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Abstract

We state and prove a long-elusive relation between genus-one Gromov-Witten of a complete
intersection and twisted Gromov-Witten invariants of the ambient projective space. As shown in
a previous paper, certain naturally arising cones of holomorphic vector bundle sections over the

main component ﬁ;}, (P, d) of the moduli space of stable genus-one holomorphic maps into P"
have a well-defined euler class. In this paper, we extend this result to moduli spaces of perturbed,
in a restricted way, J-holomorphic maps. This extension is used to show that these cones are the
correct genus-one analogues of the vector bundles relating genus-zero Gromov-Witten invariants
of a complete intersection to those of the ambient projective space. A relationship for higher-
genus invariants is conjectured as well.
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1 Introduction

1.1 Gromov-Witten Invariants and Complete Intersections

Gromov-Witten invariants of symplectic manifolds have been a subject of much research over the
past two decades. A great deal of attention has been devoted in particular to Calabi-Yau manifolds.
These manifolds play a prominent role in theoretical physics, and as a result physicists have made
a number of important predictions concerning CY-manifolds. Some of these predictions have been
verified mathematically; others have not.

If Y is a compact Kahler submanifold of the complex projective space P™, one could try to compute
GW-invariants of Y by relating them to GW-invariants of P". For example, suppose Y is a
hypersurface in P" of degree a. In other words, if v — P™ is the tautological line bundle and
L=~*@0 _P" then

Y =s5710),

for some s € HO(P"; £) such that s is transverse to the zero set. If g, k, and d are nonnegative
integers, let M, (P, d) and M, (Y, d) denote the moduli spaces of stable Jyp-holomorphic degree-d
maps from genus-g Riemann surfaces with & marked points to P" and Y, respectively. These mod-
uli spaces determine the genus-g degree-d GW-invariants of P™ and Y.

By definition, the moduli space M, (Y, d) is a subset of the moduli space M, 1 (P", d). In fact,
My (Y, d) = {[C,u] €My (P, d): sou=0€ H(C;u*g) }. (1.1)

Here [C, u| denotes the equivalence class of the holomorphic map u: C — P™ from a genus-g curve C
with k& marked points. The relationship (1.1) can be restated more globally as follows. Let

F;l’k: Uy (P™, d) — My, (P™, d)

be the universal family and let
ev‘;’k: Uy p (P, d) — P"

be the natural evaluation map. In other words, the fiber of 77‘; i over [C,u] is the curve C with k

marked points, while
evik([C,u; z]) = u(z) if zeC.

We define a section sz’k of the sheaf ng*evgj‘kﬁ — M, x(P", d) by
s 4 (1C.ul) = [s 0l

By (1.1), M, (Y, d) is the zero set of this section.

The previous paragraph suggests that it should be possible to relate the genus-g degree-d GW-
invariants of the hypersurface Y to the moduli space M, 1 (P", d) in general and to the sheaf

Wg7k*evgfk£ — ﬁ%k (]P)n, d)
in particular. In fact, it can be shown that

GWOY,k(d;"l/J)E<"¢7 (M1 (Y, d)]m> = (¢ e(Wg,k*engkg)a (Mo i (P, d)]) (1.2)



for all v € H* (Mg x(P", d); Q); see [Bea] for example. The moduli space 9 (P, d) is a smooth
orbivariety and o
70 eV kL — Mo k(P d) (1.3)

is a locally free sheaf, i.e. a vector bundle. The right-hand side of (1.2) can be computed via the
classical localization theorem of [ABo], though the complexity of this computation increases rapidly
with the degree d.

A hyperplane property, i.e. a relationship such as (1.2), for positive-genus GW-invariants has
been elusive since the early days of the Gromov-Witten theory. If g>0, the sheaf

d dx o
Ty 1€V 1S — My 1 (P", d)

is not locally free and need not define an euler class. Thus, the right-hand side of (1.2) may not
even make sense if 0 is replaced by ¢g>0. Instead one might try to generalize (1.2) as

GWY L (ds ) = (4, [Ty (Y, d)}””>

vir <14)
= <¢ (RO g k€ ’8 Rl g k*evg k’g) [mg k(]P)nﬂ d)] >a

~J

where Rim g k*evgfkﬂ — M, x(P™, d) is the ith direct image sheaf. The right-hand side of (1.4) can

be computed via the virtual localization theorem of [GrP1]. However,
Ni(d)=GWYo(d; 1) # (e(ROng,eviye— Rl eviy L), [0 (P, d)] "),
according to a low-degree check of [GrP2] and [K] for a quintic threefold Y C P4.
In this paper we prove a hyperplane property for genus-one GW-invariants. We denote by
My (B, d) C M, 4 (B", d)
the closure in ﬁl,k (P™, d), either in the stable-map or Zariski topology, of the subspace
im(l]’k(IP’",d) = {[C,u] €My 1, (P",d): C is smooth}.
If Y CP" is a hypersurface as above, let
M) (Y, d) = Ty 4(Y, d) NNy 1 (P, d).

Since ﬁ?’k(ﬂm, d) is a unidimensional orbi-variety, it carries a fundamental class. By Corollary 1.6

. 0 . .
in [Z6], M (Y, d) carries a virtual fundamental class. It can be used to define reduced genus-one
Gromov-Witten invariants:

CWYY (d50) = (v, [ (Y, d)]"™) € Q,

where 9 is a tautological (cohomology) class on ﬁ(ik (Y, d); see below. We show in this paper that
the reduced genus-one GW-invariants satisfy a natural analogue of (1.2).



Theorem 1.1 Suppose d and a are positive integers, k is a nonnegative integer, £=~*®* —P",
wlp: g (P, d) — O (P, d)  and  ev{: $hy 4 (P", d) — P"

are the universal family and the natural evaluation map, respectively. If Y CPP™ is a smooth degree-a
hypersurface, then

CWIY (d50) = (v - e(nf peviiL), (D) (B, d)]) (1.5)

for every tautological class 1 on My 1 (P",d).

The tautological classes on My ,(P",d) are certain natural cohomology classes. They include all
geometric classes defined in Subsection 1.3. We describe the space of all cohomology classes ¥ to
which Theorem 1.1 applies in Subsection 2.2.

Implicit in the statement of Theorem 1.1 is that the euler class of the sheaf
Wf,k*e"il,*kﬁ - ﬁ(1),1<(]P’n, d) (1.6)
is well-defined, even though it is not locally free. This is the case by Theorem 1.1 in [Z5].

The right-hand side of (1.5) should in principle be computable via localization directly. However,
since the space ﬁ?,k(]}”", d) is not smooth and the sheaf (1.6) is not locally free, the localization
theorem of [ABo] is not immediately applicable. A desingularization of the space ﬁ%k(ﬂm, d),ie. a
smooth orbivariety SNﬁ?’k(IF’", d) and a map

N n an0 n
L i):n(l),k(lp) ’d) —)i)nl,k(]P> 7d)’

which is biholomorphic onto 99 , (P", d), is constructed in [VaZ]. This desingularization of ﬁ? w(P™,d)
comes with a desingularization of the sheaf (1.6), i.e. a vector bundle

f}ii,k — ﬁ(l),k( n, d) s.t. ﬁ-*]}ik‘ = 7Tik*eVilTk£.
In particular,
(W e(r] jueving), [ﬁ?,k(]}mad)]> = (7" - e(Vi)), (9 (B, d)]). (1.7)

Since a group action on P™ induces actions on ﬁ?’k(ﬂl’", d) and on f?f{,w the localization theorem
of [ABo] is directly applicable to the right-hand side of (1.7), for a natural cohomology class .

By itself, Theorem 1.1 does not provide a way of computing the standard genus-one GW-invariants
of Y. However, the reduced genus-one GW-invariants capture the contribution of ﬁa]?k(Y, d) to the
standard genus-one GW-invariants. Thus, the difference between the two invariants is completely
determined by the genus-zero invariants of Y'; see Subsection 1.2 in [Z9]. We give explicit formulas
in some special cases in Subsection 1.3 below.

Remark 1: Theorem 1.1 generalizes to arbitrary smooth complete intersections in projective spaces.
More precisely, if
L=7%"gp.. . ey®m —P"



with a1, ...,an €ZT, s€ HO(P™; £) is transverse to the zero set in £, and Y =s71(0), then
; * a0 n
GWY (d59) = (v - e(nf puevii0), [0 4 (B", d)]), (1.8)
for every geometric cohomology class ¢ on 9y 4 (P", d).

Remark 2: In turn, Remark 1 generalizes as follows. Suppose (X,w,J) is a compact almost Kahler
manifold,
A € Hy(X;Z)" = Hy(X; Z)—{0},

(£,V)— X is a complex vector bundle with connection, and s is a V-holomorphic section of £; see
Subsections 1.2 and 2.2 for terminology. If J is genus-one A-regular in the sense of Definition 1.4
in [Z4], s is transverse to the zero set in £, and (£, V) splits into line bundles that are (w, A)-positive
in the sense of Definition 1.2 below, then

WY (A;9) = (v e(Viy), [ (X, 4 )]

(1.9)
= (0 PDgp (Vi)

where Y =571(0), 9 is a tautological class, and the cone
Vil — D (X, A3 )

is the geometric analogue of the sheaf ﬂf’k*evf:"kﬂ. It consists of V-holomorphic sections of the
vector bundle £, as defined in Subsection 1.2 below. By Corollary 1.4, the Poincare dual of its
euler class is well defined as long as (£, V) is a direct sum of (w, A)-positive line bundles.

Theorem 1.1 and Remarks 1 and 2 have a natural, but rather speculative, generalization to higher-
genus invariants. Suppose that the main component

M (X, A; ) C Dy (X, As])

is well defined and carries a virtual fundamental class. If so, it determines reduced genus-g GW-
invariants GWS;};(A; ). Suppose further that (the Poincare dual of) the euler of the cone

corresponding to the vector bundle (£,V)— X is well defined. If constructions of these objects
are direct generalizations of the corresponding constructions in Subsection 1.2 and in [Z4]-[Z6],
then the proof of Theorem 1.1 can be generalized to show that

CWOY (A;9) = (- e(VEy), [T 1 (X, A3 )], (1.10)

provided appropriate generalizations of the assumptions in Remark 2 hold. Along with an equally
speculative generalization of Theorem 1.1 in [Z6] stated in Subsection 1.2 of [Z6], (1.10) would, if
true, provide an algorithm for computing arbitrary-genus GW-invariants of complete intersections.

From the point of view of algebraic geometry as described in [BehFa] and in [LT2], the genus-
g degree-d GW-invariant Gng(d; 1) is the evaluation of ¢ on the virtual fundamental class
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(M, (Y, d)]"". Using the more concrete point of view of symplectic topology as described in [FuO)]
and [LT1], GW};k (d; ) can be interpreted as the euler class of a vector bundle, albeit of an infinite-
rank vector bundle over a space of the “same” dimension. As in the finite-dimensional case, this
euler class is the number of zeros, counted with appropriate multiplicities, of a transverse (multi-
valued, generic) section. It is shown in [LT3] and in [Si] that the two approaches are equivalent.
In this paper, we take the latter point of view. Similarly, we view the euler class of the sheaf (1.6)
as the zero set of a generic section of its geometric analogue Vﬁk defined in Subsection 1.2.

Theorem 1.1 and Remark 1 are special cases of Remark 2, which is the same as Theorem 2.3. It is
proved in Subsection 2.2 by showing that the zero sets of two bundle sections whose cardinalities
are the two expressions in (1.9) are the same set. In fact, Theorem 2.3, just like its genus-zero
analogue, follows easily from definitions of the two sides in (1.9), once it is established that these
definitions are well-posed.

1.2 Cones of Holomorphic Bundle Sections

Let (X,w, J) be a compact almost Kahler manifold. In other words, (X, w) is a symplectic manifold
and J is an almost complex structure on X tamed by w, i.e.

w(v, Jv) >0 VoeTX-X.

If g, k are nonnegative integers and A € Hy(X;Z), we denote by M, (X, A; J) the moduli space of
(equivalence classes of) stable J-holomorphic maps from genus-g Riemann surfaces with & marked

points in the homology class A. Let ﬁ?k(X ,A;J) be the main component of the moduli space

My k(X A; J) described by Definition 1.1 in [Z4]; see also Definition 2.2 below. This closed sub-
space of My (X, A; J) contains the subspace Em(l)’k(X,A; J) consisting of the stable maps [, u]

such that the domain ¥ is a smooth Riemann surface. If J is sufficiently regular, ﬁ?k (X,A;J) is
the closure of im?,k(X, A; J) in My (X, A; J).

Suppose £ — X is a complex line bundle and V is a connection in £. If (X, ) is a Riemann
surface and u: X — X is a smooth map, let

VU D(Su'e) — T(5T"Eeu* L)
be the pull-back of V by u. If b= (X, j; u), we define the corresponding J-operator by
Ovp: T(S;u* L) — T (; Ag;lT*E@)u*S), Ov € = %(vug +iV¥€ 0 j), (1.11)
where i is the complex multiplication in the bundle u*£ and
AN T*S@u* e = {neHom(T'S, u*L): noj = —in}.
The kernel of 5v,b is necessarily a finite-dimensional complex vector space.

We denote by X; (X, A) the space of all degree-A stable smooth maps from genus-one Riemann
surfaces with £ marked points into X and by

Vile — X14(X, A)



the cone, or the bundle of (orbi-)vector spaces, such that
ka}[b] = kerdyp/Aut(b) Y [b] € X1 4(X, A).

The spaces X1 ;(X, A) and ka have natural topologies; see Subsection 2.1 below. By Theorem 1.1
in [Z5], if (X,w,J) is the complex projective space (P",wp, Jy) with its standard Kahler structure
and (£,V) is a positive power of the hyperplane line bundle, i.e. the dual of the tautological line
bundle, v* with its standard connection, then the euler class of

and its Poincare dual are well defined. By Theorem 1.2 in [Z5], this is also the case if J is an
almost complex structure on P” sufficiently close to Jy.

The argument in [Z5] easily generalizes to all (X,w,J), (£,V), and A such that (£,V) is a split
positive vector bundle with connection and J satisfies a certain regularity condition. This regularity
condition, which is described by Definition 1.4 in [Z4], implies that ﬁ?k(X , A; J) has the expected
topological structure of a unidimensional orbivariety. In this paper, we show that the Poincare
dual of the euler class of V{1 over ﬁ?’k(X ,A; J) is well defined without any condition on J, as
long as (£, V) satisfies the réquirement of Definition 1.2; see Corollary 1.4 below.

Definition 1.2 Suppose (X,w) is a symplectic manifold and A€ Ho(X;7Z). A complex line bundle
£— X is (w, A)-positive if

(¢1(£),B) >0 V BeHy(X;Z)* st. B=A or (w,B)<{(w,A).

We note that ka —>ﬁ?7k (X, A; J) is not a vector bundle, as the fibers of ka are of two possible
dimensions. In Subsections 1.2 and 1.3 of [Z5], the Poincare dual of the euler class of Vf‘k is defined

as the zero set of a generic multisection ¢ of Vf‘k over ﬁ?’k(X , A; J). This zero set determines a
homology class in ﬁ(1)7k(X ,A; J) if ¢ is sufficiently regular. In Section 3 of [Z5], it is shown that
ka contains a vector subbundle of a sufficiently high rank over a neighborhood of every stratum

of ﬁa)?k(X , A; J). The existence of such subbundles implies that regular sections of Vf?k exist; see
Subsection 3.1 in [Z5].

If J does not satisfy the regularity condition of Definition 1.4 in [Z4], the moduli space ﬁ(l)’ (X, A T)
itself need not carry a fundamental class. In this case, we cannot define the Poincare dual of the
euler class of ka as the zero set of a section of Vf}k over ﬁgk(X, A; J). On the other hand, in [Z6],
the definition of . B

My (X, A5 J) C k(X A; )

given in [Z4] is generalized to define the main component ﬁ?’k(X ,A; J,v) of the moduli space

My 1(X, A; J,v) of (J,v)-holomorphic maps for an effectively supported perturbation v of the 0;-
operator; see Definitions 2.1 and 2.2 below. By Theorem 1.5 in [Z6], if v is sufficiently small



and generic, ﬁ[ik(X,A;J, v) determines a rational homology class in a small neighborhood of
ﬁ?k(X ,A; J) in X5 (X, A). This rational homology class is independent of the choice of v. We

will define the Poincare dual of the euler class of V{‘k as the zero set of a generic multisection of Vf‘k

over ﬁ(l)k(X ,A; J,v). Tietze Extension Theorem will be used to show that Vi, admits sections
that are sufficiently nice for this purpose.

If J is an almost complex structure on X and J= (Jt)te[o,l] is a family of almost complex structures
on X, we denote by
(X, 4 J)  and Tr(X, A J)

the spaces of effectively supported perturbations of the 9;-operator on X1,%(X, A) and of effectively
supported families of perturbations of the d;,-operators on X; 1, (X, A); see Subsection 2.1 for details.
If

v=(V)iep,1) € 67%(X, A5 ),

we put
My (X, A L) = {(6,6) €0, 1x X1 (X, A): bEM (X, A; Ty, 1)}

We denote by Z1 the set of nonnegative integers. Let

dimy (X, 4; £) = dimy (X, 4) — 2(c1(£), A) = 2({c1(TX)—c1 (L), A) + k).
Theorem 1.3 Suppose (X,w,J) is a compact almost Kahler manifold, A € Ho(X;7Z)*, k € Z7,
(£,V) — X is an (w, A)-positive line bundle with connection, Vf?k — X1 1(X, A) is the corre-
sponding cone, and W is a neighborhood of ﬁ?7k(X, A;J) in X1 (X, A). If v e 67 (X, A;J) is
sufficiently small and generic and ¢ is a generic multisection of ka over ﬁ(l)’k(X, A; J,v), then
0 10) determines a rational homology class in W. Furthermore, if J = (Jt)iepo,1) 18 a family of

w-tamed almost complex structures on X, such that Jo=J and J; is sufficiently close to J for allt,
vy and vy are sufficiently small generic effectively supported perturbations of 0y, and 0y,, and ¢

and @1 are generic multisections of Vi, over ﬁ?’k(X, A; Jo,vp) and ﬁ?’k(X, A; Ji,11), then there
exist homotopies

es a0
ZZ(’/t)te[o,l] € ®l,k(X7 A; J) and Qe F(ml,k(X7A§l7 v); ka)
between vy and vy and between @y and @1 such that ®1(0) determines a chain in W and
091(0) = 1 1(0) = ¢y (0).

Corollary 1.4 If (X,w,J), A, k, and (£,V) are as in Theorem 1.3, the cone ka—>%1’k(X,A)
corresponding to (£,V) determines a well-defined homology class

<50
PDﬁg’k(X’A;J)e(Vﬁw € Hdimuc(X,A;):) (ml,k<X7 A; J)§ Q)

This class is an invariant of (X,w) and (£,V).

As in [Z5], we will describe the local structure of the cone V. In contrast to [Z5], we will
not construct a high-rank vector subbundle of VlAk over a neighborhood of every stratum of



ﬁ?,k(X ,A; J,v). Instead, we will use Tietze Extension Theorem to construct a sufficiently reg-
ular multisection of Vf‘k. Its zero set determines a homology class in a small neighborhood of

ﬁ(1)7k(X, A; J) in the space X (X, A).

For a generic v, ﬁ?k (X, A; J,v) can be stratified by orbifolds U, of even dimensions; see Subsec-
tion 3.4 and Remark 1 at the end of Subsection 3.3. The main stratum of ﬁ?vk(X, A; Jv),

MY (X, A3 J,v) = D (X, A J,0) N XY (X, A),
is of dimension dim; (X, A), where
X7 (X, A) C X1 (X, A)

is the subspace of stable maps with smooth domains. In Subsection 3.5, we describe a subcone
Wfk of Vf}k such that Wfk]ua is a smooth vector bundle for every stratum U,. By analyzing
the obstruction to extending holomorphic bundle sections from singular to smooth domains in
Section 4, we show that Wfk is a regular obstruction-free cone in the sense of Definition 3.3.

By Proposition 3.6, for a generic multisection ¢ of Wfk C ka over ﬁik(X, A; J,v), ©lu, is then
transverse to the zero set in Wfk|ua. By the rank statements of Proposition 3.9, ¢~1(0) is stratified
by smooth orbifolds of even dimensions. Furthermore, the main stratum of ¢ ~!(0) is of dimension
dim; (X, 4; £) and is contained in 97 w(X,A;J,v). We can then choose an arbitrarily small
neighborhood U of the boundary of cp_1(70) such that

H(U:Q) ={0} V12> dim(X,48) - 1.

Since ¢ ~1(0)—U is compact, via the pseudocycle construction of Chapter 7 in [McSa] and Section 1
of [RT], ¢~1(0) determines a homology class

[@_1(0)] S Hdimug(X,A;E) (W7 U; Q)
~ Hgim, , (x,4;0) (W;Q);

see also [Z7]. The second part of Theorem 1.3 is a parametrized version of this construction. Corol-
lary 1.4 is an immediate consequence of Theorem 1.3; see also Remark 2 in Subsection 1.3 of [Z6]
and the comments at the end of Subsection 1.4 in [Z6].

The statement of Corollary 1.4 is not needed to show that the expressions on the right-hand sides
of (1.5) and (1.8) are well defined, as this is the case by Theorem 1.1 in [Z5]. However, the detailed
statement of Theorem 1.3 is useful for proving Theorem 1.1 and its generalizations in Remarks 1
and 2 whenever Y is not a Fano complete intersection. If Y is Fano, Theorem 1.1 can be obtained
from [Z5] by working just with J-holomorphic, instead of (.J, v)-holomorphic, maps.

Remark: If £ is a direct sum of (w, A)-positive line bundles, the Poincare dual of the euler class
of the corresponding cone is defined to be the intersection product of the Poincare duals of the
euler classes of the cones corresponding to the component line bundles. The intersection product
can be defined by intersecting pseudocycle representatives for the above homology classes; see
Subsection 1.2 in [Z5].



1.3 Some Special Cases

Proposition 3.1 in [Z6] implies that the difference between the standard and reduced genus-one
invariants of a symplectic manifold (Y,w) is a combination of the genus-zero invariants of Y. The
exact form of this combination in general is determined in [Z9].

If (Y,w,J) is an almost Kahler manifold, for each [=1,... k let
eVZZﬁg’k(Y,A; J) _>K [Zvyla"'ayk;u] _>u(yl)7

be the evaluation map at the I{th marked point. We will call a cohomology class ¥ on ﬁgk(Y, A; J)
geometric if ¢ is a product of the classes evjyy for py € H*(Y;Z). By Theorem 1.1 in [Z6], if
A€ Hy(Y;Z)*, then

) 0 if dimgpY =4;
GWY L (A;9) — QWY (A590) = { ) ’
1x(4i¥) ik (49) {2“1(2{;”“ GWY . (A;%), if dimgY =6,

(1.12)

for every geometric cohomology class 1 on 9 (Y, 4; J).

In the rest of this subsection, we discuss some implications of Theorem 1.1 and Remarks 1 and 2,
combined with (1.12), focusing on Calabi-Yau complete-intersection threefolds. We note that if Y’
is a Calabi-Yau threefold, then the expected dimension of the moduli space My o(Y, A;J) is zero
for every g and A.

With notation as in Theorem (1.3), if a =25, Y is a quintic threefold. It can be easily seen that
c1(TY)=0. Let
Ny(d) = GWYo(d: 1).

Theorem 1.3 and equation (1.12) then give
Corollary 1.5 Suppose d is a positive integer, £=~*¢> —P*, and
7l 8 (PYd) — D (PYd)  and  ev?: 8y (P4, d) —s P?

are the universal family and the natural evaluation map, respectively. If Y CP* is a smooth quintic

threefold,

Ni(d) = 11—2N0(d) + (e(nf evi* L), [0 (P, d)]). (1.13)

The middle number in (1.13) can be computed using (1.2). This has been done for every d in
[Ber], [Gal], [Gi], [Le|, and [LLY]. As mentioned in Subsection 1.1, the last number in (1.13) can
be computed, for each given d, via the classical localization theorem of [ABo]. Similarly to the
genus-zero case, the complexity of computing the last term in (1.13) increases rapidly with the
degree d, but this has been fully carried out in [Z8], finally confirming the genus-one prediction
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d 1 2 3 4

0 2,875 49,355,000 952,691,384,375

: > 2,875 40732125 243 38818 750 366 16%5??53 125
Nl (d) 712 é > ) > ) >

9 16
ni(d) 0 0 609,250 | 3,721,431,625

Table 1: Low-degree GW-invariants of a quintic threefold

of [BCOV] for a quintic threefold. A few low-degree values are shown in the second row of Table 1.1
The numbers n;(d) that appear in the last row of this table are defined by

no d/k 1 no d k) g k)

No(d) = 30 "0 @) = £ R S W ), oty =3
k|d k|d k|d rlk

The numbers ng(d) and ni(d) are of importance in theoretical physics. Conjecturally, ng(d) is a

count of J-holomorphic degree-d genus-g curves in Y for a generic almost complex structure J on Y.

With notation as in Remark 1 in Subsection 1.1, if a;+...+a, =n+1 and Y is a corresponding
complete intersection, then Y is a Calabi-Yau threefold. Let

N (d) = GW} (d; 1).
The identities in Remark 1 and in (1.12) then give
1 8 —0
Ny (d) = 75 No (@) + (e(ri.evi™g), [T (P, d)]).
Once again, both terms on the right-hand side are computable via (1.2) and the classical localiza-
tion theorem.

In the more general case of Remark 2 in Subsection 1.1, Y is a Calabi-Yau threefold if
al)—a(TX)=0 and dimgp X — 2rkc£ = 6.
In such a case,
NY (4) = 5 N3 (4) + eV, [TE(X, 4:)]),
where ka is the cone corresponding to (£, V) and N;/(A) = GW;/’O(A; 1).

Two completely different approaches to computing positive-genus GW-invariants of complete inter-
sections have been proposed in [Ga2] and [MaP]. Both approaches use degenerations and relative
Gromov-Witten invariants. The first approach can be used to compute the genus-one and -two GW-
invariants of a quintic threefold. The latter can be used to compute arbitrary-genus GW-invariants
of a quintic threefold as well as of some other low-degree low-dimensional complete intersections. In
contrast, Theorem 1.1 above and Proposition 3.1 in [Z6] are at the present restricted to genus-one
GW-invariants only, but are applicable to arbitrary complete intersections.

We would like to thank D. Maulik, R. Pandharipande, G. Tian, and R. Vakil for a number of
helpful discussions.

The four numbers N; (d) shown in Table 1 were obtained by a direct localization computation and predate the
desingularization construction of [VaZ] and the complete computation of [Z8].
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2 Hyperplane Property for Genus-One GW-Invariants

2.1 Review of Definitions

Suppose X is a compact manifold, A€ Ho(X;Z), and g,k€Z". Let X, (X, A) denote the space
of equivalence classes of stable smooth maps u: ¥ — X from genus-g Riemann surfaces with
k marked points, which may have simple nodes, to X of degree A, i.e.

us|X] = A € Hy(X; Z).

The spaces X, (X, A) are topologized using L}-convergence on compact subsets of smooth points of
the domain and certain convergence requirements near the nodes; see Section 3 in [LT1]. Here and
throughout the rest of the paper, p denotes a real number greater than two. The spaces X4, (X, A)
can be stratified by the smooth infinite-dimensional orbifolds X7 (X) of stable maps from domains
of the same geometric type and with the same degree distribution between the components of the
domain; see Subsections 3.1 and 3.2. The closure of the main stratum, %g’k(X, A),is Xy 1(X, A).

If J is an almost complex structure on X, let
0,1
Fg’k(X,A; J)— X, 1(X, A)

be the bundle of (T'X, J)-valued (0, 1)-forms. In other words, the fiber of I‘g’llﬁ(X, A; J) over a point
bl =13, j;u] in X, (X, A) is the space

T (X, A3 )|y =T (b;.7) /Aut(b), where T'%'(b;J) =T'(S5A7T*Seu'TX).

(6]

Here j is the complex structure on X, the domain of the smooth map u. The bundle A%T*Z@u*TX
over ¥ consists of (J, j)-antilinear homomorphisms:

A%T*E@u*TX = {neHom (TS, uw"TX): Jon=—noj}.

The total space of the bundle Fg:,lc(X, A; J) — X4 (X, A) is topologized using LP-convergence on
compact subsets of smooth points of the domain and certain convergence requirements near the
nodes. The restriction of Fg:,lg(X ,A; J) to each stratum X7 (X) is a smooth vector orbibundle of
infinite rank.

We define a continuous section of the bundle FS:i(X, A J)— X, 1(X, A) by

5J([E,j;u]) = Oy u = (du+ JOduoj).

| =

By definition, the zero set of this section is the moduli space ﬁgyk(X , A; J). The restriction of d;
to each stratum of X, (X, A) is smooth. The section 0y is Fredholm, i.e. the linearization of its
restriction to every stratum X7(X) has finite-dimensional kernel and cokernel at every point of
97'(0)NX7(X). The index of the linearization of ; at an element of im(g)k(X, A; J) is the expected

dimension of the moduli space ﬁ%k(X VA ),

dimg (X, A) = 2((c1(TX), A) + (1—g)(n—3) + k), where  2n = dimgX.

12



This is the dimension of the cycle
M,y u(X, A5 J,v) = {0;+0} 1 (0)
for a small generic multivalued perturbation
v E B (X, A J) = T(Xgp(X, A), TL(X, A )

of 07, where ®S’i(X, A; J) is the space of all continuous multisections v of Fg’}g(X, A; J) such that
the restriction of v to each stratum X7 (X) is smooth. We use the term multisection, or multi-

valued section, of a vector orbi-bundle as defined in Section 3 of [FuO]. Since the moduli space
M, k(X, A; J) is compact, so is M, (X, A; J,v) if v is sufficiently small.

An element [¥;u] of X (X, A) is an equivalence class of pairs consisting of a prestable genus-one
Riemann surface ¥ and a smooth map u: ¥ — X. The prestable surface ¥ is a union of the
principal component(s) X p, which is either a smooth torus or a circle of spheres, and trees of
rational bubble components, which together will be denoted by X 5. Let

%i?ﬁ(X,A) = {[S;u] € X1 4(X, A): us[Ep] # 0 € Ho(X;Z) }.

Suppose
[Zau] € %l,k(X7 A) _xﬁ)k}(X’A)’ (21)

i.e. the degree of ulx, is zero. Let x°(3;u) be the set of components ¥; of ¥ such that for every
bubble component ¥, that lies between ¥; and Y p, including ¥; itself, the degree of u|y, is zero.
The set x°(2;u) includes the principal component(s) of ¥.. We give an example of the set x°(2; u)
in Figure 1. In this figure, we show the domain ¥ of the stable map (X; u) and shade the components
of the domain on which the degree of the map u is not zero. Let

= Uz

iex9(Z;u)

Every bubble component ¥; C ¥ p is a sphere and has a distinguished singular point, which will be
called the attaching node of ;. This is the node of ¥; that lies either on ¥ p or on a bubble X
that lies between 3; and X p. We denote by x(X; u) the set of bubble components ¥; such that the
attaching node of 3; lies on X0 and the degree of ulx, is not zero.

Definition 2.1 Suppose (X,w) is a compact symplectic manifold and J = (Ji)iepo,) s @ C'-
continuous family of w-tamed almost structures on X. A continuous family of multisections
v = (U)iep,1], with vy € @?’i(X,A;Jt) for all t € [0,1], is effectively supported if for every
element

b=[%;u] € X1 (X, A)-x (X, 4)
there exists a neighborhood Wy of ¥0 in a semi-universal family of deformations for b such that

AONERT

SIOW, 0 VO [¥5d] € X1k(X, A), te]0,1].
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ho
ha h
L

“tacnode”

ha My 4 X2 (Z;u) ={ho, hs}

5 X(B5u) ={h1, ha, hs}

Figure 1: An illustration of Definition 2.2

If b=[X;u] is an element of X; (X, A), a semi-universal universal family of deformations
for b is a fibration .
op: Uy — Ay

such that Ap/Aut(b) is a neighborhood of b in X1 (X, A) and the fiber of o3, over a point [¥'; u/]
is X', If J = (Ji)sepo,1) is a continuous family of w-tamed almost structures on X, we denote the
space of effectively supported families v as in Definition 2.1 by &%, (X, A;J). Similarly, if J is an
almost complex structure on X, let &% (X, A;J) be the subspace of elements v of Qﬁ?’i(X JA )
such that the family vy =v is effectively supported.

Suppose v € 6%, (X, A; J) and [Z;u] is an element of My (X, 4; J,v) as in Definition 2.1. Since
Y;CXpisa sphere, we can represent this element by a pair (3;u) such that the attaching node
of every bubble component ¥; C X5 is the south pole, or the point co= (0,0, —1), of S2CR3. Let
es0=(1,0,0) be a nonzero tangent vector to S? at the south pole. If i € x(3;u), we put

Di(Z;u) = d{uly, } X.

s0o€00 € Ty, (0)

We note that U’zg is a degree-zero holomorphic map and thus constant. Thus, © maps the attaching
nodes of all elements of x(X;u) to the same point in X.

Definition 2.2 Suppose (X,w,J) is a compact almost Kahler manifold, A € Ho(X;Z)*, and
keZ". If ve &$,(X,A;J) is an effectively supported perturbation of the 0;-operator, the main

component of the space My (X, A; J,v) is the subset ﬁ?k(X,A; J,v) consisting of the elements
[S5u] of MMy (X, A; J,v) such that

(a) the degree of ulx, is not zero, or

(b) the degree of uls, is zero and dimc Spanic, y{Di(Z;u): 1€ x(S5u)} < [x(Z;u)].

We note that ﬁ?k(X ,A; J,v) is a compact space by Theorem 1.4 of [Z6] if v is effectively sup-
ported and sufficiently small. For a generic effectively supported v, ﬁ?’k(X , A; J,v) determines a

homology class of the expected dimension in a small neighborhood of Wt(l),k (X, A;J) in X (X, A)
which is independent of v and J; see Theorem 1.5 and Corollary 1.6 in [Z6].

If X, A, g, and k are as above and (£,V)— X is a vector bundle with connection, we denote by
Ty(, A) — X, 1(X, A)
the cone such that the fiber of 'y (£, A) over [b]=[%;u] in X, (X, A) is the Banach space
I'yr(L, A)‘[b] =T'(b; £)/Aut(b), where L(b; L) = LE(Z;u*L).
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The topology on the total space of I'y 1, (£, A) is defined analogously to the topology on I'y 1 (T'X, A)
of Section 3 in [LT1]. Let

V;}k = {[b,{] €T x(L,A): B]€Xyr(X,A); {€kerPypC Ty p(b; L)} CTyr(L, A).
The cone Vﬁk — X4 1(X, A) inherits its topology from I'y 1.(£, A).
2.2 Statement and Proof of Hyperplane Property
We will call a cohomology class 1 on X; ,(X, A) tautological if there exists a vector bundle
W — X14(X, A)
such that Wy, (x) is smooth for every stratum X7 (X) of X1 (X, A) and ¢p=e(W).

If (X, J) is an almost complex manifold and (£,V)— X is a complex vector bundle with connec-
tion, we will call a section s of £ V-holomorphic if

Ovs = %(Vs—i—iVsoJ) =0.

Theorem 2.3 Suppose (X,w,J) is a compact almost Kahler manifold, A € Ho(X;Z)*, k€ ZT,
(£,V)— X is a complex vector bundle with connection, and s is a V-holomorphic section of £
such that J is genus-one A-regqular in the sense of Definition 1.4 in [Z]], s is transverse to the
zero set in £, and (£,V) splits into (w, A)-positive line bundles. If ka — X1 5(X, A) is the cone
corresponding to (£,V) and Y =s1(0),

Yoro ) —
GWI (A59) = (. PDgo 4 e(Vily)) (2.2)
for every tautological class v on X1 (X, A).

Since J is genus-one A-regular, ﬁ(l]k (X, A; J) has the expected structure of a topological orbiva-

riety. By the generalization of the proof of the regularity statement of Theorem 1.6 in [Z4] anal-

ogous to Subsection 2.5 in [Z6], for all v € &7, (X, A; J) sufficiently small ﬁ?vk(X, A; J,v) also

has the expected structure of a topological orl;ivariety. In particular, it is stratified by smooth

orbifolds of even dimensions as described in Subsection 3.4 below. We will call v € & (X, A; J)

(V,s)-compatible if ’
Vslyov(Z;u) =0 V[E;uleX k(X A).

We note that if v is (V, s)-compatible, then the map
(3;u) — sfk(E;u)Esou el(X;u"L)
defines a continuous section of the cone ka over ﬁ?k (X, A;J).

Since the V-holomorphic section s is transverse to the zero set in £, the (i, J)-linear map

Vs TX — &
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is surjective along Y =s71(0). Let U, be a small neighborhood of Y in X such that Vs is surjective
over Us. The kernel of Vs over Us is then a complex subbundle of (T'X,J)|y,, which restricts
to TY along Y. We denote this subbundle by TY. If v € &%, (X, A;J) is such that for all
[Z5u] € %1 4(X, A) |

=0, otherwise,

L2 AU T*SeTY), if u(X)CUs:
(50 { (EALTBETY), i u(S) U

then v is (V,s)-compatible. Thus, every element vy € @‘ffk(Y, A; J) can extended to a (V,s)-
compatible element v of & (X, A;J). Furthermore, if vy is a small, then v can also be chosen to
be small.

For a small generic vy € @i’fk(Y, A; ), ﬁ?k(Y, A; J,vy) is stratified by smooth orbifolds of even
dimensions so that the largest-dimensional stratum is E)ﬁ(l]’k (Y, A; J,vy) and

dim sm?,k(Y, A; Jvy) = dimy (Y, A).
Let v be an extension of vy to a small (V, s)-compatible element of Qﬁfk(X, A; J). Suppose
W — :{1,]? (X, A)

is a complex vector bundle of rank dim; (Y, A)/2 as in the first paragraph of this subsection.
Choose a section f of W over ﬁgk(X, A; J,v) such that fly, is transverse to the zero set in W)y,
for every stratum U, of ﬁ?k(X, A; J,v) and of ﬁ?vk(Y, A; J,vy). Then,

FHO)ND, (Y, A; Jvy) MY (Y, A Jy)  and
GWYY (A;) = [ F7H(0)NIM) (Y, A5 Ty ). (2.3)

On the other hand, since v is (V, s)-compatible, sfk is a section of

ka — ﬁ%k(X, A; J,v).

Furthermore,
{51 7H(0) = ) (X, A3 Jw)NE k(Y A) = D) (Y, A; vy );
_ -1 _ <50
— FHO)N{st} T (0) = FH0)NDT & (Y, A; T vy) € MY (X, A; T, v). (2.4)

Note that if [b]=[%;u] Gi)ﬁ(l)’k(Y, A; Jvy),

ker dsi'y |y = {€€ker Dyt V|0 =0}

2.5
=ker Dy, p,NT(Z;u*TY) =ker Dy, 1y, (2:5)

where D, and D, ., are the linearizations of d7+v and 0 7ly Ty at b. The second equality
above is immediate from the transversality of s. By (2.5),

dimg Im dsfk |(5yu) = dimker D, — dimker Dy

. . . (2.6)
= dimy (X, A) — dimy (Y, A) = 2(c1(£), A) = dimp Vf}k\[b}.
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The second equality above follows from our assumption that the operators D ., and D jj,, ... are
surjective; the last equality is a consequence of the (w, £)-positivity assumption. By (2.6), sfk, is
transverse to the zero set in ka along Em(ik(X, A; J,v). Since f is transverse to the zero set in W
along im(l),k(X, A; J,vy), it then follows from (2.4) that

(. PDgo ¢ 4opeVik)) = 7| FHON{st ) = F| )N L (Y, A Twy)|. (27)

Theorem 2.3 follows from (2.3) and (2.7).

3 Ingredients in Proof of Theorem 1.3

3.1 Notation: Genus-Zero Maps

In this subsection we describe our detailed notation for bubble maps from genus-zero Riemann
surfaces and for related objects. In general, moduli spaces of stable maps can stratified by the dual
graph. However, in the present situation, it is more convenient to make use of linearly ordered sets:

Definition 3.1 (1) A finite nonempty partially ordered set I is a linearly ordered set if for
all i1,19, h €1 such that i1,19 <h, either i1 <ig or io<i7.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there exists
0l such that 0<i for alliel.

If I is a linearly ordered set, let I be the subset of the non-minimal elements of I. For every hel ,
denote by ¢ €I the largest element of I which is smaller than h, i.e. 1 =max {ie[ 1< h}.

We identify C with S2—{oc} via the stereographic projection mapping the origin in C to the north
pole, or the point (0,0,1), in S%2. Let M be a finite set. A genus-zero X-valued bubble map
with M-marked points is a tuple

b= (M, Iz, (j,y),u),
where [ is a rooted tree, and
2:1—C=58%—{c0}, j:M—I, y:M—C, and u:l—C>®(5%X) (3.1)
are maps such that uy,(co) =1, () for all he I. We associate such a tuple with Riemann surface

zb:(|_|2,m-)/~, where B, = {i}xS2 and (h,00) ~ (tn,an) Vhel (3.2)
i€l

with marked points
yl(b)E(jlayl) € Zb,jl and yO(b)E(Ovoo) S Ebf)a

and continuous map wup: Xy — X, given by up|s, , =u; for all i€ I. The general structure of bubble
maps is described by tuples 7 = (M, I; j, A), where

A; = un]S% € Ho(X;Z)  Viel.
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We call such tuples bubble types. We denote by X7 (X) be the space of all bubble maps of type 7.
For 1 €{0}UM, let )
ev;: Xr(X) — X

be the evaluation map corresponding to the marked point y;.

With notation as above, suppose

b= (M, Iz, (j,y),u) € Xr(X).

In particular, I is a linearly ordered set with minimal element 0 and the special marked point is
the point
Yo(b) = (0,00) € Ty 5.

Let x°(b) be the set of components Yy, of Xy such that for every component ¥ ;, that lies between
¥; and ¥, 5, including 3 ; and 3, 5, the degree of uly, , is zero. The set x°(b) is empty if and only
if the degree of the restriction of u; to the component containing the special marked point is not

zero. Let R
5p = {(0,00)} U | S
iex0(b)

We denote by
x(b)=x(T) c 1

the set of components X ; of 3 such that ¥ ; has a point in common with Eg and the degree of
wp|x,, 18 not zero, i.e. Ty; is not an element of x°(b).

If b=(3p;up) is a bubble map with a special marked point as above and i € x(b), we put
D;b= dubvi’ooeoo S Tubyi(oo)Xa

where wup; = up|s, ;. Similarly, if (£,V) is a complex line bundle with connection over X and
&=(&n)ner is an element of I'(b; £), we put

Dpi = ngofi‘oo S ’guz),z‘(oo)'

Note that if £ € ker 5V,b>
AV

Ceoso

&l =c¢ Dpié  VeeC, (3.3)
If in addition £ is (w,up«[Xp))-positive, then the linear operator dy ;, and the linear map
5%0721’); ker évJ, — ‘Sevo(b)a & — g(yo(b))7

are surjective. This can be seen by an argument similar to Subsection 6.2 in [Z2].

3.2 Notation: Genus-One Maps

We next set up notation for maps from genus-one Riemann surfaces. In this case, in contrast to
the genus-zero case, we also need to specify the structure of the principal component. We describe
it by enhanced linearly ordered sets:
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.

Figure 2: Some enhanced linearly ordered sets

Definition 3.2 An enhanced linearly ordered set is a pair (I,N), where I is a linearly or-
dered set, N is a subset of Iy x Iy, and Iy is the subset of minimal elements of I, such that if
[To[>1,

N = {(i1,42), (i2,13), .-, (in—1,%n), (in,31) }

for some bijection i: {1,...,n}— Iy.

An enhanced linearly ordered set can be represented by an oriented connected graph. In Figure 2,
the dots denote the elements of I. The arrows outside the loop, if there are any, specify the partial
ordering of the linearly ordered set I. In fact, every directed edge outside of the loop connects a
non-minimal element h of I with ¢,. Inside of the loop, there is a directed edge from ¢; to io if and
only if (i1,i9) EX.

The subset Y of Iy x Iy will be used to describe the structure of the principal curve of the domain
of stable maps in a stratum of X1 p7(X, A). If R=0, and thus |Ip|=1, the corresponding principal
curve X p is a smooth torus, with some complex structure. If X#£(), the principal components form
a circle of spheres:

Sp = ( |_|{¢}><52)/~, where  (i1,00) ~ (ia,0) if (i1,42)€EX.
i€lp
A genus-one X-valued bubble map with M-marked points is a tuple

b= (M,I,N;Sal‘a (jay)au)v

where S is a smooth Riemann surface of genus one if R=( and the circle of spheres ¥ p otherwise.
The objects x, j, y, u, and (X, up) are as in (3.1) and (3.2), except the sphere X, 5 is replaced

by the genus-one curve ¥, p =S. Furthermore, if X=0), and thus Iy = {0} is a single-element set,
ug € C*(S;X) and y € S if jy =0. In the genus-one case, the general structure of bubble maps is
encoded by the tuples of the form 7 = (M, I,R;j, A). Similarly to the genus-zero case, we denote
by iT(X ) be the space of all bubble maps of type 7. Let

Xr(X) = {[b]€X1,m(X, A): beXT(X)}.

If v is an element of (’5‘fM(X, A), we put
Ur (X5 J) = {b]eX7r(X): {0;+v}(b) = 0}.
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If 7=(M,I,N;j,A) is a bubble type such that 4; =0 for all minimal elements i of I and [¥;u] is
an element of Uz ,,(X; J), the map uly;, is constant. Let

evp:Ur ,(X;J) — X

be the map sending each element [3;u] of U7, (X; J) to the image of the principal component ¥ p
of 3, i.e. the point u(Xp) in X. We note that the map

Xr(X) —2,  b— x(b),
is constant. We denote its value by x(7).
Suppose b= (2p;up) is an element of X; (X, A) as above and (£, V) is a complex vector bundle

with connection over X. If £ = (&,)ner is an element of I'(h; £) and i € I — Iy, similarly to the
genus-zero case, we put

Dpi€ = Vg:oéi‘oo S SUb,i(OO)’

where up; =up|y, ;-

Finally, all vector orbi-bundles we encounter will be assumed to be normed. Some will come with
natural norms; for others, we implicitly choose a norm once and for all. If mg: § — X is a normed
vector bundle and §: X — R is any function, possibly constant, let

85 = {ved: vl <d(nrz(v))}.
If © is any subset of §, we take Q5= N §s.

3.3 Topology

In this subsection we prove a general topological result, Proposition 3.6. For the sake of clarity, we
state and prove it only in the manifold/section category, but Proposition 3.6 and its proof carry
over easily to the orbifold /multisection category.

Similarly to Subsection 1.2, by a cone m: W — 9 we mean a continuous map between two
topological spaces such that W, = 7~!(z) is vector space for each x € M and the vector space
operations induce continuous functions on WxW and CxW.

Definition 3.3 (1) A cone m: W—M is regular if for every b€M, there exist a neighborhood
Uy of b in M, ny €Z™, and a bundle map

Vp: W|Ub — Uy xC™

over Uy such that @y is a homeomorphism onto its image and the restriction of py to each fiber is
linear.

(2) A cone m: W — I is obstruction-free if for every b€M, £ €Wy, and a sequence b, €M
converging to b, there exists a sequence & €W, converging to € in W.

If W— 9 is a cone, for each r€7Z, let
M, (W) = {beﬁ: rka:r}.

Note that if W is obstruction-free, then the set (J,.- qﬁr(W) is closed in M.
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Lemma 3.4 Suppose MM is a compact Hausdorff space that has a countable basis at each point,
A is a closed subset of MM, W — I is a reqular obstruction-free cone, and s is a section of W
over A. If

T4 = min{rka: bEﬁ—A},

s extends to a continuous section § of W over AUIM,.,(W).

Remark 1: Tt is enough to assume that 91 is a paracompact (Hausdorff) space that has a countable
basis at each point.

Remark 2: An immediate corollary of this lemma is that s extends to a continuous section of W
over 1.

Let {Up}pea be a finite open cover of the compact set AUM, , (W) by open subspaces of M as
in (1) of Definition 3.3. Since M is normal, we can choose an open cover {Uj }pe 4 of AUM, , (W)
such that (7,; C U, for all be A. Since Ué is normal for each b€ A, by Tietze Extension Theorem the
continuous section f=yos of Uy x C™ over AN Ué extends to a continuous section f over Ué. Let

Tt UpxC™ — Tm ¢y

be the orthogonal projection map. We will show in the next paragraph that the section 7, o fis
continuous over (AUIM, , (W))NU;. Since AUIM,., (W) is normal, we can choose a partition of unity
{m}vca subordinate to {U]}pc 4. The section

= "m- (g, om, of)

beA

is continuous over AU, , (W). Since f(x)€Im ¢y for all x€ ANUY,
F;f(l‘) =m, f(z) = f(z) Ve ANU;.
Thus, 5|4 =s as required.
It remains to show that the section 7, o f is continuous over (AUM,, (W))NUj. Since
WI;ﬂAmUé = f|AmUé7
L f is continuous along the closed subset Aﬂﬁé of Ué. Thus, we need to show that if
z, € M, W)NU;
is a sequence converging to = € U], then T, f (2) converges to m, f (z). Suppose first
z € M, W)NU;.

We will show that ’ﬁA(W)ﬂU{, is continuous at x. Let {&;}c|r,] be an orthonormal basis for
Im ¢p|5. By (2) of Definition 3.3, for each i€ [r4] there exists a sequence ;.. € Im p|,, converging

21



to &. Since b,b. € My, (W), {&irtiepry) is basis for Im |, for all r sufficiently large. Since
§ip — & for all i€ [r4] and {&;}ig|r,] is an orthonormal basis,

1, ifi=j;
0, ifi#j.

Thus, applying the Gramm-Schmidt normalization procedure, we can find an orthonormal basis
{&. rYie[ra) for Im @y, such that Eir — & for all i€ [ra]. Tt follows that Ty |zn — T, | as needed.
On the other hand, suppose that z € AﬂUb. We will view f, f, and T, f=m,f as C™-valued
functions. By (2) of Definition 3.3, there exists a sequence &, € Im ¢y, converging to f(z). Since

Wzrgrzgm
|7 f () = 70, f ()|

Th_{nm(fi;ra 5j;?‘> = {

‘ erf(xr)}
| &r| + }Wrr‘fr - er]?(fv)‘ + |7T-'Erf~(x) - erf(xrﬂ
2} — &) + | f(@) = fla)].

IN

IN

The last two terms above approach 0 by the assumption on &, and the continuity of fr.

Remark: The projection 7, is not continuous over U, unless the rank of W is constant over Us,.

Similarly, the section m, o f may not be continuous over Ué unless the rank of W is constant
over Uy —A.

Definition 3.5 If 9 is a topological space and (A, <)i9 a finite partially ordered set, a collection
{Un}aca of subspaces of M is a stratification of M if U, is a smooth manifold for all a€ A,

MU =Uy—U, C UUg VacA, and m = |_| U,.
B=a acA

Proposition 3.6 Suppose M is a compact Hausdorff space that has a countable basis at each point,
{UnYaen is a stratification of M, and W — M is a regular obstruction-free cone. If Wiy, — U,
is a smooth vector bundle for all a € A, the cone W admits a continuous section s over M such
that s|y, is smooth and transverse to the zero set in W]y, for all a € A.

Choose an ordering < on the partially ordered set (A, <) such that for all o, B€ A,

tk Wiy, <tk Wiy, = B<a; (3.4)
tk Wiy, =tk Wly,, B=a = g<a.

Since W is obstruction-free, | J . 9. (W) is closed in M, and

r<q

s C | JUus  VaeA, (3.5)

B<a

by the closure condition of Definition 3.5. Suppose o€ A and we have defined a continuous section
s of W over the closed set
A= |Juy

[B<a
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such that s|y, is smooth and transverse to the zero set in W[y, for all #<a. By (3.4) and (3.5),
r4=min {rka: bEﬁ—A} =1k W]y, .
Thus, by Lemma 3.4, s extends to a continuous section § over
AUU, C AUM,, (V).

Perturbing s over U,, without changing it over A, we obtain a continuous section s over AUU,,
such that s|uﬁ is smooth and transverse to the zero set in W|UB for all 8 <q«. This construction
implies Proposition 3.6.

Remark 1: In the orbifold/multisection category as needed for the purposes of this paper, a stra-
tum U, locally is a union of finitely many smooth suborbifolds of a smooth orbifold X,. We will
still call such unions smooth orbifolds. The bundle W/, is the restriction of a smooth orbibundle
over X,.

Remark 2: The cone ka is not obstruction-free, but is regular. In Subsection 3.5, we describe a
subcone Wf‘k C V{‘k which is obstruction-free and sufficiently large for the purposes of Theorem 1.3.

3.4 The Structure of the Moduli Space ﬁ?,k(X,A; J,v)

In this subsection, we describe the strata of the moduli space ﬁ?k (X, A; J,v) for a small generic
element v of @ﬁfk(X, A; J). If k € Z, we denote by [k] the set of positive integers that do not
exceed k. Let 2n=dimp X.

Lemma 3.7 Suppose (X,w,J), A, k, and v are as in Theorem 1.3. If
T = ([k],1,%;5, A)

is a bubble type such that ) ;. ;A=A and A;#0 for some minimal element i of I, then Ut ,(X;J)
s a smooth orbifold and

dimUr, (X;J) = dimy (X, A) — 2(|R|+|1]).

The statement that Uz, (X;J) is smooth should be interpreted as in Remark 1 at the end of
the previous subsection. The branches of Uz, (X;J) correspond to the branches of v. For a
generic v, the linearization D, of the bundle section 0;+v at [b] is surjective for every element

b in ﬁ%k (X, A; J,v) such that u|x,,, is not constant. Thus, Lemma 3.7 is obtained by a standard
Contraction Principle argument, such as in Chapter 3 of [McSa].

Lemma 3.8 Suppose (X,w,J), A, k, and v are as in Theorem 1.3. If

T = ([k],I,N; 4, A)
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is a bubble type such that
mezT,

icrAi=A and A;=0 for all minimal elements i of I, then for each

U, (X;.7) = {[bl€Ur o (X;.7): dime Spane.y {Dib: i€ X(T)} = |[x(T)|—m}
s a smooth orbifold and

dimUy,., (X5 J) = dimy (X, A) = 2(|R|+|I| — n+ (m+n—|x(T)|)m).

If 7 is as in Lemma 3.8 and b= (%; up) €UT (X J), upls,,, is constant. Let
I'p(b) = {CEF(Eb;uiTX): C\gb;P:O};
T%! (b J) = {neD(Sy; A TSy @u; TX): s, , =0}

If v is genetic, the operator
D%, Tp(b) — T4 (b;J)

induced by D, is surjective. Thus, the space Uz ,(X; J) is a smooth orbifold of dimension
dimUz, ., (X;J) = dimy (X, A) — 2(IR|+|1]) + 2n.
We note that
U, (X 1) 0 = max(L [x(T)|~—n) <m < [x(T)]. (3.6)

As at the end of Subsection 2.3 in [Z5], we can construct a vector bundle F' over Uz ,(X;J) of
rank |x(7)], a vector bundle V' over

T Grop B — Ur' 1 (X5 )
of rank mn, and a transverse section D,,, of V' such that
T Dl (0) — | Ug (X3 )
m'>m
is surjective, and the restriction of Wm]D#(O) to the preimage of U7, (X; J) is an embedding. This

observation implies the dimension claim of Lemma 3.8.

The spaces Uz, (X;J) and Z/{gffy;l(X; J) of Lemmas 3.7 and 3.8 are disjoint. By Definition 2.2,

their union is ﬁ?k(X ,A; J,v). Let A* be the set of equivalence classes of bubble types 7 as in
Lemma 3.7 and A° the set of equivalence classes of pairs (7,m) consisting of a bubble type 7 as
in Lemma 3.8 and an integer m as in (3.6). We define a partial ordering on the set A=.A4*A° as

follows. Suppose
T = ([k]7[7N;j7A) and T = ([k]all7N/;j/7é/)

are two bubble types as in Lemma 3.7 and/or in Lemma 3.8. We write

T'<T = |[Z[] N2> ] ]R].
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If 7€ A* and (T',m') € A°, we define
T<(T')m') = T=<T (T',m)<T < 7T'<T.
Finally, if (7,m), (7', m') € A°, we define
(T',m")<(T,m) — T'<7T OR T'=T7, m'>m.
By definition of the stable-map topology,
Uz o(X; ) NUp (X5 ) £0 = T'<T.

Thus, the closure requirement of Definition 3.5 follows from the continuity of the maps D; on
X7(X) with 7 as in Lemma 3.8.

3.5 The Structure of the Cone ka

In this subsection, we describe an obstruction-free subcone Wf‘k of the cone
A 50
Vi — My (X, A5 Ty v).

The cone Vf‘k over %11419 can be shown to be regular by standard arguments; see Remark 2 at the
end of Subsection 4.3. Thus, Wfk is regular as well.

If T is a bubble type as in Lemma 3.8 and [b] € [Xp, up] €U 1, (X; J), let
Fy = {(w)iexn €O 3 wiy Dib=0};
iex(7)

r_ (b; 2) = {§€kel“ 5V,b : Z w; @bﬂ'fzo v (wi)iex(T) S Fbl };
iex(T)

Wikl = {[(b, O] €Villp: €T (b; £)}.
By (3.3), the subspace Wf}k“b] of ka][b} is well-defined. If 7 is a bubble type as in Lemma 3.7 and

[b] EZ/{T,V(X; J)a let
Wikl = Vil

We take
Wiy = U Wikl < Vik-
[b]Eﬁ(l)yk(X,A;J,V)

Proposition 3.9 If (X,w,J), (£,V), A, k, and v are as in Theorem 1.3, the cone
A <0
Wi — I (X, A5 J,v)

18 reqular and obstruction-free. If T is a bubble type as in Lemma 3.7, then WiA’k|MTD(X;J) s a
smooth vector orbibundle and

kWl o = (e1(£), A).
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If T is a bubble type as in Lemma 3.8 and m is an integer as in (3.6), then Wflkh@ (X)) 15 @
smooth vector orbibundle and -

o 1
rk Wfk|u7’lfy;1(X;J) =(c1(£),A) — (m—1) > 5 dimU7’, (X5 J) — 3 dimy (X, 4; £).

If 7 is a bubble type as in Lemma 3.7 and [b] € U7, (X;J), the operator dy is surjective, by
the positivity assumption on the bundle £ and the same argument as in Subsection 6.2 of [Z2]. In

particular, B
dim Vi[p = inddyp = (e1(£),4)  V[b] € Uz, (X; ).

By standard arguments, the surjectivity of 5V,b for every [b] €Ur ,(X; J) implies that

A
Wik

LA
Uz, (x30) = Viglur,xn

is a smooth vector bundle and that the restriction of ka to a neighborhood of Ur ,(X;J)
in X; x(X,A) is a vector bundle. Local trivializations can be constructed using the homomor-
phisms R, ¢ as in Subsection 4.2. In particular, the cone W{}k satisfies the requirements of (1)
and (2) of Definition 3.3 for every [b] eUr ,(X;J).

If 7 is a bubble type as in Lemma 3.8 and [b] = [Xp; up) €UT 1, (X; J), up|s,, is constant. Let
Lp(b; L) = {§€F(Eb;u§£): Elsyp :const};
T3 (b £) = {neT(p; AL T* Sy @up £): nly, , =0}

By the positivity assumption on the bundle £ and the same argument as in Subsection 6.2 of [Z2],
the operator

08 ,: Tp(b; L) — T% (b; )
induced by 5v7b is surjective. In particular,

dim Vi |p) = dimker Oy, = dimker 98, = ind 08 , = (c1(£), A) +1 ¥V [belUr ,(X; ).

Thus, Vflk‘u’f,u( x;7) is a smooth vector bundle. Similarly to Subsection 3.3 in [Z5], for every m as
in (3.6) we can construct a vector bundle F!' —® (X;.J) of rank m and a surjective bundle

homomorphism
D: ka — Hom(F', evpL)

over Uy, (X;J) such that the kernel of D is Wfk\ugy;l(X;J). Thus, Wfkm?,y (x;J) 18 a smooth

;1
vector bundle of the claimed rank.

4 Proof of Proposition 3.9

4.1 Outline

In this section we prove a generalization of Proposition 3.9. It implies that the Poincare dual of
the euler class of Vi, defined as the zero set of a generic section of Vi, over ﬁ?’k(X VA J ) s
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independent of J and v.

Suppose (X,w) is a compact symplectic manifold, (£,V) is an (w, A)-positive line bundle with
connection over X, A€ Hyo(X;Z)*, keZ™t, J= (Jt)tefo,1) 1s a continuous family of w-tamed almost
complex structures on X, and

v=(U)eo,) € OTR(X, As J)

is a family of sufficiently small perturbations of the d;,-operators on X1 (X, A). Let ¢, and [b,] be
sequences of elements in [0, 1] and in ﬁ?k(X , A; Ji,., vy, ) such that

lim ¢, =0 and lim [b]=[b] € ﬁ?yk(X, A; Jo, vp).
We need to show that for every £ € Wf}khb] there exists a sequence &, € Wfk“br] converging to .
By the paragraph following Proposition 3.9, it is sufficient to assume that [b] is an element of
Ur 1, (X; Jo) for a bubble type
T = ([k], 1R 4, 4)

such that A; =0 for all minimal elements 7€ I.

We can also assume that for some bubble type
T' = ([k],I', X )", &)
(b)) €Uz 1, (X5 Jy,) for all 7. We note that by Definition 1.2, for every map u: P! — X such that
(w,us[P']) < (w, A)
the linear operators
Ovu: T(PLu'e) — T(PLAG TP ou'e)  and  kerdv,u — Ly(e)s € — &(00),

are surjective. Thus, it is sufficient to consider two possibilities for 7":

(1) Al=0 for all ie I and {teI": A]#0} = x(T");

(2) A’ #0 for some i€ I} and I' =0,
where Ij) is the subset of minimal elements of I’. In the first case, for every [b.] €Uz, (X;J1,),
the map wup, is constant on the principal component ¥ .p of ¥ , and thus so is every element
& eker 5V,bT- In this case, the question of existence of a sequence &, as above is an issue concerning
the behavior of holomorphic bundle sections for genus-zero (J, v)-holomorphic maps, for a certain
class of perturbations v of the Jj-operator. This class is induced from the class of effectively
supported perturbations of Definition 2.1 and is described in Definition 4.3 at the end of this
subsection. The existence of a desired sequence in case (1) follows from Lemma 4.1 below. In the
second case, X, .p =Xy, is either a smooth torus or a circle of spheres, depending on whether ¥’
is empty or not. There are no bubble components. In this case, the desired result follows from
Lemma 4.2.

Lemma 4.1 Suppose (X,w) is a compact symplectic manifold, (£,V) is an (w, A)-positive line

bundle with connection over X, A€ Hay(X;Z)*, M is a finite set, J = (Ji)co] 95 a continuous
family of w-tamed almost complex structures on X, and

v= (Vt)te[o,l] € 68?{o}uM(X, A J)
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is a family of sufficiently small perturbations of the 0;,-operators on Xo,joum (X, A). Let t,. and
[br] be sequences of elements in [0,1] and in img {o}uM(X’ A; Jy. v.) such that

lim t, =0 and lim [b] = [b] € My jo3um (X, A; Jo, o).

r—00 r—00
Then there exist (cri)icy(b) € (C*XO) ¢, €RT, and isomorphisms

Rbr,b: ker év,b — ker 5V,br

such that
)Dﬁb— Zcr,i'JoDib‘ <e€p Z|CT’i| V’I"EZ+; (41)
iex(b) i€x(b)
lgb,ﬁRbr,bg - Zcr,igb,ig < & Z|Cr,i‘ : H{H VgEkeI'éV7b, TEZ+; (42)
iex(b) iex(b)
im [Ry, &) = [€] € Vil VEé€kerOgyp,  lim 6,=0, |epi| <1 Viex(h).  (4.3)

Lemma 4.2 Suppose (X,w), (£,V), J, A, and M are as in Lemma 4.1 and
v=(U)iejo] € BT m(X, A5 J)

is a family of sufficiently small perturbations of the 0y, -operators on X1 (X, A). Let t, and [b,]
be sequences of elements in [0, 1] and in ﬁ?vM(X,A; Ji,,v,) such that

Spp =Sy, VT, lim t, =0, and lim [b] = [B] € My (X, A; Jo, vp).

If b= (3p; up) is such that the degree of up|s, , is zero, there exist (w;)icy () € (CX®) such that
> wi-,Dib =0
i€x(b)

and a subsequence of {b,}, which we still denote by {b,}, such that

& €ker 5V,bw m [51”] = [f] S V{}M“b] - Zwi Qb,ig =0.

li
1€x(b)

Suppose {b,} and b are as in Lemma 4.2, £ €T'_(b; £), and there exists no sequence

& €kerdyy, st lim [£] = [¢]. (4.4)

T—>00

After passing to a subsequence of {b,} if necessary, we can assume that

€1 ¢ U Vilulig € Vi (4.5)

r=1
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Choose w = (w;)iey ) € (C*)X(®) and a subsequence of {b,}, which we still denote by {b,}, as at
the end of Lemma 4.2. Let {fﬂ} be a basis for ker dy 5, which is orthonormal, with respect to
a regularization at b as in (1) of Definition 3.3 for example. After passing to a subsequence if
necessary, for some linearly independent &7 € ker 5V7b,

Jim (€] =[] € Viyly Vi
By Lemma 4.2,
¢ eT (b8 [w)={{ckerdyp: Y wiDy;£=0}.
i€x(b)

By the positivity assumption of Definition 1.2,
dimker 0y 5, = ind Oy 5, = (c1(L), A) and
dimT'_(b; £; [w]) = dimker dgp — 1 = ind 5VB,b —1={(c1(£), A).

Thus, {_59} is a basis for T'_(b; £; [w]). Since I'_(b;£) C I'_(b; £; [w]), there exists a sequence
&r€kerdyy, as in (4.4), with {b,} replaced by a subsequence. However, this contradicts (4.5).

An element [b,] €Uz, (X;Jy,), with 77 as in the first case above, corresponds to the genus-one
curve X, 0= and genus-zero maps {byn}pey(77) such that ¥, , =P'. If [b] is the limit of the
sequence {b, }, b corresponds to a genus-one curve ;o C X and genus zero maps {by }pey(77) such
that

Jim 5,0 =30 and lim [b.p] = [bn] Yhex(T).

T—00

Similarly, §T € ker 5V,br and & € ker 5v,b correspond to &, p € ker QV,br,h and ¢ € ker ('%,bh, with
hex(T'), such that

& (Wo(brp)) = & (Yo (brpr))  and  &x(yo(bn)) = & (yo(brr))  Yh,h ex(T").

Furthermore,

lim [ ] = [¢] € Vi%Ip — lim [&. 1] = [€n] € Vil Yhex(T),

r—>00

where M, is the index set for the marked points of b, and b,. We will assume that [b,] €
UTm’lut (X; Jy,) for some m' € Z" and for all r.

With (cri)iex(v,) € (C*)x(n) for each hex(T') as in Lemma 4.1, let

ap: CXT) ., ox®) = H(CX(bh
hex(T")

be the injective homomorphism defined by

o ((Wh) hex(17)) = (CriWh)iex(by) hex(T)-

We denote by }7}1 c Cx®) the image of

Fb = { wp,) hex(T") E(CX( th JoDnbr = th Jo Dgbr,n = 0}
hex(T’) hex(T)
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under «,.. By our assumption on b,, dim ﬁ}l =m/ for all r. Let
{<'U1l“,i)i€><(b)}l€[m’] and {§J & hex(T’)}
be orthonormal bases for ! and for

bT,E {{ gh hex T/)EkerOVb

Z wpDyp, n§= Z wi®y,, 65 = 0 V(wh)hex () € Fy 1,
hex(T') hex(7T)

respectively. After passing to a subsequence if necessary, we can find
I — l b i — (¢ 3
w :(wi)ZEx(b) S CX( ) and éj = (gi)hEX(T’) € ker 8V,b
such that

lim (Ui,i)iex(b) =w e CX®) vy and

r—00

lim [¢/] = [¢] € Vil V3.

T—00
Each of the sets {w'} and {¢/} is orthonormal and thus linearly independent. By Lemma 4.1,

va WD = Y D vl 5 Dobn

iex(b hex(T") iex(bn)

va@bzfj oY e, il <a

iex(b hex(T") i€x(bn)

<é Vi and

vj,

for some sequence €, converging to 0. Thus,

= Fb1 = {(wz),ex b)ECX sz Jo Dib= 0} Vi and
iex(b)

¢ eT_ (b & {w' igpm)) ={ckerdyp: Y wiDy£=0VIiem]} Vi

i€x(b)

By Definition 1.2,
dim'_ (b; £; {Ml}le[m’}) = dimker Oy, — m
= dimker Oy, —m' = dimT_(b,; £).
Thus, {¢7} is a basis for I'_(b; £; {Ql}le[m,]). Since w! € F} for all [,
I_(b;€) I (b; &; {wl}le[m/]) and Wfk’[b] C U VfM“br} C VfM.
r=1

As in the first paragraph after Lemma 4.2, this implies that for every { € f_(b; £) there exists a
sequence &, €I'_(by; £) such that

im 6] = [¢] € Vitlp
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Remark: In (4.1) and (4.2), the differences are taken via a parallel transport along the shortest
geodesic, with respect to a metric on X, between evq(b,) and evy(b).

Lemmas 4.1-4.2 are proved in the next two subsections by extending the gluing constructions of
Subsections 2.4 and 2.5 in [Z6] from J-holomorphic maps to holomorphic bundle sections. These
extensions parallel constructions in Subsections 4.2 and 4.3 in [Z5]. In the rest of this subsection
we recall the definition of the type of perturbations v of the dj-operator on space of genus-zero
stable maps that appears in Lemma 4.1; see Subsection 2.1 in [Z6] for details.

Definition 4.3 Suppose (X,w) is a compact symplectic manifold, J = (Ji)ieo,] 45 a continuous
family of w-tamed almost structures on X, A € Ho(X;Z)*, and M is a finite set. A continuous
family of multisections v=()ieo,1), with v € QﬁgﬁowM(X,A; Ji) for all t€]0,1], is effectively
supported if for every element b of %0’{0}UM(X, A) there exists a neighborhood W, of Eg mn a
semi-universal family of deformations for b such that

Vt(b,)‘zb,mwb =0 v [b/] € %0,{0}LIM(X7 A)7 te [07 1]

We denote the space of effectively supported families v as in Definition 4.3 by ®SS{O}LI (X A LT).
If VE@SS{O}I_'M(X, A; J), t€]0,1], [b] is an element of

Mo royun (X, A; i, 1) = {5J+Vt}71(0)a

and i € x(b), then uy|s, , is Ji-holomorphic on a neighborhood of oo in % ; and C ;,D;b is determined
by b, just as in Subsection 2.1. Furthermore, in this case ub|28 is a degree-zero holomorphic map

and thus is constant. Thus, u, maps the attaching nodes of all elements of x(b) to the same point
in X, as in the genus-one case of Subsection 2.1.

4.2 Proof of Lemma 4.1

In this subsection we review the genus-zero gluing construction of Subsection 2.4 in [Z6] and extend
it to holomorphic bundle sections in a manner similar to Subsection 4.2 in [Z5]. This construction
essentially constitutes the first step of the two-step gluing construction described in Subsection 4.3.
Throughout this subsection we assume that M is a finite set, A€ Ho(X;Z), and 7 =(M, I;j, A) is
a bubble such that 0 is the minimal element of I,

d A=A  and  (w,A) >0 Viel
el

Let (£,V)— X be an (w, A)-positive line bundle with connection.
We put ) ]
X7.8(X) = {(Eb;ub)EXT(X): ub|zgzconst}.
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We denote by A
F=%rp(X)xC!

the bundle of smoothing parameters and by FY the subset of F consisting of the elements with all
components nonzero. For each

beXrp(X), iex(T)=x(®), v=(bv)=(b (0n),e;) € F,

we put

pi(v) = th eC and zi(v) = Z (xi/(b) th> e C,

0<h<i 0<i’<i O<h<i’
where x;(b) is the point of ¥ ,, to which the bubble ¥ ; is attached; see (3.2) and Figure 3.
For each sufficiently small element v=(b,v) of FO let
Qo 2y — 2p

be the basic gluing map constructed in Subsection 2.2 of [AZ3} In this case, 3, is the projective
line P! with |M|+1 marked points. The map ¢, collapses |I| circles on ¥,,. It induces a metric g,
on ¥, such that (3,, g,) is obtained from X, by replacing the |I| nodes of ¥ by thin necks.

We put - -

Uy = UpOGy, b(v) = (Buiup), and vy = Oy pw)-
Fix a metric ¢ on X and denote the corresponding Levi-Civita connection by VX. By the same
construction as in Subsection 3.3 of [Z3], the map ¢, induces weighted L-norms || - ||, 1 on the
spaces

{CeT(En;upTX): ((00)=0}  and  D(Zy;upL)

and a weighted LP-norm || - ||,,, on the space I'(X,; A?’J.IT*ZU®U;ES). We denote the corresponding

completions by T'(v), I'(v; £), and I'%!(v; £). The norms || - ||y p1 and || - ||, are analogous to the
ones used in Section 3 of [LT1] for the bundle TX. We put

F_(v;£) = {foqv: £€ker5v’b} C I'(v; £);
I (v;8) ={eT(v;£): £(00)=0; (&, Nw2=0V & eT_(v; L) s.t. &'(00)=0}. (4.6)

By the construction of the map ¢, in Subsection 2.2 of [Z3],

1050, < COWIPIElupr ¥ EET (v L). (4.7)

On the other hand, for the same reasons as in Section 3 of [LT1], for some 4,C € C(X1.p(X);RY)
and for all v=(b,v) Ef?,

cO)7ell,,, . < [0v0tll,., < COE]l,

U?p -

VEeT (v L); (4.8)

\Ds 0,1

see Subsections 5.3 and 5.4 in [Z3]. In particular, the operators 5v71, are surjective, since 5v,b and
5% ®) .16
V,b :
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If (eT'(v), we set
b(v,() = (Zv; exp,,¢) and Uy, ¢ = exp,, C,

where exp is the exponential map with respect to the connection VX. Let

My ¢: T up £) — (B0 1y ¢ L)

be the isomorphism induced by the V-parallel transport along the VX-geodesics 7 — exp,, 7¢ with
7€10,1]. By a direct computation,

<CONCIZpallélvps ¥ EET (L), CET(v); (4.9)

HH;,ICgV,b(v,QHU,Cf - év,fovvp <

see the proof of Corollary 2.3 in [Z1]. By (4.7)-(4.9), for every ¢ € I'(v) sufficiently small and
§ €ker Oy, there exists a unique

fu,g(f) € F-‘r (’U; £) s.t. Hv,( (EOQU +§’U,<(€)) € ker 5V,b(v,{)‘

Furthermore,

10.c©ll,, 1 < COWIMPHICIZp ) €lopa ¥ E€kerdoy. (4.10)

We define the isomorphism

Rv,g: ker gv,b — ker 5V,b(v,§) by Rv,{& = Hv,(j (SOQU+§U,C(§))'

We will use a convenient family of connections in the vector bundles u* £ — 3, which is provided
by Lemma 4.4 below. First, if b= (%p;up) is a stable bubble map, g, is a Hermitian metric in the
vector bundle uy £ — 33, and V? is a connection in uyp £, we will call the pair (g, V)-admissible if
(gV1) V? is g,-compatible and 5v,b—compatible;
(9V2) gp=gu, and V*=V" on XY,
where gy, is the Hermitian metric in u;£ induced from the standard metric in £. The second
condition in (¢V1) means that

= 1 1
Ovp=5(V" +iV' o)) = o (V' +iV’ 0 ),
where V¥ is as in Subsection 1.2.

If b is any genus-zero bubble map and § €R™", we put

S0) =% U [ JAi(6), where Ay;(8) = {(i,2): 2| =671/2/2} C By~ S (4.11)
i€x(b)

If v=(b,v) is a gluing parameter such that the map ¢, is defined, let

006) = g5 (£0(9)). (4.12)
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Lemma 4.4 If (X,w), (£,V), A, M, T, .'%T;B(X), F are as above, there exist
5,C € C(Xr,p(X);RY)
with the following property. For every

be Xr.5(X), U:(b,v)ej-:(?, and ¢ e€Tl(v) st. |||

vpl = 4(b)
there exist metrics gy and g, ¢y and connections Vb and VW9 in the vector bundles
up L — Xy and  uy L — %,

such that
(1) all pairs (gy, V®) and (g(U’C),V(“@) are admissible;
(2) the curvatures of V® and V("¢) vanish on £)(20) and ©9(25), respectively;
(5) HH;EV(U’O(HM@O%) — V¢ odgyllvp < C(’U‘l/p"‘HCHv,p,l) [€llb.p,1 for all £€T(b; £);
(4) the map b— (gp, V°) is continuous.

This lemma is proved by exactly the same argument as Lemma 4.1 in [Z5].

If be X7.5(X) and i € x(b), let w; be the standard holomorphic coordinate centered at the point
00 in $p,; =82 If meZT and £=(&)ier €T (b; £), we put

m 1 dm
Qz(z,i)ﬁ = ———&i(w;) 0 € Levo(b)s

om! dw? wi=
where the derivatives are taken with respect to the connection V?. Similarly, for all
v=(bv) € F),  CeT() st. [[(lop1<(b), and &eT(Sy;ul L),
let

m 1 d"
008 = sl € Lo

where w is the standard holomorphic coordinate centered at the point co in ¥, ~ S? and the
derivatives are taken with to the connection V(:¢). We note that

D¢ =Dy6 Viex(b), EeT(5;£), and @Ej] 066 = Dbw00f ¥ EET(Zuiu (L), (4.13)

by the second condition in (¢V2) above.

A key step in understanding the obstruction to extending holomorphic bundle sections from singular
to smooth domains is the following power series expansion. For every

iex(b), keZ™, v=(b,v) € F?, and (eTl(v),

there exist k 3]
85 )(U’ () e Hom( ker Oy p, L\evo(b))
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x(b)={h1,ha, hs5}
p(U) = (Uh1 » Uh3Uhy s Uhsvhs)
hs @, (v) = 4,y (b) + Vny @y (b)

Th (b
+0) .0 BtcE = Uy (D5, €) + Vhavn (Dh,€) +navhs (Dh,€)
xhl (b) A~ $h3(b) n

Figure 3: An example of the estimates (4.14) and (4.15)

such that for all £ €ker 5V,b

k=m

(m) _ m—1 m—k( Nk (k) ¢, (k)

Ot = 2 (k_l)'ez(;i ()t {@Pe P, e} (4.14)
. =

and
¥ (0, 0)¢] < COF2 (ju] /P +||¢

o) [€llbp,1- (4.15)

The expansion (4.14) is obtained by exactly the same integration-by-parts argument as the expan-

sion in Theorem 2.8 of [Z3]; see also the paragraph following Lemma 4.2 in [Z5]. We point out that

e® i independent of m. The m=1 case of the estimates (4.14) and (4.15) is illustrated in Figure 3.

7

Let ¢, and b, be as in Lemma 4.1. Since the sequence [b,| converges to [b], for all r sufficiently
large there exist

boeXrp(X), uv.=@0,v)eF, and ¢ el(v,)
such that
lim b =b, lim |v,| =0, lim |G l|o,p1 =0, (4.16)
and b.= (EbT;ubT) = (Evr;expuvr (T).

The last equality holds for a representative b, for [b,]. By the estimate (2.12) in [Z6] and (4.16),

’D by — sz () (Dstl) 3 ‘pl (vr) (4.17)

ex(b iex(b

for a subsequence €, converging to 0. Furthermore, by the m=1 case of (4.14) and (4.15),

Dyl &— Y _pivr) Dy €| < er Z|pz vl N€llbpr VEEker Oy (4.18)

1€x(b) €x(b

For the purposes of Lemma 4.1, we take
Rbr,b: ker 5V,b — ker 5V,br

to be the composition of B )
RUmCr : ker 8V,b; — ker 8V,bT
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with an isomorphism
Ry p: ker 5V,b — ker 5V,b’r s.t. Th;rl@ Ry & =& VEc€ker 5V,b~
We take ¢, ;=p;(vy). It is immediate that the requirements (4.3) of Lemma 4.1 are satisfied. Since
rli_r)nooD,-b;, =D;b and Tli_l}Iloo@b/win;,bf =D& VEekerdyy, i€ x(b),
the requirements (4.1) and (4.2) are satisfied as well. This concludes the proof of Lemma 4.1.

Remark: A regularization ¢y, of the cone V(‘)‘}M near b, as in Definition 3.3, can be constructed using
the isomorphisms R, ¢ as above and a description of open subsets in X (X, A) as in Section 3
of [LT1]. In this case, ¢ is a homeomorphism.

4.3 Proof of Lemma 4.2

In this subsection, we review the two-step gluing construction used in Subsection 2.5 of [Z6] and
extend it to holomorphic bundle sections in a way similar to Subsection 4.2 in [Z5]. We assume
that

T = (M,I,N;j,A)

is a bubble type such that

D> A=A, (w,A)) >0 Yiel, A;=0 Viely, and I[)CI,
el

where Ij is the subset of minimal elements of I as before. Let (£,V)— X be an (w, A)-positive
vector bundle with connection. Throughout this subsection we focus on the case

[br] € MY 5 (X, As J,v),
i.e. 3p,.p =2, is a smooth torus for all r.
Similarly to Subsection 4.2, we put
Xr.5(X) = {(Zp;wp) €X7(X): Up| 50 =const }.

Let
L ={hel:wely} and ko= |I|+|[{leM: jielp}|

We denote by Mj g, the moduli space of genus-one curves with ky marked points and by

Wp:%T;B(X) —>M1,k07 b— [Eb§P]7
evp: %T;B(X) — X, b — up(Zp;p),

the maps sending each element b of 3~‘ZT; B(X) to the equivalence class of the principal component(s)
Yp,p of its domain and to the image of ¥, p in X. Let

E — ﬂl,ko
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he hy hs hy x(0)={h1, hy, hs},

hs p(v) = (b5 Vhy s VngVhy s Vg Uhs)

Figure 4: An example of p(v)

be the Hodge line bundle, i.e. the line bundle of holomorphic differentials.

Let _ 3
F — :{T;B(X)

be the bundle of gluing parameters. It has three distinguished components:

f:ﬁnéB.%o@ﬁl, where %N:-%T-B( ) ><CN .7':1 :-%T-B( ) XCf_Il,

=P 7, and Ful, =T, S0p ¥ bEXTp(X).
hely

The total space of fh has a natural topology; see Subsection 2.2 in [Z4]. We denote by F¥ the
subset of F consisting of the elements with all components nonzero. If i € I, let h(i) € I be the
unique element such that h(i) <i. For each v=(b,v), where b€ X7.5(X) and v = (v;) and
iex(b), we put

iexul’

vo = (b, (vi)iexun ) vy = (b, (Ui)ief_h)v
th €C, pi(v) =pi(v) - vngpy € Ty (1) X
h(i)<h<i
and  p(v) = (b, (pi(v)) ;e ) €= €D Ty
i€x(b)

The component v1 of v consists of the smoothings of the nodes of ¥, that lie away from the principal
component. In the case of Figure 4, these are the attaching nodes of the bubbles hz, hs, and hs.
For each element ©= (b, (0;);ey(s)) of §, we define the linear map

©’L~} : ker 5V,b I Ej‘(‘p(b) ®£evP(b) by {9’[}5}( quxh(l) @b 167
i€x(b)

if e Eﬂp(b)
For each sufficiently small element v=(b,v) of F?, let
vy - E’Ul B Zb

be the basic gluing map constructed in Subsection 2.2 of [Z3]. In this case, the principal component
Yu,;p of ¥y, is the same as principal component ¥ p of ¥, and X, has |I;| bubble components
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Yoy by With h €1y, attached directly to ¥,,.p. The map ¢, collapses ]f—11| circles on the bubble
components of ¥,,. It induces a metric g,, on %,, such that (X4,,9v,) is obtained from ¥ by
replacing |/ —I;| nodes by thin necks. Let

Uy, = Up O b(v1) = (Zu5U,), and Oy, = 5V,b(u1)-
The map ¢, induces weighted L¥-norms || - ||, 1 on the spaces
{CeT(Zy;up, TX): (s, , =0}  and  {€€T(Sy;uy,L): €ls, =0}
and a weighted LP-norm | - ||, on
{neT(Su; Ag’le*Zvl @up, £): 1z, p =0};

see Subsection 3.3 of [Z3] and the first remark in Subsection 2.5 in [Z6]. We denote the correspond-
ing completions by I'g(v1), I'p(vi; £), and F%’l(vl; £).

For each (€ I'g(v1), let
Uvy ¢ =€xpy, ¢ and  b(vr, () = (B )
For § € C(X7.5(X); RT) sufficiently small,
v=(bv) € F), and  C€Tp(v1) st [|C]lopr < 3(b),

the isomorphisms R, ¢ of Subsection 4.2 corresponding to the restriction of b(v1,() to Xy, 4, with
he€ I, induce an isomorphism

RULC: ker §V7b — ker év,b(m,C)

such that
[Ror 8Ly pa < 20€Np1-

Furthermore, by the m=1 case of (4.14) and (4.15),

DporpBuncE — Y pilv)Dpi€| < CO)(JU]P+1Clloy p1) 16i(0)] - 1€llbpa,  (4.19)
iex(b),h(i)=h iex(b),h(i)=h

for all he€ I; and & € ker 5v7b. Let V¢ and gu, ¢ be the connection and metric in the line bundle
Uy, CS induced by the connections and metrics of Lemma 4.4. For each h€I; and §€R™, let

Aoy n(8) = ¢5 (A (6)).

From the estimates (4.14) and (4.15), we find that

IV Ron c&llcoga,, o@gn, < COMT+IC o) . (b)zh(lﬁih(vﬂ lie
1ex(0),h(1)=

b,p,15 (420)

for all hel; and & €ker 5V,b~
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Fix a smooth function €: ﬁ%T;B(X) — R such that for every b .'%T;B(X) and h € I the disk of
radius of 8¢, in ¥y, p around the node x(b) contains no other special, i.e. singular or marked, point
of ¥p. For each B

v=(b,v)= (b, (vn)enuif € Fo

sufficiently small, let
Gug;2 - Yy — Evl and ijo;Q: Yy, — Evl

be the basic gluing map of Subsection 2.2 in [Z3] corresponding to the gluing parameter vy and
the modified basic gluing map defined in the middle of Subsection 4.2 in [Z4] with the collapsing
radius €. In this case, X, is a smooth genus-one curve. For each h € I, the maps qy,.2 and Guy:2
collapse the circles of radii |vh|1/ 2 and ¢, respectively, around the point z(b) € Yu;p- As before,
the map

Guv = Qug;2° Quy - Yy — 2p

induces a metric g, on X, such that (X, g,) is obtained from ¥, by replacing all nodes by thin
necks. Let
If =1 —{heli: A;=0Vi>h}.

The map §y,;2 is biholomorphic outside |X| thin necks A, 5, with h € X, of (£,,g,) and the |11
annuli
J‘Ib,h = Ab_,h U Al—:h’
with h € I;, where
A;fh = Affh ((5(1))) C NpprX,

are annuli independent of v. In addition,

uU11C|qu0;2(A'u7h) = const VhEN,

4.21
=const Yhel,—I7, (421)

) = const Vhelj;

uvl’c‘qv0;2(-’ib,h) uUl’C‘QUo;Q(A;h

Gooi2(Ay ) © Avyp(|on*/3(0)) - and [ duge|| o) < CO)loal  VhEL, (4.22)

if the C%norm of dGy,;2 is computed with respect to the metrics g, on ¥, and g¢,, on ¥,,. Fur-
thermore,
HdCYvo;ZHCO S C(b) (423)

If v=(b,v) € F is sufficiently small and ¢ €T p(v1), we put
Uy,¢ = Uy ¢ © Gug;2 and b(v,() = (EU; “v,C)-
The map qy,;2 induces weighted L{-norms || - ||, .1 on the spaces
[(y;uy, TX) and [(Ey;u; L)
and a weighted LP-norm | - ||,,, on the space

(i A TS, @u, TX).
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Let I'(v,¢), I'(v,¢; £), and T'%! (v, ¢; £) be the corresponding completions. We put
I (U, C; S) = {Rv,ngRm,Cfo(ho;Q : gEkel“ 5V,b} C F(’U, C; ,Q)

By (4.20)-(4.23), for all £ € ker dy

109 pv,c)Rocéll,,, < C(b) Z || Z 1i(V)] - |€llp,1 = CB)|p(V)] - |E][p1- (4.24)
P

hel; iex(b),h(i)=h

Let T'y (v, ¢; £) be the L?-orthogonal complement of I'_(v,(; £) in I'(v, (; £). We denote by
Tog—: T(v, (G €) — T (v, £)

the L?-projection map. For the same reasons as before,

co) e, < Hgv,b(v,(j)’fHup < C(b)HfHU,p’l VEeTli(v,G L), (4.25)

P,

if v=(bv) € FP and ¢ €T(vy) are sufficiently small. Let Fi’l(v, ¢; £) be the image of I'y (v, (; £)
under 9y p(y,,0)-

The operator 5V,bv, ¢ Is not surjective. We next describe its cokernel. Since the operator 5@7(, is
surjective, the cokernel of 8_V,b can be identified with the vector space

Fgl(bv S) = Hb;P®£evP(b) ~ E:—P(b)(g)geVp(b)a

where Hj, p is the space of harmonic antilinear differentials on the main component ¥y.p of 3. As
in Subsection 4.3 in [Z5], there exist isomorphisms

R?;}: Hp,p — Hop =Hi(o,0);Ps v=(b,v) € Fs,
such that the family of induced homomorphisms

Hpp — TN (0;C), {Rypn}() = (Rypn,n' )2 V1€ Hpp, v/ €T (v;C),

is continuous on Fj, and

Ryply=id  VbeXr,p(X). (4.26)

Let 8: RT —]0, 1] be a smooth function such that

0, ift<1;
t) € -
b) {1, if t>2.

If reR*, let 3.(t)=0(t/\/7). We define 3, € C>®(Zy; R) by

1, if 2€%,, iex®(b);
Bo(z) = q 1= Bsp)(r(2)), if €%y, i€ x(b);
0, otherwise,
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where r(z) = |q§1(z)\ if g5 : C — S? is the stereographic projection mapping the origin to the
south pole of S2. In other words, 3,=1 on X9(5(b)/2) and vanishes outside of X9(25(b)) C Zp. Let
Bo = Broqy. If z€X2(25(b)), we denote by H,(ZU’O the parallel transport in the line bundle u; £

along a path from z € q*;olﬂ(zm;p) to z in ¥9(24(b)) with respect to the connection d;jo;QV(Ul’C). For
each B
v=0bv)eF) and pel™'(h; ), (4.27)

let R) el (v, (; £) be given by
{Rg’én}zw = Gu(2) Hg’cnz(w) € Suﬂ,g(z) 2€8,, weT,X,.

Since the curvature of Q;O;QV(”“C) vanishes over 9 (25(b)), {Rg’én} »w is independent of the choice
of x and path from x to z above.

If nel%(b; £), we put

Il =" 1len ),

hel;

where |n[,, ) is the norm of 7|, ;) with respect to the metric g, ) on Yy p. If v and 7 are as
in (4.27) and ||n||=1, we define by

Mg T 0, G 2) — T2 b 8) by moe_(n) = (0, Ryendan Vil €T (0, £).

Since the space I‘(i’l(b; £) is one-dimensional, wg’éf is independent of the choice of 7. We note that
since p>2, by Holder’s inequality

0,1
[my | <COIN vy V' €T (v, G L). (4.28)

v

Furthermore, by the proof of Lemma 2.2 in [Z3],

78 _Bv pwo€ll < CO)| ()|l

vpl  VEED (v, G L) (4.29)

With the same restriction on the homomorphisms R%D and identification of gluing parameters as
described in Subsection 4.2 of [Z4], we also have

T e Ov (o) Ruc€ = —2miD )€ VEcker Oy, (4.30)
by the proof of Proposition 4.4 in [Z3].
For each v=(b,v) € F?, ¢eT'p(v1), and ¢'€l(v, (), we put
Uy ot = expuMC' and b(v,¢, ) = (EU;UU7<’</).
We denote by Il the isomorphisms
D(By;up L) — T(Xosup, ¢ o L) and

D(S0; AL T80 @1, £) — T(Su; AL T8, @uj ¢ L)

v v
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induced by the V-parallel transport along the geodesics 7 — exp,, CTC/ with 7€[0,1]. Let

Lyco =5 09 b e = 0w o) T(0,6 L) — T (0, ¢ £).
Similarly to (4.9),

| Locc€ll,, < CONCIZ palléllopr ¥ EET(,( L). (4.31)

Up_

Let J be an almost complex structure on X. With notation as at the beginning of this subsection
and in Subsection 3.2, we define the linear bundle map

Dy.r: 3 TpE*@cevp(TX, J)
over %T;B(X) by
{DJ§T(b (Uz)zEX b) wah(z) JD b & Te ( )X
1€x(b)

Suppose t, and b, are as in Lemma 4.2 and X .p= ¥, is a smooth torus. Since the sequence [b,]
converges to [b], by Subsection 2.5 in [Z6] there exist C € R™ and for all r sufficiently large

b Xr.p(X), v, =(,v)eF, (el(y), ¢ el(v,¢), and e eRY  (4.32)

such that
lim =b, lim [0 =0, T [Glups =0, ¢ g < Clov) 1.3
dim o] =0, [Drze(v)] < erlp(v)] (4.34)
and b= (Zp,;w,) = (S, expy,, . (1)
The last equality holds for a representative b, for [b,].
By (4.31) and the last inequality in (4.33), for some C' € R* and for all r sufficiently large
2
Loy crciélly, p < Clo@n) [ 1€lo,pr ¥ EET(r, G £). (4.35)
Thus, by (4.24) and (4.25),
HWUT,CT;—HC_;% - H_;lf oppl = C‘P Ur ‘H’f”vr,p, V ¢ eker dy p, - (4.36)
Since ) )
{09 b ) F Lo G € =0V E€kerdyy,
by (4.28)-(4.30), (4.35), and (4.36),
2 N _
D,w)€| < Clon)|” €l p1 ¥ Rup g€ € T, =115 ker Oy, (4.37)
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After passing to a subsequence if necessary, let

w' = (W))icym) € S — {0}

be such that ~
lim [p(v,)] = [w'] € P§p.

Since D;b. — D;b for all i € x(b),
{Dsos7 (b, (W)ienv)) wah@ 1Db=0€ T, ;)X VYEE. ),  (4.38)
zEX

by (4.34). If & €ker Oy, and £ €ker Jy, are such that
lim [§,] = [¢] € Vf}M’[b]:

rT—>00

then by (4.36) and (4.37),

Hgy’g}w =

Z%m oW Doié| &[0l Vo € Erpgy (4.39)

16)(

for a sequence €, converging to zero. Thus, by (4.38) and (4.39), for the purposes of Lemma 4.2
we can take

where ¢ €E ) is any nonzero element.

Remark 1: If ¥, .p =1, is a circle of spheres, i.e. X' () in the notation of Subsection 4.1, the proof
of Lemma 4.2 is formally the same, but some details change in a way analogous to Subsection 3.9
in [Z3]. In particular, in (4.32),

€ fNO = {(b, (Uh)heNuf) S ]A‘:i vp,=0 <— hENQ},

for a nonempty subset Ny of NX. If v 6.7?(?0, 3, is a circle of spheres with nodes Ry. If in addition
¢eT(v1), I'(v, ) consists of the vector fields on the [Ng| components of ¥, that agree at the nodes
of 3. Similarly, I'(v, (; £) consists of the sections of ), .£ over the components of X, that agree
at the nodes. If neI'™ (b; £), the u v cL-valued (0,1)- forrn R" 477 has poles at the nodes of 3, with
residues that add up to zero at each node. In particular, Rv’ & is not an element of I'%!(v, (; £),

but the homomorphism 7T0 . is well defined and still satisfies (4.28)-(4.30). Finally, the argument
of Subsection 2.5 in [Z6] easﬂy generalizes to show that (vy,(, (), €) as in (4.32)-(4.34) exist in
this situation.

Remark 2: A regularization ¢ of the cone Vl v Dear b, as in Definition 3.3, can be constructed

using the description of open subsets in X; M(X A) of Section 3 in [LT1] and the corresponding
analogues of the isomorphisms R, ; and the injective homomorphisms 7TU7<7_H</ as above.
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