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Abstract

We describe three recursions for top intersections of tautological classes on blowups of moduli
spaces of genus-one curves. Two of these recursions are analogous to the well-known string and
dilaton equations. As shown in separate papers, these numbers are useful for computing genus-
one enumerative invariants of projective spaces and Gromov-Witten invariants of complete
intersections.
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1 Introduction

Moduli spaces of stable curves and stable maps play a prominent role in algebraic geometry,
symplectic topology, and string theory. Many geometric results have been obtained by utilizing
the fact that the moduli space M0,k(P

n, d) of degree-d stable maps from genus-zero curves with k

marked points into Pn is a smooth unidimensional orbi-variety of the expected dimension. This is
not the case for positive-genus moduli spaces Mg,k(P

n, d). However, if d≥1, the closure

M
0
1,k(P

n, d) ⊂M1,k(P
n, d)

of the space M
0
1,k(P

n, d) of stable maps with smooth domains is an irreducible orbi-variety of the

expected dimension. This component of M1,k(P
n, d) contains all the relevant genus-one information
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for the purposes of enumerative geometry and, as shown in [LZ] and [Z1], of the Gromov-Witten
theory.

For d ≥ 3, M
0
1,k(P

n, d) is singular. A desingularization of the space M
0
1,k(P

n, d), i.e. a smooth

orbi-variety M̃
0
1,k(P

n, d) and a map

π : M̃
0
1,k(P

n, d) −→M
0
1,k(P

n, d),

which is biholomorphic onto M
0
1,k(P

n, d), is constructed in [VaZ]. Via this desingularization and
the classical localization theorem of [AB], intersections of naturally arising cohomology classes on

M
0
1,k(P

n, d) can be expressed in terms of integrals of certain ψ-classes on moduli spaces of genus-
zero and genus-one stable curves and on blowups of moduli spaces of genus-one stable curves. The
former can be computed through two well-known recursions, called string and dilaton equations;
see Section 26.3 in [MirSym]. In this paper we give three recursions for top intersections of ψ-
classes on blowups of moduli spaces of genus-one curves; see Theorem 1.1. Two of these recursions
generalize the genus-one string and dilaton relations. Together with the standard genus-one initial
condition, i.e. (1.2), the three recursions completely determine the top intersections of ψ-classes on
blowups of moduli spaces of genus-one curves.

Corollary 1.2 of Theorem 1.1 is used in [Z2] and [Z3] to compute the genus-one GW-invariants
of any Calabi-Yau projective hypersurface, verifying the long-standing prediction of [BCOV] for a
quintic threefold as a special case. The full statement of Theorem 1.1 is used in [Z3] to describe
the difference between the standard and reduced genus-one GW-invariants, making it possible to
compute the genus-one GW-invariants of any complete intersection.

If J is a finite nonempty set, letM1,J be the moduli space of genus-one curves with marked points
indexed by the set J . Let

E −→M1,J

be the Hodge line bundle of holomorphic differentials. For each j∈J , we denote by

Lj −→M1,J

the universal tangent line for the jth marked point and put

ψj = c1(L
∗
j ) ∈ H

∗
(
M1,J ; Q

)
.

If (cj)j∈J is a tuple of integers, let

〈
(cj)j∈J

〉
|J |

=
〈 ∏

j∈J

ψ
cj

j ,M1,J

〉
.

Let I and J be two finite sets, not both empty. The inductive procedure of Subsection 2.3 in [VaZ],
which is reviewed in Subsection 2.1 below, constructs a blowup

π : M̃1,(I,J) −→M1,ItJ
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of M1,ItJ along natural subvarieties and their proper transforms. In addition, it describes |I|+1
line bundles

Ẽ, L̃i −→ M̃1,(I,J), i∈I,

and |I| nowhere vanishing sections

s̃i ∈ Γ
(
M̃1,(I,J); L̃

∗
i⊗Ẽ∗

)
, i∈I.

These line bundles are obtained by twisting E and Li. Since the sections s̃i do not vanish, all |I|+1
line bundles L̃i and Ẽ∗ are explicitly isomorphic. They will be denoted by

L −→ M̃1,(I,J)

and called the universal tangent bundle. Let

ψ̃ = c1(L
∗) ∈ H2

(
M̃1,(I,J); Q

)

be the corresponding “ψ-class” on M̃1,(I,J). If (c̃, (cj)j∈J) is a tuple of integers, we put

〈
c̃; (cj)j∈J

〉
(|I|,|J |)

=
〈
ψ̃c̃ ·

∏

j∈J

π∗ψ
cj

j ,M̃1,(I,J)

〉
. (1.1)

If c̃+
∑

j∈Jcj 6= |I|+|J |, c̃<0, or cj<0 for some j∈J , we define this number to be zero.

Theorem 1.1 Suppose I and J are finite sets, such that |I|+|J |≥2, and (c̃, (cj)j∈J) is a tuple of
integers.

(R1) If I 6=∅ and cj>0 for all j∈J ,

〈
c̃; (cj)j∈J

〉
(|I|,|J |)

=
〈
c̃; (cj)j∈J

〉
(|I|−1,|J |+1)

.

(R2) If cj∗ =1 for some j∗∈J ,

〈
c̃; (cj)j∈J

〉
(|I|,|J |)

= (|I|+|J |−1)
〈
c̃; (cj)j∈J−{j∗}

〉
(|I|,|J |−1)

.

(R3) If cj∗ =0 for some j∗∈J ,

〈
c̃; (cj)j∈J

〉
(|I|,|J |)

= |I|
〈
c̃−1; (cj)j∈J−{j∗}

〉
(|I|,|J |−1)

+
∑

j∈J−{j∗}

〈
c̃; cj−1, (cj′)j′∈J−{j∗,j}

〉
(|I|,|J |−1)

.

Corollary 1.2 If I and J are finite sets and I 6=∅, then

〈
ψ̃|I|+|J |,M̃I,J

〉
=

1

24
· |I||J | · (|I|−1)!
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Figure 1: Lifts of Forgetful Maps

We recall that 〈
ψ,M1,1

〉
=

1

24
. (1.2)

Thus, Corollary 1.2 is obtained by applying (R3) |J | times and then (R1) followed by (R3) |I|−1
times.

The recursion (R1) of Theorem 1.1 follows easily from the relevant definitions, which are reviewed in
Subsection 2.1. The reason is that the blowups ofM1,ItJ corresponding to the two sides of the re-
lation in (R1) differ by blowups along loci on which

∏
j∈J ψj vanishes; see the end of Subsection 2.1.

The c̃=0 cases of (R2) and (R3) are precisely the standard genus-one dilaton and string recursions,
respectively. The relations (R2) and (R3) are proved in Subsection 2.2 by an argument similar to
the usual proof of the latter. In particular, we consider the forgetful morphism

f :M1,ItJ −→M1,It(J−{j∗}).

By Proposition 2.1, it lifts to a morphism on the blowups,

f̃ : M̃1,(I,J) −→ M̃1,(I,J−{j∗});

see the first diagram in Figure 1. Each of the blowups is obtained through a sequence of blowups
along smooth subvarieties, but the order of the blowups is not unique. We prove Proposition 2.1
in Subsection 3.3 by fixing an order for blowups on M1,It(J−{j∗}) and then choosing a consistent

order for blowups on M1,ItJ . We show that f then lifts to a morphism between corresponding
stages of the two blowup constructions; see Lemma 3.5. Once the existence of the morphism f̃

is established, we compare ψ̃ with f̃∗ψ̃ and describe their restrictions to the relevant divisors; see
Lemmas 2.2 and 2.3.

If k>0, there is also a natural forgetful morphism

f : M1,k(P
n, d) −→M1,k−1(P

n, d).

The proof of Proposition 2.1 in Subsection 3.3 can be modified in a straightforward way to show
that this morphism f lifts to a morphism

f̃ : M̃
0
1,k(P

n, d) −→ M̃
0
1,k−1(P

n, d);

see the second diagram in Figure 1. This observation implies that the desingularization M̃
0
1,k(P

n, d)

of M
0
1,k(P

n, d) constructed in [VaZ] preserves one of the properties central to the Gromov-Witten
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Figure 2: A Typical Element ofM1,ρ

theory.

The author would like to thank the referee for comments and suggestions on the original version
of this paper.

2 Preliminaries

2.1 Blowup Construction

If I is a finite set, let

A1(I) =
{(
IP , {Ik : k∈K}

)
: K 6=∅; I=

⊔

k∈{P}tK

Ik; |Ik|≥2 ∀ k∈K
}
. (2.1)

Here P stands for “principal” (component). If ρ= (IP , {Ik : k ∈K}) is an element of A1(I), we
denote by M1,ρ the subset ofM1,I consisting of the stable curves C such that

(i) C is a union of a smooth torus and |K| projective lines, indexed by K;
(ii) each line is attached directly to the torus;
(iii) for each k∈K, the marked points on the line corresponding to k are indexed by Ik.

Let M1,ρ be the closure of M1,ρ in M1,I . Figure 2 illustrates this definition, from the points of
view of symplectic topology and of algebraic geometry. In the first diagram, each circle represents
a sphere, or P1. In the second diagram, the irreducible components of C are represented by curves,
and the integer next to each component shows its genus. It is well-known that each space M1,ρ is
a smooth subvariety of M1,I .

We define a partial ordering on the set A1(I)t{(I, ∅)} by setting

ρ′≡
(
I ′P , {I

′
k : k∈K ′}

)
≺ ρ≡

(
IP , {Ik : k∈K}

)
(2.2)

if ρ′ 6=ρ and there exists a map ϕ : K−→K ′ such that Ik⊂I
′
ϕ(k) for all k∈K. This condition means

that the elements ofM1,ρ′ can be obtained from the elements ofM1,ρ by moving more points onto
the bubble components or combining the bubble components; see Figure 3.

Let I and J be finite sets such that I is not empty and |I|+|J |≥2. We put

A1(I, J) =
{(

(IP tJP ), {IktJk : k∈K}
)
∈A1(ItJ) : Ik 6=∅ ∀ k∈K

}
.
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Figure 3: Examples of Partial Ordering (2.2)

We note that if %∈A1(ItJ), then %∈A1(I, J) if and only if every bubble component of an element
of M1,% carries at least one element of I. The partially ordered set (A1(I, J),≺) has a unique
minimal element

%min ≡
(
∅, {ItJ}

)
.

Let < be an ordering on A1(I, J) extending the partial ordering ≺. We denote the corresponding
maximal element by %max. If %∈A1(I, J), we put

%−1 =

{
max{%′∈A1(I, J) : %′<%}, if % 6=%min;

0, if %=%min,
(2.3)

where the maximum is taken with respect to the ordering <.

The starting data for the blowup construction of Subsection 2.3 in [VaZ] is given by

M
0
1,(I,J) =M1,ItJ , M

0
1,% =M1,% ∀ %∈A1(I, J),

E0 = E −→M
0
1,(I,J), and L0,i =Li −→M

0
1,(I,J) ∀ i∈I.

Suppose %∈A1(I, J) and we have constructed

(I1) a blowup π%−1 : M
%−1
1,(I,J) −→M

0
1,(I,J) of M

0
1,(I,J) such that π%−1 is one-to-one outside of

the preimages of the spaces M
0
1,%′ with %′≤%− 1;

(I2) line bundles L%−1,i−→M
%−1
1,(I,J) for i∈I and E%−1−→M

%−1
1,(I,J).

For each %∗>%−1, let M
%−1
1,%∗ be the proper transform of M

0
1,%∗ inM

%−1
1,(I,J).

If %∈A1(I, J) is as above, let

π̃% :M
%

1,(I,J) −→M
%−1
1,(I,J)

be the blowup ofM
%−1
1,(I,J) alongM

%−1
1,% . We denote byM

%

1,% the corresponding exceptional divisor.

If %∗>%, let M
%

1,%∗⊂M
%

1,(I,J) be the proper transform of M
%−1
1,%∗ . If

% =
(
(IP tJP ), {IktJk : k∈K}

)
∈A1(ItJ) and i∈I,

we put

L%,i =

{
π̃∗%L%−1,i, if i 6∈IP ;

π̃∗%L%−1,i ⊗O(−M
%
1,%), if i∈IP ;

E% = π̃∗% E%−1 ⊗O(M
%

1,%). (2.4)
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It is immediate that the requirements (I1) and (I2), with %−1 replaced by %, are satisfied.

We conclude the blowup construction after |%max| steps. Let

M̃1,(I,J) =M
%max

1,(I,J), L̃i = L%max,i ∀ i∈I, Ẽ = E%max .

By Lemma 2.6 in [VaZ], the end result of this blowup construction is well-defined, i.e. independent
of the choice of an ordering < extending the partial ordering ≺. The reason is that different exten-
sions of the partial order ≺ correspond to different orders of blowups along disjoint subvarieties.1

By the inductive assumption (I4) in Subsection 2.3 of [VaZ], there is a natural isomorphism be-
tween the line bundles L̃i and Ẽ∗. Thus, these line bundles are the same. We denote them by L.

We are now ready to verify the recursion (R1) in Theorem 1.1. If i∗∈I,

A1

(
I−{i∗}, Jt{i∗}

)
⊂ A1(I, J) and

A1(I, J)−A1

(
I−{i∗}, Jt{i∗}

)
=

{
%=

(
IP tJP ,

{
{i∗}tJ1

}
t{IktJk : k∈K ′}

)
∈A1(ItJ)

}
.

With % as above, we have a natural isomorphism

M1,% ≈M1,%̄ ×M0,{q,i∗}tJ1
, where %̄ =

(
IPtJP t{p}, {IktJk : k∈K ′}

)
.

Let
π2 :M1,% −→M0,{q,i∗}tJ1

be the projection map. By definition,

ψj

∣∣
M1,%

= π∗2ψj ∀ j∈J1 =⇒
∏

j∈J1

ψj

∣∣
M1,%

= π∗2

∏

j∈J1

ψj = π∗20 = 0,

since the dimension of M0,{q,i∗}tJ1
is |J1|−1. It follows that

∏

j∈J

ψj

∣∣
M1,%

= 0 ∀ %∈A1(I, J)−A1

(
I−{i∗}, Jt{i∗}

)
.

Thus, the constructions of ψ̃≡ c1(Ẽ) from λ≡ c1(E0) for M̃1,(I−{i∗},Jt{i∗}) and M̃1,(I,J) differ by

varieties along which
∏

j∈Jψ
cj

j vanishes, as long as cj>0 for all j∈J . We conclude that

〈
ψ̃c̃ ·

∏

j∈J

π∗ψ
cj

j ,M̃1,(I,J)

〉
=

〈
ψ̃c̃ ·

∏

j∈J

π∗ψ
cj

j ,M̃1,(I−{i∗},Jt{i∗})

〉

whenever cj>0 for all j∈J , as needed.

1If %, %′∈A1(I, J) are not comparable with respect to ≺ and %<%′, M
%−1
1,% and M

%−1
1,%′ are disjoint subvarieties in

M
%−1
1,(I,J). However, M1,% and M1,%′ need not be disjoint in M1,ItJ . For example, if

I = {1, 2, 3, 4}, J = ∅, %12 =
`

({3, 4}), {{1, 2}}
´

, %34 =
`

({1, 2}), {{3, 4}}
´

, %12,34 =
`

(∅), {{1, 2}, {3, 4}}
´

,

M1,%12
and M1,%34

intersect at M1,%12,34
in M1,4, but their proper transforms in the blowup of M1,4 along M1,%12,34

are disjoint.
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2.2 Outline of Proof of Recursions (R2) and (R3) in Theorem 1.1

In this subsection we state three structural descriptions, Proposition 2.1 and Lemmas 2.2 and 2.3,
and use them to verify the last two recursions of Theorem 1.1. Proposition 2.1 and Lemmas 2.2
and 2.3 are proved in Section 3.

If I is a finite set and i, j are distinct elements of I, let

ρij =
(
I−{i, j}, {{i, j}}

)
∈ A1(I).

There is a natural decomposition

M1,%ij
=M1,(I−{i,j})t{p} ×M0,{q,i,j}. (2.5)

The second component is a one-point space. Let

πP , πB :M1,%ij
−→M1,(I−{i,j})t{p},M0,{q,i,j} (2.6)

be the two projection maps. Here P and B stand for “principal” and “bubble” (components). It
is immediate that

λ|M1,%ij
= π∗Pλ and (2.7)

ψj′
∣∣
M1,%ij

=

{
π∗Pψj′ , if j′ 6= i, j;

π∗Bψj′ =0, if j′= i, j;
∀ j′∈I. (2.8)

In the j′= i, j case the restriction of ψj′ vanishes because the second component is zero-dimensional.

If I is a finite set, |I|≥2, and j∗∈I, there is a natural forgetful morphism

f :M1,I −→M1,I−{j∗}.

It is obtained by dropping the marked point j∗ from every element of M1,I and contracting the
unstable components of the resulting curve. It is straightforward to check that

λ = f∗λ and (2.9)

ψj = f∗ψj +M1,%jj∗
=⇒ f∗ψj |M1,%jj∗

= π∗Pψp ∀ j∈I−{j∗}; (2.10)

see Chapter 25 in [MirSym], for example. Using (2.8), (2.10), and induction on cj , we find that

ψ
cj

j = ψ
cj−1
j

(
f∗ψj +M1,%jj∗

)
= f∗ψ

cj

j +
(
π∗Pψ

cj−1
p

)
∩M1,%jj∗

∀ j∈I−{j∗}, cj>0. (2.11)

If I and J are finite sets, i∈I, and j∈J , thenM1,%ij
is a divisor inM1,ItJ . Thus, in the notation

of the previous subsection,

M
%ij

1,%ij
=M

%ij−1
1,%ij

.

Since %ij is a maximal element of (A1(I, J),≺), the blowup loci at the stages of the construction

described in Subsection 2.1 that follow the blowup along M
%ij−1
1,%ij

are disjoint from M
%ij

1,%ij
. Thus,
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we can view M
%ij

1,%ij
as a divisor in M̃1,(I,J). We denote it by M̃1,%ij

. If i, j ∈ J , M1,%ij
is also a

divisor inM1,ItJ . Thus, its proper transformM
%
1,%ij

inM
%

1,(I,J) is a divisor for every %∈A1(I, J).
Let

M̃1,%ij
=M

%max

1,%ij
⊂ M̃1,(I,J).

Proposition 2.1 Suppose I and J are finite sets such that |I|+|J |≥2 and j∗∈J . If

π : M̃1,(I,J) −→M1,ItJ and π : M̃1,(I,J−{j∗}) −→M1,It(J−{j∗})

are blowups as in Subsection 2.1, the forgetful map

f :M1,ItJ −→M1,It(J−{j∗})

lifts to a morphism
f̃ : M̃1,(I,J) −→ M̃1,(I,J−{j∗});

see the first diagram in Figure 1 on page 4. Furthermore,

ψ̃ = f̃∗ψ̃ +
∑

i∈I

M̃1,%ij∗
. (2.12)

Lemma 2.2 With notation as in Proposition 2.1, for all i∈I

M̃1,%ij∗
= M̃1,((I−{i})t{p},J−{j∗}) ×M0,{q,i,j∗} and

πP ◦π = π◦πP : M̃1,%ij∗
−→M1,((I−{i})t{p})t(J−{j∗}),

where
πP : M̃1,%ij∗

−→ M̃1,((I−{i})t{p},J−{j∗})

is again the projection onto the first component. Furthermore, if ψ̃ denotes the universal ψ-class
and f̃ is as in Proposition 2.1, then

ψ̃
∣∣

fM1,%ij∗
= 0 and

(
f̃∗ψ̃

)∣∣
fM1,%ij∗

= π∗P ψ̃. (2.13)

Lemma 2.3 With notation as in Proposition 2.1, for all j∈J−{j∗}

π−1
(
M1,%jj∗

)
= M̃1,%jj∗

≈ M̃1,(I,(J−{j,j∗})t{p}) ×M0,{q,j,j∗} and

πP ◦π = π◦πP : M̃1,%jj∗
−→M1,It((J−{j,j∗})t{p}),

where
πP : M̃1,%jj∗

−→ M̃1,(I,(J−{j,j∗})t{p})

is again the projection onto the first component. Furthermore, if ψ̃ denotes the universal ψ-class
on M̃1,(I,J) and on M̃1,(I,(J−{j,j∗})t{p}), then

ψ̃
∣∣

fM1,%jj∗
=

(
f̃∗ψ̃

)∣∣
fM1,%jj∗

= π∗P ψ̃.
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We now verify the recursion (R2) in Theorem 1.1. Since cj∗ 6=0, by the j=j ′=j∗ case of (2.7), the
first identity in (2.10), and (2.12),

ψ̃c̃ ·
∏

j∈J

π∗ψ
cj

j = f̃∗
(
ψc̃·

∏

j∈J−j∗

π∗ψ
cj

j

)
ψ

cj∗

j∗ .

Since cj∗ =1, it follows that
〈
c̃; (cj)j∈J

〉
(|I|,|J |)

=
〈
c̃; (cj)j∈J−j∗

〉
(|I|,|J |−1)

·
〈
ψj∗, F

〉
, (2.14)

where F is a general fiber of the morphism f̃ or equivalently a general fiber of the morphism f .
By the standard dilaton equation,

〈
ψj∗ , F

〉
= |I|+ |J | − 1; (2.15)

this relation can also be seen directly from the definition of ψj∗. The recursion (R2) follows imme-
diately from (2.14) and (2.15).

We now verify the recursion (R3). We can assume that c̃ 6=0; otherwise, it reduces to the standard
genus-one string equation. Note that if i1, i2∈I and i1 6= i2, then

M1,%i1j∗
∩M1,%i2j∗

= ∅ =⇒ M̃1,%i1j∗
∩ M̃1,%i2j∗

= ∅. (2.16)

Thus, by (2.12) and (2.13), applied repeatedly,

ψ̃c̃ = ψ̃c̃−1
(
f̃∗ψ +

∑

i∈I

M̃1,%ij∗

)
= f̃∗ψ̃c̃ +

∑

i∈I

(
π∗P ψ̃

c̃−1
)
∩M̃1,%ij∗

. (2.17)

On the other hand, by (2.11) and Lemma 2.3,

π∗ψ
cj

j = f̃∗π∗ψ
cj

j +
(
π∗Pπ

∗ψ
cj−1
p

)
∩M̃1,%jj∗

∀ j∈J−{j∗}. (2.18)

If cj =0, we define the last term in (2.18) to be zero. Similarly to (2.16),

M1,%ij∗
∩M1,%jj∗

= ∅ =⇒ M̃1,%ij∗
∩ M̃1,%jj∗

= ∅ ∀ j∈J−{j∗}, i∈ItJ−{j, j∗}. (2.19)

Thus, by (2.17), (2.18), and Lemmas 2.2 and 2.3,

〈
c̃; (cj)j∈J−{j∗}

〉
(|I|,|J |)

≡
〈
ψ̃c̃ ·

∏

j∈J−{j∗}

π∗ψ
cj

j ,M̃1,(I,J)

〉

=
〈
f̃∗

(
ψ̃c̃ ·

∏

j∈J−{j∗}

π∗ψ
cj

j

)
,M̃1,(I,J)

〉
+

∑

i∈I

〈
π∗P

(
ψ̃c̃−1 ·

∏

j∈J−{j∗}

π∗ψ
cj

j

)
,M̃1,%ij∗

〉

+
∑

j∈J−{j∗}

〈
π∗P

(
ψ̃c̃ · π∗ψ

cj−1
p ·

∏

j′∈J−{j∗,j}

π∗ψ
cj′

j′

)
,M̃1,%jj∗

〉

= 0 +
∑

i∈I

〈
ψ̃c̃−1 ·

∏

j∈J−{j∗}

π∗ψ
cj

j ,M̃1,((I−{i})t{p},J−{j∗})

〉

+
∑

j∈J−{j∗}

〈
ψ̃c̃ · π∗ψ

cj−1
p ·

∏

j′∈J−{j∗,j}

π∗ψ
cj′

j′ ,M̃1,(I,(J−{j,j∗})t{p})

〉

≡ |I|
〈
c̃−1; (cj)j∈J−{j∗}

〉
(|I|,|J |−1)

+
∑

j∈J−{j∗}

〈
c̃; cj−1, (cj′)j′∈J−{j∗,j}

〉
(|I|,|J |−1)

,

as claimed.
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3 Proofs of Main Structural Results

3.1 Proof of Lemma 2.2

Suppose I is a finite set and i, j are distinct elements of I. It is well-known that the normal bundle
NM1,I

M1,%ij
of M1,%ij

inM1,I is given by

NM1,I
M1,%ij

= π∗PLp⊗π
∗
BLq = π∗PLp, (3.1)

where πP and πB are as in (2.6) and

Lp −→M1,(I−{i,j})t{p} and Lq −→M0,{q,i,j}

are the universal tangent line bundles for the marked points p and q; see [P], for example. The last
equality in (3.1) is due to the fact that M0,{q,i,j} consists of one point.

Suppose in addition that

%≡
(
IP , {Ik : k∈K}

)
∈ A1(I) and % ≺ %ij. (3.2)

Then, by the definition of the partial ordering ≺ in (2.2),

{i, j} ⊂ Ik for some k ∈ K.

Let µij(%)∈A1

(
(I−{i, j})t{p}

)
be obtained from % by removing the element k from K and adding

an element p to IP if Ik ={i, j} and by replacing {i, j} in Ik with p otherwise:

µij(%) =

{(
IPt{p}, {Ik′ : k′∈K −{k}}

)
, if Ik ={i, j};(

IP ,
{
(Ik−{i, j})t{p}

}
t{Ik′ : k′∈K −{k}}

)
, if Ik ){i, j}.

(3.3)

It is straightforward to see that

M1,%ij
∩M1,% =M1,µij(%) ×M0,{q,i,j} ⊂M1,(I−{i,j})t{p} ×M0,{q,i,j}. (3.4)

Lemma 3.1 If I and J are finite sets, i∈I, and j∈J , then the map

µij :
{
%∈A1(I, J) : %≺%ij

}
−→ A1

(
(I−{i})t{p}, J−{j}

)
(3.5)

is an isomorphism of partially ordered sets.

This lemma follows easily from (2.2) and (3.3). It implies that given an order < on

A1

(
(I−{i})t{p}, J−{j}

)

extending the partial ordering ≺, we can choose an order < on A1(I, J) that extends the partial
ordering ≺ such that

%1, %2 ≺ %ij , µij(%1) < µij(%2) =⇒ %1 < %2.

Below we refer to the constructions of Subsection 2.1 for the sets

A1

(
(I−{i})t{p}, J−{j}

)
and A1(I, J)

corresponding to such compatible orders <. We extend the map µij of (3.5) to {0}tA1(I, J) by
setting

µij(%) =

{
µij(max{%′<% : %′≺%ij}), if ∃ %′<% s.t. %′≺%ij;

0, otherwise.

11



Lemma 3.2 Suppose I and J are finite sets, i∈I, and j∈J . If %∈A1(I, J) and %<%ij, then with
notation as in Subsection 2.1 and in (2.5)

M
%
1,%ij

=M
µij(%)

1,((I−{i})t{p}),J−{j}) ×M0,{q,i,j},

E%

∣∣
M

%
1,%ij

= π∗P Eµij(%), and NM
%

1,(I,J)
M

%
1,%ij

= π∗PLµij(%),p,

where
πP :M

µij(%)

1,((I−{i})t{p},J−{j}) ×M0,{q,i,j} −→M
µij(%)

1,((I−{i})t{p},J−{j})

is the projection map onto the first component.

By (2.5), (2.7), and (3.1), Lemma 3.2 holds for %=0. Suppose %∈A1(I, J), %<%ij , and the three
claims hold for %−1. If % 6≺%ij, then

µij(%) = µij(%−1) =⇒

M
µij(%)

1,((I−{i})t{p},J−{j}) =M
µij(%−1)

1,((I−{i})t{p},J−{j}), Eµij(%) = Eµij(%−1), Lµij (%),p = Lµij(%−1),p. (3.6)

On the other hand, since % and %ij are not comparable with respect to ≺, the blowup locusM
%−1
1,%

inM
%−1
1,(I,J) is disjoint fromM

%−1
1,%ij

; see Subsection 2.1 above and Lemma 2.6 in [VaZ]. Thus,

M
%

1,%ij
=M

%−1
1,%ij

, E%|M%

1,%ij

= E%−1|M%−1
1,%ij

, NM
%

1,(I,J)
M

%

1,%ij
= N

M
%−1
1,(I,J)

M
%−1
1,%ij

. (3.7)

By (3.6), (3.7), and the inductive assumptions, the three claims hold for %.

Suppose that %≺%ij. Since all varieties M1,%′ intersect properly inM1,ItJ in the sense of Subsec-

tion 2.1 in [VaZ], so do their proper transformsM
%−1
1,%′ inM

%−1
1,(I,J). Furthermore,

M
%−1
1,%ij
∩M

%−1
1,% ⊂M

%−1
1,%ij
⊂M

%−1
1,(I,J)

is the proper transform of
M1,%ij

∩M1,% ⊂M1,%ij
⊂M1,ItJ .

Since %≺%ij, µij(%−1)=µij(%)−1. Thus, by (3.4) and the inductive assumptions,

M
%−1
1,%ij
∩M

%−1
1,% =M

µij(%)−1

1,µij(%) ×M0,{q,i,j} ⊂M
µij(%)−1

1,((I−{i})t{p},J−{j})×M0,{q,i,j}.

Since M
%−1
1,%ij

and M
%−1
1,% intersect properly, the proper transform of M

%−1
1,%ij

in M
%

1,(I,J), i.e. the

blowup of M
%−1
1,(I,J) along M

%−1
1,% , is the blowup of M

%−1
1,%ij

along M
%−1
1,%ij
∩M

%−1
1,% ; see Subsection 2.1

in [VaZ]. Thus,M
%
1,%ij

is the blowup of

M
µij(%)−1

1,((I−{i})t{p},J−{j}) ×M0,{q,i,j}

along M
µij(%)−1

1,µij(%) ×M0,{q,i,j}. By the construction of Subsection 2.1, this blowup is

M
µij(%)

1,((I−{i})t{p},J−{j}) ×M0,{q,i,j}.

12



Furthermore, by (2.4) and the inductive assumptions,

E%|M%
1,%ij

=
(
π̃∗%E%−1+M

%
1,%

)∣∣
M

%
1,%ij

= π̃∗%π
∗
P Eµij(%)−1 +M

µij (%)

1,µij (%)×M0,{q,i,j}

= π∗P
(
π̃∗µij(%)Eµij(%)−1 +M

µij(%)

1,µij(%)

)
= Eµij(%).

We have thus verified the first two claims of Lemma 3.2.

It remains to determine the normal bundle NM
%

1,(I,J)
M

%
1,%ij

of M
%
1,%ij

in M
%

1,(I,J). We note that

by (2.4) and (3.3),

Lµij(%),p =

{
π̃∗

µij(%)−1Lµij (%)−1,p⊗O(−M
µij(%)

1,µij(%)), if Ik ={i, j};

π̃∗
µij(%)−1Lµij (%)−1,p, if Ik ){i, j},

(3.8)

if % is as in (3.2). Furthermore, if Ik ={i, j}, then

M1,% ⊂M1,%ij
=⇒ M

%−1
1,% ⊂M

%−1
1,%ij

.

Thus, by Subsection 3.1 in [VaZ],

NM
%

1,(I,J)
M

%

1,%ij
= π̃∗% NM

%−1
1,(I,J)

M
%−1
1,%ij
⊗O

(
−M

%

1,%ij
∩M

%

1,%

)

= π̃∗% NM
%−1
1,(I,J)

M
%−1
1,%ij
⊗ π∗PO

(
−M

µij(%)

1,µij(%)

)
if Ik ={i, j}.

(3.9)

On the other hand, if Ik ){i, j}, M
%−1
1,% and M

%−1
1,%ij

intersect transversally in M
%−1
1,(I,J), since M1,%

andM1,%ij
intersect transversally inM1,ItJ . Thus,

NM
%

1,(I,J)
M

%
1,%ij

= π̃∗% NM
%−1
1,(I,J)

M
%−1
1,%ij

if Ik ){i, j}. (3.10)

The last statement of Lemma 3.2 now follows from the corresponding inductive assumption for
%−1, along with (3.8)-(3.10). This completes the proof of Lemma 3.2.

We now finish the proof of Lemma 2.2. By the paragraph preceding Proposition 2.1 and the first
statement of Lemma 3.2,

M̃1,%ij∗
=M

%ij∗−1
1,%ij∗

=M
µij∗ (%ij∗−1)

1,((I−{i})t{p},J−{j∗}) ×M0,{q,i,j∗}

= M̃1,((I−{i})t{p},J−{j∗}) ×M0,{q,i,j∗},

since µij∗(%ij∗−1) is the largest element of

(
A1((I−{i})t{p}, J−{j

∗}), <
)
,

according to Lemma 3.1.

Since %ij∗ is a maximal element of (A1(I, J),≺),

M
%−1
1,%ij∗

∩M
%−1
1,% = ∅ ∀% ∈ A1(I, J), % > %ij∗ .
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Thus, by (2.4) and the second statement of Lemma 3.2,

Ẽ
∣∣

fM1,%ij∗
= E%ij∗−1

∣∣
fM1,%ij∗

+
∑

%≥%ij∗

M
%
1,%

∣∣
fM1,%ij∗

= π∗P Ẽ + M̃1,%ij∗

∣∣
fM1,%ij∗

. (3.11)

By the third statement of Lemma 3.2,

M̃1,%ij∗

∣∣
fM1,%ij∗

= NfM1,(I,J)
M̃1,%ij∗

= N
M

%ij∗−1

1,(I,J)

M
%ij∗−1
1,%ij∗

= π∗PLµij∗ (%ij∗−1),p = −π∗P Ẽ.

(3.12)

The first identity in (2.13) follows from (3.11) and (3.12).

Finally, by the last statement of Proposition 2.1, the first identity in (2.13), (2.16), and (3.12),

(
f̃∗ψ̃

)∣∣
fM1,%ij∗

= ψ̃|fM1,%ij∗
−

∑

i′∈I

M̃1,%i′j∗

∣∣
fM1,%ij∗

= 0− M̃1,%ij∗

∣∣
fM1,%ij∗

= π∗P ψ̃.

This concludes the proof of Lemma 2.2.

3.2 Proof of Lemma 2.3

The proof of Lemma 2.3 is analogous to the previous subsection. If I is a finite set and j, j ∗ are
distinct elements of I, let

A1(I; jj
∗) =

{
%∈A1(I)−{%jj∗} :M1,%jj∗

∩M1,% 6= ∅
}

=
{(
IP , {Ik : k∈K}

)
∈A1(I)−{%jj∗}: {j, j

∗}⊂Ik for some k∈{P}tK
}
.

For each %∈A1(I; jj
∗) as above, let ηjj∗(%)∈A1

(
(I−{j, j∗})t{p}

)
be obtained from % by replacing

{j, j∗}⊂Ik with p if k=P or {j, j∗}(Ik and by dropping k from K and adding p to IP otherwise:

ηjj∗(%) =





(
(IP−{j, j

∗})t{p}, {Ik′ : k′∈K}
)
, if IP ⊃{j, j

∗};(
IP ,

{
(Ik−{j, j

∗})t{p}
}
t{Ik′ : k′∈K −{k}}

)
, if Ik ){j, j∗};(

IP t{p}, {Ik′ : k′∈K −{k}}
)
, if Ik ={j, j∗}.

(3.13)

It is straightforward to see that

M1,%jj∗
∩M1,% =M1,ηjj∗ (%) ×M0,{q,j,j∗} ⊂M1,(I−{j,j∗})t{p} ×M0,{q,j,j∗}. (3.14)

Lemma 3.3 If I and J are finite sets, j, j∗∈J , and j 6=j∗, then the map

ηjj∗ : A1(I, J)∩A1(ItJ ; jj∗) −→ A1

(
(I, (J−{j, j∗})t{p}

)
(3.15)

is an isomorphism of partially ordered sets.

This lemma follows easily from (2.2) and (3.13). Note, however, that it is essential that j, j ∗ ∈ J
and thus the third case in (3.13) does not occur if

% ∈A1(I, J)∩A1(ItJ ; jj∗).
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Lemma 3.3 implies that given an order < on

A1

(
(I, (J−{j, j∗})t{p}

)

extending the partial ordering ≺, we can choose an order < on A1(I, J) that extends the partial
ordering ≺ such that

%1, %2 ∈ A1(I, J)∩A1(ItJ ; jj∗), ηjj∗(%1) < ηjj∗(%2) =⇒ %1 < %2.

Below we refer to the constructions of Subsection 2.1 for the sets

A1

(
(I, (J−{j, j∗})t{p}

)
and A1(I, J)

corresponding to such compatible orders <. We extend the map ηjj∗ of (3.15) to {0}tA1(I, J) by
setting

ηjj∗(%) =

{
ηjj∗(max{%′<% : %′∈A1(ItJ ; jj∗)}), if ∃ %′<% s.t. %′∈A1(ItJ ; jj∗);

0, otherwise.

Lemma 3.4 Suppose I and J are finite sets, j, j∗ ∈ J , and j 6= j∗. If % ∈ A1(I, J), then with
notation as in Subsection 2.1 and in (2.5)

π−1
%

(
M1,%jj∗

)
=M

%
1,%jj∗

=M
ηjj∗ (%)

1,((I,(J−{j,j∗})t{p}) ×M0,{q,j,j∗}, E%

∣∣
M

%
1,%jj∗

= π∗P Eηjj∗ (%),

where
πP :M

ηjj∗ (%)

1,((I,(J−{j,j∗})t{p}) ×M0,{q,j,j∗} −→M
ηjj∗ (%)

1,((I,(J−{j,j∗})t{p})

is the projection map onto the first component.

By (2.5) and (2.7), Lemma 3.4 holds for %=0. Suppose %∈A1(I, J) and the three claims hold for
%−1. If % 6∈A1(ItJ ; jj∗), then

ηjj∗(%) = ηjj∗(%−1) =⇒

M
ηjj∗ (%)

1,((I,(J−{j,j∗})t{p}) =M
ηjj∗ (%−1)

1,((I,(J−{j,j∗})t{p}), Eηjj∗ (%) = Eηjj∗ (%−1). (3.16)

On the other hand, since
M1,%jj∗

∩M1,% = ∅,

the blowup locusM
%−1
1,% inM

%−1
1,(I,J) is disjoint fromM

%−1
1,%jj∗

. Thus,

π−1
%

(
M1,%jj∗

)
= π−1

%−1

(
M1,%jj∗

)
, M

%
1,%jj∗

=M
%−1
1,%jj∗

, E%|M%
1,%jj∗

= E%−1|M%−1
1,%jj∗

. (3.17)

By (3.16), (3.17), and the inductive assumptions, the three claims of Lemma 3.4 hold for %.

Suppose that %∈A1(ItJ ; jj∗). Since all varieties M1,%′ intersect properly in M1,ItJ , so do their

proper transforms M
%−1
1,%′ , with %′>%−1, in M

%−1
1,(I,J). Since M

%−1
1,% is not contained in the divisor
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M
%−1
1,%jj∗

, M
%−1
1,% and M

%−1
1,%jj∗

intersect transversally. Thus, using the first statement of the lemma
with % replaced by %−1, we obtain

π−1
%

(
M1,%jj∗

)
= π̃−1

% π−1
%−1

(
M1,%jj∗

)
= π̃−1

%

(
M

%−1
1,%jj∗

)
=M

%
1,%jj∗

.

Furthermore,

M
%−1
1,%jj∗

∩M
%−1
1,% ⊂M

%−1
1,%jj∗

⊂M
%−1
1,(I,J)

is the proper transform of
M1,%jj∗

∩M1,% ⊂M1,%jj∗
⊂M1,ItJ .

Since %∈A1(ItJ ; jj∗), ηjj∗(%−1)=ηjj∗(%)−1. Thus, by (3.14) and the inductive assumptions,

M
%−1
1,%jj∗

∩M
%−1
1,% =M

ηjj∗ (%)−1

1,ηjj∗ (%) ×M0,{q,j,j∗} ⊂M
ηjj∗ (%)−1

1,(I,(J−{j,j∗})t{p})×M0,{q,j,j∗}.

Since M
%−1
1,%jj∗

and M
%−1
1,% intersect properly, the proper transform of M

%−1
1,%jj∗

in M
%

1,(I,J), i.e. the

blowup ofM
%−1
1,(I,J) alongM

%−1
1,% , is the blowup ofM

%−1
1,%jj∗

alongM
%−1
1,%jj∗

∩M
%−1
1,% ; see Subsection 2.1

in [VaZ]. Thus,M
%

1,%jj∗
is the blowup of

M
ηjj∗ (%)−1

1,(I,(J−{j,j∗})t{p}) ×M0,{q,j,j∗}

along M
ηjj∗ (%)−1

1,ηjj∗ (%) ×M0,{q,j,j∗}. By the construction of Subsection 2.1, this blowup is

M
ηjj∗ (%)

1,(I,(J−{j,j∗})t{p}) ×M0,{q,j,j∗}.

Furthermore, by (2.4) and the inductive assumptions,

E%|M%

1,%jj∗
=

(
π̃∗%E%−1+M

%

1,%

)∣∣
M

%

1,%jj∗

= π̃∗%π
∗
P Eηjj∗ (%)−1 +M

ηjj∗ (%)

1,ηjj∗ (%)×M0,{q,j,j∗}

= π∗P
(
π̃∗ηjj∗ (%)Eηjj∗ (%)−1 +M

ηjj∗ (%)

1,ηjj∗ (%)

)
= Eηjj∗ (%).

We have thus verified the three claims of Lemma 3.4.

We now finish the proof of Lemma 2.3. By Lemma 3.3, ηjj∗(%max) is the largest element of
(
A1(I, (J−{j, j

∗})t{p}), <
)
.

Thus, by the first two statements of Lemma 3.4,

π−1
(
M1,%jj∗

)
= π−1

%max

(
M1,%jj∗

)
=M

%max

1,%jj∗
= M̃1,%jj∗

=M
ηjj∗ (%max)

1,(I,(J−{j,j∗})t{p}) ×M0,{q,j,j∗} = M̃1,(I,(J−{j,j∗})t{p}) ×M0,{q,j,j∗}.

By the last statement of Lemma 3.4,

Ẽ
∣∣

fM1,%jj∗
= E%max

∣∣
fM1,%jj∗

= π∗P Eηjj∗ (%max) = π∗P Ẽ.

Finally, by the last statement of Proposition 2.1 and (2.19),

(
f̃∗ψ̃

)∣∣
fM1,%jj∗

= ψ̃|fM1,%jj∗
−

∑

i∈I

M̃1,%ij∗

∣∣
fM1,%jj∗

= π∗P ψ̃ − 0.
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Figure 4: Images under the Forgetful Map

3.3 Proof of Proposition 2.1

In this subsection we prove Proposition 2.1. In fact, we show that there is a lift of the forgetful
map f of Proposition 2.1 to morphisms between corresponding stages of the blowup construction
of Subsection 2.1 for M1,ItJ and for M1,It(J−{j∗}); see Lemma 3.5 below.

First, we define a forgetful map

f : A1(I, J) −→ Ā1

(
I, J−{j∗}

)
≡ A1

(
I, J−{j∗}

)
t

{
(It(J−{j∗}), ∅)

}
.

If %=(IP tJP , {IktJk : k∈K}), we put

f(%) =





(
IP t(JP−{j

∗}), {IktJk : k∈K}
)
, if j∗∈JP ;(

IP tJP , {Ikt(Jk−{j
∗})}t{Ik′tJk′ : k′∈K−{k}}

)
, if j∗∈Jk, |Ik|+|Jk|>2;(

(IP t{i})tJP , {Ik′tJk′ : k′∈K−{k}}
)
, if IktJk ={ij∗}.

These three cases are represented in Figure 4. We note that for all ρ∈A1(I, J−{j
∗}),

f−1
(
M1,ρ

)
=

⋃

%∈f−1(ρ)

M1,%.

Furthermore,

ρ1, ρ2∈Ā1(I, J−{j
∗}), ρ1 6=ρ2, %1∈f

−1(ρ1), %2∈f
−1(ρ2), %1≺%2 =⇒ ρ1≺ρ2.

Thus, given an order < on A1(I, J−{j
∗}) extending the partial ordering ≺, we can choose an order

< on A1(I, J) extending ≺ such that

ρ1, ρ2∈Ā1(I, J−{j
∗}), ρ1<ρ2, %1∈f

−1(ρ1), %2∈f
−1(ρ2) =⇒ %1<%2.

Below we will refer to the blowup constructions of Subsection 2.1 forM1,ItJ and forM1,It(J−{j∗})

corresponding to such compatible orders. For each ρ∈A1(I, J−{j
∗}), let

ρ+ = max f−1(ρ) ∈ A1(I, J) and ρ− = min f−1(ρ)− 1 ∈ {0}tA1(I, J).

If ρ is not the minimal element of A1(I, J−{j
∗}), then ρ−=(ρ−1)+.

Lemma 3.5 Suppose I, J , and f are as in Proposition 2.1. For each ρ∈A1(I, J−{j
∗}), f lifts to

a morphism

fρ :M
ρ+

1,(I,J) −→M
ρ

1,(I,J−{j∗})

17



M
ρ+

1,(I,J)
M

ρ

1,(I,J−{j∗})

M1,ItJ M1,It(J−{j∗})

fρ

f

πρ+ πρ

M
ρ+

1,(I,J)
M

ρ

1,(I,J−{j∗})

M
ρ−

1,(I,J) M
ρ−1

1,(I,J−{j∗})

fρ

fρ−1

π̃ρ−+1 ◦ . . . ◦ π̃ρ+ π̃ρ

Figure 5: Main Statement of Lemma 3.5 and Inductive Step in the Proof

over the projection maps

πρ+ :M
ρ+

1,(I,J) −→M1,ItJ and πρ :M
ρ

1,(I,J−{j∗}) −→M1,It(J−{j∗});

see the first diagram in Figure 5. Furthermore,

f−1
ρ

(
M

ρ
1,ρ∗

)
=

⋃

%∈f−1(ρ∗)

M
ρ+

1,% ∀ ρ∗>ρ and Eρ+ = f∗ρ Eρ. (3.18)

Proposition 2.1 follows easily from Lemma 3.5 by taking ρ = ρmax, where ρmax is the maximal
element of A1(I, J−{j

∗}). We note that

{
%∈A1(I, J) : %>ρ+

max

}
=

{
%∈A1(I, J) : f(%)=(It(J−{j∗}), ∅)

}
=

{
%ij∗ : i∈I

}
.

Since M1,%ij∗
⊂M1,ItJ is a divisor for every i∈I, so is

M
ρ+
max

1,%ij∗
⊂M

ρ+
max

1,ItJ .

Thus, by the construction of Subsection 2.1,

M̃1,ItJ ≡M
%max

1,ItJ =M
ρ+
max

1,ItJ and

E ≡ E%max = Eρ+
max

+
∑

i∈I

M
ρ+
max

1,%ij∗
= f∗ρmax

Eρmax +
∑

i∈I

M
ρ+
max

1,%ij∗
= f̃∗E +

∑

i∈I

M̃1,%ij∗
,

where f̃=fρmax .

Lemma 3.5 will be proved by induction on ρ. It holds for ρ=0∈{0}∪A1(I, J−{j
∗}), if we define

0+ =0. Suppose
ρ=

(
IPtJP , {IktJk : k∈K}

)
∈ A1(I, J−{j

∗})

and the lemma holds for
ρ−1 ∈ {0}tA1(I, J−{j

∗}).

The elements of f−1(ρ)⊂A1(I, J) can be described as follows. The largest element is

ρ+ =
(
IPt(JP t{j

∗}), {IktJk : k∈K}
)
.

18



Furthermore, for each k∈K and i∈IP ,

ρk(j
∗) ≡

(
IPtJP ,

{
Ikt(Jkt{j

∗})
}
t{Ik′tJk′ : k′∈K−{k}}

)
∈ f−1(ρ);

ρi(j
∗) ≡

(
(IP−{i})tJP ,

{
{i, j}

}
t{Ik′tJk′ : k′∈K}

)
∈ f−1(ρ).

It is straightforward to see that

f−1(ρ) =
{
ρk(j

∗) : k∈K
}
t

{
ρi(j

∗) : i∈IP
}
t {ρ+}.

Furthermore, ρ+ is the largest element of (f−1(ρ),≺), while no two elements of the form ρk(j
∗)

and/or ρi(j
∗) are comparable with respect to ≺. Thus,

M
ρ−

1,ρk(j∗) ∩M
ρ−

1,ρi(j∗) = ∅ ∀ i, k ∈ IP tK, i 6=k;

see Subsection 2.1. In fact,

M1,ρk(j∗) ∩M1,ρi(j∗) = ∅ ∀ i, k ∈ IP tK, i 6=k;

see the proof of Lemma 2.6 in [VaZ]. On the other hand, M
ρ−

1,ρi(j∗) ⊂ M
ρ−

1,ρ+ for i ∈ IP , while

M
ρ−

1,ρk(j∗) andM
ρ−

1,ρ+ intersect at a divisor (divisor inside each of them) if k∈K.

Below we will show that every point

p ∈ f−1
ρ−1

(
M

ρ−1
1,ρ

)
⊂M

ρ−

1,(I,J)

has a neighborhood Ũ so that fρ−1 lifts to a morphism fρ from the preimage of Ũ in M
ρ+

1,(I,J) to

M
ρ

1,(I,J−{j∗}). Since M
ρ

1,(I,J−{j∗}) is the blowup of M
ρ

1,(I,J−{j∗}) along M
ρ−1
1,ρ , this implies that

fρ−1 lifts to a morphism

fρ :M
ρ+

1,(I,J) −→M
ρ

1,(I,J−{j∗}).

We will consider four cases:
Case 1: p∈M

ρ−

1,ρk(j∗)−M
ρ−

1,ρ+ and thus p 6∈M
ρ−

1,ρi(j∗) for all i∈IP tK−k;

Case 2: p ∈M
ρ−

1,ρ+ −
⋃

k∈KM
ρ−

1,ρk(j∗):

Case 2a: p 6∈M
ρ−

1,ρi(j∗) for all i∈IP ;

Case 2b: p∈M
ρ−

1,ρi(j∗) for some i∈IP and thus p 6∈M
ρ−

1,ρk(j∗) for all k∈IPtK−i;

Case 3: p ∈M
ρ−

1,ρ+ ∩M
ρ−

1,ρk(j∗) and thus p 6∈M
ρ−

1,ρi(j∗) for all i∈IP tK−k.

Case 1: Since all varieties M1,%∗ are smooth and intersect properly in M1,ItJ in the sense of

Subsection 2.1 in [VaZ], all varieties M
ρ−

1,%∗ , with %∗>ρ−, are also smooth and intersect properly

inM
ρ−

1,(I,J). Thus, we can choose neighborhoods Ũ of p inM
ρ−

1,(I,J), U of fρ−1(p) inM
ρ−1
1,(I,J−{j∗}),

and coordinates (z, v, t) on Ũ such that
(i) U=fρ−1(Ũ );
(ii) U=

{
(z, v)∈C|I|+|J |−|K|−1×CK

}
;

(iii) M
ρ−1
1,ρ ∩U=

{
(z, v)∈U : v=0

}
;
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(iv) Ũ=
{
(z, v, t)∈C|I|+|J |−|K|−1×CK×C

}
and fρ−1(z, v, t) = (z, v).

These assumptions imply that

M
ρ−

1,ρk(j∗)∩Ũ =
{
(z, v, t)∈ Ũ : v=0

}
.

SinceM
ρ

1,(I,J−{j∗}) is the blowup ofM
ρ−1
1,(I,J−{j∗}) alongM

ρ−1
1,ρ , the preimage of U inM

ρ

1,(I,J−{j∗})

under the projection map is

V =
{
(z, v; `)∈U×P

(
CK

)
: v∈`

}
.

SinceM
ρ+

1,(I,J) is the blowup ofM
ρ−

1,(I,J) alongM
ρ−

1,ρk(j∗) and subvarieties that do not contain p, the

preimage of Ũ inM
ρ+

1,(I,J) under the projection map is

Ṽ =
{
(z, v, t; `)∈ Ũ×P

(
CK

)
: v∈`

}
,

provided Ũ is sufficiently small. Thus, the morphism fρ−1 : Ũ−→U lifts to a morphism fρ : Ṽ −→V .
This lift is defined by

fρ(z, v, t; `) = (z, v; `). (3.19)

Case 2: We can choose neighborhoods Ũ of p in M
ρ−

1,(I,J), U of fρ−1(p) in M
ρ−1
1,(I,J−{j∗}), and co-

ordinates (z, v, t) on Ũ so that the conditions (i)-(iv) are satisfied, withM
ρ−

1,ρk(j∗) replaced byM
ρ−

1,ρ+ .

Case 2a: The desired conclusion is obtained as in Case 1.

Case 2b: SinceM1,ρi(j∗)⊂M1,ρ+ is of codimension one,

M
ρ−

1,ρi(j∗) ⊂M
ρ−

1,ρ+

is also of codimension one. We can thus choose local coordinates so that

M
ρ−

1,ρi(j∗) ∩ Ũ =
{
(z, v, t)∈ Ũ : v=0, t=0

}
.

SinceM
ρ+−1
1,(I,J) is the blowup ofM

ρ−

1,(I,J) alongM
ρ−

1,ρi(j∗) and subvarieties that do not contain p, the

preimage of Ũ inM
ρ+−1
1,(I,J) under the projection map is

Ṽ =
{
(z, v, t; `′)∈ Ũ×P

(
CK×C

)
: (v, t)∈`′

}
,

provided Ũ is sufficiently small. It is immediate that

M
ρ+−1
1,ρ+ ∩ Ṽ =

{
(z, 0, t; [α, β])∈ Ũ×P

(
CK×C

)
: α=0

}
,

where M
ρ+−1
1,ρ+ ⊂ M

ρ+−1
1,(I,J) is the proper transform of M

ρ−

1,ρ+ . A neighborhood of M
ρ+−1
1,ρ+ ∩ Ṽ is

given by

Ṽ ′ =
{
(z, u, t)∈ C|I|+|J |−|K|−1×CK×C

}
, (z, u, t)←→

(
z, ut, t; [u, 1]

)
∈ Ṽ .
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Since M
ρ+

1,(I,J) is the blowup of M
ρ+−1
1,(I,J) along M

ρ+−1
1,ρ+ , the preimage of Ũ in M

ρ+

1,(I,J) under the
projection map is

W̃ =
({

(z, u, t; `)∈ Ṽ ′×P
(
CK

)
: u∈`

}
∪

{
(z, v, t; [α, β])∈ Ṽ : α 6=0

})/
∼,

(z, u, t; `) ∼
(
z, ut, t; [u, 1]

)
.

Thus, the morphism fρ−1 : Ũ−→U lifts to a morphism fρ : W̃ −→V . This lift is defined by

fρ(z, u, t; `) = (z, ut; `) and fρ

(
z, v, t; [α, β]

)
=

(
z, v; [α]

)
(3.20)

on the two charts on W̃ . Note that if u 6=0, then [u]= `∈P(CK). Thus, fρ agrees on the overlap
of the two charts.

Case 3: Since the varieties M1,%∗ intersect properly in M1,ItJ , M
ρ−

1,ρk(j∗) and M
ρ−

1,ρ+ intersect

properly in M
ρ−

1,(I,J) and M
ρ−

1,ρk(j∗)∩M
ρ−

1,ρ+ is the proper transform of M1,ρk(j∗)∩M1,ρ+. Thus,

M
ρ−

1,ρk(j∗)∩M
ρ−

1,ρ+ is a divisor inM
ρ−

1,ρk(j∗) and inM
ρ−

1,ρ+ . It follows that we can choose neighborhoods

Ũ of p inM
ρ−

1,(I,J), U of fρ−1(p) inM
ρ−1
1,(I,J−{j∗}), and coordinates (z, v, wk , w+) on Ũ such that

(i) U=fρ−1(Ũ );
(ii) U=

{
(z, v, w)∈C|I|+|J |−|K|−1×CK−{k}×C

}
;

(iii) M
ρ−1
1,ρ ∩U=

{
(z, v, w)∈U : v=0, w=0

}
;

(iv) Ũ=
{
(z, v, wk, w+)∈C|I|+|J |−|K|−1×CK−{k}×C×C

}
, fρ−1(z, v, wk , w+) = (z, v, wkw+);

(v) M
ρ−

1,ρk(j∗)∩Ũ=
{
(z, v, wk , w+)∈ Ũ : v=0, w+ =0

}
;

(vi) M
ρ−

1,ρ+∩Ũ=
{
(z, v, wk , w+)∈ Ũ : v=0, wk =0

}
.

Similarly to the above, the preimage of U inM
ρ

1,(I,J−{j∗}) under the projection map is

V =
{
(z, v, w; `)∈U×P

(
CK−{k}×C

)
: (v, w)∈`

}
.

SinceM
ρ+−1
1,(I,J) is the blowup ofM

ρ−

1,(I,J) alongM
ρ−

1,ρk(j∗) and subvarieties that do not contain p, the

preimage of Ũ inM
ρ+−1
1,(I,J) under the projection map is

Ṽ =
{
(z, v, wk , w+; `k)∈ Ũ×P

(
CK−{k}×C

)
: (v, w+)∈`k

}
,

provided Ũ is sufficiently small. It is immediate that

M
ρ+−1
1,ρ+ ∩ Ṽ =

{
(z, 0, 0, w+; [α, β])∈ Ũ× P

(
CK−{k}×C

)
: α=0

}
,

where M
ρ+−1
1,ρ+ ⊂ M

ρ+−1
1,(I,J) is the proper transform of M

ρ−

1,ρ+ . A neighborhood of M
ρ+−1
1,ρ+ ∩ Ṽ is

given by

Ṽ ′ =
{
(z, u, uk, w+)∈C|I|+|J |−|K|−1×CK−{k}×C×C

}
,

(z, u, uk , w+)←→
(
z, uw+, uk, w+; [u, 1]

)
∈ Ṽ .
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Since M
ρ+

1,(I,J) is the blowup of M
ρ+−1
1,(I,J) along M

ρ+−1
1,ρ+ , the preimage of Ũ in M

ρ+

1,(I,J) under the
projection map is

W̃ =
({

(z, u, uk, w+; `)∈ Ṽ ′×P
(
CK−{k}×C

)
: (u, uk)∈`

}

∪
{
(z, v, wk, w+; [α, β])∈ Ṽ : α 6=0

})/
∼,

(z, u, uk , w+; `) ∼
(
z, uw+, uk, w+; [u, 1]

)
.

Thus, fρ−1 : Ũ−→U lifts to a morphism fρ : W̃ −→V . This lift is defined by

fρ(z, u, uk, w+; `) = (z, uw+, ukw+; `) and

fρ

(
z, v, wk , w+; [α, β]

)
= (z, v, wkw+; [α,wkβ])

(3.21)

on the two charts on W̃ . It is immediate that fρ is well-defined on the overlap of the two charts.

Remark: The first identity in (3.18) should be viewed as incorporating the above information con-
cerning the local structure of the projection map. It is straightforward to see from the verification
of the first equality in (3.18) below that this additional information is preserved by the inductive
step as well.

It remains to verify the two identities in (3.18). Let

πρ,ρ−1 :M
ρ

1,(I,J−{j∗}) −→M
ρ−1
1,(I,J−{j∗}) and

πρ+,% :M
ρ+

1,(I,J) −→M
%

1,(I,J), % ∈ {ρ−}∪f−1(ρ)

be the projection maps. By the construction of the line bundles E% in Subsection 2.1,

Eρ = π ∗
ρ,ρ−1Eρ +M

ρ

1,ρ and (3.22)

Eρ+ = π ∗
ρ+,ρ−Eρ− +

∑

%∈f−1(ρ)

π∗ρ+,%M
%

1,% = π ∗
ρ+,ρ−Eρ− +

∑

%∈f−1(ρ)

π−1
ρ+,%

(
M

%

1,%

)
, (3.23)

where
M

ρ
1,ρ = π −1

ρ,ρ−1

(
M

ρ−1
1,ρ

)
⊂M

ρ

1,(I,J−{j∗}) and M
%
1,% ⊂ π

−1
%,%−1

(
M

%−1
1,%

)

are the exceptional divisors for the blowups at the steps ρ and %. Since all divisors π−1
ρ+,%

(
M

%

1,%

)

are distinct,

∑

%∈f−1(ρ)

π−1
ρ+,%

(
M

%

1,%

)
= π −1

ρ+,ρ−

( ⋃

%∈f−1(ρ)

M
ρ−

1,%

)
= π −1

ρ+,ρ−

(
f −1

ρ−1(M
ρ−1
1,ρ )

)

= f −1
ρ π −1

ρ,ρ−1

(
M

ρ−1
1,ρ

)
= f −1

ρ

(
M

ρ

1,ρ

)
= f ∗

ρ

(
M

ρ

1,ρ

)
.

(3.24)

The second equality in (3.18) follows from the same equality with ρ replaced by ρ−1, along with
(3.22)-(3.24).

Suppose next that ρ∗>ρ. Since

πρ,ρ−1 ◦ fρ = fρ−1 ◦ πρ+,ρ− ,
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M
ρ
1,ρ∗ is the proper transform ofM

ρ−1
1,ρ∗ , andM

ρ+

1,%∗ is the proper transform ofM
ρ−

1,%∗ ,

f−1
ρ

(
M

ρ
1,ρ∗

)
⊃

⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗

by the first equation in (3.18) with ρ replaced by ρ−1. We will next verify the opposite inclusion.

Suppose

q ∈M
ρ

1,ρ∗ , p̃ ∈ f−1
ρ (q), and

p = πρ+,ρ−(p̃) ∈ f −1
ρ−1

(
M

ρ−1
1,ρ∗

)
=

⋃

%∗∈f−1(ρ∗)

M
ρ−

1,%∗ ⊂M
ρ−

1,(I,J).

If πρ,ρ−1(q) 6∈M
ρ−1
1,ρ , q and f−1

ρ (q) lie away from the blowup loci for the blowups

M
ρ

1,(I,J−{j∗}) −→M
ρ−1
1,(I,J−{j∗}) and M

ρ+

1,(I,J) −→M
ρ−

1,(I,J).

Therefore,

f−1
ρ (q) = f−1

ρ−1

(
πρ,ρ−1(q)

)
= p ∈

⋃

%∗∈f−1(ρ∗)

M
ρ−

1,%∗ −
⋃

%∈f−1(ρ)

M
ρ−

1,% ⊂
⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ,

as needed. If
πρ,ρ−1(q) ∈M

ρ−1
(ρ,ρ∗) ≡M

ρ−1
1,ρ ∩M

ρ−1
1,ρ∗ ,

we will consider separately the same four cases for p as in the proof of the first statement of
Lemma 3.5 above; see page 19.

Case 1: SinceM
ρ−1
1,ρ andM

ρ−1
1,ρ∗ intersect properly inM

ρ−1
1,(I,J−{j∗}), we can choose local coordinates

(z, v, t) near p as before such that for some Kρ∗⊂K

(v) M
ρ−1
1,ρ∗∩U=

{
(z, v)∈U : z∈M

ρ−1
(ρ,ρ∗); v∈CKρ∗

}
.

This assumption implies that

M
ρ
1,ρ ∩M

ρ
1,ρ∗ ∩ V =

{
(z, 0; `)∈V : z∈M

ρ−1
(ρ,ρ∗); `∈P(CKρ∗ )

}
. (3.25)

In addition, by (iv) on page 21 and the structure of fρ−1,

⋃

%∗∈f−1(ρ∗)

M
ρ−

1,%∗ ∩ Ũ = f−1
ρ−1

(
M

ρ−1
1,ρ∗

)
∩ Ũ =

{
(z, v, t)∈ Ũ : z∈M

ρ−1
(ρ,ρ∗); v∈CKρ∗

}
.

Since M
ρ−

1,ρk(j∗) andM
ρ−

1,%∗ intersect properly, it follows that

⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ∩M
ρ+

1,ρk(j∗) ∩ Ṽ =
{
(z, 0, t; `)∈ Ṽ ; z∈M

ρ−1
(ρ,ρ∗); `∈P(CKρ∗ )

}
.

Using (3.19), we conclude that

p̃ ∈
{
fρ|Ṽ

}−1(
M

ρ

1,ρ∗∩M
ρ

1,ρ

)
=

⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ∩M
ρ+

1,ρk(j∗) ∩ Ṽ ,
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as needed.

Case 2a: The argument is exactly the same as in Case 1, but with replaced ρk(j
∗) by ρ+.

Case 2b: We can again choose Kρ∗⊂K so that (v) is satisfied. With notation as in the construction
of the map fρ in this case,

⋃

%∗∈f−1(ρ∗)

M
ρ+−1
1,%∗ ∩ Ṽ =

{
(z, v, t; `′)∈ Ṽ : z∈M

ρ−1
(ρ,ρ∗); `

′∈P(CKρ∗×C)
}
;

⋃

%∗∈f−1(ρ∗)

M
ρ+−1
1,%∗ ∩ Ṽ

′ =
{
(z, u, t)∈ Ṽ ′: z∈M

ρ−1
(ρ,ρ∗); u∈CKρ∗

}
;

⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ∩ π
−1

ρ+,ρ−

(
M

ρ−

1,ρi(j∗)

)
∩ W̃ =

{
(z, u, 0; `)∈W̃ : z∈M

ρ−1
(ρ,ρ∗); `∈P(CKρ∗ )

}

∪
{
(z, 0, 0; `′)∈W̃ : z∈M

ρ−1
(ρ,ρ∗); `

′∈P
(
CKρ∗×C

)}
.

Using (3.20) and (3.25), we conclude that

p̃ ∈
{
fρ|

π −1

ρ+,ρ−
(M

ρ−

1,ρi(j
∗))∩

fW

}−1(
M

ρ

1,ρ∗∩M
ρ

1,ρ

)
=

⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ∩ π
−1

ρ+,ρ−

(
M

ρ−

1,ρi(j∗)

)
∩ W̃ .

Note that the map fρ|
π −1

ρ+,ρ−
(M

ρ−

1,ρi(j
∗))∩

fW
is a P1-fibration, while the map fρ|Ṽ of the previous para-

graph is a C-fibration.

Case 3: With notation as in the corresponding case in the construction of the map fρ and with
a good choice of local coordinates, we have two subcases to consider. There exists Kρ∗ ⊂K−{k}
such that

Case 3a: M
ρ−1
1,ρ∗∩U=

{
(z, v, w)∈U : z∈M

ρ−1
(ρ,ρ∗); v∈CKρ∗

}
;

Case 3b: M
ρ−1
1,ρ∗∩U=

{
(z, v, w)∈U : z∈M

ρ−1
(ρ,ρ∗); v∈CKρ∗ , w=0

}
.

Case 3a: In this case,

M
ρ

1,ρ∗ ∩M
ρ

1,ρ ∩ V =
{
(z, 0, 0; `)∈V : z∈M

ρ−1
(ρ,ρ∗); `∈P(CKρ∗×C)

}
and (3.26)

⋃

%∗∈f−1(ρ∗)

M
ρ−

1,%∗ ∩ Ũ = f−1
ρ−1

(
M

ρ−1
1,ρ∗

)
∩ Ũ =

{
(z, v, wk , w+)∈ Ũ : z∈M

ρ−1
(ρ,ρ∗); v∈CKρ∗

}
.

It follows that
⋃

%∗∈f−1(ρ∗)

M
ρ+−1
1,%∗ ∩ Ṽ =

{
(z, v, wk , w+; `k)∈ Ṽ : z∈M

ρ−1
(ρ,ρ∗); `k∈P(CKρ∗×C)

}
;

⋃

%∗∈f−1(ρ∗)

M
ρ+−1
1,%∗ ∩ Ṽ

′ =
{
(z, u, uk, w+)∈ Ṽ ′: z∈M

ρ−1
(ρ,ρ∗); u∈CKρ∗

}
;

⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ∩ π
−1

ρ+,ρ−

(
M

ρ−

1,ρ+∩M
ρ−

1,ρk(j∗)

)
∩ W̃ =

{
(z, u, 0, 0; `)∈W̃ : z∈M

ρ−1
(ρ,ρ∗); `∈P

(
CKρ∗×C

)}

∪
{
(z, 0, 0, 0; `k)∈W̃ : z∈M

ρ−1
(ρ,ρ∗); `k∈P

(
CKρ∗×C

)}
.

24



Thus, by (3.21) and (3.26),

p̃ ∈
{
fρ|

π −1

ρ+,ρ−
(M

ρ−

1,ρ+∩M
ρ−

1,ρk(j∗))∩
fW

}−1(
M

ρ
1,ρ∗∩M

ρ
1,ρ

)

=
⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ∩ π
−1

ρ+,ρ−

(
M

ρ−

1,ρ+∩M
ρ−

1,ρk(j∗)

)
∩ W̃ .

(3.27)

Case 3b: In this case,

M
ρ

1,ρ∗ ∩M
ρ

1,ρ ∩ V =
{
(z, 0, 0; `)∈V : z∈M

ρ−1
(ρ,ρ∗); `∈P(CKρ∗×0)

}
and (3.28)

⋃

%∗∈f−1(ρ∗)

M
ρ−

1,%∗ ∩ Ũ = f−1
ρ−1

(
M

ρ−1
1,ρ∗

)
∩ Ũ = Z̃ρ−

k ∪ Z̃
ρ−

+ , where

Z̃ρ−

~ =
{
(z, v, wk, w+)∈ Ũ : z∈M

ρ−1
(ρ,ρ∗); v∈CKρ∗ , w~ =0

}
, ~ = k,+.

We denote by Z̃ρ+−1
k and Z̃ρ+−1

+ the proper transforms of Z̃ρ−

k and Z̃ρ−

+ in Ṽ and by Z̃ρ+

k and Z̃ρ+

+

the proper transforms of Z̃ρ−

k and Z̃ρ−

+ in W̃ . Then,

Z̃ρ+−1
k =

{
(z, v, 0, w+; `k)∈ Ṽ : z∈M

ρ−1
(ρ,ρ∗); `k∈P(CKρ∗×C)

}
;

Z̃ρ+−1
k ∩ Ṽ ′ =

{
(z, u, 0, w+)∈ Ṽ ′: z∈M

ρ−1
(ρ,ρ∗); u∈CKρ∗

}
;

Z̃ρ+

k ∩ π
−1

ρ+,ρ−

(
M

ρ−

1,ρ+∩M
ρ−

1,ρk(j∗)

)
=

{
(z, u, 0, 0; `)∈W̃ : z∈M

ρ−1
(ρ,ρ∗); `∈P

(
CKρ∗×0

)}

∪
{
(z, 0, 0, 0; `k)∈W̃ : z∈M

ρ−1
(ρ,ρ∗); `k∈P

(
CKρ∗×C

)}
. (3.29)

Similarly,

Z̃ρ+−1
+ =

{
(z, v, wk, 0; `k)∈ Ṽ : z∈M

ρ−1
(ρ,ρ∗); `k∈P(CKρ∗×0)

}
; Z̃ρ+−1

+ ∩ Ṽ ′ = ∅;

Z̃ρ+

+ ∩ π
−1

ρ+,ρ−

(
M

ρ−

1,ρ+∩M
ρ−

1,ρk(j∗)

)
=

{
(z, 0, 0, 0; `k)∈W̃ : z∈M

ρ−1
(ρ,ρ∗); `k∈P

(
CKρ∗×0

)}
. (3.30)

Since

⋃

%∗∈f−1(ρ∗)

M
ρ+

1,%∗ ∩ π
−1

ρ+,ρ−

(
M

ρ−

1,ρ+∩M
ρ−

1,ρk(j∗)

)
∩ W̃ =

(
Z̃ρ+

k ∩Z̃
ρ+

+

)
∩ π −1

ρ+,ρ−

(
M

ρ−

1,ρ+∩M
ρ−

1,ρk(j∗)

)
,

we conclude from (3.21) and (3.28)-(3.30) that (3.27) holds in this case as well.
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