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Abstract

We describe three recursions for top intersections of tautological classes on blowups of moduli
spaces of genus-one curves. Two of these recursions are analogous to the well-known string and
dilaton equations. As shown in separate papers, these numbers are useful for computing genus-
one enumerative invariants of projective spaces and Gromov-Witten invariants of complete
intersections.
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1 Introduction

Moduli spaces of stable curves and stable maps play a prominent role in algebraic geometry,
symplectic topology, and string theory. Many geometric results have been obtained by utilizing
the fact that the moduli space ﬁ07k(]P’”, d) of degree-d stable maps from genus-zero curves with k
marked points into P" is a smooth unidimensional orbi-variety of the expected dimension. This is
not the case for positive-genus moduli spaces ﬁg,k(]}’m, d). However, if d>1, the closure

M, (B, d) C M, 4 (P", d)

of the space zmg) (P, d) of stable maps with smooth domains is an irreducible orbi-variety of the

expected dimension. This component of ﬁm(]?”, d) contains all the relevant genus-one information
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for the purposes of enumerative geometry and, as shown in [LZ] and [Z1], of the Gromov-Witten
theory.

For d > 3, ﬁ?k(]?”,d) is singular. A desingularization of the space 97(1)7k(]P’”,d), i.e. a smooth
orbi-variety 932(1)7 x(P",d) and a map

w0 (B, d) — M, (P", d),

which is biholomorphic onto MY, (P", d), is constructed in [VaZ]. Via this desingularization and
the classical localization theorem of [AB], intersections of naturally arising cohomology classes on
ﬁ?’k(ﬂ””, d) can be expressed in terms of integrals of certain 1-classes on moduli spaces of genus-
zero and genus-one stable curves and on blowups of moduli spaces of genus-one stable curves. The
former can be computed through two well-known recursions, called string and dilaton equations;
see Section 26.3 in [MirSym|. In this paper we give three recursions for top intersections of -
classes on blowups of moduli spaces of genus-one curves; see Theorem 1.1. Two of these recursions
generalize the genus-one string and dilaton relations. Together with the standard genus-one initial
condition, i.e. (1.2), the three recursions completely determine the top intersections of 1-classes on
blowups of moduli spaces of genus-one curves.

Corollary 1.2 of Theorem 1.1 is used in [Z2] and [Z3] to compute the genus-one GW-invariants
of any Calabi-Yau projective hypersurface, verifying the long-standing prediction of [BCOV] for a
quintic threefold as a special case. The full statement of Theorem 1.1 is used in [Z3] to describe
the difference between the standard and reduced genus-one GW-invariants, making it possible to
compute the genus-one GW-invariants of any complete intersection.

If J is a finite nonempty set, let ﬂl, 7 be the moduli space of genus-one curves with marked points
indexed by the set J. Let
E— M,

be the Hodge line bundle of holomorphic differentials. For each j € J, we denote by
Lj — MLJ
the universal tangent line for the jth marked point and put
1/13' = Cl(Lj) cH* (ﬂl,J; Q)

If (¢j)jes is a tuple of integers, let

<(Cj)jeJ>u| - <Hwﬂc'j’ml"]>'

jeJ

Let I and J be two finite sets, not both empty. The inductive procedure of Subsection 2.3 in [VaZ],
which is reviewed in Subsection 2.1 below, constructs a blowup

m: My 1,5y — Mg



of My ;s along natural subvarieties and their proper transforms. In addition, it describes |I|+1
line bundles

E, Li—>M1,(I,J)) 1€l

and |I| nowhere vanishing sections
§Z‘€F(M17(LJ);I:?®I~E*), 1€l

These line bundles are obtained by twisting E and L;. Since the sections s; do not vanish, all |T]+1
line bundles L; and E* are explicitly isomorphic. They will be denoted by

L— My
and called the universal tangent bundle. Let
P =c (L") € HQ(MI,(I,Jﬁ@)

be the corresponding “i)-class” on ./\717(17(]). If (¢, (cj)jes) is a tuple of integers, we put

<é; (Cj)j€J>(u|7|J|) = <¢6 : H 7'['*7#]0']'7~//\-/(\/1,(I,J)>' (11)

jeJ
If e+ 5c 0 #|+]J], <0, or ¢; <0 for some j€J, we define this number to be zero.

Theorem 1.1 Suppose I and J are finite sets, such that |I|+|J|>2, and (¢, (c;)jes) is a tuple of
integers.

(R1) If I#0 and ¢; >0 for all jeJ,
(& (e)sen) gy = (& €)1 g1 141y
(R2) If cj~=1 for some j*€J,
(@ (ei)ier) oy = HIHITI=D(E (e5)jer—+3) -1
(R3) If c¢j»=0 for some j*€J,

(& (Cj)j€J>(u|,|J|) =|11(e-1; (Cj)jGJ*{j*}>(|I|,|J|—1) - Z (Gej—1, (Cj/)J'/GJ*{]'*J}>(\I|,|J|—1)'
jeJ—{5*}

Corollary 1.2 If I and J are finite sets and I #0, then

: — 1
(G My ) = o1 171 (171 -1)!



Mlv(lv‘]) f Jf\/lvlr(lr]%j*}) m(l),k(]Pn5d) —f) m(l),k—l(Pn7d)
™ ™ ™ ™

Mg

M 1u—1+h My 1 (P, d) ———— My 4—1 (P, d)

Figure 1: Lifts of Forgetful Maps

We recall that 1

1.2
(b, Miq) = o1 (1.2)
Thus, Corollary 1.2 is obtained by applying (R3) |J| times and then (R1) followed by (R3) |I|—

times.

The recursion (R1) of Theorem 1.1 follows easily from the relevant definitions, which are reviewed in
Subsection 2.1. The reason is that the blowups of M1 1,; corresponding to the two sides of the re-
lation in (R1) differ by blowups along loci on which [, ; ¢; vanishes; see the end of Subsection 2.1.

The ¢=0 cases of (R2) and (R3) are precisely the standard genus-one dilaton and string recursions,
respectively. The relations (R2) and (R3) are proved in Subsection 2.2 by an argument similar to
the usual proof of the latter. In particular, we consider the forgetful morphism

f: Mou — Muu(k{j*})'

By Proposition 2.1, it lifts to a morphism on the blowups,

fi le,(I,J) - le,(I,Jf{j*});

see the first diagram in Figure 1. Each of the blowups is obtained through a sequence of blowups
along smooth subvarieties, but the order of the blowups is not unique. We prove Proposition 2.1
in Subsection 3.3 by fixing an order for blowups on M 1,1u(J—{j*}) and then choosing a consistent
order for blowups on M; g We show that f then lifts to a morphism between corresponding
stages of the two blowup constructions; see Lemma 3.5. Once the existence of the morphism f
is established, we compare 1/1 with f *1/1 and describe their restrictions to the relevant divisors; see
Lemmas 2.2 and 2.3.

If k>0, there is also a natural forgetful morphism
f: ﬁLk(]Pm, d) — ﬁl,k_l(ﬂmn, d)

The proof of Proposition 2.1 in Subsection 3.3 can be modified in a straightforward way to show
that this morphism f lifts to a morphism

Foog (P",d) — MY, (P",d);

see the second diagram in Figure 1. This observation implies that the desingularization ﬁ? w(P".d)

of ﬁ?k(]?”, d) constructed in [VaZ] preserves one of the properties central to the Gromov-Witten



Ip={i,is2}

K={1,2,3)
I ={is,i4}
I, ={is,i6}

Is={iz,is, 19}

Figure 2: A Typical Element of ml,p

theory.

The author would like to thank the referee for comments and suggestions on the original version
of this paper.

2 Preliminaries

2.1 Blowup Construction

If I is a finite set, let

A = {(Ip.{l: k€EK}): K#0; I= | |In; || >2VkeK}. (2.1)
ke{P}UK

Here P stands for “principal” (component). If p=(Ip,{Ilx: k€ K}) is an element of A;([), we
denote by M , the subset of ﬂl, 7 consisting of the stable curves C such that

(i) C is a union of a smooth torus and |K| projective lines, indexed by K;

(ii) each line is attached directly to the torus;

(iii) for each k€ K, the marked points on the line corresponding to k are indexed by I.
Let Ml,p be the closure of M , in Ml, 7. Figure 2 illustrates this definition, from the points of
view of symplectic topology and of algebraic geometry. In the first diagram, each circle represents
a sphere, or P'. In the second diagram, the irreducible components of C are represented by curves,
and the integer next to each component shows its genus. It is well-known that each space M 1,p 18
a smooth subvariety of /\_/117 I

We define a partial ordering on the set A;(I)U{(I,0)} by setting
p'=(Ip, {I;: kEK'}) < p=(Ip, {I1: k€ K}) (2.2)

if p' # p and there exists a map ¢: K — K’ such that I, C I ; iy for all k€ K. This condition means
that the elements of M, , can be obtained from the elements of M , by moving more points onto
the bubble components or combining the bubble components; see Figure 3.

Let I and J be finite sets such that I is not empty and |I|+]|J|>2. We put

.Al(I, J) = {((Ipl_ljp),{[kujkt kEK}) E.Al(IuJ): Ik;«é(b VkEK}



Figure 3: Examples of Partial Ordering (2.2)

We note that if p€ A;(IUJ), then p€ A;(1,J) if and only if every bubble component of an element
of M, carries at least one element of I. The partially ordered set (A;(I,J), <) has a unique
minimal element

min = (0, {IUJ}).

Let < be an ordering on A;(1,J) extending the partial ordering <. We denote the corresponding
maximal element by omax. If 0€.A1(1,J), we put

/ I,J): o< if min;
Q_lz{max{@ €A, J): o' <o}, ifo#o (2.3)

O, if 0= Omin,

where the maximum is taken with respect to the ordering <.

The starting data for the blowup construction of Subsection 2.3 in [VaZ] is given by

ﬂ(1),(1,J) = My 107, ﬂ(f,g =My, VoeA(l,J),

EOZE_>M(1)7(I’J)7 and L07Z'ZLZ‘—>M(1)7(LJ) Viel.

Suppose o€ A;(I,J) and we have constructed

(I1) a blowup mp—1 : ﬂf;}yj) —>ﬂ(1],(17j) of Mtl),(I,J) such that m,_; is one-to-one outside of

the preimages of the spaces M(i o with ¢/ <o —1;

(I2) line bundles L,_1 ; —>H§I}7J) foriel and E,4 HM?I},J)'
For each ¢* >p—1, let Mi‘gi be the proper transform of ﬂ(l), o+ in Mf_(ll J)-
If o€ A1(I,J) is as above, let

. —o—1
To- Mi([,]) - Mi(I,J)

be the blowup of Mf_(fl ) along ﬂi_gl. We denote by ﬂi 0 thel) corresponding exceptional divisor.
If 0" >p, let Mf,g* CMi(LJ) be the proper transform of Mf;*. If

o= (IpuJp), {IyUJx: kEK}) €A (IUJ)  and i€l

we put

Lo 14, if 1 & Ip; - _
L,; = 7~T9 o—1, . 1 Z¢ P EQ:WZJEQ*1®O(M§Q)' (2.4)
Tylg—1: @ O(=Mj ), ifi€lp; :



It is immediate that the requirements (I1) and (I2), with p—1 replaced by p, are satisfied.

We conclude the blowup construction after |omax| steps. Let

Mgy =My, Li=L viel, E=E

Omax 1t Omax *

By Lemma 2.6 in [VaZ], the end result of this blowup construction is well-defined, i.e. independent
of the choice of an ordering < extending the partial ordering <. The reason is that different exten-
sions of the partial order < correspond to different orders of blowups along disjoint subvarieties. !
By the inductive assumption (I4) in Subsection 2.3 of [VaZ], there is a natural isomorphism be-
tween the line bundles L; and E*. Thus, these line bundles are the same. We denote them by L.

We are now ready to verify the recursion (R1) in Theorem 1.1. If i* €1,

A (I-{i*}, Ju{i*}) c A(1,J)  and
A1, J)— Ay (I={i*}, Ju{i*}) = {o= (ITpUdp, {{i*}UJ1 JU{LUJ,: ke K'}) € A1 (TLJ) }.
With ¢ as above, we have a natural isomorphism

MLQ ~ ﬂl,g X HO,{q,i*}uJU where ¢ = (IPIJJPIJ{p}, {IkquI ]CEK/}).

Let
w2 Mie — Mo (gi300,

be the projection map. By definition,

Uilg,, =mvs Vieh = ik, = [[e=mo=o.
JEI jeJ1

since the dimension of ﬂo,{q,i*}ujl is |J1|—1. It follows that

[T% 15, =0  YoeAll, /)= A(I-{i"}, Jufi'}).

jedJ

Thus, the constructions of ) = ¢ (E) from A= ¢, (Eq) for Ml,(f,{i*}7Ju{i*}) and Ml,(w) differ by
varieties along which [] je Jl/};-j vanishes, as long as c¢; >0 for all j€J. We conclude that

<1/36 11 W*w;jaﬂl,(I,J)> = <1/36 11 W*w;jaMl,([—{i*},Ju{z‘*})>
jeJ jeJ

whenever ¢; >0 for all j€J, as needed.

f p,0' € A; (I,J) are not comparable with respect to < and o< ¢/, ﬂi’fgl and Mf_gll are disjoint subvarieties in

mf’_(]l"]). However, Ml,g and Ml,g/ need not be disjoint in ml,[uj. For example, if

I'={1,2,34}, J= 0, o12= (({374})’ {1 2}})7 034 = (({172})’ {{374}})7 012,34 = ((@), {12}, {3»4}})7

Mai,p,, and M ,, intersect at Ml,glgm in M 4, but their proper transforms in the blowup of M 4 along ﬂl,glw
are disjoint.



2.2 Outline of Proof of Recursions (R2) and (R3) in Theorem 1.1

In this subsection we state three structural descriptions, Proposition 2.1 and Lemmas 2.2 and 2.3,
and use them to verify the last two recursions of Theorem 1.1. Proposition 2.1 and Lemmas 2.2
and 2.3 are proved in Section 3.

If I is a finite set and 7, j are distinct elements of I, let
pij = (I—{i,j},{{i,j}}) € Ai(I).
There is a natural decomposition
M, = Mu—igpogy X Moggigy- (2.5)
The second component is a one-point space. Let
Ty 7B Mig, — Mua—fignutpy Mo g (2:6)

be the two projection maps. Here P and B stand for “principal” and “bubble” (components). It
is immediate that

)\|ﬂ1,2i]' - WP)\ and (2.7)
* . f -/ S oa.

N N A RO 28
e gty =0, i)' =0

In the j' =1, j case the restriction of ¥, vanishes because the second component is zero-dimensional.

If [ is a finite set, |I|>2, and j* €I, there is a natural forgetful morphism
frMup— My gy

It is obtained by dropping the marked point j* from every element of /WL 7 and contracting the
unstable components of the resulting curve. It is straightforward to check that

A=A and (2.9)

V= S Mg = il = R VIEI{TT) (2.10)

see Chapter 25 in [MirSym], for example. Using (2.8), (2.10), and induction on c¢;, we find that

Y = ¢§f‘*1(f*¢j + My, ) = 07 + (w};w;j’l)mﬂl,gjj* Vjiel—{j*}, ¢;>0. (2.11)

If I and J are finite sets, i€, and j € J, then Mlv@ij is a divisor in Muuj. Thus, in the notation
of the previous subsection,

S0 o]
Ml);ij = Ml);ij .
Since p;; is a maximal element of (A1(I,J), <), the blowup loci at the stages of the construction

described in Subsection 2.1 that follow the blowup along /W%Z,;l are disjoint from ﬂffézj. Thus,

8



we can view m%ij as a divisor in My (1 7). We denote it by My, .. If i,j € J, HLQU is also a

divisor in My r;y. Thus, its proper transform Mi 0y 1 Mi( 1,7) 1s a divisor for every o€ A1(1, J).
Let

A A A 9max v

Ml)gij = M - ML(I’J)

l)gij

Proposition 2.1 Suppose I and J are finite sets such that |I|+|J|>2 and j*€J. If
Mgy — My and  m Mooy — Munog-ge)
are blowups as in Subsection 2.1, the forgetful map
[ Mg — My sa—g+
lifts to a morphism o .
Fr Mgy — M-
see the first diagram in Figure 1 on page 4. Furthermore,
b=+ Y Mg, (2.12)
1€l
Lemma 2.2 With notation as in Proposition 2.1, for all i€ 1
Migye = My a—ipuiphs—-h X Moggigy  and
mpom = momp: My — ML((F{Z’})U{IJ})U(J*{J'*})’

where

mp: M. — My (1—{ipuipha— )

is again the projection onto the first component. Furthermore, if 1/; denotes the universal ¥-class
and f is as in Proposition 2.1, then

Oy, =0 and  (F9)|g,,  =TpU. (2.13)
=g Eig
Lemma 2.3 With notation as in Proposition 2.1, for all j€J—{j*}
1 —~ v -
T (Mg ) = Mug My -gpup X Moay  ond
mpom = momp: Mg — M- (4 Duip)):

where . .
Tt Mg — Mu {5 Huied)
is again the projection onto the first component. Furthermore, if @5 denotes the universal Y-class

on My g,y and on My (1 (j—{jj*puip}), then

i, = (PO, =



We now verify the recursion (R2) in Theorem 1.1. Since ¢j«#0, by the j=j"=j* case of (2.7), the
first identity in (2.10), and (2.12),

125 X H W*Q/)]CJ — f* <w5 Hﬂ_*w;]) Q/)JC]
JjeJ jeJ—j*

Since c¢j- =1, it follows that
<6? (Cj)j€J>(‘IMJ|) = <6§ (Cj)jEJ*j*>(my|J|,1) : <¢j*= F>7 (2.14)

where F' is a general fiber of the morphism f or equivalently a general fiber of the morphism f.
By the standard dilaton equation,

(e F) = I + 17| = 1; (2.15)
this relation can also be seen directly from the definition of v j«. The recursion (R2) follows imme-

diately from (2.14) and (2.15).

We now verify the recursion (R3). We can assume that ¢#0; otherwise, it reduces to the standard
genus-one string equation. Note that if i1,i9€ I and i1 #i9, then

ﬂLgi”* mﬂl,@@* =0 - .//\\/1/1791.”* N MVLQQ]'* = 0. (2.16)
Thus, by (2.12) and (2.13), applied repeatedly,
U= B4 Y M) = PO+ 3 () bl (2.17)
iel icl
On the other hand, by (2.11) and Lemma 2.3,
* 1 Cj Pk k1 Cj * _x c;—1 A . %
Ty = frotyl 4 (7rp7r ~ )ﬂ/\/ll,gjj* VieJ—{j*}. (2.18)

If ¢;=0, we define the last term in (2.18) to be zero. Similarly to (2.16),
Mig, "Mig,. =0 = My, MMy, =0 VjeJ-{j*},ieluJ—{jj*}. (2.19)
Thus, by (2.17), (2.18), and Lemmas 2.2 and 2.3,

<55 (Cj)jGJ*{j*}>(|I|,|J|) = < 1_I7r Q/’ Ml IJ)>

jeJ—{j*}
< ( HW Q/) ) Ml IJ)> Z<7r73<7;671 : Hﬂ*w§j>7ﬂl,gij*>
jeJ—{j* i€l jeJ—{j*}
+ Z<7TP<1/}C put Cj—l' HW*¢;7/>’M17ij*>
jeJ—{j*} jreJ—{5*.i}
=0+ <1/75_1 - =y /‘717<(1—{z’}>u{p},J—{j*}>>
i€l jeJ—{5*}
+ Y@ T TP M-y
jeJ—{s*} i'ed—{j*.5}
= [I]{e-1; <Cj)j€J—{j*}>(|I|,|J|71) + D (Ge-1, (Cj’)j’ej—{j*’j}>(|II7IJ|71)’
jeJ—{i*}

as claimed.
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3 Proofs of Main Structural Results

3.1 Proof of Lemma 2.2

Suppose [ is a finite set and ¢, j are distinct elements of I. It is well-known that the normal bundle
Nﬂl,lein;‘ of Ml,gij in My is given by

Nig, ;Mg = mpLy®@mpLe = wpLy, (3.1)
where mp and 7p are as in (2.6) and
Ly — Myg—gigpupy  and - Ly — Mo g5

are the universal tangent line bundles foihe marked points p and ¢; see [P], for example. The last
equality in (3.1) is due to the fact that M (4 ;3 consists of one point.
Suppose in addition that

o= (Ip,{Ix: keK}) € A(1) and 0 < 0ij- (3.2)
Then, by the definition of the partial ordering < in (2.2),

{i,5} C Iy, for some ke K.

Let pij(0) € A1 ((I—{i,5})U{p}) be obtained from g by removing the element k from K and adding
an element p to Ip if Iy ={i,j} and by replacing {i,j} in I} with p otherwise:

(o) = (IpU{p}, {1 : K € K —{k}}), if I,={1,j}; (3.3)
J (Ip, {(I—{i, sH)U{p} s U{Iw: K € K —{k}}), if I, 2 {i,j}.
It is straightforward to see that
M, N Mo = My (o) X Mo ggigy © Mu gy X Mo.(gi)- (3.4)

Lemma 3.1 If I and J are finite sets, i€ 1, and j€ J, then the map
pij: {0€ AL J): 0=y} — A (I~ {iDL{ph T~ (7)) (35)
is an isomorphism of partially ordered sets.
This lemma follows easily from (2.2) and (3.3). It implies that given an order < on
Ar(I={ihu{p}, J—{5})

extending the partial ordering <, we can choose an order < on A;(/,J) that extends the partial
ordering < such that

01,02 < 0ij, fij(01) < pij(02) — 01 < 02.

Below we refer to the constructions of Subsection 2.1 for the sets

A((I={ihufp}, J—{5})  and AL, J)

corresponding to such compatible orders <. We extend the map p;; of (3.5) to {0}U.A:(Z,J) by
setting

S pmij(max{o' <o : 0 <0i}), if Jo'<ost. o' <oy
pij(o) = ,
0, otherwise.

11



Lemma 3.2 Suppose I and J are finite sets, i€I, and jeJ. If o€ A1(1,J) and 0< 0;;, then with
notation as in Subsection 2.1 and in (2.5)

w4 _;U"L'(Q) AA
Mo, = MG apuph .-y X Modeidy
* w4 *
EQ‘M%’Q,, = PRy and NM;’_U J)Ml,gij =7pLy;(0)p0

where @ @
. A g Migle AA 7 Mg\
T My oty -Gy X Modeisy — My apomr— o)

is the projection map onto the first component.

By (2.5), (2.7), and (3.1), Lemma 3.2 holds for o=0. Suppose o€ A;(I,J), 0<gi;, and the three
claims hold for o—1. If p £ g;;, then

pij(0) = pij(o—1) =
——1ij (0) ——uij(0—1)
Mo i—Gy = Muli—puwy -1 i@ = Buge-1s Luy@w = Lue-1)p+ (3:6)

On the other hand, since g and p;; are not comparable with respect to <, the blowup locus Mi_gl

in Mﬁ} 7y 1s disjoint from ﬂﬂ);; see Subsection 2.1 above and Lemma 2.6 in [VaZ]. Thus,

—0 —o0—1 52 et
M, =M ngigjzlag,l\m?_, Nge MYy = Ngor MY, (3.7)
7, 1@ T

,0ij 1,045 1,045 Mf,(I,J) 1,0ij
By (3.6), (3.7), and the inductive assumptions, the three claims hold for p.

Suppose that ¢ < g;;. Since all varieties ml,g/ intersect properly in M 1,y in the sense of Subsec-

. . . —o-1. ——o-1

tion 2.1 in [VaZ], so do their proper transforms Mf, oy in Mi( 1,7)- Furthermore,
——0—1 _——o0—1 ——0—1 ——o0—1
MLQUQMLQ - MLQU - Ml,( ,J)

is the proper transform of

ﬂlyé’ij HMLQ C Mlv@zj C ML]H].

Since < ij, pij(0—1)=pi;j(0)—1. Thus, by (3.4) and the inductive assumptions,
w701 o1 Gwii(e)-1 5~ iz (@)1 ywi
Mg, WM = M) X Moggigy © M- apogmy,—(n < Mo (e}

L,0i5 g (0)

Since ﬂf;ilj and Mﬂl intersect properly, the proper transform of Mf;ilj in Mi(I, s L.e. the
blowup of Mf_(ll 0 along Mi’;l, is the blowup of Mﬂ; along mﬂ; ﬂﬂf?; see Subsection 2.1
in [VaZ]. Thus, Mi 0;; 18 the blowup of

——wij(0)—1 —
M= iy a— gy X Modgeis

along MTZLS();; xﬂo,{qﬂ-’j}. By the construction of Subsection 2.1, this blowup is

——1ij (0) -
M=y -y X Mofeis):

12



Furthermore, by (2.4) and the inductive assumptions,

#u( )

Liij(e) © Mo tg..3)

~ % w4 ~% %
Eg|ﬂ§’ﬁgij = (FpEp-1+Mi ) ‘ng = TompBu (-1 + M
* [ ~% Aq M (,Q)
=757}, (0 Buis -1 T M1 o) = B (o)

We have thus verified the first two claims of Lemma 3.2.

It remains to determine the normal bundle Nyze ~ My, of My, in M ; ;. We note that
Ml,(I,J) »Qij 1Qij (1, )
by (2.4) and (3.3),

~ i (@) A TR
L _ ﬂ-ui]‘(Q)*lLiu‘i]'(g)_lvp®0(_ML;U(g))7 if I={i,j}; 38
pii(@)p = ) ~« I 1O (i (3.8)
WMij(Q)*l wij(0)—1,p 1 k+{Z7]}7
if o is as in (3.2). Furthermore, if I}, ={i,j}, then
-— - 1 ——p-1
Mi,C My, =  Mi, CMi,. .
Thus, by Subsection 3.1 in [VaZ],
0 0 0
Nmf’(I’J)MLQU =T, NMf }J)Ml sz ® O( Ml,@ijﬂMl,Q) (3 9)
'/\/‘./\/li7 (11 J)Ml QZJ T(PO( M nU«u(Q)) if Ik—{l,]}

. . o1 ——o—1 . . o1 L=
On the other hand, if I}, 2 {1, j}, Mf,g and ./\/lf’gij intersect transversally in ./\/li(LJ), since My,
and ﬂl,gij intersect transversally in Ml, uy- Thus,

7y N-

Wi . .
Nm?u”})/\/llﬂij =7 ﬂf,_(}JMl ng it I 2{i,j} (3.10)

The last statement of Lemma 3.2 now follows from the corresponding inductive assumption for
0—1, along with (3.8)-(3.10). This completes the proof of Lemma 3.2.

We now finish the proof of Lemma 2.2. By the paragraph preceding Proposition 2.1 and the first
statement of Lemma 3.2,

v A Q0% -1 A Mg (Qz * 1) AA
Mgy = Mg = Myt ipnmyr— oy X Moais

= My (- (oI —p X Mo (qii-}

since f1;;+(0s5+ —1) is the largest element of

(A(I—{iHu{pt, J—{5"}). <),

according to Lemma 3.1.
Since g;;+ is a maximal element of (A (1, J), <),
——o—1
M19] Mi@ =10 VQG.Al(I,J),Q>Qij*.

13



Thus, by (2.4) and the second statement of Lemma 3.2,

. B B S R B
B, . = Boplir,,  + ZMMMW =B+ Mug,. |5, - (3.11)
02 0;;%
By the third statement of Lemma 3.2,
— —~ — 0. —1
Mg |51 =Ng  Miy.=N_o. 1M
L,0;; Mio; M,y i Mfffz,J)l beir (3.12)
_ * _ Jgpad
- WPLMJ‘* (0ij+—=1)p — —7pE.

The first identity in (2.13) follows from (3.11) and (3.12).

Finally, by the last statement of Proposition 2.1, the first identity in (2.13), (2.16), and (3.12),

(f*l/;) ‘Ml,gij* - 1[}|-A71»9¢j* - Z Ml’gi/j*

i'el

~ —0-M e = 1.
Ml,gij* 17913 Ml’gij* Pw

This concludes the proof of Lemma 2.2.

3.2 Proof of Lemma 2.3

The proof of Lemma 2.3 is analogous to the previous subsection. If I is a finite set and j,j* are
distinct elements of I, let

Ai(L;557) = {ee Ai(T) —{0jj+}: Mig, . "My, # 0}
= {(Ip,{Ir: ke K}) € Ai1(I) —{oj;+}: {J,j*} C I for some ke {P}UK }.

For each g€ A (I;j*) as above, let n;;+(0) € A1 (I—{j, 7*})U{p}) be obtained from p by replacing
{j,7°}C Iy with p if k=P or {j,j*} C I and by dropping k from K and adding p to Ip otherwise:

((Ip—{7, 7 Hu{p}, {I: K € K}), it Ip2{j, 5" };
njj+(0) = S (Ip, {(In—{5, 7* HU{p} pU{Ip: K € K —{k}}), if [ 2{j,5*}; (3.13)
(Ipu{p},{fk/: KeK —{]{?}}), if I={7,7"}

It is straightforward to see that
Mg N Mug =My () X Mogaggy © Mua-igpumy X Mogeii- (3.14)
Lemma 3.3 If I and J are finite sets, j,j* € J, and j#j*, then the map
e+ AL, J)NAL(TUT; 55%) — Ad((1, (T = {4, 5" HU{p}) (3.15)
18 an tsomorphism of partially ordered sets.

This lemma follows easily from (2.2) and (3.13). Note, however, that it is essential that j,j* € J
and thus the third case in (3.13) does not occur if

ocA(1,J)NA(1UJ;55%).

14



Lemma 3.3 implies that given an order < on

A (1, (7={5,5"Hu{p})

extending the partial ordering <, we can choose an order < on A;([,J) that extends the partial
ordering < such that

01,020 € Ai(I, J)NAL(IUJ;55%),  mjj=(01) < njj+(02) == 01 < 02.
Below we refer to the constructions of Subsection 2.1 for the sets
AL, (=45, Hu{p})  and A1, J)

corresponding to such compatible orders <. We extend the map n;;+ of (3.15) to {0}U.A,(Z,J) by
setting

njj+ (max{o’ <o : o' € A1(IUJ;jj*)}), if Jo' <ost. o' € A(TUJT;j5%);
Ujj*(@) = .
0, otherwise.

Lemma 3.4 Suppose I and J are finite sets, j,7° € J, and j # j*. If o € A1(I,J), then with
notation as in Subsection 2.1 and in (2.5)

1/ -0 "5+ (0) v *
e Mug) = Mige = Mifa G-gpuen X Motaiiy Belmg, = 7PEg o)
h
where D Mnjj* (Q) % M o _ Mnjj* (Q)
P (T-{5.5 Huip)) 0,{q.7,5*} L((U,(J={74.5* Hudp})

1s the projection map onto the first component.

By (2.5) and (2.7), Lemma 3.4 holds for p=0. Suppose p€.A1(I,J) and the three claims hold for
o—1. If o A1 (1UJ; j5*), then

njj*(@) = njj=(0—1) =

——n.:% () _ i (e—1) _
M- Gauey = Milco-tiuey  Enge@ = Enpee-1)- (3.16)
On the other hand, since o o
Ml)@jj* li,,Q = ®7

——o-1. ——o-1 . ... ——o—1
the blowup locus Mi o In Mi( 1,7 1s disjoint from Mi 0, Thus,
—1(%7 _ =1 (A V4 _ el o _
To (Mlvgjj*) - ﬂ-gfl(MLij*)’ Ml,ij* - MLQ]'J'H EQ|M19?QJ_]V* - EQ*“W%”—Q;* . (3.17)

By (3.16), (3.17), and the inductive assumptions, the three claims of Lemma 3.4 hold for o.

Suppose that o€ Ay (IL1J;j5*). Since all varieties M , intersect properly in M 1,7, so do their

—o-1 . . o1 I v . . .
proper transforms Mi o> With ¢’ >p—1,in Mi( 1,7)- Since Mi o 1s not contained in the divisor

15



/Vl1 00 Mﬂl and ﬂf;,* intersect transversally. Thus, using the first statement of the lemma
with g replaced by po—1, we obtain

ng(ml ) =7y 7T 4 (M, 255 )= 7~T€71 (ﬂi’j‘j*) - Mi@jj*'

Furthermore,
Mlg *ﬂ/\/l C./\/llg . CMl(”)

is the proper transform of
Mig MM, C Mg CMi.

Since pe A1 (IUJ; jj%), njj*(g—l):njj*(g)—l. Thus, by (3.14) and the inductive assumptions,

i+ (0)-1 5 i« (0)—1 i
M, 05 *ﬂM =M x Mo (.55 © M (L= Duteh X Moga.di)

1,m;,+ (o)

Since Mﬂ,}j* and Mf;l intersect properly, the proper transform of M f;ﬂl_j* in ﬂi( 1,7y, i-e. the
blowup of Mf_(fl ) along Mi’;l, is the blowup of Mf;]l,j* along ﬂf;]l,j* ﬂﬂf:; see Subsection 2.1
in [VaZ]. Thus, M} 0;;+ 15 the blowup of

o (0)—1 -
M a—ganuey X Moai

along M?ﬁ f(*g)_l Xﬂo,{q,j,j*}- By the construction of Subsection 2.1, this blowup is
M+ (0)

——M;;* (@) -—
M=oy < Moady-

Furthermore, by (2.4) and the inductive assumptions,

~ % w4 ~ %k M5+ (0) A
E@'W,W = (WQE@*1+M1,9)|W§Q = TP, -1+ My ) X Mo a7

. -5+ (0)
=Tp (anj*(g)Enjj*(Q) + M o (9)) =By o)

)77]]

We have thus verified the three claims of Lemma 3.4.

We now finish the proof of Lemma 2.3. By Lemma 3.3, 7;;+(0max) is the largest element of

(AL, (T={3. 5" Huiph), < ).

Thus, by the first two statements of Lemma 3.4,
—1 /A4 —1 AAq A 4 @max Y
T (MLQ]']'*) = ﬂ-dex (Ml ij*) = M = Mlvgjj*

1,045+
M5 (@max) Vi i ywi
Mffz (J—{j.5Puip)) < Mo g5y = Muya,-t huted) X Mofagit
By the last statement of Lemma 3.4,

=K

) ok %
E|M1,gjj* Omax Ml*gjj* - WPET]jj*(QmaX) - WPE

Finally, by the last statement of Proposition 2.1 and (2.19),

(), . =Y Ry, > Mg, =mp—0.
77 il
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Figure 4: Images under the Forgetful Map

3.3 Proof of Proposition 2.1

In this subsection we prove Proposition 2.1. In fact, we show that there is a lift of the forgetful
map f of Proposition 2.1 to morphisms between corresponding stages of the blowup construction
of Subsection 2.1 for My j1,; and for My ry(j_{;+}); see Lemma 3.5 below.

First, we define a forgetful map
fr AL T) — AL T={57}) = AL T ={5"}) b {TU(T—{5"}),0) }.
If Q:(Ipl_lJp, {Ikl_ljki ]{JGK}), we put

(Ipl_l(Jp—{j*}),{Ikl_lei /ﬂEK}), if j*€ Jp;
flo) = § (IpuJp AL U(Jp—{7* NI H{ Iy Uy : K € K—{k}}), if j*€Ji, [Ii]+|Jk|>2;
((Ipu{i})qu, {IyUJy ]C,EK—{]{?}}), if IUJp={ij*}.

These three cases are represented in Figure 4. We note that for all pe Ay (I, J—{j*}),

f Ml,p U Mlg

oef~1(p)
Furthermore,
p1.p2 € AL, T={5*}), pri#p2 o1€f H(p1), o2€f Hp2), o1<02 = pi1=p2.

Thus, given an order < on A; (I, J—{j*}) extending the partial ordering <, we can choose an order
< on A;(I,J) extending < such that

p1,p2€ AL, T—{*}), p1<p2, o01€f Hp), o2€f Hp2) = o01<0o

Below we will refer to the blowup constructions of Subsection 2.1 for M 1,y and for Ml, 1U(T-{*})
corresponding to such compatible orders. For each pe Ay (I, J—{j*}), let

pt =max ' (p) € Ai(I,J)  and  p =min [ (p) — 1 € {0}UAL(L,J).
If p is not the minimal element of A; (I, J—{j*}), then p~=(p—1)*.

Lemma 3.5 Suppose I, J, and f are as in Proposition 2.1. For each pe A1(1,J—{j*}), f lifts to
a morphism

-t R
fo: Mf,(I,J) — M?,(I,Jf{j*})
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fo =

—pt 4 AP —pT 4
My —— My M .0 Moy

Tp+ Tp Tp=410...0 Tyt Tp

fp—l

- —p—1
M0y M1y

Miru—1+h M5

Figure 5: Main Statement of Lemma 3.5 and Inductive Step in the Proof

over the projection maps
_p+ J— ——p J—
Tt Mgy — Mugus and - mpr My gy — Muug—g;
see the first diagram in Figure 5. Furthermore,

- N
f;l(./\/l’f,p*) = U ./\/lig Vp*>p and E+ = f,Ep. (3.18)
e€f1(p*)

Proposition 2.1 follows easily from Lemma 3.5 by taking p = pmax, where ppax is the maximal
element of A; (I, J—{j*}). We note that

{o€eAi(1,J): 0> ploc} = {0€ AL(L,J): flo)=TU(J—{5*}),0)} = {oij+: i€}

Since MLQU* CHL 707 is a divisor for every ¢ €1, so is

pmdx pmdx
M C My

1,045+

Thus, by the construction of Subsection 2.1,
A _ A f9max pmdx
My gy =My = Mg and

+ + ~ —
— _ 2 Pmax __  px § A fPmax _ Fx § :
E = Egmax - Ep$ax + Ml,Qi]'* - fpmaxEPmax + Mlvgij* - f E + Ml’gij*’

i€l i€l i€l
where f=f, ...

Lemma 3.5 will be proved by induction on p. It holds for p=0€{0}UA (I, J—{j*}), if we define
0T =0. Suppose
p= (IPIJJP, {IxUJy: kEK}) e Ai(1,J—{j*})

and the lemma holds for
p—1€ {0fUA(L, J—{j"}).

The elements of f~1(p) C.A;(I,J) can be described as follows. The largest element is

p* = (IpU(JpU{j"}), {Ik Uy kEKY}).

18



Furthermore, for each k€ K and i€ Ip,
pr(5) = (IpUdp, { L U(JeU{5* D)} U{Ip U : K € K—{k}}) € f~(p);
pi(7*) = (Up={iH)UJp, {{i, 5} }U{Ip UJp: K €K}) € f7H(p).
It is straightforward to see that
FH ) ={o(G*): ke K} U {pi(j*):iclp} U{p*}.

Furthermore, p* is the largest element of (f~!(p), <), while no two elements of the form pg(;5*)
and/or p;(j*) are comparable with respect to <. Thus,

M VMY oy =0 Vik € IpUK, ik

see Subsection 2.1. In fact,

mlvﬁk(j*) mml,pi(j*) =0 Vi, k € IpUK, Z;ﬁk,

see the proof of Lemma 2.6 in [VaZ]. On the other hand, /\_/lf;)i(j*) - Mi_p+ for i € Ip, while

ﬂ’f;k (j+) and ﬂi);ﬁ intersect at a divisor (divisor inside each of them) if k€ K.
Below we will show that every point
-1 (7gr1 yvid
pef(Mi,) € My,

~ ~ — t+
has a neighborhood U so that f, 1 lifts to a morphism f, from the preimage of U in Mi( 1) to

mf7(17J,{j*}). Since miu’],{j*}) is the blowup of Mi(lﬂjf{j*}) along m’f;l, this implies that
fp—1 lifts to a morphism
-t R
Fo: Mi 1.0y — M-y
We will consider four cases: B
Case 1: pemﬁipk(}-*)—ﬂiﬁ and thus p¢ﬂipi(j*) for all ie IpUK —k;
Case 2: D S ﬂf’p+7_ UkGKﬂipk(‘j*):
Case 2a: p¢ﬂf’pi(j*) for all i€ Ip;
Case 2b: pGMT;Z_U*) for some ¢ € Ip and thus pgmﬁf;k(ﬁ) for all ke IpUK —1;

Case 3: p € ﬂf;}+ N ﬂ’f;k(j*) and thus p%ﬂ’f;i(j*) for all i€ IpUK —k.

Case 1: Since all varieties ﬂl,g* are smooth and intersect properly in /\_/117 7ug in the sense of
Subsection 2.1 in [VaZ], all varieties Mﬁl’,@*? with o* > p~, are also smooth and intersect properly
in Mi),(LJ)' Thus, we can choose neighborhoods U of p in Mi’,(m, U of f,—1(p) in MTE}7J_{]-*}),
and coordinates (z,v,t) on U such that

(i) U:fp—l(U);
(ii) U= {(z,v) e CHIHIVI=IKI-1 XY,

(iii) My nU={(z,0)€U: v=0};
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(iv) ﬁ:{(z,v,t)E(CmH‘”*'K'*lXCKXC} and f,—1(z,v,t) = (2,v).
These assumptions imply that

ﬂipk(]’*)ﬂﬁ = {(z,v,t)el]': v=0}.

Since MT,(I,Jf{j*}) is the blowup of Mﬁ}J,{j*}) along mﬁ);l, the preimage of U in M‘i(w,{j*})
under the projection map is

V= {(z,v;Z)EUxIP’((CK) tvel}.

ot o o
Since /\/li( 1,7) is the lilowup of ./\/lll)’( 1,7) along M’f’ pe(j+) and subvarieties that do not contain p, the
preimage of U in Mi( 1,y under the projection map is

V= {(z,v,t;E)EUX]P’((CK) : UEE},
provided U is sufficiently small. Thus, the morphism fo-1: U — U lifts to a morphism fp: V—V.

This lift is defined by
folz,0,t:0) = (2,03 0). (3.19)

Case 2: We can choose neighborhoods U of p in H’I(LJ), U of fy—1(p) in Mﬁ}vj,{j*}), and co-
ordinates (z,v,t) on U so that the conditions (i)-(iv) are satisfied, with /\_/l’f;)k(j*) replaced by M’f;-‘-.

Case 2a: The desired conclusion is obtained as in Case 1.
Case 2b: Since Ml, pi(G*) CHL o+ is of codimension one,
ﬂll),;i(j*) C ﬂ’i;+
is also of codimension one. We can thus choose local coordinates so that
ﬂf;i(j*) NU = {(Z,U,t)EU: v=0, tzO}.

— ot — — —
Since M'i( j) is the Elowup of M'i( 1,7) along Mi),pi(j*) and subvarieties that do not contain p, the
preimage of U in Mi(;}]) under the projection map is
V= {(z,v,t;f’)eﬁxP(CKxC) : (v,t)ef’},
provided U is sufficiently small. Tt is immediate that

M, 20T = {(2,0,8[a, 8) €0 xP(CE xC): a=0},

— ot — — ot — — — _,t_ ~
where M’f’p: - Mf,(I,}) is the proper transform of M’f’ o+ A neighborhood of /\/l’f,erlﬂV is
given by

V' = {(z,u,t) € CHIFVIZIKI=L cK ]}, (z,u,t) — (2,ut, t;[u,1]) € V.
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. —pt . —pt-1 —pt—1 . ~ . —pT
Since M7 (g 5y is the blowup of My ; 7y along My i, the preimage of U in Mj 7 ;) under the
projection map is

|24 ({(z,u,t;E)EV/X]P’(CK) : uEE} U {(z,v,t; [a,ﬂ])GV: oz;«éO})/ ~

(z,u,t;0) ~ (z,ut,t; [u, 1])

Thus, the morphism f, 1: U — U lifts to a morphism fo: W — V. This lift is defined by
fp(Z,U,t;f) = (Z7Utﬂ£) a‘nd fp(Z,U,t; [a76]) = (Z7U; [Oé]) (320)

on the two charts on W. Note that if u#0, then [u] =£€P(CK). Thus, f, agrees on the overlap
of the two charts.

Case 3: Since the varieties M; .o~ intersect properly in M, U ﬂ’f_p (%) and ﬂ’f;ﬁ intersect
properly in M’((I gy and M’f P )ﬂ./\/l1 o+ 18 the proper transform of M, e )ﬂﬂl o+ Thus,
./\/ll e )ﬂ/\/ll o+ is adivisor in /\/l1 or(j) and in /\/ll p+- It follows that we can choose neighborhoods

U of pin MY (1.7) U of f,—1(p) in Ml,(I,Jf{j*})’ and coordinates (z,v,wy,wy) on U such that

(i) U=fo—1(U
(ii) U= { 2,0, W) ecIIIHJI |K|—1, K- {k}XC}
(iii) M’ ﬁU {szEUU 0, w= O}
(iv) U= { 2,0, wg, wy ) € CHHIIRIKIZL 5 BB Cx T, fomi (2,0, wi, wy ) = (2,0, whwy);
(V) 1pk ﬂU:{ Z,'U,Wk,w+)€U, U:O, w+:0}7

(vi) M17p+ﬂU:{(z,v,wk,w+)€U: v=0, wkzo}.
Similarly to the above, the preimage of U in /V’i( 1J-{*}) under the projection map is

V= {(z,v,w;ﬁ)eUxIP’(CKﬁ{k}xC): (v,w) €L}

Since M1 A, J) is the blowup of Ml (1,7) along /\/ll px(j+) and subvarieties that do not contain p, the

preimage of U in ML( 1, J) under the projection map is
V= {(z,v,wk,er;fk) EUX]P’((CK_{"’} ><(C) (v, wy) Eﬁk},
provided U is sufficiently small. It is immediate that

ﬂf:;l NV = {(2,0,0,w+; [a,ﬁ])eﬁx ]P’((CKf{k}X(C): azO},

— ot — — ot [ — ot — .
where Mf’pﬁul C /\/li( Iﬂlj) is the proper transform of M’i o+- A mneighborhood of Mipﬁulﬂv is
given by

V= {(z,u,uk,w+) e CHIHII=IKI=1, oK —{k} ><C><(C},

(z,u, up,wy) (z,qur,uk,er; [u, 1]) ev.
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. —pt . —pt-1 —pt—1 . ~ . —pT
Since M7 (g 5y is the blowup of My ; 7y along My i, the preimage of U in Mj 7 ;) under the
projection map is

w :({(z,u,uk,w+;€)GV/XP(CKf{k}XC): (u,u) €L}
U {(z,v,wk,w+; [, B]) €V : a#O})/ ~

(Z) U, Uk, W45 6) ~ (Z7 UW, Uk, W3 [U, 1]) .
Thus, f,—1: U — U lifts to a morphism fo: W — V. This lift is defined by

Folzuyug wii€) = (z,uwy, ugwgsf)  and

3.21
fp(zuv)wlﬁer;[avﬁ]) = (Z,U,wkw+;[04,wk/8]) ( )

on the two charts on W. It is immediate that [ is well-defined on the overlap of the two charts.
Remark: The first identity in (3.18) should be viewed as incorporating the above information con-
cerning the local structure of the projection map. It is straightforward to see from the verification

of the first equality in (3.18) below that this additional information is preserved by the inductive
step as well.

It remains to verify the two identities in (3.18). Let
P Vit
Top-1: Mgy — My and
— t J—
Torot MYy — Mi .y, e€{p }Uf(p)

be the projection maps. By the construction of the line bundles E, in Subsection 2.1,

E,=m, 1E, + /\/l and (3.22)
EP+ = _E + Z 7Tp+ Ml .0 = 7Tp+ _E + Z 7Tp+ Ml ) (323)
o€f~t(p) o€ f~1(p)

where

Mip pp 1(M ) C mi(lvj,{j*}) and Ml ,0 C 7TQ o— 1(M )

are the exceptional divisors for the blowups at the steps p and p. Since all divisors 7r;+1 Q(Mig)
are distinct,

Z 7Tp+’g ,,g = 7Tp+7p ( U Mp,g) = pll (fpill(ﬂfgl))
ocf1 ocf~1(p) (3.24)
_ 1 —1 /77 Yavi
=1 r Tp.p— 1(Mp )_f 1(/\/1/1)47):fp (Mi),p)'

The second equality in (3.18) follows from the same equality with p replaced by p—1, along with
(3.22)-(3.24).

Suppose next that p* > p. Since
Tp,p—1 © f,O = fpfl o 7Tp+,p_7
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P -, N L
./\/lf is the proper transform of M’f’ pi, and ./\/li o+ 18 the proper transform of ./\/lll)’ 0%

P
- — _t+
ffjl(Mll),p*) 2 U Mi@*

o*ef=1(p*)

by the first equation in (3.18) with p replaced by p—1. We will next verify the opposite inclusion.

Suppose
q€ﬂ€p*7 ﬁefp_l(Q)) and

p ="y () € £, (M7, ): M7 *ch(”)
o*ef~1(p*)

If mp0-1(q) & ﬂ’f;l, qand f 1(q) lie away from the blowup loci for the blowups

M M 4 M, M
lv(I’J_{j*}) - lv(I’J_{j*}) an 1’(17‘]) - 1’(17‘])'
Therefore,
fgl(Q) = fp__ll (Wp,p—l(Q)) =pEc U mll);)* - U mll);) C U Ml ,0%)
o*€f~1(p*) ocf=1(p) o*€f~1(p*)

as needed. If o
ﬂ-P,P—l( ) M(pp *) = '/\/lﬁlj7 Mlp )

we will consider separately the same four cases for p as in the proof of the first statement of
Lemma 3.5 above; see page 19.

Case 1: Since m’f;l and M’f; intersect properly in M‘f‘(} J—{j*}), We can choose local coordinates
(z,v,t) near p as before such that for some K, C K

(v )Mlp*ﬂU {(z,0)€U: zEM(pp) veCre}.
This assumption implies that

MY, OMY 0V = {(2,0;0)€V: z€ M, ;*); teP(Ckr)]. (3.25)

In addition, by (iv) on page 21 and the structure of f,_1,

Uﬂ’f;*ﬁ[j:fp_jl(ﬂ )ﬁU {ZUtEU ZEM(pp); UE(CKP*}'
o*ef~1(p*)

Since ﬂf:ok(j*) and ﬂ’f;* intersect properly, it follows that

Uﬂ *ﬂMlpk( )ﬁV {ZO,t,f)EV ZGM(pp) EE]P)((CKF’*)}.
o*€f~1(p*)
Using (3.19), we conclude that
- -1, -— ~
pe {fp‘f/} (Mi),p*me,p) = U M o* ﬂMl e Vs
o*€f~1(p*)
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as needed.
Case 2a: The argument is exactly the same as in Case 1, but with replaced pg(j*) by p*.

Case 2b: We can again choose K« C K so that (v) is satisfied. With notation as in the construction
of the map f, in this case,

—pt—1 & ~ —p—1 .
U Mﬁl},@* NV = {(z,v,t;f’)eV: ze./\/lfpw*); ¢ eP(CXr XC)};

o*ef~1(p*)
U ﬂﬁ):l NV = {(z,u,t)EV’: zeﬂf;;*); ue CHer };
o ef~1(p*)
U /Vl o* ﬂwp+ (MPMO )) AW = {(z,u,O;K)EW: ZEM@;;*); EGIP’((CKp*)}

e*ef~1(p*)
U{(2,0,0;)eW: ze M, uy; £ €P(CKr xC) }.
Using (3.20) and (3.25), we conclude that

pe{fp ))ﬂW.

1,p:(5*

1 —_— JEE—
g )ﬂw} (MF My = M o0 (MY,
e o*ef=1(p*)

Note that the map fp\ __is a P'-fibration, while the map foli7 of the previous para-

+ —(Mfljﬂ (* ))OW
graph is a C-fibration.

Case 3: With notation as in the corresponding case in the construction of the map f, and with
a good choice of local coordinates, we have two subcases to consider. There exists K ,» C K —{k}
such that

Case 3a: Mlp*ﬁU { w)eU: zEM(pp);veCKp*};
Case 3b: /\/tlp*ﬂU {(z,v,w)€eU: ze/\/l(pp) UECKP*,w:O}.

Case 3a: In this case,

ﬂip* ﬂ./\/l ,NV = {(2,0,0;0)eV: ze./\/l(pp) EG]P’((CKP*XC)} and (3.26)

——p _ ~ —0p—1 «
U Ml,g* nNU = fpfl(Ml,p*) NU = { (z,v,wg,wy)€U: ZGprW*); veCko }
o*ef=1(p*)
It follows that

- t_ ~ ~ —_—
U Mll),g* "Ny = {(z,v,wk,er;&g)EV: ZGpr;*); ), € P(CEe XC)};

o e (p")
- t_ -~ N .
U MT,Q* 1 ﬂ V/ = {(Z) u) Uk,er)EV/: ZGM?p’;*); UECKF’*};
o e (p")

UM1Q*H7TP+ _(MperﬁMlpk( ))ﬂW {ZUOOE)EW ZGM(pp) KE]P’((CKP*X(C)}
o*ef~1(p*)

U{(2,0,0,0;0,) €W : 2z M, u); £, €P(CKer xC) }.
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Thus, by (3.21) and (3.26),

~ LgP  ~ TP
p E{f‘p|ﬂ_p71 (MP +mM1p G ))ﬂW} (Ml,p*mMLp)
— (3.27)
- UM *ﬂﬂer ,(M p+ﬂ/\/llpk(] ))ﬂW
e*ef~1(p*)
Case 3b: In this case,
_ J— J— 71 «
M{ oMY,V = {(2,0,0;0)€V: 2 M{, puy; LEP(CF x0)}  and (3.28)
U m’f;* NU = fp__l1 (ﬂﬁf;i) nNU =2 uz?, where

o*ef~1(p*)
Zg = {(z,v,wk,w+)€0: zeﬂfl;;*); veCle, we=0}, ® =k, +.

We denote by 2,~'£+71 and Z;ijfl the p_roperﬂicransforms of Z{' and Z? in V and by Z;,’;’Jr and ZN’f
the proper transforms of Z{ and Z¢ in W. Then,
Z~’p+71 = { (z,v,0,wy; ;) € ev: zeﬂf);;*); Oy, E]P’((CKP* XC)};
Z’O+ Thy' = { z,u, 0, w+)€V zEM(pp )3 uG(CKP*};
5 K
Z,f nmy ,(./\/l p+ﬂ./\/ll e )) = {(z,u,0,0;E)GW: ze/\/l(w,*); EEIP)((C P XO)}
— 1 )
U{(2,0,0,0;,) €W : 2 MY, ,oy; L €P(CHr xC)}.  (3.29)
Similarly,
éf_l = {(z,v Wi, 0;0,) €V zeﬂf;;*); 0, e P(CHer x0)}; éf_l NV =0;
~ —~ — -1 .
2 nr e (MY S OMY o) = {(2,0,0,0:) €W : 2€ MY, y; L €P(CF* x0)}. (3.30)
Since
— ot st 1
U/Vl o0 (M e MY o) OW = (22 020 ) N 2t (M MY, )
o*ef~1(p*)

we conclude from (3.21) and (3.28)-(3.30) that (3.27) holds in this case as well.
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