipj(zj,0, . . . , zj,n)

)( ∂

∂zj,i
+

∑

k 6=i,j

zi,k
∂

∂zj,k

)

.

(6.4)
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Since zj,izi,k = zj,k, collecting similar terms in (6.3) and (6.4), we obtain equation (6.1) with i
replaced by j.
(2) It is clear that the first map is injective, the second is surjective, and the composite is zero.
Finally, if (p0, . . . , pn) is mapped to zero by the second map, then (6.1) implies that X̄jpi = X̄ipj

for all i and j. Thus, the function f , given by

f([X0 : . . . : Xn]) =
pi(X0, . . . ,Xn)

Xi
,

is well-defined and holomorphic wherever (p0, . . . , pn) is.

6.2 On Regularity of Kernel of Db

Lemma 6.2 If u : S2−→P
n is a holomorphic map, there is a surjection

(n+1)H1
(
S2;O(u∗H ⊗ (−(k+1)p))

)
−→ H1

(
S2;O(u∗TP

n⊗ (−(k+1)p))
)
,

where p denotes the divisor corresponding to a point p∈S2. If the degree of u is at least k, then
both cohomology groups are trivial.

Proof: Pulling back the short exact sequence of sheaves of Lemma 6.1 by u, tensoring it with
−(k+1)p, and taking the corresponding long exact sequence, we obtain:

−→ (n+1)H1
(
S2;O(u∗H ⊗ (−(k+1)p))

)
−→ H1

(
S2;O(u∗TP

n⊗ (−(k+1)p))
)

−→ H2
(
S2;O(−(k+1)p)

)
−→ ...

(6.5)

Since S2 is a one-dimensional complex manifold, the last cohomology group in (6.5) must vanish,
and the first statement of the lemma follows. On the other hand, by Kodaira-Serre duality,

H1
(
S2;O(u∗H ⊗ (−(k+1)p))

)
= H1

(
S2; Ω1(u∗H ⊗ (−(k−1)p)

)

≈ H0
(
S2;O((u∗H ⊗ (−(k−1)p))∗)

)∗
.

(6.6)

The last group in (6.6) is trivial if O(u∗H ⊗ (−(k−1)p)) is positive, i.e. if

〈
c1

(
u∗H ⊗ (−(k−1)p

)
, [S2]

〉
= d− (k−1) > 0,

where d is the degree of u.

Corollary 6.3 If u : S2 −→ P
n is holomorphic map of degree d, for any p ∈ S2 and nonzero

v∈TpS
2, the map

φ(k)
p,v : kerDu −→

⊕

m∈〈k〉
Tu(p)P

n, φ(k)
p,vξ =

(
ξp,Dξ|p,v, . . . ,D

(k)ξ|p,v

)
,

where Dξ|p,v denotes the covariant derivative of ξ along u in the direction of v, is surjective pro-
vided d≥k.
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Remark: If one defines D(k)ξ with respect to the metric gPn,u(p) on P
n, D(k) ∈ Tu(p)P

n⊗T ∗S2⊗k,
where T ∗S2 is viewed as a complex line bundle. However, the statement is independent of the
choice of metric on P

n.

Proof: Since ξ is holomorphic, if φ
(k)
p,vξ is zero, ξ has a zero of order k + 1 at p. Thus, φ

(k)
p,v induces

a short exact sequence of sheaves on S2:

0 −→ O
(
u∗TP

n ⊗ (−(k+1)p)
)
−→ O(u∗TP

n)
φ

(k)
p,v−→ (k+1)O

(
(u∗TP

n)p
)
−→ 0,

where we view O((u∗TP
n)p) as a sheaf on S2 via extension by 0; see [GH, p38]. Taking the

corresponding long exact sequence in cohomology, we obtain

. . . −→ H0
(
S2;O(u∗TP

n)
) φ

(k)
p,v−→ (k+1)H0

(
S2;O((u∗TP

n)p)
)

−→ H1
(
S2;O(u∗TP

n ⊗ (−(k+1)p))
)
. . .

(6.7)

By Lemma 6.2, the last cohomology group in (6.7) is zero if d ≥ k. It follows that the map φ
(k)
p,v is

surjective.

6.3 Dimension Counts

Lemma 6.4 Let Σ be a compact Riemann surface. If u : Σ −→ P
n is a holomorphic map, there

exists a surjection
(n+1)H1

(
Σ;O(u∗H)

)
−→ H1

(
Σ;O(u∗TP

n)
)
.

Proof: Pulling back the short exact sequence of Lemma 6.1 by u gives a long exact sequence in
sheaf cohomology:

. . . (n+1)H1
(
Σ;O(u∗H)

)
−→ H1

(
Σ;O(u∗TP

n)
)
−→ H2

(
Σ;O

)
. . . (6.8)

Since the complex dimension of Σ is one, the last group vanishes, and the claim follows.

Corollary 6.5 Let Σ be a compact Riemann surface. If u : Σ−→ P
n is a holomorphic map, the

∂̄-operator for the bundle u∗TP
n,

Du : Γ(Σ;u∗TP
n) −→ Γ(Σ;Λ0,1T ∗Σ⊗u∗TP

n)

is surjective, provided d+χ(Σ)>0, where d is the degree of u.

Proof: The cokernel of Du is H1
∂̄
(Σ;u∗TP

n). By Dolbeault Theorem,

H1
∂̄(Σ;u∗TP

n) = H1
(
Σ;O(u∗TP

n)
)
. (6.9)

On the other hand, by Kodaira-Serre duality (see [GH, p153]),

H1
(
Σ;O(u∗H)

)
= H1

(
Σ;Ω1(TΣ⊗u∗H)

)

= H0
(
Σ;O((TΣ⊗u∗H)∗)

)∗
= H0

∂̄

(
Σ; (TΣ⊗u∗H)∗

)∗
.

(6.10)

The bundle (TΣ⊗u∗H)∗ does not admit any holomorphic section if it is negative, i.e. if
〈
c1((TΣ⊗u∗H)), [Σ]

〉
=

〈
c1(TΣ)+c1(u

∗H), [Σ]
〉

= χ(Σ) + d > 0.

Thus, the claim follows from equations (6.9) and (6.10) and Lemma 6.4,
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Proposition 6.6 Let Σ be a Riemann surface of genus 2 and let d and n be positive integers with
n ≤ 4. If n = 4, assume that d 6= 2. Suppose µ = (µ1, . . . , µN ) is an N -tuple of proper complex
submanifolds of P

n of total complex codimension d(n+1)−n+N in general position. If

T =
(
Σ, [N ], I; j, d′

)
< T ∗=

(
Σ, [N ], {0̂}; 0̂, d

)

is a bubble type such that d′
0̂
>0, then HT (µ)=∅. Furthermore, if

b =
(
Σ, [N ], {0̂}; , (0̂, y), u

)
∈ HT ∗(µ),

then the map u is not multiply-covered.

Proof: (1) If d′
0̂
≥3, by Corollaries 6.3 and 6.5 and standard arguments such as in [MS], the space

HT is a smooth manifold and the maps evl are smooth. If b∈HT , a neighborhood of b in HT can

be modeled on kerDb ⊕
l=n⊕

l=1

Tyl
Σb,jl

. In particular, by the Index Theorem,

dimC HT =
∑

i∈I

(
d′i(n+1) + n(1−g(Σb,i))

)
− (n−1)|Î | +N = d(n+1) − n+ |Î| +N.

Thus, if the map
ev[N ] ≡ ev1 × . . .× evN : HT −→ P

n × . . . × P
n,

is smooth and transversal to µ1× . . .×µN , HT (µ) is a smooth manifold of (complex) dimension |Î |.
Since the map ev[N ] is invariant under the action of 2|Î |-dimensional group

GT ≡ {g∈PSL2 : g(∞) = ∞}Î ,

GT acts smoothly on HT (µ). Furthermore, the stabilizer at each point is finite. Thus, HT (µ)=∅.
(2) Suppose d′

0̂
=2. If b=

(
Σ, [N ], I;x, (j, y), u

)
∈HT , the map u0̂ must factor through a degree-one

map ũ0̂ : S2−→P
n; see [ACGH, p116]. Thus, it is enough to show that the space HT ′(µ) is empty,

where T ′ = (S2, [N ], I; j, d′′), d′′h = d′h if h ∈ Î and d′′
0̂

= 1. By Corollary 6.3, the space HT ′ is a
smooth manifold of dimension

dimC HT ′ = (d−1)(n+1) + n+ |Î| +N.

Similarly to (1) above, it follows that HT ′(µ) is a smooth manifold of dimension n−1+ |Î| on
which the (2|Î |+3)-dimensional group PSL2×GT acts with only finite stabilizers. It follows that
HT ′(µ)=∅ if n< |Î|+4. Note that the case Î=∅ can occur only if d=d0̂ =2. Finally, if d0̂ =1, the
entire space HT is empty, since there are no holomorphic degree-one maps from Σ into P

n.
(3) Suppose b=(Σ, [N ], {0̂}; , (0̂, y), u)∈HT ∗(µ) and u : Σ−→P

n factors through a k-fold cover of
S2, where k≥2 and k divides d. Then b arises from the space HT ′(µ), where

T ′ =
(
S2, [N ], {0̂}; 0̂, d/k

)
.

Similarly to the above, this space is a smooth manifold of dimension

(
(d/k)(n+1) + n+N

)
−

(
d(n+1) − n+N

)
= −k−1

k
d(n+1) + 2n.
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Thus, HT ′(µ)=∅, provided d≥3. In fact, since HT ′(µ) has a three-dimensional group of symmetry,
HT ′(µ)=∅ unless d=2 and n≥4.
(4) Suppose b is as in (3) and u factors through a k-fold cover of a torus T , where k ≥ 2 and k
divides d. Then b arises from the space

H̃1,d/k(µ) ≡
{
(E , y[N ], u) : E is smooth elliptic curve, u : C−→P

n,

∂̄u = 0, u∗[E ] =
d

k
λ; u(yl) ∈ µl ∀l ∈ [N ]

}
.

Similarly to the above, Corollary 6.5 implies that H̃1,d/k(µ) is a smooth space of dimension

(
(d/k)(n+1) + 1 +N

)
−

(
d(n+1) − n+N

)
= −

(k−1

k
d− 1

)

(n+1) < 1.

Since H̃1,d/k(µ) has a one-dimensional group of symmetries, H̃1,d/k(µ)=∅.
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