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Abstract

We show that certain naturally arising cones over the main component of a moduli space of
Jo-holomorphic maps into P™ have a well-defined euler class. We also prove that this is the case
if the standard complex structure Jy on P” is replaced by a nearby almost complex structure J.
The genus-zero analogue of the cone considered in this paper is a vector bundle. The genus-zero
Gromov-Witten invariant of a projective complete intersection can be viewed as the euler class
of such a vector bundle. As shown in a separate paper, this is also the case for the “genus-
one part” of the genus-one GW-invariant. The remaining part is a multiple of the genus-zero
GWe-invariant.
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1 Introduction

1.1 Motivation

The GW-invariants of symplectic manifolds have been an area of much research in the past decade.
These invariants are however often hard to compute.

If Y is a compact Kahler submanifold of the complex projective space P™, one could try to compute
the GW-invariants of Y by relating them to the GW-invariants of P™. For example, suppose Y is
a hypersurface in P" of degree a. In other words, if ¥ — P" is the tautological line bundle! and
L=~*@% _P" then

Y = s710),

for some s € HO(P"; £) such that s is transverse to the zero set. If Jy is the standard complex
structure on P* and g, k, and d are nonnegative integers, denote by M, x(P", d) and M, x(Y, d)
the moduli spaces of stable Jy-holomorphic degree-d maps from genus-g Riemann surfaces with
k marked points to P™ and Y, respectively. These moduli spaces determine the genus-g degree-d
GW-invariants of P" and Y.

By definition, the moduli space 9, (Y, d) is a subset of the moduli space M, (P, d). In fact,
My x(Y,d) = {[C,u] €My 1 (P",d): sou=0€ H(C;u*L)}. (1.1)

Here [C, u] denotes the equivalence class of the holomorphic map u: C — P" from a genus-g curve C
with & marked points. The relationship (1.1) can be restated more globally as follows. Suppose U
is the universal curve over M, ,(P", d), with structure map 7 and evaluation map ev:

ev

U

|

M, (P, d).

]P)’n

In other words, the fiber of 7 over [C,u] is the curve C with k& marked points, while
ev([C,u;2]) = u(z) if 2€C.?
We define a section s of the sheaf m.ev*€— M, ,(P", d) by
s([C,u]) = [sou].

By (1.1), 9, (Y, d) is the zero set of this section.

The previous paragraph suggests that it should be possible to relate the genus-g degree-d GW-
invariants of the hypersurface Y to the moduli space M, 1 (P", d) in general and to the sheaf

mev e — M, 1 (P", d)

the line bundle corresponding to the locally free sheaf Opn (—1)
2U can be viewed as M, 1+1(P", d), in which case ev is the evaluation map evg,; at the last marked point



in particular. In fact, it can be shown that
GWE i (ds ) = (¥, (Do (Y, d)]"™") = (- e(maev* L), [Mo 1 (P", d)] ) (1.2)
for all wEH*(ﬁo,k(]P’”, d); Q). The moduli space ﬁo,k(]}’m, d) is a smooth orbifold® and
meev L — Mo 1 (P", d) (1.3)
is a locally free sheaf, i.e. a vector bundle.* Furthermore,
dimc Mg x(P",d) = d(n+1) + (n—3) + k, rke meev L = da + 1,
and  dim¥" My x(Y,d) = d(n+1—a) + (n—1 —3) + k.

Thus, the right-hand side of (1.2) is well-defined and vanishes for dimensional reasons precisely
when the left-hand side of (1.2) does. In other cases, the right-hand side of (1.2) can be computed
via the classical localization theorem of [AB], though the complexity of this computation increases
rapidly with the degree d.

If g > 0, the sheaf m,ev*L — ﬁgk(]?”,d) is not locally free and does not define an euler class.
Thus, the right-hand side of (1.2) does not even make sense if 0 is replaced by g > 0. Instead one
might try to generalize (1.2) as

GWY L (d59) = (4, [y (Y, d)] ")

? 0 1 r——s vir (14)
= <1/) . e(R meev e — R W*ev*ﬁ), [Smg,k(IP’”,d)] >,

where Rim.ev*€— 9, 1 (P",d) is the ith direct image sheaf. The right-hand side of (1.4) can be
computed via the virtual localization theorem of [GP1]. However,

Ni(d)=GWYo(d; 1) # (e(ROmev* £~ Rimev*e), [ (P, d)] "),
according to a low-degree check of [GP2] and [K] for the quintic threefold Y CP4.

It turns out that a g=1 analogue of the role played by the euler class of sheaf (1.3) is played by
the euler class of the sheaf Y
meev £ — My, (P", d), (1.5)

where ﬁ?k(ﬂ””,d) is the primary, algebraically irreducible, component of M x(P", d). In other

words, ﬁ?k(]}’m,d) is the closure in My (P",d), either in the Zariski or stable-map topology®, of
the subspace o
M (P, d) = {[C,u] €My x(P",d): C is smooth }.

One of the results of this paper is that the euler class of the sheaf (1.5) is in fact well-defined.

31t is a smooth algebraic stack by [FIP].

4Strictly speaking, Teev* & — Mo, (P™, d) is the orbi-sheaf of holomorphic multisections of a vector orbi-bundle.
We occasionally drop “orbi” to streamline the presentation. The reader is referred to Sections 2-4 for a detailed
discussion of the orbifold category.

Salso known as Gromov’s convergence topology



Theorem 1.1 Ifn, d, and a are positive integers, k is a nonnegative integer, £=~*®* —P",
m il — ﬁ?ﬁk(]?”, d)
1s the universal curve, and
ev: 4 — P

1s the natural evaluation map, the sheaf
Teev L — ﬁ?k(ﬂ”", d)
determines a homology class and a cohomology class on ﬁ?k(]?”, d):

* 50 n
PDﬁ??k(Pmd) (e(meev* L)) € Ho(atns1—ay+k) (M 1 (P", d); Q)

and e(meev L) € HQda(ﬁ?7k(]P’n, d)?@)'

Remark 1: If aq,...,a, €ZT and

£ =®ug,  @y®m — P
then the sheaf m.ev*£ is the direct sum of the sheaves corresponding to the line bundles y*®%.
Thus, Theorem 1.1 applies to any split vector bundle over P”.

Remark 2: The moduli space ﬁ%k(]}m,d) is an orbivariety, which not smooth if d >3 and n > 1.

Thus, the Poincare dual of a cohomology element on ﬁ? (P™, d) may not exist. As explained in the
next subsection, we will define a homology element, which will be called PDggzo (En.d) (e(ﬂ*ev*ﬂ)),
1,k ’

first and then use it to construct a cohomology element, which we call e(m,ev*£).

Remark 3: In the genus-zero case, the space of maps from smooth domains is dense in the entire
moduli space (i.e. the domain of a generic element of Mg x(P"?,d) is P1). Thus, if ﬁgk(]}’m,d) is
defined analogously to ﬁ?k(]?”, d), then

—0 — n
M (P, d) = Mo (P", d)

and the equality (1.2) remains valid if we replace Mg (P, d) with ng(P”, d). By Theorem (1.1),

the analogue of the right-hand side of (1.2) makes sense in the genus-one case for ﬁg’k(ﬂ””, d), but
not for o .,
ml,k(an d) 2 ml,k(an d)

This paper is continued in [LZ1] to show that the resulting right-hand side computes the reduced
genus-one invariants of Y defined in [Z6]. Since these invariants differ from the standard genus-one
invariants by a combination of genus-zero invariants, Theorem 1.1 of [LZ1] and Theorem 1.1 above,
along with the original equation and [AB], open a way for computing the (standard) Gromov-
Witten invariants of complete intersections.
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Figure 1: Connections between Papers

One way to view the statement of Theorem 1.1 is that the sheaf (1.5) admits a desingularization,
and the euler class of every desingularization of (1.5) is the same, in the appropriate sense. This is
not the point of view taken in this paper. However, one approach to computing the number

(,PDgy 5 o (e(meev'£))) = (- e(mev™e), [ 1 (P",d)]) (1.6)

k

for a natural cohomology class 1€ H*(90; x(P", d); Q) is to apply the localization theorem of [AB]
to a desingularization of (1.5). In [VZ1] (outlined in [VZ2]), we construct a desingularization of

the space ﬁ?k(ﬂ””, d), i.e. a smooth orbivariety ﬁ%k(ﬂ””, d) and a map
7 0 (P, d) — DNy 4 (P", d),

which is biholomorphic onto 932(1)7 x(P",d). This desingularization of ﬁ? i (P™, d) comes with a desin-
gularization of the sheaf (1.5), i.e. a vector bundle

Vi — ﬁ?,k(]?n, d) st 7V =mevL.
In particular,
(¢ - e(meev* L), [ (P, d)]) = (7*¢ - e(Vi,), [ (B, d)]). (1.7)

Since a group action on P" induces actions on ﬁ%k(]}m,d) and on f/ﬁk,, the localization theorem
of [AB] is directly applicable to the right-hand side of (1.7), for a natural cohomology class .

Before the results of [LZ1] were announced, no positive-genus analogue of (1.2) had been even con-
jectured. On the other hand, Theorem 1.1 suggests a natural genus-one analogue of (1.2), which
is proved in [LZ1], and a conjectural extension of (1.2) to higher genera, which is stated in [LZ1].

Theorem 1.1 is the J =Jj case of Theorem 1.2, which is stated in Subsection 1.3. In the next subsec-
tion, we describe the main topological arguments that lie behind the proof of Theorems 1.1 and 1.2.

Remark: This paper is part of a series that studies limiting properties of pseudoholomorphic maps
from genus-one Riemann surfaces and their applications in the Gromov-Witten theory and enu-
merative geometry. The primary relations between the papers in the series so far are illustrated in
Figure 1.

The author would like to thank Jun Li and Ravi Vakil for many enlightening conversations and
the referees for comments on the original version of the paper.



1.2 General Approach

In this paper we approach Theorem 1.1 from the point of view of differential topology, rather than
of algebraic geometry. As a motivation, we recall the following standard fact. Suppose M is a
compact oriented manifold of dimension m and V — 901 is a complex vector bundle of rank k. If
¢ is a smooth section of M which is transverse to the zero set, then ©~1(0) is a smooth oriented
submanifold of 9 and the homology class it determines in M is Poincare dual to the euler class
of V:
-1 _ -
[0 (0)] = PDgg(e(V)) € Hygi (W Z). (18)

In the orbifold category, this identity holds with rational coefficients for any transverse multisec-

tion .9 We will define PDgzo (Bn.d) (e(mrev*L)) by using equation (1.8) in the opposite direction.
1,k ’

There are two complications here. First, ﬁ?,k(]}’m, d) is not a smooth manifold. However, it is strat-
ified by smooth oriented orbifolds of even dimensions; see Subsection 2.3. For such spaces, pseu-
docycles provide a convenient replacement for the usual singular homology.” An m-pseudocycle

fi M — D ((P",d)

is a continuous map from a compact topological space M which is stratified by smooth orbifolds
such that

(PS1) the main stratum M of M is an oriented orbifold of real dimension m,

(PS2) the complement of M in M is a union of orbifolds of real dimension of at most m—2,
and

(PS3) the restriction of f to each stratum of M is smooth.

In particular, every stratum of M is mapped into a stratum of ﬁ?’k (P™,d). Each m-pseudocycle
determines an mth homology class and vice versa.®

The second complication concerns the sheaf (1.5). It is not locally free if d > 3 and does not

correspond to a vector bundle over W?k(ﬂ””,d). Instead it is the orbi-sheaf of sections of the
(orbi-)cone

V=0 (8, d) — D (P d),  w([C,€]) =poc, (1.9)

where p: £ —P" is the bundle projection map. Every fiber of 7 is a vector space, up to a quotient
by a finite group, and the vector space operations are continuous. More precisely,

Vikle=7""([C,ul) = H(C;u" ) /Aut(C, u).

The fibers of m do not have constant rank. The restriction of Vf  to the dense open subspace

ﬁﬁﬁg(ﬂ””,d) of ﬁ?’k(]?”,d) consisting of stable maps u that are effective (not constant) on the

5Our notion of multisection agrees with the one commonly used in symplectic topology and corresponds to the
notion of locally liftable multisection of Section 3 in [FkO].

"See the beginning of Chapter 7 in [MS] for an overview of pseudocycle constructions in the basic manifold case
and [Z7] for a more thorough treatment.

8In [Z7] this statement is proved for smooth manifolds. However, the proof goes through for any space 9% as
long as the conclusion of Proposition 2.2 in [Z7] remains valid, i.e. the image of every smooth map from a smooth
m-manifold has an arbitrarily small neighborhood U with H;(U) =0 for all [ > k. Lemmas 2.3 and 2.4 imply that

ﬁ?, »(P™, d) satisfies this property.



principal (genus-carrying) component(s) of the domain of u is indeed a vector bundle and of the
expected rank, i.e. da; see Lemma 3.2. However, the rank of Vf’k jumps to da+1 over

My (P, d) — 0T (", d);
see Subsection 3.3.

While the cone (1.9) is not a vector bundle, it turns out to be not too degenerate. In particular,
we will show that it admits a continuous multisection ¢ such that
. . d
(V1) 80|mt?,kapm7d) is smooth and transverse to the zero set in Vl’kbn(l)’k(Pn’d), and

(V2) the intersection of ¢ ~1(0) with a boundary stratum of ﬁ?’k(ﬂ””, d) is a smooth suborbifold
of the stratum of real dimension of at most 2(d(n+1—a)+k)—2.
These two properties imply that ¢ ~1(0) is a pseudocycle in ﬁ(l)’k (P™,d) under the inclusion map
and thus determines an element

_ —0 .
[0 1 (0)] € Hagpns1—a) 2k (M 1 (P, d); Q).

We will also show that for any two continuous sections ¢q and ¢ of (1.9) satisfying (V1) and (V2),
there exists a continuous homotopy

D [0, 1] Xﬁ(l]’k(]?n, Cl) — Vii,k

such that (I)|{t}x§t‘f =y for t=0,1,

,k(Pn7d)
vr) @011 om0 , (Bn,a) 15 smooth and transverse to the zero set in [0,1] XVﬁk‘mt? L (Bn.d)» and
(V2') the intersection of ®~1(0) with a stratum of [0, 1] xﬁ?’k(]}’m, d) is a smooth suborbifold

of the stratum of real dimension of at most 2(d(n+1—a)+k)—1.
The existence of such a homotopy is called implies that

(25 (0)] = [7(0)] € Hagan1-ay+y (M3 1, (P, d); Q).2

We call this homology class the Poincare dual of the euler class of the cone (1.9) and of the
sheaf (1.5).

If X € Hoga (O 1 (P", d); Q), let
fx: My — 900, ,(P", d)
be a pseudocycle representing X. If ¢ is a section of (1.9) satisfying (V1) and (V2), we can also
require that
(pX1) fx(Mx)N~(0) € MY (P, d), fx' (971(0) € MY;
(pX2) fX\M% intersects o~ (0) transversally in im(ik(]?”,d).

These assumptions imply that ¢ =1 (0)Nfx (M%) is a compact oriented zero-dimensional suborbifold
of im(l)’k,(IP’”, d). We then set

<e(7r*ev*£),X> = i|g0_1(0)ﬁfX(M9()‘, (1.10)

9The projection map ®~*(0) —>ﬁ?,k(]}‘m, d) is a pseudocycle equivalence from g *(0) to ¢ *(0).



where | Z| denotes the cardinality of a compact oriented zero-dimensional orbifold Z, i.e. the num-
ber of elements in the finite set Z counted with the appropriate multiplicities.

If fxo: Mx, —>ﬁ(1)7k(]Pm, d) and fx1: Mx, —>ﬁ(1)7k(]Pm, d) are two pseudocycles satisfying (pX1)
and (¢ X2), we can choose a pseudocycle equivalence
F:M— ﬁgk(ﬂ)n,d)

between fx o alad fx,1 such that 3

(eX1') F(M)Ne~'(0) C M (P, d), F~ (7 1(0)) € M°;

(9X?2') F|y0 intersects ¢ !(0) transversally in MY, (P", d).
These two assumptions imply that o1 (0)NF(M?) is a compact oriented one-dimensional suborb-
ifold of MM , (P", d) and

A O)NE(M®)) = ¢ 1 (O)Nfx1 (MK 1) — o~ (0)Nfx0(MZ o)
= i!@ H0)N fx,0 MXO | = i‘SD ! ﬂle(MXl)‘

Thus, the number in (1.10) is independent of the choice of pseudocycle representative fx for X
satisfying (¢X1) and (¢X2).

Similarly, if ¢g and @1 are two multisections satisfying (V1) and (V2), let ® be a homotopy between
o and ¢ satisfying (V1) and (V2'). We can then choose a pseudocycle representative

fx: Mx — 9y (P, d)

for X such that

(@X1) fx(Mx)N@~'(0) M) (P",d), f'(271(0)) C MY

(PX2) fX‘Mg( intersects ®~1(0) transversally in 9.7(17 (P, d),
and fx satisfies (pX2) with ¢ =¢( and ¢ =¢;. These assumptions imply that ®~1(0)N fx (M%)
is a compact oriented one-dimensional suborbifold of zmg{k (P™,d) and

D(®0)N7x (M) = o7 (O)N (M) — o5 (O)n (M)
- Heo HONfx(MR)| = Her 1 (0)N fx(ME))].
Thus, the number in (1.10) is independent of the choice of section ¢ satisfying (V1) and (V2). We
conclude that (1.10) defines an element of
0 —0
Hom (Haqo (M, 1, (P", d); Q); Q) = H** (M, 1 (P", d); Q).

We call this cohomology class the euler class of the cone (1.9) and of the sheaf (1.5).
We note that the existence of a continuous section ¢ of (1.9) satisfying (V1) and (V2) implies that

the euler class of every desingularization of (1.9), or of (1.5), is the same, in the appropriate sense,
for the following reason. If

(1.11)




is a desingularization of the cone (1.9), or of the sheaf (1.5), the section ¢ induces a section @ of
the vector bundle 3 .

Vfl,k - m(l),k( ", d)
such that ¢ =¢ on sm?,k(ﬂm, d) and @_1(0)—931(1)’k(]P’”, d) is a finite union of smooth orbifolds of

real dimension of at most 2(d(n+1—a)+k)—2. Suppose X € Hgda(ﬁgk(]}m,d); Q) is represented
by a pseudocycle
—0
fx: My — 30, (", d),

and

Wx =PD—o X etk @) (P, d); Q)

My i (P™,d)
= Hom (Hy(g(n+1-a)+k) (M 1 (P", d); Q); Q)

is the Poincare dual of X, i.e. the element constructed by intersecting 2(d(n+1—a)+ k)-
pseudocycles with fx(Myx). The Poincare dual of the cohomology class 7#*¢x in Sm(ik(]?”,d)
can then be represented by a pseudocycle
fy: Mg — M0 (PYd) st
My C My, fg(Mg—=My) C 7" (fx(Mx—My)),
_0 —_—
and  fx| 0 =/x|yg s Mx — D0 (P, d) C I, (P", d), MY 4 (P, d).
Our assumptions on ¢ and fx then imply that all intersections of fg(My) with ¢~1(0) are con-
tained in fg(M%)NIMY, (P",d), are transverse, and correspond to the intersections of fx(Mxy)
with ¢ ~1(0). Thus,
(T - e(VEy), [ (P, d)]) = H@~ (00N f5 (M)

1.12
= e )N fx(Mx)|. 12

In particular, the left-hand side of (1.12) depends only on the homology class X used in construct-
ing the cohomology class 1 x and is independent of the desingularization (1.11).

The above argument also shows that if the cone (1.9) admits a multisection ¢ satisfying (V1)
and (V2) and admits a desingularization as in (1.11), then the number

(eWVip), X) = (7*Yx - e(VEy), [, (B, d)])

is well-defined for every homology class X on ﬁ?k(P”,d). Thus, the euler class e(Vﬁk) of the
cone (1.9) and the sheaf (1.5) is also well-defined. In particular, the existence of homotopies
satisfying (V1’) and (V2') is not absolutely necessary for showing that the euler class of (1.9) is
well-defined.

The construction of a section ¢ satisfying (V1) and (V2) is the subject of Section 3. Since

Vi) — mi (P, d)



is a vector bundle, it is simple to construct a section ¢ over imeff w(P", d) that satisfies (V1) and (V2)

for the strata of E)JTM(IP’”, d) that are contained in smeff w(P",d). Thus, the key is to show that such
a section can be constructed over a neighborhood of

a0 n € n
M, 5, (P, d) — M, (P", d).

In order to do this, we have to describe the structure of the cone ka on a neighborhood of each

stratum U (P"; Jy) contained in the complement of imeff (P, d). For each such stratum U7 (P"™; Jy),
there is a vector subbundle (not a cone)

Vidir — U (" Jo)
spanned by the sections of V‘f’k over ﬁ?’k(ﬂ””, d), i.e
1”_ {s(b): beUF (P"; Jy); sGF(imlk(]P’” ); Vi) 310

The subbundles ijz?T of Vﬁ ;. are described explicitly by Lemma 3.4. It turns out that the corank
of ij,z?j— is sufficiently small relatively to the codimension of U7 (P™; Jy) so that a generic section
of ijz?T satisfies (V2); see (3.3). By Proposition 3.3, the bundles ijz?T over the various strata
UF (P™; Jo) match up sufficiently well so that one can build a section of Vﬁk over ﬁ?k(]?”, d) by

extending generic sections of Vf ;ITT over U (P™; Jp) starting from lowest strata. This construction
is carried out in Subsection 3.1.

In the next subsection we give a more analytic description of the cone Vﬁ . and extend Theorem 1.1
to deformations of the standard complex structure Jy on P". We introduce the notation needed to
describe the strata U7 (P"; Jy) and the bundles Vf o accurately in Subsections 2.1 and 2.2. As

ﬁ?’k(ﬂ””, d) and Vﬁk are singular along U} (P"™; Jy), this notation is unfortunately rather involved.

The structure of ﬁ? x(P", d), including the strata U7 (P"; Jy) and their neighborhoods, is described
in Subsection 2.3. The structure of V¢ '), along the strata of imeff w(P", d) and the strata U7 (P"; Jy) is
described in Subsections 3.2 and 3.4, respectlvely The technlcal portion of the analysis needed to
justify parts of Proposition 3.3 and Lemma 3.4 has been relegated to Section 4. The construction
in Section 4 is the lifting of the gluing construction of Section 6 in [Z5] for stable maps into P” to
bundle sections, i.e. maps into £. To a certain extent, it can be viewed as the construction of [Z5]
applied to the complex manifold £. However, some care has to be exercised so that the lifting of
the gluing procedure for maps into P" to maps into £ is C-linear on the fibers.

1.3 Main Theorem

While the standard complex structure Jg on P is ideal for many purposes, such as computing
obstruction bundles in the Gromov-Witten theory and applying the localization theorems of [AB]
and [GP1], it is sometimes more convenient to work with an almost complex structure J on P"

10T Sections 3 and 4, Vl ;nT denotes an extension the bundle just defined to a neighborhood of V1 T

10



obtained by perturbing Jy.!! For this reason, we generalize Theorem 1.1 to almost complex struc-
tures J that are close to Jy.

We denote by X, 1(P",d) the space of equivalence classes of stable degree-d smooth maps from
genus-¢g Riemann surfaces with £ marked points to P". Let 1{27k(]P’”, d) be the subset of X, ,(IP",d)
consisting of stable maps with smooth domains. The spaces X, (P",d) are topologized using
L-convergence on compact subsets of smooth points of the domain and certain convergence re-
quirements near the nodes; see Section 3 in [LT] for more details. Here and throughout the rest of
the paper, p denotes a real number greater than two. The spaces X, (P, d) are stratified by the
smooth infinite-dimensional orbifolds X7 (P™) of stable maps from domains of the same geometric
type and with the same degree distribution between the components. The closure of the main
stratum, %g’k(P”,d), is X4 (P", d).

Using modified Sobolev norms, [LT] also defines a cone I'y ,(TP",d) — X, 1 (P", d) such that the
fiber of I'y 1 (TP", d) over a point [b]=[X, j;u] in X4, (P",d) is the Banach space
Ly (TP", d)|b =D (b; TP") /Aut(b), where L(b;TP") = LY (35w TP™).

The topology on I'y ,(TP",d) is defined similarly to the convergence topology on X, ,(P",d). If
£ is the line bundle v*®* — P", let T'y 1 (£, d) — X, 5 (P™, d) be the cone such that the fiber of
Iy x(L,d) over [b]=[%, j;u] in X, 1(P",d) is the Banach space

Fg,k(ﬂ,d)‘b =T'(b; £)/Aut(b), where L'(b; L) = LY(Z;u*L),
and the topology on I'y (£, d) is defined analogously to the topology on I 1. (P", d).

Let V denote the hermitian connection in the line bundle £ — P™ induced from the standard
connection on the tautological line bundle over P". If (X, j) is a Riemann surface and u: ¥ —P"
is a smooth map, let

VYT (S50 L) — T(3 TS ou*L)

be the pull-back of V by u. If b=(%, j;u), we define the corresponding J-operator by

Ovp: T(S;uL) — T (DAY T S@us), dvps = 5 (VU +iViEo ), (1.13)

DN | =

where i is the complex multiplication in the bundle v*£ and
A?jT*Z@u*ﬂ = {neHom(TE,u*L): noj = —in}.

The kernel of év,b is necessarily a finite-dimensional complex vector space. If u: ¥ — P" is a
(Jo, 7)-holomorphic map, then )
ker Oy p = HO((E,j); u*,ﬁ)

is the space of holomorphic sections of the line bundle u*£— (%, j). Let

V;l,k = {[b, {] S Fg7k(£, d) : [b] E%ng(Pn, d), §eker 5V,b C Fng(b; S)} C Fg7k(£, d)

A perturbed almost complex structure may possess certain regularity properties that Jo does not have; see [LZ2],
for example.
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The cone V;{k — X, x(P", d) inherits its topology from I, (£, d).

If J is an almost complex structure on P”, let ﬁ%k(ﬂm, d; J) denote the moduli spaces of stable
J-holomorphic degree-d maps from genus-g Riemann surfaces with £ marked points to P™. Let

93?27,€(]P’",d; J) = {[C,u] €M, ,(P",d; J): C is smooth}.

We denote by ﬁ(ik (P™,d; J) the closed subset of M, x(P",d; J) containing zm‘f,k (P™, d; J) defined in
Subsection 1.2 of [Z5]. If J is sufficiently close to Jo, ﬁ?k(]?”, d; J) is the closure of Sm%k(]Pm, d;J)

in ﬁl,k(]P’”,fl; J).12 We describe the structure of ﬁ?k(]}m,d; J) in this case in Lemma 2.4 below.
Finally, let Z" denote the set of nonnegative integers.

Remark: The spaces X, considered in [LT] consist of L¥-maps. In our case, it is sufficient to
restrict to the subspace consisting of smooth maps (which we call X, ;(P",d)) as the base of the
bundle I'y (£, d). However, for the purposes of the analysis of Section 4, we have to consider
LY-spaces of bundle sections of £ as the fibers of T (£, d). On the other hand, the entire infinite-
dimensional setting for the base is not necessary for the purposes of this paper and is introduced
primarily for convenience, while the topology on the total space of I'y (£, d) defined in [LT] is
not necessary for the statement of Theorem 1.2, Propositions 3.1 or 3.3, or Lemmas 3.2 or 3.4.

The only bases we work with are ﬁ?k(]}’m, d; J) and ﬁ?,k (P™,d; J), where J is an almost complex
structure close to Jy and J is a smooth one-dimensional family of such structures. Furthermore,
in the topology of [LT], the cone

Vi, — ﬁ(l),k;(]?nu d; J)
is simply the preimage of ﬁ?k(ﬂ””, d; J) under the projection map
My (L,d; J) — TP d; ), [C.a] — [C,m o),
where 7: £ —P" is the bundle projection map and J is the lift of J to £ via the connection V.

Theorem 1.2 Ifn,d,a€Z" and k€ Z™*, there exists 5,(d,a) €RT with the following property. If
J 1s an almost complex structure on P™ such that

HJ_JOHC’1 < 5n(d7 a),
the moduli space ﬁ(l)’k(]?”, d; J) carries a fundamental class
—0 n <0 n
(900, 1.(P",d; J)] € Hogamna1)+k) (M 1 (P",d; J); Q).

Furthermore, the cone ka — X1 (P, d) corresponding to the line bundle £=~*®*—P" deter-

mines a homology class and a cohomology class on ﬁ?’k(ﬂm, d; J):

PDﬁg’k(Pn,d;J) (e(Vfl,k)) € Hyam+1—a)+k) (M 1 (P", d; J); Q)

and (Vi) € HX @) (P, d; J); Q).

2Gince in this paper we work only with almost complex structures J sufliciently close to Jo, ﬁ?, & (P™, d; J) can be
taken to be the closure of MY , (P, d; J) in M1 x(P",d; J) by definition.
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Finally, if W— X1 1(P",d) is a vector orbi-bundle such that the restriction of W to each stratum
X7 (P") of X1 1(P") is smooth, then

(eW) - e(Vip), [ﬁg,k(ﬂmad; D)) = (eW) - e(V{p), [ﬁ?,k;(ﬂpn»d)] )- (1.14)

Remark: This theorem remains valid if the compact Kahler manifold (P",wy, Jy), positive inte-
ger d, the holomorphic line bundle £=~*®% — P and the connection V in £ are replaced by a
compact almost Kahler manifold (X,w, Jp), a homology class A € Ho(X;Z), and a split positive
vector bundle with connection (£,V) — X such that the almost complex structure Jy on X is
genus-one A-regular in the sense of Definition 1.4 in [Z5].

It is well-known that the standard complex structure is genus-one df-regular, where ¢ € Ho(P";7Z)
is the homology class of a line. Thus, if J is an almost complex structure on P™ which is close to Jy,
Corollary 1.5 and Theorem 1.6 in [Z5] imply that ﬁ?’k(]?”, d; J) is the closure of Sm%k(]Pm, d;J) in
ﬁ?’k(ﬂ””, d; J) and is contained in a small neighborhood of ﬁg’k(ﬂ””, d) in X ;(P",d). In addition,
the stratification structure of the moduli space ﬁ?,k(]?”, d;J) is the same as that of ﬁ?k(]}’m, d);

see Lemmas 2.3 and 2.4 below. Thus, ﬁ?“ﬂ””, d; J) carries a rational fundamental class; see the
paragraph at the end of Subsection 2.3 in [Z5].

The two remaining claims of Theorem 1.2 are the subject of Proposition 3.1. The restriction of the
cone Vﬁk to m(fk(w, d; J) is a complex vector bundle of the expected rank, i.e. da. The cone Vﬁk

admits a multisection ¢ that satisfies the analogues of (V1) and (V2) for ﬁ?k(P”, d;J). As in the
previous subsection, the zero set of this section determines a homology class in real codimension
2da and a cohomology class of real dimension 2da. On the other hand, if J=(J¢);g[o,1] is a smooth
family of almost complex structures on P" such that J; is close to Jy for all ¢ €[0,1], the moduli
space
My (B ds J) = | ) D (BT, ds )
t€0,1]

is compact, by Theorem 1.2 in [Z5]. We can construct a multisection ® of the cone Vf i over

ﬁ?’k(ﬂ””,d; J) with properties analogous to (V1) and (V2). If W — X ;(P",d) is a complex
vector bundle of rank d(n+1—a)+k as in Theorem 1.2, we can choose a section F' of W over

ﬁ?’k(]}’m,d; J) such that ®~1(0)NF~1(0) is a compact oriented one-dimensional suborbifold of
Dﬁ(l)k(IP)”,A;i) and

(@ H0)NF~1(0)) = 2~ HO)NFH0)NMY 1 (P, d; J1) — @~ H(0)NF~(0)NMY 1 (P", d; Jo)
— o~ o)nFH0)NMmY (P, d; J1)| = F[@7(0)NF~H(0)nIMm] (P, d)|.

This equality implies (1.14).
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2 Preliminaries

2.1 Notation: Genus-Zero Maps

We now summarize our notation for bubble maps from genus-zero Riemann surfaces with at least
one marked point, for the spaces of such bubble maps that form the standard stratifications of
moduli spaces of stable maps, and for important vector bundles over them. For more details on
the notation described below, the reader is referred to Subsections 2.1 and 2.2 in [Z5].

In general, moduli spaces of stable maps can be stratified by the dual graph. However, in the
present situation, it is more convenient to make use of linearly ordered sets:

Definition 2.1 (1) A finite nonempty partially ordered set I is a linearly ordered set if for
all 11,19, h €1 such that i1,13 <h, either i1 <iy or is<ii.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there exists
0e I such that 0<i for all iel.

If I is a linearly ordered set, let I be the subset of the non-minimal elements of I. For every he I,
denote by ¢j, € I the largest element of I which is smaller than h, i.e. 1 =max {2'6[ : i<h}.

If M is a finite set, a genus-zero P"-valued bubble map with M-marked points is a tuple
b= (M,I;z,(j,y),u),
where [ is a rooted tree, and
r:1—C=8%—{x}, j:M—I y:M—C, and u:l—C>®(S%;P") (2.1)

are maps such that uy,(co)=1u,, (z3) for all he I. We associate such a tuple with Riemann surface

Yp = (|_| Zb,z)/w, where Spi={i}xS? and (h,00) ~ (tn,zp) Vhel,
iel

with marked points,
w®)=0u) €Sy and  yo(b)=(0,00) € 5,
and with the continuous map uy: 3 — X, given by ub|2b,i =u,; for all € 1.
The general structure of genus-zero bubble maps is described by tuples
T =(M,1;j,d),

where d: I — Z is a map specifying the degree of ub\gb,i, if b is a bubble map of type 7. We
call such tuples bubble types. Let Uz (P™;.J) denote the subset of My, (oyunr (P", d; J) consisting of
stable maps [C;u] such that

[C;u] = [(Zs, (0,00), v, yo)ienr); us)
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Figure 2: Some Enhanced Linearly Ordered Sets

for some bubble map b of type 7. We recall that
Uz (P"5.J) = U (P"; ) [ Aut(T) < (51)',

for a certain submanifold Ug] ) (P™; J) of the space H7(P";J) of J-holomorphic maps into P" of
type 7, not of equivalence classes of such maps; see Subsection 2.5 in [Z3]. For (€ {0}UM, let

evy: Ur (P J), UL (P .]) — P"

be the evaluation maps corresponding to the marked point ;.

2.2 Notation: Genus-One Maps

We next set up analogous notation for maps from genus-one Riemann surfaces. In this case, we
also need to specify the structure of the principal component. Thus, we index the strata of the
moduli space M1y (P, d; J) by enhanced linearly ordered sets:

Definition 2.2 An enhanced linearly ordered set is a pair (I,R), where I is a linearly or-
dered set, N is a subset of Igx Iy, and Iy is the subset of minimal elements of I, such that if
‘Io| >1,

N = {(i1,42), (i2,13), - - -, (in—1,n), (in, 1) }

for some bijection i: {1,...,n}— I.

An enhanced linearly ordered set can be represented by an oriented connected graph. In Figure 2,
the dots denote the elements of I. The arrows outside the loop, if there are any, specify the partial
ordering of the linearly ordered set I. In fact, every directed edge outside of the loop connects a
non-minimal element h of I with . Inside of the loop, there is a directed edge from i to s if and
only if (i1,i2) EN.

The subset X of Iy x Iy will be used to describe the structure of the principal curve of the domain
of stable maps in a stratum of the moduli space My ps(P",d; J). If R=(), and thus |Io| =1, the
corresponding principal curve Yy is a smooth torus, with some complex structure. If N (), the
principal components form a circle of spheres:

Sk = ( |_|{z'}><5’2)/~, where  (i1,00) ~ (in,0) if (i1,i2)ER.
i€lp

For example, the principal components Yy described by the three diagrams in Figure 2 are a smooth
torus, a sphere with two points identified, and a circle of spheres (a smooth torus with four disjoint
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circles, that are not null-homotopic, collapsed).

A genus-one P"-valued bubble map with M-marked points is a tuple
b= (M,I,N;S,.%’, (jvy)vu)a

where S is a smooth Riemann surface of genus one if X=() and the circle of spheres Xy otherwise.
The objects x, j, y, u, and (3, up) are as in the genus-zero case above, except the sphere ¥, 5 is

replaced by the genus-one curve ¥jx = S. Furthermore, if ® = (), and thus Iy = {0} is a single-
element set, ug € C°°(S;P"). In the genus-one case, the general structure of bubble maps is encoded

by the tuples of the form
T = (M,I,X;j,d).

Similarly to the genus-zero case, we denote by Uz (P™;.J) the subset of 90y 5/ (P",d; J) consisting
of stable maps [C;u] such that

[C;u) = [(Z, (i, Yi)iem); ws)
for some bubble map b of type 7 as above.
If T=(M,I,X;j,d) is a bubble type as above, let

L ={hel: e}, My = {le M: jj€ Iy}, and
76 - (MOIJI17IO7N;j’MOuL|Il7C_”10)7

where I is the subset of minimal elements of I as before. For each h€ I, we put
I ={iel: h<i}, My ={leM: jiely}, and T, = (Mp,In;jlm,.dl1,)-

The tuple 7y describes bubble maps from genus-one Riemann surfaces with the marked points
indexed by the set MyLl I;. By definition, we have a natural isomorphism

Uz (P J) ~ ({(bo, (bn)ner,) €Uz (B 1) x [ [thz, (B )
hel (2.2)
evo(bp) =ev, (bo) Vhe[1}> /Aut*(T),

where the group Aut*(7) is defined by
Aut™(T) = Aut(7)/{g€Aut(T): g- h=h Yhe I }.

This decomposition is illustrated in Figure 3. In this figure, we represent an entire stratum of
bubble maps by the domain of the stable maps in that stratum. We shade the components of
the domain on which every (or any) stable map in U7 (P"; J) is nonconstant. The right-hand side
of Figure 3 represents the subset of the cartesian product of the three spaces of bubble maps,
corresponding to the three drawings, on which the appropriate evaluation maps agree pairwise, as
indicated by the dotted lines and defined in (2.2).
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h2 hl h3 h4

Figure 3: An Example of the Decomposition (2.2)

Let FT — U7 (P™; J) be the bundle of gluing parameters, or of smoothings at the nodes. This
orbi-bundle has the form

FT = ( @ Lno@Lia @ D Lno®Liy) /Aut(T)
(hyi)en hel

for certain line orbi-bundles Lj g and Ly ;. Similarly to the genus-zero case,

Ur(P*;.J) = U (P ) JAut(T) < (S1)!,  where (2.3)
U (®.7) = { (bo, (bn)ner, ) €Uz (P T xHuT P J): evo(by)=ev,, (bo) Vhe LY. (2.4)
hely

The line bundles Ly o and Ly, ; arise from the quotient (2.3), and

FT = FT/Au(T)x (S, where FT=ARTo@AHT
hel

T — Uy (© (P™; J) is the bundle of smoothings for the |X| nodes of the circle of spheres ¥y and
FnT —U (0)( ;J) is the line bundle of smoothings of the attaching node of the bubble indexed

by h. We denote by FT O and FTP the subsets of FT and F7T, respectively, consisting of the
elements with all components nonzero.

For the rest of this subsection, we restrict to the case when 7 describes stable maps that are of
degree zero on the principal components. Thus, let

T = (M,1,%;j,d)

be a bubble type such that d; =0 for all i € Iy. Since a degree-zero pseudoholomorphic map is
constant, the decomposition (2.2) becomes

Uz (P J) ~ (u% (pt) x Uz (B™; J ) JAut*(T -
(MlkOXUT (™ J )/Aut (25)

where ko=|I1|4+|Mp|, My x, is the moduli space of genus-one curves with ko marked points, and

L{T(]P’"; J) = {(bh)heh S HUTh(]Pm; J) evo(bhl):evo(th) Vhi, ho EIl}.
hel;
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Similarly, (2.3) and (2.4) are equivalent to

U (B J) ~ Uz (pt) x U (B J) © Mgy x UL (P ), where (2.6)
UL © ) = {(bnnen € [JUS (@™ 0): evolbn,)=evo(b,) Yhi, ha €11} (2.7)
hel

We denote by
wp: Ur (P ), U (P 7)) — M g

the projections onto the first component in the decompositions (2.5) and (2.6). Let
evp: Ur (P ), U (P 7) — P"
be the maps sending every element b= (X, up) of Uz (P™;J) and Z/{7(9 ) (P™; J) to the image of the
principal component Y. p of 3 under wuy,.
If T=(M,I,X;j,d) is as in the previous paragraph, let
X(T) = {i€l:d;#0; d,=0VYh<i}.
The subset x(7) of I indexes the first-level effective bubbles of every element of L{g] ) (P™; J). For
each element b= (3, up) of L{T@) (P™; J) and i€ x(7), let
D;b = {dub\gb,iﬂwew € Toy p(i)P", where oo = (1,0,0) € TroS>.

In geometric terms, the complex span of D;b in Ty, ) P" is the line tangent to the rational com-
ponent ¥ ; at the node of X ; closest to a principal component of ;. If the branch corresponding
to Xp; has a cusp at this node, then D;b=0. Let

37T = @ fh(i)’f — Z/I(TO)(]P’"; J), where h(i)=min{hel: h<i} e I;.
iex(7T)
We define the bundle map 3 ~
p: FT — §T
over U (P"; J) by
p(v)= (b (pi(V))iex()) € FT, where pi(v)= [[on € FayT,  if
hel h<i
Ty, ) Xnp, ifhel,

= (b; vy, Y, beuV @), e FT s, eF Ty ~ A
v=(b;on, (Uh) e ) T ( ), wWERRT|y, vheFnTlp c £ hel1,.

where x,(b) € Xy, p is the node joining the bubble ¥, of b to the principal component ¥y, p of Xy.
This definition is illustrated in Figure 4 on page 22.

Let E — Ml,kso be the Hodge line bundle, i.e. the line bundle of holomorphic differentials. For
each i€ x(7), we define the bundle map

DJJ; : ﬁh(z)T — W}E* ®J€V}<3T]Pm
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over U (P™;.T) by
{Dri(b,wi) } (V) = Yy 0) (i) -7 Dib € Ty (1) P"
it beU (P T), wieFuwTln, vETHEN,
where - is the complex multiplication in the vector bundle (TP", J).!3 Let
Dr:§T — 1hE* @evip,TP"
be the bundle map over L{Q@ ) (P™; J) given by

Dr (b, (wi)iey (1)) ZDJ’L (b, w;).
i€x(7)
It descends to a bundle map
D7: 3T — 7pE*®@evpTP" /Aut*(T)
over Uy (P™; J), for a bundle §7 — U (P™; J).

Let f/flk —>U7(9) (P™; J) be the cone such that the fiber of f)dk over a point b= (X, up) in L{T@) (™ J)
is ker Oy 5; see Subsection 1.3. If b= (Zb,ub)eu(f)(]?” J), E=(&n)ner €T(b; £), and i€ x(T), let
D7,i€ = Ve &i € Levp(t)-

The element V. §&; of uj ,£| is the covariant derivative of the section & €I'(2s ;; uz’i,ﬁ) at 0o € Xy
with respect to the connection V in £ along e.; see Subsection 1.3. Note that if £ €ker 5v,b, then

Veeli = ¢ D714€ VeeC. (2.8)
We next define the bundle map
D7: 37 — Hom(V{,, mpE*@evi L)
over U (P"; J) by
(Db, é0w)}() = > wm Sy (W) - DTiE € Loy if

ZEX
Ee Vil CT(b;£), w:(wi)iEX(T) €§Tly, and ¢ EE, ).
By (2.8), the bundle map ©7 induces a linear bundle map
35T — Hom(V{l’k, TpE* ® evpL/Aut* (7))

over Ur (P"; J). The maps ®7; and D7 are the analogues of D7 ; and D for the target space £,
in place of P".

Finally, all vector orbi-bundles we encounter will be assumed to be normed. Some will come with
natural norms; for others, we implicitly choose a norm once and for all. If 75: § — X is a normed
vector bundle and d: X — R is any function, possibly constant, let

Fs = {ved: [v|<d(mgz(v))}.
If Q is any subset of §, we take Q5= N Fs.

3The complex number wxh(i)(b)(wi) is simply the evaluation of w‘rh(i)(b) €Ty YxonweTy . Y.

Th(i) h(i)
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2.3 The Structure of the Moduli Space ﬁ?,k(ﬂ’m, d; J)

We now describe the structure of the moduli space ﬁ‘f,k (P™, d; J) near each of its strata. The first
part of Theorem 1.2 follows from the first claims of Lemmas 2.3 and 2.4 below. If k €Z, we denote
by [k] the set of positive integers that do not exceed k.

Lemma 2.3 If n, k, and d are as in Theorem 1.2, there exists 0,(d) € RT with the following
property. If J is an almost complex structure on P™, such that ||J— Jo||c1 <on(d), and

T = ([k], 1,%;4,d)

is a bubble type such that ), ;d;i=d and d; #0 for some minimal element i of I, then U (P";J)
s a smooth orbifold,

dimUr (P J) = 2(d(n+1) + k— [N = [[]),  and  Ur(P";J) C DRy 4(P",d; J).

Furthermore, there exist 6 € C(Ur (P™; J); R™), an open neighborhood Uz of Uz (P™; J) in X1 1(P™, d),
and an orientation-preserving homeomorphism

or: FTs — M 4(P",d; J) N Ur,
which restricts to a diffeomorphism .7-"’2'? —>93?(1)7,€(IP’”, d; J)NUr.

By Theorem 1.6 in [Z5], there exists d,(d) € RT with the following property. If J is an almost
complex structure on P”; such that ||J—Jy||c1 <, (d), X is a genus-one prestable Riemann surface,
and u: X — P" is a J-holomorphic map, such that the restriction of u to the principal compo-
nent(s) of ¥ is not constant, then the linearization D, of the 0 -operator at u is surjective. From
standard arguments, such as in Chapter 3 of [MS], it then follows that the stratum Uz (P™;J) of
ﬁ?’k(]}’m,d; J), where 7 is a bubble type as in Lemma 2.3, is a smooth orbifold of the expected
dimension. Furthermore, there is no obstruction to gluing the maps in U7 (P"; J), in the sense of
the following paragraph.

We fix a metric g, and a connection V" on (TP", J). For each sufficiently small element v= (b, v)
of FT? and b= (S, u) UL (P7;.7), let

Qu: Yy — Xy

be the basic gluing map constructed in Subsection 4.1 of [Z5]. In this case, ¥, is a smooth elliptic
curve and ¢, collapses certain disjoint circles in ¥,, onto the nodes of ¥;. Let

b(U) = (Zvajva Uv)a where Uy = Up O o,

be the corresponding approximately J-holomorphic stable map. By the previous paragraph, the
linearization D j; of the 0j-operator at b is surjective. Thus, if v is sufficiently small, the lineariza-
tion
0,1
Djy: T(w)=LE(Sy; up TP") — T (v) = LP(Sy; Ay TS, @uy TP™),

of the 0j-operator at b(v), defined via V", is also surjective. In particular, we can obtain an
orthogonal decomposition
() = I_(v) & T4 (v) (2.9)
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such that the linear operator D, : I'y(v) — I'%1(v) is an isomorphism, while I'_(v) is close
to ker D ;. The L%-inner product on I'(v) used in the orthogonal decomposition is defined via
the metric g, on P" and the metric g, on ¥, induced by the pregluing construction. The Banach
spaces I'(v) and I'%!(v) carry the norms || - ||, p1 and || - ||, respectively, which are also defined
by the pregluing construction. These norms are equivalent to the ones used in Section 3 of [LT]. In
particular, the norms of D, and of the inverse of its restriction to I'y (v) have fiberwise uniform
upper bounds, i.e. dependent only on [b] €Uz (P";.J), and not on v€ FT?. It then follows that the
equation
dyexp,, (=0 <= [Syexp, (] €M (P d;J])

has a unique small solution ¢, €'y (v). Furthermore,
ICollopa < C@)I0]Y?,
for some C' € C(Ur(P"; J);R™). The diffecomorphism on F Tg is given by
or: FT) — M (P d: ), ér(]) = [b(v)],  where  b(v) = (Su,exp,,Go);
see the paragraph following Lemma 3.1 in [Z5]. This map extends to a homeomorphism
¢r: FT5 — ﬁtl),k(Pn>d§ J),
as can be seen by an argument similar to Subsections 3.9 and 4.1 in [Z3].

We denote by Dﬁ‘ﬂ(]?”, d; J) the union of the strata Uz (P™;J) with 7 as in Lemma 2.3. In other
words,

fm‘fi(]?”,d; J) = {[C,u] €My x(P",d; J): ule, is not Constant},

where Cp is the principal component of the domain C of w.

Lemma 2.4 If n, k, and d are as in Theorem 1.2, there exists 0,(d) € RT with the following
property. If J is an almost complex structure on P™, such that ||J— Jo||c1 <0n(d), and

T = ([k], 1,%;4,d)

is a bubble type such that ), ;d;=d and d;=0 for all minimal elements i of I, then U (P";J) is
a smooth orbifold,

dim U7 (P™; J) = 2(d(n+1)—|—k — \N|—]f| + n), and ﬁ(ik(]?n, d; J) NUr(P"; J) = U (P J),
where U (P";J) = {[b] etz (P"; J): dime Spanc n{Dib: i€ x(T)} <|x(T)|}-

The space Ur.1(P™; J) admits a stratification by smooth suborbifolds of U (P™;J):

m=|x(7T)|
Uz (P ]) = || wp @) such that
m=max(|x(T)|—n,1)

dimUF,; (P J) = 2(d(n+1)+k — IN|—|I| +n + (Ix(T)|—n—m)m)
< dim My , (P", d; J) — 2.
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X(T)={h1,ha,hs}, p(v)=(Vn,, Vh;Vhs, VhsVhs)

flT@ = {[bv Uhnvhzavhwvhuvhs] * Uhy s Uhy s Vhs eCx;
Vhy ETwhl EN—{O}, Vhs ETIh3 EN—{O};
'UhlDJ’hlb+Uh3Uh4DL]’h4b+'Uh3'Uh5DJ’h5b:0}

“tacnode”

Figure 4: An Illustration of Lemma 2.4

Furthermore, the space

Fl7l = {lb, v] e FTY: Dr(p(v)) =0}
is a smooth oriented suborbifold of FT . Finally, there exist 6 € C(U7(P™;J);RT), an open neigh-
borhood U of Uz (P"; J) in X1 (P, d), and an orientation-preserving diffeomorphism
o7 FIT) — Y (P, d; J) N Ur,
which extends to a homeomorphism
b7 F'T5 — My 4(P",d: J) N U,
where FYT is the closure of F'T? in FT.

We now clarify the statement of Lemma 2.4 and illustrate it using Figure 4. As before, the shaded
discs represent the components of the domain on which every stable map [b] in U7 (P™;.J) is non-
constant. The element [Xy, up) of Uz (P™; J) is in the stable-map closure of MY, (P, d; J) if and only
if the branches of uy(3;) corresponding to the attaching nodes of the first-lovel effective (shaded)
bubbles of [¥, up] form a generalized tacnode. In the case of Figure 4, this means that either

(a) for some h€{h1,hy, hs}, the branch of wy[s, , at the node oo has a cusp, or

(b) for all h€{h1, hy, hs}, the branch of wls, , at the node oo is smooth, but the dimension

of the span of the three lines tangent to these branches is less than three.

The last statement of Lemma 2.4 identifies a normal neighborhood of U7.; (P"; J) in ﬁ?k(]}’m, d;J)
with a small neighborhood of Uz; (P™; J) in the bundle F'7 over Uz,1(P"; J). Each fiber of the
projection map F'7T —Uz.1(P™; J) is an algebraic variety. See Figure 4 for an example.

The first statement of Lemma 2.4 follows immediately from Theorems 1.6 and 2.3 in [Z5] and the
decomposition (2.2). The other two statements of Lemma 2.4 are a special case of the last two
statements of the latter theorem.

If 7 is a bubble type as in Lemma 2.4 and m is a positive integer, let
Uz, (P J) ={[b] €U (P"; J): dime Spanc j{Dib: i€ x(T)} = [x(T)|—m}
C UT;l(]Pm; J)

By definition, the subspaces U7, (P"; J) of Uz (P"; J) partition Uz;1 (P";J). On the other hand,

Ur (P ) # 0 = max (|x(7)|—n,1) <m < [x(T)|.
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In order to show that the space UF; (P";J) is a smooth suborbifold of Uz (P";J) of the claimed
dimension, below we describe U7 (P"; J) in a different way.

For each i€ ] , let R
M; = {ZEM: jl:i}l_l{hEI: Lh:i}.
We denote by
i Uz (P J) — MG (30, (P, dis J)

the map sending each bubble map (X, up) to its restriction to the component ¥ ; C X. Let
Lo — MG coyung, (P dis J) € Mo goyung, (P, dis J)

be the universal tangent line bundle for the special point labeled by 0, i.e. (i,00) in the notation
of Subsection 2.1. We put

F= @WfLo — Ur (P™; J).
iex(7)

While each line bundle 7Ly may not be well-defined,'* the orbibundle F is always well-defined.
We denote by
Tm s Grpn F — U (P™; ) and Ym — Grp, F

the Grassmannian bundle of m-dimensional linear subspaces and the tautological m-plane bundle,
respectively. Let

Sm = D;1(0) C Gr,, F, where
Dy, € T(Grp Fi v, @7 evp TP, Dp([v]) = ZD 7iVi € evpTP™ i [v] = [(Vi)iey(T))-
iex(7)

By Theorem 1.6 in [Z5], the section D,, is transverse to the zero set if d,(d) is sufficiently small.
Thus, S, is a smooth suborbifold of Gr,,F of dimension

dim S, = dim Gr,, F — 2rk~,, @7, evpTP"
=2(d(n+1)+k— X[ |I|+n) +2m(|]x(T)|-m) —2-n-m
= 2(d(n+1)+k—|X|—|I|+n +m(|x(T)|—n—m)).

The image of S, under the bundle projection map 7, is the union of the spaces L{%&(P”; J) with
m’ >m. The map m,,|s,, is an immersion at [v] €S,, if

o' (T ([0])) = [0].

The latter is the case if and only 7, ([v]) €UF,; (P"; J). Thus, the subspace U7 (P"; J) is a smooth
suborbifold of Uz (P"; J) of dim Sp,.

11f 7 has an automorphism that does not fix an element i of x(7°) C I, then the projection map m; is not well-
defined on U7 (P™; J). Tt is however well-defined on U (P"; J), since the components of the elements of UZ (P™; J)
are indeed indexed by the set I.
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3 Proof of Theorem 1.2

3.1 The Global Structure of the Cone V{, —>ﬁ(1)7k(]P’”,d; J)

In this subsection we deduce Proposition 3.1, which contains the last two statements of Theorem 1.2,
from Lemma 3.2 and Proposition 3.3. We suggest the reader review Subsection 1.2 at this point.
The argument following Proposition 3.1 makes use of the small neighborhoods U7 of the strata
Uy (P™; J) and vector subbundles

VIR — W (P d; J) N U

of the cone ka described in Proposition 3.3. It might thus be helpful to study the statements of
Lemma 3.2 and Proposition 3.3 before going through the argument for Proposition 3.1. However,
with the help of the last two paragraphs of Subsection 1.2, it should be possible to get a rough idea
of the argument even without looking at Lemma 3.2 and Proposition 3.3.

Proposition 3.1 Ifn, k, d, a, £, and ka are as in Theorem 1.2, there exwists 5,(d,a) ERY with
the following property. If J is an almost c’ompleaz structure on P™, such that ||J—Jo||c1 <n(d, a),
the requirements of Lemmas 2.3 and 2.4 are satisfied. Furthermore, Vﬁk — Sm(l)’k(IP’”,d; J) is a
smooth complex vector orbibundle of rank da. In addition, there exists a continuous multisection

P ﬁ?,k(]}m,d; J) —>Vﬁ,€ such that
; ; d .
V1) (p|9ﬁ?,k(Pn7d;J) s smooth and transverse to the zero set in V17k‘m€,k(Pn7d;J),
(V2) the intersection of ¢~ 1(0) with each boundary stratum Uz (P™;J) and Uz, (P J)
of ﬁ?’k(ﬂm, d; J) is a smooth suborbifold of the stratum of real dimension of
at most 2(d(n+1—a)+k)—2.
If oo and @1 are two such multisections, there exists a continuous homotopy

: [0, 1] x Ty 4 (P", d; J) — [0,1] x Vi

such that (I)‘{t}xﬁ?,k )= fort=0,1, and

(Pm,d;J
29 q)’[o,l]xi)ﬁ?’k(]l”",dﬂ) is smooth and transverse to the zero set in [0,1] va’k|m‘k(Pn7d;J) ;
(V2') the intersection of ®~1(0) with each boundary stratum [0,1]xUz (P™; J) and

[0, 1] xUz, (P™; J) of 0,1] xﬁ?k(]}’m,d; J) is a smooth suborbifold of the stratum
of real dimension of at most 2(d(n+1—a)+k)—1.

Thus, the cone V{l’k determines a homology class and a cohomology class on ﬁ?k(ﬂm, d; J):

_O n
PDﬁ?’k(Pn,d;J) (e(Vfl,k)) € Hyams1—a)+k) (M 1 (P", d; J); Q)
and (Vi) € HX @) (P, d; J): Q).

Finally, if W— X1 1 (P",d) is a vector orbi-bundle such that the restriction of W to each stratum
X7 (P") of X1 1x(P",d) is smooth, then

(e(W) - e(Vi 1), [ﬁ(l),k(]?nvd; D)) = (eW) - e(Vi}), [m(l),k(Pnad)] )-
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The second statement of this proposition is a special case of Lemma 3.2. We use Lemma 3.2
and Proposition 3.3 to construct a multisection ¢ satisfying (V1) and (V2), starting from the

lowest-dimensional strata of ﬁ‘f,k (P™,d;J). If T and m are as in Lemma 2.4, let
ouz'y (B J) = Uz'y (P J) —Usz'y (B J)
be the boundary of the stratum Ll%l(]?”; J).

Suppose 7 and m are as in Lemma 2.4 and we have constructed

(i) a neighborhood U of QU (P"; J) in My ,(P", d; J) and

(ii) a continuous multisection ¢ of the cone V{l’k over U
such that for all 77 and m’ as in Lemma 2.4 the restriction of ¢ to Z/{Q”J,/;l(]P’”; J)NU

(a) is a smooth multisection of the vector bundle ij,:;—, of Proposition 3.3 and

(b) is transverse to the zero set in ij;:;—,.
We then extend the restriction of ¢ to Uz (P"; J)NU to a smooth section of ijz?T over Uz, (P™; J)
and to a continuous section ¢’ of ijz?T over ﬁ?k(P”, d; J)NUZ, using the bundle isomorphism
@2 of Proposition 3.3.'5 By the definition of the bundles ij,?;a— in Subsection 3.3, the restriction
of I to each space Z/{g‘,:l(]P”; J)NUX is a section of ij]??;/, for all 7/ and m’ as in Lemma 2.4.
We can also insure that the restriction of 7 to MT”—”L,/J(IP’”; J)NUZ is smooth and transverse to the
zero set in fo;:;—/. Finally, by using a partition of unity and the newly constructed section ¢, we
can extend the section ¢ to a neighborhood of L_{T@;l(]P’”; J) in ﬁ?k(]}’m, d;J), without changing it
on L_{%I(P”; J) or on a neighborhood of 81/_{771‘;1(]?”; J) in ﬁ?k(]?”, d;J). After finitely many steps,
we end up with

(1) a neighborhood U of My ,(P", d; J)—MST (", d; ) in D ,(P", d; J) and

(2) a continuous multisection ¢ of the cone Vﬁk over U
such that the properties (a) and (b) hold for all 7" and m’ as in Lemma 2.4.

We then extend ¢ in the same stratum-by-stratum way to a section over all of 97?, & (P, d; J), using
Lemma 3.2. In fact, the existence of such an extension is immediate from the fact that

Vi — M (P, d; )

is a vector bundle. Since the real dimension of a boundary stratum Uz (P";J) of ﬁ?,k(]}’m,d; J),
with 7 as in Lemma 2.3, is at least two less than the dimension of zm? w(P",d; J), the transversality

of ¢lis, (pn.yy to the zero set in V{l i implies (V2) for this stratum. Similarly, the transversality of
Plug e,y to the zero set in Vf ' and equation (3.3) imply (V2) for each stratum Ur, (P J)

of ﬁ?’k(ﬂm, d; J), with 7 and m as in Lemma 2.4. The homotopy statement of Proposition 3.1 is
proved by a nearly identical construction.

The second-to-last statement of Proposition 3.1 follows from the preceding claims by the same
argument as in Subsection 1.2. The final statement of Proposition 3.1 follows from the proof of the

154m g a trivialization of ij;f} in the normal directions to U7 (P"; J)NU
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first part of Proposition 3.1 and from the last statement of Theorem 1.6 in [Z5]. The latter states
that there exists d,,(d) € RT with the following property. If J= (Jt)tefo,) 1s a C'-smooth family of
almost complex structures on P" such that ||.J; —Jy||c1 < 0,(d) for all ¢t € [0,1], then the compact
moduli space
m, (P, d; J) = | tx I (P, d; Jy) C [0,1]x X4 (P", d)
t€[0,1]

has the general topological structure of a variety with boundary. It is stratified by the smooth
orbifolds with boundary,

Ur®P™.0) = | txtr (P 0y) and UF (PY) = | txUsF, (P ),
t€[0,1] t€[0,1]

each of dimension one greater than the corresponding dimension given by Lemmas 2. 3 or 2.4. By

the same argument as above, we can construct a multisection ® of the cone V¢ 15 over sml k(P d; J)
such that
" : H d .
v1 <I>|9ﬁ?’k(Pn,d;l) is smooth and transverse to the zero set in V17k‘mt?,k([[l>n7d;i),
V2") the intersection of ®~1(0) with each boundary stratum Uz (P"; J) and U2, (P"; J
T:1
of ﬁ?k(]?”, d;J) is a smooth suborbifold of the stratum of real dimension of at

most 2(d(n+1—a)+k)—

and the restrictions g _<I>| and ¢ _<I>] satisfy conditions (V1) and (V2).

K(Pd;Jo) k(PP dsn)

IfW— X, (P, d) is a complex vector bundle of rank d(n+1—a)+k as in Proposition 3.1, we can
choose a continuous section F' of W over ﬁ?,k(]}’m, d; J) such that

(@W1) o1 (0)NF~1(0)cm? (P, d; J);
(PW2) F|£mo (P d:) 18 smooth and transverse to the zero set in W|9no (B i)
(PW3) F ( ) intersects ®~1(0) transversely in 9 Lk (P ds J),
(®W4) 7 1(0) intersects ¢; ' (0) transversely in Sﬁ%k(]?”, d; Ji) for t=0,1,

where ft_F|9n(1) (B ds )

It follows that ®~1(0)NF *’1(0) is a compact oriented one-dimensional suborbifold of Sﬁ?7k(IP’”, d; J)
and

(21 (0)NF1(0)) = 1 1 (0)Nf7(0) — 5 (0)N f5 (0)
= Fer 0N 0] = Fleg )N 0)]-

This equality implies the last claim of Proposition 3.1.

3.2 The Local Structure of the Cone V{, —>ﬁ?7,€(ﬂ””,d; J), I

In this subsection we describe the structure of the cone V{l k —>ﬁ(1)7 x(P™, d; J) over a neighborhood
of each stratum Uz (P™;J) of Lemma 2.3. Lemma 3.2 is essentially equivalent to the statement
that

%5 e st k(P d; J)

1s a vector bundle. The proof of this lemma begms to introduce the setup needed to carry out the
delicate analysis of Section 4 for the case of the boundary strata UJ* (P"; J) of Lemma 2.4.
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Lemma 3.2 If n, k, d, a, £, and V{l’k are as in Theorem 1.2, there exists 6,(d) € RT with the
following property. If J is an almost complex structure on P™, such that ||J—Jo||c1 <In(d), and

T = ([k],I,%;4,d)

is a bubble type such that ), ;d; = d and d; # 0 for some minimal element i of I, then the
requirements of Lemma 2.3 are satisfied. Furthermore, the restriction of Vfl,k; to Ur(P™; J) is a
smooth complex vector orbibundle of rank da. Finally, there exists a continuous vector-bundle
isomorphism

QBTI 7T_>’7<:7'5 (Vii,k|MT(P";J)) - Vﬁk‘ﬁ?_’k(]}”",d;J)ﬂUT’

covering the homeomorphism ¢ of Lemma 2.3, such that ¢~)T is the identity over Ur (P™; J) and is
smooth over .7-"]'?.

The restriction Vﬁk — Ur(P™; J) is the quotient of the cone f)f — L{(O) (P™; J) by the group
Aut(T)oc(Sl)f; see Subsection 2.2 for notation. The fiber of Vl,k; at a point b = (Xp,up) of

L{(TO ) (P™; J) is the Dolbeault cohomology group Hg(Eb;uZ,S), for a holomorphic structure in the
bundle u; £. Since d; #0 for some minimal element i € I, the degree of the restriction of u;£ to the
principal curve of ¥ is positive. Thus, by an argument similar to Subsections 6.2 and 6.3 in [Z2],

Hy(Syup) ={0} = dimV{|, = dim H}(Sy;ui £) = ind dyp, = da.

Since the holomorphic structure in the line bundles uj £ varies smoothly with b€l (0 (P™; J), it fol-

lows that Vd — Uy (© (P™; J) is a smooth complex vector bundle of rank da and Vl,k —Ur (P J)
is a smooth complex vector orbibundle of rank da.

We construct a lift ¢7 of ¢ to the cone Vﬁk — U7 (P™; J) as follows. For each sufficiently small
element v=(b,v) of FT?, we define the maps
Ry:T(b; &)=L (Sp;uf L) — T(v; £)=LE (Su;up L) by {Rué}(2) =E&(qu(z)) if z€X,,
IL,: I'(v; &) — T(v; &)=L} (Zo;a5L) by {IL&}(2) =1 (»&(2) if z€5,,
where Il (,)€(2) is the V-parallel transport of {(z) along the g,-geodesic

Yeo(z): [0,1] — P, T — XDy, (2) T7Co(2),

and ¢, € '(v) is as in Subsection 2.3. As in Subsection 1.3, we use the [LT]-modified L}— and
LP—Sobolev norms, defined in the present setting as in Subsection 3.3 of [Z3]. By a direct compu-
tation, for some C'e€ C(Ur(P™; J); R*)

109 () Rokl,,, < CONOIPI€llbp1 VEET (b €)=kerdyy  and (3.1)
[T, ol ; onyf—av,bmev,pSC’(b)||<||%,p,1||5Hv,p,1 52
<COPelbpr Y EET(v; L);

see the proof of Corollary 2.3 in [Z1] for the first inequality in (3.2). We denote by I' _(v; £) the
image of T'_(b; £) under the map R, and by I'y (v; £) its L?-orthogonal complement in I'(v; £).
Since the operator

Ovp: (b £) — ro%(b; 2) ELP(Zb;Ag’;T*EbééuZS)
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is surjective for all beld (0)( ;J), similarly to Subsection 2.3 the operator
09 40yt T (03 8) — TN (03 £) = LP (S5 AL T8, @u £)

is an isomorphism if v is sufficiently small. Its norm and the norm of its inverse depend only on
[b] € Ur(P™; J). Thus, by (3.1) and (3.2), for every £ € I'_(b; £) there exists a unique &4 (v) €
Iy (v; £) such that

~1, 95 vy © Mo (Rué+&4(v)) =0 = IT, (Ry&+€4(v)) € ker 5V,B(v)'

Furthermore,
1€+ @)llop,1 < CO)OPPE ]l p1,

for some C € C(Ur(P™; J);RT). We can thus define a smooth lift ¢ of the diffeomorphism on
¢T|f7'§ by

QE’T: W;T((Zs) (Vﬁk‘z,{T(Pn;J)) - Vﬁk‘fm?,kﬁ?",d;(])ﬂUT’ QET([U; é]) = [RU£]7
where va = Hv(Rvg'i_er (U)) :

This map extends to a continuous bundle homomorphism
T d d
o1 TFTs (Vl,k|u7(]}m;])) - Vl,k‘ﬁ‘j?k(w,d;{])mw’

as can be seen by an argument similar to Subsections 3.9 and 4.1 in [Z3].

3.3 The Local Structure of the Cone V{, —>ﬁ?7k(ﬂ””,d; J), 11

This subsection presents the central statements of the paper concerning the structure of the cone
Vf’k along the complement of the dense open subset

s (B, d; ) C M (B, d: J).
This is precisely where the singularities (failure to be a vector bundle) of the cone
Vi, — ﬁ(1),k(]Pm, d; J)

arise, as the rank of Vf & on the complement of mt‘ffi (P",d; J) is one higher than on ST (P, d; J).
Proposition 3.3 is the analogue of Lemma 2.4 for the cone V Lemma 3.4 can be viewed as a

condensed version of Proposition 3.3. The technical parts of the proof of these two results are the
subject of Section 4.

Proposition 3.3 Ifn, k, d, a, £, and V1 . are as in Theorem 1.2, there exists on, (d) eR™ with the
following property. If J is an almost complez structure on P™ such that ||J — Jo||cr < 6n(d), then
the requirements of Lemma 2.4 and of Lemma 3.2 are satisfied for all appropriate bubble types.
Furthermore, if

T = ([k], 1,%;4,d)
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is a bubble type such that ), d;=d and d; =0 for all minimal elements i of I, then the restriction
of ka to Ur(P™; J) is a smooth complex vector orbibundle of rank da+1. In addition, for every
integér

m € (max(|x(7)[-n,1),[x(T]),

there exist a neighborhood UF of U (P"; J) in X1 x(P",d) and a topological vector orbibundle

Vi — D (B, d: ) N U
contained in the cone V 1k such that

Vi — M0 (B, d: J) N UY
is a smooth vector orbibundle and

rk Vi oy = da+1—m > %dimuglﬁl(w; J) — (d(n+1—a)+k). (3.3)
There also exists a continuous vector-bundle isomorphism
OF T, (Vf,;g?T‘uT;1(IP’";J)OU7T") — Vi T‘sml R (P s )T

covering the homeomorphism ¢ of Lemma 2.4, such that (b? is the identity over Z/{TW;I(]P’”;J).
Finally,

uj@';l(]?n;(])mag};l(@n J)#0 = V1k7/

c Vd;m
Uz, (B )nUy = CLET U, (Prs)nUz

The restriction of every element of Vﬁ i|p to the domain of the image of b under the projection onto

the first component in the decomposition (2.5) is a constant function. Thus, every element of Vﬁk\b
is determined by its restriction to the domain of the image of b under the projection onto the second
component in (2.5). The statement concerning the restriction V¢, to Uz (P"; .J) in Proposition 3.3
now follows by the same argument as for the corresponding statement in Lemma 3.2, but applied
to the second component in the decomposition (2.5). The index in this case is da+1.

The bundle V1 K T—>ﬁ(1),k (P",d; J)NUF is not unique. However, its restriction to Uz, (P"; J) is:
Vi el (i) = {EEVE L]y bEUL (P T); if by €90 (P",d; J) and lim b, =b € Uy (P"; ),
9 b 9 r—00 b
then 3¢ € Vi, |y, st. lim & =&}
’ r——00

In other words, V]]i;]z?7—|u77z7;1(lp>n; 7) is the largest subspace of Vﬁ k‘uqmﬂ(}bn; 7) With the property that a
continuous lift

T % d;m d;m

O TR (Vl,k;T|Z,{T;1(IP’";J)ﬂU{}l) - Vl,k;T‘ﬁ?,k(P",d;J)ﬁU}”
of ¢7 that restricts to the identity over Z/{%l(]Pm; J) can possibly exist for a vector-bundle extension
for the subspace Vf ;]?77\“7@1@71; J) to a neighborhood of U7, (P"; J) in Uz ;1 (P"; J). The next lemma

describes the subspace Vf ;g,lﬂugﬁl(pn; ) of V?7k|u7@1(1p>n; ) explicitly. Let

F'T = {veFT: v|eF'T}.
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Lemma 3.4 Suppose n, k, d, a, £, Vﬁk, J, and T are as in the first and third sentences of

Proposition 3.3. If b GZ/I(TO) (P J), €€ Vﬁk\b, and v, € FYTY is a sequence of gluing parameters
such that

Thinmvr =b and rli_r)noo [(pi(vr))iex(ﬂ] = [w] € P§T s,
then .
3G EVE Lo (o)) S+t lim [€,]=[¢] — Dr(E@w) = 0.
Therefore,

Vikirlup, @y = {6€VEy: Bl €UFL (P T); Dr(E@w)=0 YweF T}, (3.4)
where 3T, = {we@’]},: Dq—w:O}.

Thus, Vf?ﬂu;gl@nm —>U%1(IP’”; J) is a smooth complex vector orbibundle of rank da+1—m.

The bundle map 7 constructed at the end of Subsection 2.2 depends on the choice of connection
in the bundle £ — P". It may appear that so do the first two statements of Lemma 3.4. This is
however not the case for the following reason. Suppose

b=(2p,up) € UT(E))(]P’"; J), §€9f’k|b, v, e F1T? and W= (W;)ien(T) € 3T,
are as in Lemma 3.4. Then, by the definition of F'7% in Lemma 2.4,

Z 1/}9% wl -J dubz\ooeoo =0¢ TevP(b)]P) V¢€Eﬂp(b). (35)
'LEX

On the other hand, since the map wuy; is constant on every component Y j of the domain 3 of
b with h < for some i € x(7), £ is a holomorphic function on ) and thus must be a constant
§p € Levpp)- It follows that

iy(00) = &iy(00) =&p  Vir,ia € X(T). (3.6)

Suppose that V'’ is a connection in the line bundle £ — P™ that induces the same d-operator in the
line bundle u; £ — X as the connection V; see Subsection 1.3. Then, there exists a complex-valued
one-form # on P" such that

Vol = V¢ = (04v) - ((2) VqeP", veT,P", Cel(P™; L), and wujfoj,=1i-uyb. (3.7)

Thus, if D7 and D’ are the bundle maps corresponding to the connections V and V' as at the
end of Subsection 2.2,

{D7(6@w) =D (W)} (1) = D Yy ®) (@) - (Bevpv) (dupilooa)) - i(00)
1ex(7) (38)
= evP ( Z %h y(b) wz (dub,i‘ooeoo)> -&p=0.
1ex(7)

The middle equality above follows from (3.6), the second condition in (3.7), and the assumption
that up is a J-holomorphic map. The last equality above is an immediate consequence of (3.5).
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More generally, the middle equality in (3.8) implies that the expression ©7({®@w) is intrinsically
defined whenever we F'7.

The second statement of Lemma 3.4 follows immediately from the definition of ij:??—|u;y;1([[bn; J)s
the first statement of Lemma 3.4, and the last statement of Lemma 2.4. For the final statement of
Lemma 3.4, let

U (P ) = {belt) (P ) [b] €Uy (P ) ).

By the proof of Lemma 2.4, . }
S'T — UF (P )

is a vector bundle of rank m. On the other hand, by the same argument as in Subsection 6.2
of [Z2], for every beug) ) (P™; J) and i€ x(7), the linear map

{€=(&)ner Vi lo: &i(00) =0} — Loy pv), § — Ve &,
is surjective. It follows that the linear bundle map
f)‘f’k — Hom(F' 7, 7pE*®@evp L)

over Z:l%l(]?”; J) induced by @7 is surjective on every fiber. Thus, its kernel is a smooth vector
bundle of rank

rk VT =1k V¢ — 1tk Hom(F'T, 7pE* ®@evp L) = da + 1 — m,
as claimed in the last statement of Lemma 3.4.

We prove the remaining claims of Proposition 3.3 and Lemma 3.4 at the end of Section 4. An
element ¢ € Vﬁk;‘[&u] can be viewed as a map u: X — £. We will show in particular that the

obstruction to smoothing out @ in the direction ve F17T? is precisely D7 (£@p(v)).

4 A Gluing Construction

4.1 Smoothing Stable Maps

We begin by reviewing the gluing construction of Section 6 in [Z5]. If b= (X, up) is any genus-one
bubble map such that ub|gb; p is constant, let 22 C ¥ be the maximum connected union of the
irreducible components of 3 such that ¥j.p C 28 and Ub|zg is constant. If ub\gb; p is not constant,

let 9=0. We put

Tp(b) = {CET (S up TP™): (|sp =0},
Pp(b; L) = {€ €T (Zp; up L) f|2g:0}, and
%! (5 £) = (€T (y; AY TSy @u ) nlsp =0},
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Suppose 7 = ([k], I,N;j,d) is a bubble type as in Proposition 3.3, i.e. d; =0 for all i € Iy, where
Iy C I is the subset of minimal elements. We put

X(T)={hel:d;i=0Vi<h}, x (T)= |J{hel:h<i} cx"T),
iex(7T)
(T>:max{‘{hef:hgi}‘:iEX(T)}21, Iiry = x(T), Tiry=1-x(T)—-x (7) - I,

where I; C I is as in Subsection 2.2. For each s€{0}U[(7T)—1], let

s—1
T, = {iex(T)ux (T): [{hel: h<i}|=s},  Ir=Z,U| ] (Z:Nx(T)).
t=0

In the case of Figure 4 on page 22,
(T) =2, Zo = {h1, hs}, Ty = {hg, hs}, I = {ha}.

In general, the set Z;7y could be empty, but the sets Zs with s<(7) never are.

If b is a bubble map of type 7 as in Subsection 2.2 and s€[(7)], we put

EI()S) = U Xpi U U U 2pi C .

1exO(T)—x—(7) heZ;_,i<h

If heTr |, let

=S €5 xal(T) = {iex(T):h<i},  §T = U (x;.7) x (D),

h<i
If in addition v=(b,v)€ FT, we put

Ps:n (V) = (b, (Prsi(V))iexn (1)) € ShT, where pp(v) = [Juw € C;

h<h/<i
I 1(v) = {h€T 1 psn(v)=0};
see Subsection 2.2 for notation.
If v=(b,v) € FT, let
vo = (b, vy, (Vn)her) if v = (bon, (vn)yes)-
Let vy =v and vyry41y=0b. If s€[(T)], we put
vs = (b, (vn)nez,)  and vy = (b, (Vn)hezt>s)-

The component v 7y of v consists of smoothings at the nodes of ¥, that do not lie on the principal
component Yy p of ¥ and do not lie between Y. p and the bubble components indexed by the
set x(7). In Section 6 of [Z5], these nodes are smoothed out at the first step of the gluing con-
struction, as specified by v(r). After that, the nodes indexed by the set Z7_; are smoothed out,
and so on. At the last step, the nodes that lie on the principle component are smoothed according
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to vy, provided ve FL1T? is sufficiently small.

If ve F17Y is sufficiently small and s {0}U[(T)], let
Qo) Bvgy — 2b

be the basic gluing map constructed in Subsection 2.2 of [Z3]. Via the construction of Subsection 3.3
in [Z3], the map qv,,, induces a metric gy, and a weight function p, ,, that define weighted LE-
Sobolev norms || [|,p,1 on the spaces I'g(d') and I' g (b'; £) and weighted LP-Sobolev norms ||- ||, on
the corresponding spaces of differentials, for any bubble map b= (X%, (o) u) such that u is constant

on q;(i) (El()s)) if s>0. In this case, (X, gv,,,) is obtained from ¥, with its metric g, by replacing
the nodes of ¥j, indexed by the sets Z; with ¢>s by thin necks. The norms || - ||, 5,1 and || - ||, are
analogous to the ones used in Section 3 of [LT]. Let

Qugi(T)+1—s - Ev<s> - Ev<5+1>

be the basic gluing map of Subsection 2.2 in [Z3] corresponding to the gluing parameter v,. We
recall that

QU(S> = qU<S+1> © Q'US;<T)+1—S
for all se{0}U[(T)—1]. If s€[(T)] and heZ} |, let

B = oy (5) © 2

V()
We note that E}JM is a union of components of X, .
For any v=(b,v) € FT, we put

biry+1(0) = (B, Uy (7y41) = (Zp, up).

In Section 6 of [Z5], for J sufficiently close to Jo, § € C(Ur(P"; J); RY) sufficiently small and all
veF 1’]:;0, we construct J-holomorphic bubble maps

I;S(U) = (EU<S> ) ﬂv,s) Vs= 0, ey <T>
such that the following properties are satisfied. First, for all s€[(7)],
S =Gy (B)and (S ) = w(S) =evp(b). (4.1)

Second, for all s€[(T)],

Uy,s = eXpuU,SCU,s

(4.2)
for some Cus € T (bs(v)) st HCU78H1;<S>,p,1 < C(b)|u) 7,
where
bs(v) = (Zv<s> ) uv,s)u Uy,s = Ugy1 © Qusi(T)+1—s-
Third,
Up,0 = expuu’ocu,o (4.3)

for some Co0 €T(bo(v)) s.t. HCU7OHU,p,1 < C)|p(v)|,
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where
bO(U) = (Evauv,O)u Uy,0 = Uy o q~vs;(7’>+17
and
Qug(T)+17 2o — Doy,

is the modified gluing map corresponding to the parameter of (b)1/2 constructed in Subsection 4.2
of [Z5]. Finally, the maps v — (, s are smooth over F 1’1:;@ and extend continuously over F17;.
These extensions satisfy

G =0 VoeU(X;J), se{0}U[(T)]  and (4.4)
C’U,S‘EZ<> =0 VUGﬁlT? 8€[<T>]a hEZg_l(U).

The homeomorphism of Lemma 2.4 is given by

o7: F'Ty — M) ((B", d: J) N Uz, ¢7([v]) = [Bo(v)].

Remark: The bubble maps bs(v) and I;S(U) above correspond to the bubble maps bs(fio(v, (v0))
and bs(fio(v,Cy0)) in Section 6 of [Z5], where fig(v,(y0) is the perturbation of v constructed in
Subsection 6.2 in [Z5].

4.2 Smoothing Bundle Sections, I

In this subsection we extend all but the last step of the gluing construction summarized above to
the cone Vf’k over My (P, d; J). In contrast to the last step, these steps are unobstructed.

We will use a convenient family of connections in the line bundles u*£ — %, which is chosen
in Lemma 4.1 below. First, if b= (X3, up) is a stable genus-one bubble map such that uy|s, , is
constant, gy is a Hermitian metric in the line bundle u; £ — ¥, and V? is a connection in up L,
we will call the pair (g, V)-admissible if

(gV1) V? is g,-compatible and 5v,b—compatible;

(gV2) gp=gu, and V*=V" on 29,
where g, is the Hermitian metric in u;£ induced from the standard metric in £. The second
condition in (¢V1) means that

(V"% +iV*™ o j) = %(vb +iVP o),

DN =

Ovp =

with notation as in (1.13). If the pair (g, V) satisfies (¢V1), the connection V? is uniquely deter-
mined by the metric g,. The second conditions in (¢V1) and in (¢V2) imply that the bundle map
D7 does not change if it is defined using the connection V? instead of V%; see Subsection 2.2 and
the paragraph following Lemma 3.4.
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1t betl (P .7), SR, il let

A, ,(0) = {(i,2) €y ={i} x S%: |2] =67 1/? 2} C Sy
07 Ay (0) = {(i,2) €Ty ={i} x 1 2] =612 /2} C %y
Sp(0) = U A (0) U UZb,h-
iex(T) hex®(T)
If ve FT is sufficiently small, we put

AL (0) = g, (A,,(8)) T2y, 07AL(0) =g, (07 4,,(9)),  E0(0) = ¢, ' (Z(9)).

If se[(T)+1] and heI} |, let
»h0 (5 =% () nxh

Y(s) Y(s) U(s)

Lemma 4.1 Ifn, d, k, a, and £ are as in Proposition 3.3, there exists §,(d) € RT such that for
every almost complex structure J on P™, such that ||J—Jo||c1 <6n(d), and a bubble type T as above,
there exist 6,C € C(Ur(P"; J); RT) with the following property. For every

v=(b,v) € F'T and s e [(T)+1],

there exist a metric g, s and a connection VY in the line bundle ﬂj;,sﬂ—ilv such that
(1) all pairs (gu,s, VV®) are admissible;
(2) the curvature of VV* vanishes on 23<5> (26(b)).

Furthermore, the maps v — (gu.s, V*) are Aut(7) oc (S)! -invariant and smooth over .7:"1']:5@.
They extend continuously over F1Ts. The extension satisfies (1) and (2). In addition,

(b5 VP*) = (e, VT el (270), se[(T)]; (4.6)
(gv,Sa VU’S) |ij<5> = qzs;<’7)+1—s(gv,s+la VMS—H)‘EQM Vse [<T>L h EIS—I(U)-

This lemma is an analogue of Lemma 3.4 in [Z5] for the bundle £ and is proved in a similar way
as follows. Let 8: Rt — [0, 1] be a smooth function such that

0, ift<1;
t) € —
) {1, if £>2.

If reR*, let 3.(t)=08(t/\/T). We define B, € C>®(Zy; R) by

1, if z€%y,;, iex’(T);
Br(z) = ¢ 1= Bs)(r(2)/2), if z€¥y;, iex(T); (4.8)
0, otherwise,

where r(z) = |q§1(z)] if gg: C — S? is the stereographic projection mapping the origin to the
south pole of S2. In other words, B, =1 on £9(25(b)) and vanishes outside of £9(85(b)) C X}. Let

35



By = Bpoqu-

For se [(T)+1], h€Z} |, and v 6.7:'1’2:5@, we use parallel transport with respect to the connection

Vs along the meridians to the south pole of the sphere ¥/ o, to identify aj (£ over Zﬁzg (86(b))
with the trivial holomorphic line bundle

S50 (86(b)) X Loy p(b)-

U(s)

A connection VV* with the desired properties can then be found by solving an equation of the form

90 = B p, f(c0) = 0, 0 € C>=(xM0 (85(b)); C), (4.9)

Us)
where Q,, ;, € C®(21°(85(b)); C) is determined by v and satisfies
19204l 0 < C(B)5(0) 7.

This bound follows immediately from the definition of the set x(7") and (4.2). The equation (4.9)
can be viewed as an equation on EZ<5>, which is a two-sphere with the metric Ju(,, arising in

the pregluing construction. If §(b) € R is sufficiently small, (4.9) has a unique solution ,,;, €
C"X’(Zﬁ@> ;C). The curvature of the connection

VU = Ve 4 B0
then vanishes on zfﬁzg (20(D)).

Let gy,» be the metric in 4y, (L[5 obtained by patching the flat metric in @y, ;£|no (85(8)) induced
) ’U<S> ) U<S>

85(b)

h

Vi) with respect to V¥" with the metric 9, s Over

via parallel transport from co€ X
S0 (85(b)) — B0 (45(6).

We put
| {gv,h|27 if ZGZ%<5>, hGI:,ﬁ
Gu,s|lz =

Giinslzy if z€ Egs(v).

Since Eg ) is the union of the components of ¥, that are not in Eﬁ<s> for any heZ} | by (4.1),

the metric g, s on 4y, (£ is well-defined. In particular, the two definitions agree at the node of »h "
Let VV% be the 5v,ﬂu7s-compatible and g, s-compatible connection. By construction, V*»* = Vvh
on Effzg) (20(b)). Thus, the pair (g, s, V¥*) satisfies the requirements (1) and (2) of Lemma 4.1. By
construction, the map v — (gu,s, V**) is Aut(T) o< (S DI_invariant and smooth. Since the maps
v — (s extend continuously over F'75, so does the map v — (g, 5, V), as can be seen by
an argument analogous to Subsections 3.9 and 4.1 in [Z3]. It is immediate from the construction
that (4.6) is satisfied, while (4.7) follows from (4.5).

For each s€[(7)], we will next choose a family of identifications

Lk ~
Hus‘z. Uy, Ll — Uy, L2, z € Xy,
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which is smooth in v on F17? and in z. If z € X0 (26(b)) for some h eI |, let 1%, and 1152,

V(s
be the parallel transports in the line bundles u 7(}3 and 1, (£, respectively, along a path from
oo to z in Zﬁzg (26(b)) with respect to the connections qzs;<7—>+1_svv’s+1 and V¥*. Due to the
requirement (2) of Lemma 4.1, these parallel transports are path-independent. If z € Yy, and
§euy L., we require that

57 if ZGZO ( )7
Mysl-€ = Q TS {21 g, 1fz€2v<5 (5(b)), heTr y; (4.10)
e, o216 if 2g %07 (20(b)) YhET!,

We patch the last two identifications in (4.10) over EU< (20(b))— ﬁ& (6(b)), using a cutoff function

constructed from 3. Let
I, 1 D (S0, up L) — TSy, Uy L)

U(s)yr “v,8 sy TU,S

be the operator induced by the maps IL, s|.. We note that if

cel_ (’U(S); £)=ker 5V,B(v)’

then {T1%°.} ¢ is a holomorphic function on Eﬁg) (26(b)), since covariant differentiation commutes
with parallel transport due to (2) of Lemma 4.1.

For beU?(X;.J), s€[(T)], and heTr |, let
Lp(b; ) = {€€Tp(b;£): Elg, sp =0},  Tho(b;€) =Tu(b;£)NT_(b; L),
Iy (0:8) = {nel (0:.9): mls, vy =0}.
If ve F1770, se[(T)+1], and heZ} |, we put

fh;_ (U<s); 2) = {561:7 (U<s)§ 2) QZUMfE :0}'

h
“s)

For each m€Z™, we define

m s m d Ol —
DU T (v L) — Levpy by @i;h)SZM{HZA’?-} lf‘wh ={viz} el

53 V(s )

where wy, is the standard holomorphic coordinate around oo in X7 o We will construct isomor-
phisms B - B
Rys: T_(b; &) =ker Oy — I'_(v(5): £) Vse[(T)]

such that the following properties are satisfied. First, for all h€Z}_,
Rv,sg € f‘h;f (U<s)§ 2) Vée Fh;f(b§ S) (4'11)

Second, for all heZ} |,

D) R = aun(psn(0)i€) = D pna(v) D146 VEET (b ©), (4.12)

i€xn(T)
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Finally, the maps v — RU,S are smooth over F 1’]:? and extend continuously over FYT5. These
extensions satisfy 3
Ry slp=id:T_(b; L) — T'_(b; £). (4.13)

In order to construct isomorphisms RU s, we observe that certain operators are surjective. If
beU? (X;J), s€((T)), heT:_,, and [wy] €PFHT ]y, let

Ty (b3 L5 [wn]) = {€€Th—(b; £): g (wp; €) =0}

We denote the L?-orthogonal complement of I'j,._ (b; £; [wy]) in T'p.—(b; £) by FL _(b; £ [wg]). Since

Z]b’ is a genus-zero Riemann surface and the degree of u; £ over every component of Zb is nonneg-
ative,

H (5 {unlgy ) £00(—2)) = {0}V ze X},
where Zg* - ZZ is the subset of smooth points. Thus, the operator
O p: Th(b:8) — Ty (b:2)
induced by Jy 5 is surjective. Similarly, since the degree of uyLls, , is positive for all i€ x(7),
H' (53 {5} L0 0(=22)) = {0}V zexy Ny,
Thus, for every element wy, e T |p, the linear map
sn(Whs ) Tp (0 £) — Loy pp)
is surjective. In particular,
agn(wps ) Tis (05 €5 [wn]) — Levpp)
is an isomorphism and
C(b) Mwnllé] < |asn(wa; )] < CO)wallE] V& € Ty (b5 €5 [wn]), (4.14)
for some C e C(Ur(P™; J);RT).

If ve .7:"175@, s€[(T)], and he€Z; ;, we denote by I'y(v(y; £) and F%l(ws);,ﬁ) the completions of
the spaces

{£€TR(bs(v); £): §|EU<S>723<S> =0} and {nGF%l(bS(U); £): 77‘21)@725@) =0}

with respect to the norms || - ||, p,1 and || - ||v,,, p, respectively. Let
Fh;—(“(s)§ £) = F,(U<s>; L)NTy(v U(s)s L), where
I'_(v(5); £) = {€0Gu 57y 41-5 EET_(v(511); £) }-
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We denote the L?-orthogonal complement of Ty, (v(5); £) in Th(vi5); £) by Dpit(vi); £). By (4.2)
and the same argument as in Subsection 3.5 in [Z3],

CO) M€t <105 1wl p < CONENoy p1 7 EEThr(ugg: L) (415)

for some C' € C(Ur(P™; J); RT), provided § € C(Ur(P™; J); R™) is sufficiently small. In particular,
the operator

3 01, .

3% b,y Dot (003 £) — T (v()3 £)

is an isomorphism. On the other hand, by the construction of the map g, ;(7)41— in Subsection 2.2
of [Z3],

Hév,bs(v) (£OQU5;<T>+1—S) H'U(s)#? < C(b)|U‘1/p‘|§”v(s+1)7p,1

_ - (4.16)
and Oy p,(0) (£0Guy;(T)+1-5) |ggs(v) =0 Vel (v L)
Thus, by the analogue of (3.2) for (, s, there exist unique linear maps
Evsin: Lo (V41 €) — This (053 L), heTi |,
such that
R, £ =1, <€qus;<7>+1—s + Zéu,s;h(€)> el (v L)  VEET (vjsn); L)
heTr

Furthermore, for all £€T'_ (V(s41); £) and heTy 4,

leusn©lly, 1 < COGuslsg, 2, palllrayoa .

+ 1|69 6, (0) (£ 0 Guss(7)+1—s) ‘E% | U<5>7p).

In addition, for all h,h' €} | such that h'#h,

ush(§) =0 VEET,_(vs41); L)

The expansion in Lemma 4.2 below is a key step in constructing the homomorphisms Rv,s with
the desired properties. For every heZ} | —x(7), let

X;z(T) = {hIEjI Lh/:h}.
1f be U (P 7) and b’ € X} (T), we denote by
.Z‘h/(b) eC= Zb,h—{oo}

the node shared by X, and % p,/.
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Lemma 4.2 If n, d, k, a, and £ are as in Proposition 3.3, there exists §,(d) € RT such that
for every almost complex structure J on P", such that ||J —Jol|cr < 0n(d), and a bubble type T
as above, there exist 6,C € C(Ur(P"™; J);R") such that the requirement of Lemma 4.1 is satisfied.
Furthermore, for every v=(b,v) 6.7:"1730 and s€[(T)], there exists an isomorphism

R;ﬂs: f,(v<s+1);£) — f,(v@;ﬂ)
such that

Hjo,sf_HCv,s(£OQ(T>+1—S)“U(> ()|U\1/p||§”v<g+1>p1 VEET (v(or1y: £); (4.18)
R, £eTy_(v <5>;£> VEETH_(visi1y: L) (4.19)

In addition, there exist homomorphisms

Euhyit F_(’U<S+1>; 53) — £evp(b)7 hEI:_lﬂX_(T), iGXh(T),
such that for all {ef‘_(v<s+1>;£) heT: \Nx (T), and iexp(T),

!svhx&)\ < COPllgllysrypa and
55}_ th/©s+1h’§+ thz V)eu,hii(§)- (4.20)

R ex;, (T) i€xn(T)

Furthermore, the maps v — R;S and v — ey are Aut(T) oc (S -invariant and smooth
over .7:"1’]:5@. They extend continuously over FYT5. These extensions satisfy

Ry, =id VbeUP(PJ)  and  eupi=0 VheI?  (v), i€ xn(T). (4.21)

Isomorphisms R;S satisfying (4.18) and (4.19) have already been constructed. The estimate (4.20)
is obtained by applying the integration-by-parts argument in the proof of Theorem 2.8 in [Z2] to
the holomorphic functions

(ISR, &80 (6(0) — Lovpy  and  {IIZH}IE 00 (0(0) — Lovp)-
The homomorphism €, 5,.; is given by

cona(€) = = ja{ ) ()} (1) 2 (4.22)
9-A=  (5(b)) w

2mi -
U( ) Z 3

where w; is the coordinate on a neighborhood of the circle 6*A;<5> (6(b)) induced from the standard

holomorphic coordinate centered at oo in ¥ ;= S?; see the proof of Lemma 3.5 in [Z5] for details.

By the continuity of the maps
v — <U,Sa vv,s
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over F'7;5 and the same argument as in Subsection 4.1 of [Z3], the homomorphisms ¢, ., extend
continuously over F 175. Thus, by (4.22), the homomorphisms Ev,hi also extend continuously
over F'75. By (4.5), (4.7), and (4.17),

Evsh =0  VYheI) | (v).

This observation, along with (4.22), implies the second claim in (4.21). The first claim in (4.21)
follows from (4.4), (4.6), and the construction of R,

Suppose v=(b,v) € F 1’]:;‘2), s€[(T)], and we have constructed an isomorphism
Rv,erl: r_(b£) — I (U(s+1>;£)
that satisfies (4.11)-(4.13). We note that for every s€[(7)] and heZ} ;Nx(7),
ps;n(v) = (Uh'Perl;h/(U))Lh,:h Y v= (b, (vi);enui) € FT.
Thus, by (4.11) and (4.12) with s replaced by s+1, (4.19), and (4.20), there exists a homomorphism
Evsin: SnT — Hom(T_(b; £), Ly (v))

such that

|Eosn| S COIMP, Epsn(wn;€) =0 Ywy€FnT, €€l _(b: L), W €Tr_—{h},  (4.23)

:Oilh{R Ry 518} = agn(psin(v);:€) + Eusn(psn(v);€)  VEET_(b; L). (4.24)

We note that for h € I} | —x7(7), the existence of such €, 4 is immediate from (4.12) with s
replaced by s+1, (4.18), and (4.19). Let [psn(v)] denote the image of psp(v) under the projection
map §,7 —{0} — PF,7. Since

as;h(wh§ ) : th(b, £ [Ps;h(U)]) - 2evP(b)

is an isomorphism for each h€Z;_,, by the first bound in (4.23), (4.24), and (4.14) there exists a
unique homomorphism

fosh: T—(b; £) — Fi,(lﬁ £; [ps;n(v)]),

such that AU
Qg;})l{R;,sRv,s—H (£+Nv,s;h(§)) } = as;h(ﬂs;h(“)? 5) . (4'25)
Furthermore, by (4.14) and (4.23),
|tosn] < COWMP, iy sn(€) =0 VEETw,_(b;2), W €T —{h}. (4.26)
We define
RugiT-(0:8) — T (038) by Rusl€) = RoRusrn (€4 D musn().
hel?

By (4.11) with s replaced by s+1, (4.19), and the second statement in (4.26), R, , satisfies (4.11).
Since ) )
=0 veelwy, (vy:L), W eTi ,—{h},
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R, satisfies (4.12) by (4.25), along with (4.11) with s replaced by s+1, (4.19), and the second
statement in (4.26).

It remains to show that for every h€Z; ; the family of homomorphisms
fo,sh: T (b; £) — Fﬁ;_(b; £; [ps:n(v)]) C Thi—(b; £), ve FITP.

extends continuously over FT5. Bach homomorphism €&, ., of the previous paragraph extends
continuously over F175, as this is case for the homomorphisms Ev,h;i by Lemma 4.2. Furthermore,

Epsn =0 VOeUD (P T), heTr |, and e, =0 VoeF T, heTl  (v). (4.27)

The first claim above follows from (4.13) with s replaced by s+1 and first statement in (4.21). The
second claim in (4.27) follows from the second statement in (4.21). If

ve FYT; and heT: —1° (v),

we define p,, 5., as in the previous paragraph. This extension is continuous at v since &, 4. is. If
he Igfl(v), we take fi,, 5., = 0. This extension is continuous by the continuity of &, s, and the
second statement in (4.27). Finally, R, , satisfies (4.13) by the first statement in (4.27), along with
(4.13) with s replaced by s+1 and the first statement in (4.21).

Remark: The key point in the previous paragraph is the second statement in (4.27), because the
lines th(b; £; [ps;n(v)]) may not extend continuously over F175.

Corollary 4.3 If n, d, k, a, and £ are as in Proposition 3.3, there exists 6,(d) € RT such that
for every almost complex structure J on P™, such that ||J—Jo||c1 <6,(d), and a bubble type T as
above, there exist §,C € C (U7 (P"; J);RT) such that the requirement of Lemma 4.1 is satisfied. In
addition, for every v=(b,v) 6.7:"1’]:5@ there exists an isomorphism

Rp1:T_(b;8) — f,(vm;ﬂ)

such that for every £€T'_(b; £), heZy, and e€(0,20(b)),

’1 >
v RUJ&HCO(A;(Dxh(5(b)))»gv(1) = C(b)‘pl;h(vﬂ N€llb.p.1s and (4.28)
o IR A€ (wn) 22 = 2 D pni(v)Dr ik, (4.29)
87AU(1>1h(€) i€xn(T)

where wy, 1s the standard holomorphic on the neighborhood of co in EU<1>7h:SQ. Finally, the map

v — Ry is Aut(T) o< (SY)! -invariant and smooth on .7:"1’]:5@. It extends continuously over F'T;.
This extension satisfies

Ryy =id  Vbeul (") (4.30)
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The homomorphism Rul constructed above satisfies the extension requirements of the corollary.
Since {I1%!.} 1R, 1€ is holomorphic on A;<1> p(€), (4.29) is equivalent to the s=1 case of (4.12).

It remains to verify (4.28). Let
Yoy = Ub O Gug,-

For each h € Iy and z € Zﬁi% (8(b)), we denote by I8 the parallel transport in the line bundle

u) £ along a path from co to z in Eﬁzg (6(b)) with respect to the connection q;(DV”’(ﬂH. By

*
(1)

the construction of the homomorphism R, 1 above,
{ﬁ&%-}_lév,lg‘zﬁza (5(b)) = {HO<<317> }_l(goqv(l) ) |Eﬁ’£> (5(b)) +eu (5) Vé. el (ba 2’)7
for some homomorphism
eo: T_(0;£) — C®(ZL0 (5(0)); Levppy) St

(1)

Hgv(g)HCO(zﬁ?(g) (5(b))) < C(b)’ml/pHiHb,pJ vEel_(b; £).

Thus, by the same integration-by-parts argument as in the proof of Theorem 2.2 in [Z2], there exist
homomorphisms
e To(0:2) — Lovpy. ¥ heETy, iexa(T), lELT,

v,h;i

such that for all heZ§, i€ xn(T), [,meZ™, and £€T_(b; L)
U] < C(b)6(b —1/2
b i (O] < COBB) (€ 1,

l=m
m I -1 m—
o gl = 3 (1)) X ) (O 1 + 00l
=1

i€xn(T)

(4.31)

The number z;(v) € C is given explicitly in the paragraph preceding Lemma 3.4 in [Z5]. It is
close to
rp(b) € C = Xy —{o0}, where A/ <i, uyy=h.

The estimate (4.28) is obtained by summing up the derivatives of Rv,lf |s;n  at oo with the appro-
(1)

priate coefficients, using (4.31); see the proof of Lemma 4.2 in [Z4] for a similar argument.

4.3 Smoothing Bundle Sections, 11

In this subsection, we take the inductive construction of the previous subsection one step further
to define a homomorphism Rv = Rv,o. However, in this case we will encounter an obstruction
bundle. The homomorphism R, will not extend continuously over FiT , but its restriction to a
cone contained in f)f e Will.

We first recall certain facts concerning the modified gluing map

q~v0;(’7>+1: E’U B EU<1>
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corresponding to the parameter §(b)'/?, as constructed in Subsection 4.2 of [Z5]. Suppose

v = (b, vy, (vh)hef) € .7:'1’]:59.

The map §y;(7)+1 is biholomorphic outside [R| thin necks A, 5, with h€R, of (X, g,) and the ||
annuli

./Zlb,h_.A hUAbh,

with h € I;, where ) 3
Apy = A (6(0) C SpprSy
are annuli independent of v. In addition,
W,1lg, 7y 41(A,) = cOnst VAER,

4.32
=const Yhel—1, U ( )

Uy 1| = const VheTIy;

Gogi(1)+1(Abp) U’1|@v0;<7>+1(AIh)

q~v0;<7>+1(-’zll;h) - A;<1>,h(|vh|2/5(b)) and Hd(jvo;(T)-i-lHCVO(Ab—h) < CO)lvn| Y heIy, (4.33)

if the C%-norm of dqyy;(1y+1 s computed with respect to the metrics g, on X, and gy, on X
Furthermore,

vy -

19Guo;(7) 41l o < C ). (4.34)

We now proceed similarly to the previous subsection. If ve F 179 we denote the completions of
the spaces
D(Suufel)  and  T(Sy AL TS,@u) L)

with respect to the Sobolev norms || - ||y .1 and || - v, by I'(v; £) and T%(v; £). Let
I (v;8) = {RL,sz fef,(vm;ﬂ)}, where R;70§ = £0Guo;(T)+1
Let Ry0=R), Ry1. By (4.28), (4.32), and (4.33),

Hév,bo(u)R ofHUpf ’P( )‘Hf”vm,p,l
< C'O)p)IR08llops  YEET_(viy; £).

Let T'; (v; £) denote the L2-orthogonal complement of T'_ (v; £) in I'(v; £). Similarly to (4.15),

(4.35)

CO) M lellop < 1090wl , < CONENvpr ¥ EET (05 L) (4.36)

for some C'€ C(Ur (P™; J); RY), provided ¢ € C(Ur (P"; J); RT) is sufficiently small. Let % (v 2)
be the image of I'y (v; £) under dy p;(0)-

In contrast to the previous subsection, the operator dy bo(v) 18 not surjective. We next describe a

complement of I'Y % (v; £) in T%1(v; £). Since the operator Ov , is surjective, the cokernel of dy
can be identified Wlth the vector space

TN (b;.L) = Hip @ Loy pi) © B 6) ®Levp )
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where Hy, p is the space of harmonic antilinear differentials on the main component .p of . If
N#(, i.e. ¥pp is a circle of spheres, the elements of Hj, p have simple poles at the nodes of 3. p
with the residues adding up to zero at each node. Since the Riemann surfaces ¥,,, with v € F'7;,
are deformations of Y, with bGUT(E) ) (P™; J), there exists a family of isomorphisms

RS;}: Hy,p — Hop =Hipg(0); Ps v=(b,v) € F'T5,
such that the family of induced homomorphisms
Hyp — TN (0;C)",  {Rypn}(r) = (Rypn.n e VneHyp, n' €T (u:0),
is Aut(7)oc(S') -invariant and smooth on F'T?, continuous on F'7;, and

RVLIb=id  YbeUy (P J). (4.37)

With notation as in (4.8), we define BbEC"X’(Eb; R) by

1, if ze%y;, iex’(7T);
Bo(z) = S 1= Bsy(r(2)), if z€Xs;, iex(T);
0, otherwise.

In other words, 8, =1 on $9(8(b)/2) and vanishes outside of £9(25(b)) C Xp. Let By = Byogqy. If
2eX02(26(b)), we denote by II2"° the parallel transport in the line bundle uy, oL along a path from
;1:6(];)1,<T>+1(ZU(1>;13) to z in X0(25(b)) with respect to the connection Q;O,<T>+1V“’1. For each

v=(bv)eF'T? and  nel®'(h; L), (4.38)
let RU'neT%(v; £) be given by
{R%'n}.w = By(2) %, (w) € O 2€8,, weT,X,.

The image of I'"! (b; £) in T%1(v; £) is a complement, of Fg)r’l(v; £) in T'%(v; £), as can be seen from
Lemma 4.4 below.

If el (b; £), we put

Inll = > 1l

heZy

where 1], ) is the norm of n[,, ) with respect to the metric g, on Xy p. If v and 1 are as
in (4.38) and ||n||=1, we define by
mol IO 0 8) — TN (B €) by wpl(n) = (0, Ry m)an Vol €T (v 2).

vy—

. 0,1 . . : 0,1
Since the space I'27(b; £) is one-dimensional,

_ is independent of the choice of n. We note that
since p>2, by Holder’s inequality

7517 || < CO) oy Vi €T (v; £). (4.39)
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Lemma 4.4 Ifn, d, k, a, and £ are as in Proposition 3.3, there exists §,,(d) € R such that for
every almost complex structure J on P", such that ||J —Jo|lc1 < 0n(d), and a bubble type T as
above, there exist 6,C € C(Ur(P™; J);R™) such that the requirements of Corollary 4.3 are satisfied.
Furthermore, with notation as above, for all v=(b,v)€ FL7h

Tl 09 po () Ruof = —2miD7 (E@p(v))  VEET_(B; L); (4.40)
[Tt 09 s0wél < CO|p@)|[Elopr  VEET(v; £). (4.41)

Finally, the map v—>7rg;1, is Aut(T) o< (SY)! -invariant and smooth on .7:"1’]:5@. It extends continu-
ously over FT;.

The identity (4.40) requires the restriction on the homomorphisms R?}’;D and identification of gluing
parameters described in Subsection 4.2 of [Z5]. It follows from (4.29)7 by the same integration-by-
parts argument as used in the proof of Proposition 4.4 in [Z2]. The estimate (4.41) is obtained by
computing 5%110 (U)R?,’ln; see the proof of Lemma 2.2 in [Z2].

With notation as in the two previous subsections, let
HCU,O . U:’OS.: — ﬂz70£

be the V-parallel transport along the geodesics T—>expuv!0(z)CU,0(z), with 7€10,1]. We put

Lyo=1." 00

CUO (v )OHC 0= O o) i D(v;€) — TO (v 2);

V.,bo
I (v:8) = {TI L € €€l (v;8)} C T (v: 2).
We denote by
Ty—: D(v; £) — T'_(v; £) and T D(v; £) — T (v; £)

the L?-projection maps. Let I (v;£) be the image of T” (v; £) under 7,,_. By the analogue
of (3.2) for (0 and (4.3),

1Z0,08l,.,, < CO|p@)€llopy  VEET(w; L), (4.42)
By (4.35), (4.36), and (4.42),
1€ = 7wl 1 < COIP)[Ellopr ¥ EET (v5.2). (4.43)
By (4.39)-(4.43),
D7(E@pw)] < CO)|p)*|Ruobllops ¥ Roof €l (v; L), (4.44)

For each beug))(]P’”;J) and [w] € PFT |y, let

I_(b; &;[w]) = {(€€T_(b; £); Dr(€@w)=0}.
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Similarly to the previous subsection, the map ®7 is surjective. Thus, the L?-orthogonal com-
plement T'X(b; £;[w]) of T'_(b; £;[w]) in T_(b; L) is one-dimensional. Furthermore, there exists
CeC(Ur (P J);RT) such that

C®)Hwl - [€llbp1 < [Dr(E@w)| < CO)|w| - [|€llops ¥V EETZ(b; £; [w]). (4.45)

vaefl’lgb, let
I (v; £ [w]) = {Ryo&: €€T_(b; & [w])} C T (v; L).

We denote by 't (v; £; [w]) the L?-orthogonal complement of T'_ (v; £; [w]) in T'_ (v; £). Since R,
is close to an isometry on I'_(b; £) with respect to the L? and L{-norms,

1Dr(@w| > C®)  wl|[Ruoéllvpr ¥ RuEETE(v; & [p(v)]), (4.46)
by (4.45). We note that
dimT_ (v; £; [p(v)]) = dimI"_(v; £) = dimT"_(v; £).
Thus, by (4.43), (4.44), and (4.46) applied with w=p(v), the map
ot T (0 € [p(v)]) — T (v; £)

is an isomorphism. Furthermore,

|6 = Fortll, 0 < COp0)] €l ¥ EET- (0.8 [o(W)]). (4.47)

1t bt (B;7), let
T_(b;£) = {€eT_(;£): Dr(E@w)=0 YweF Ty}

Corollary 4.5 If n, d, k, a, and £ are as in Proposition 3.3, there exists 6,(d) € Rt such that
for every almost complex structure J on P", such that ||J—Jo||c1 <6,(d), and a bubble type T as
above, there exist §,C € C(Ur(P™; J); RT) with the following property. For every v=(b,v) € F T;
there exists a homomorphism

R,:T_(b;€) — T'_(v; £)

such that the map v — Ry, is Aut(T) o (SY) -invariant and smooth on .7:"1’]:5@. Furthermore, the
map v — Rv‘f‘_(b-s) 18 continuous on flTéw and

Ry =id Voeul (@) (4.48)

IfveF 1’75@, the homomorphism R, is defined by

va = HCu,oﬁv;va,Of veEel_(b; £).
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Since the maps

v — bo(v), Cu0, Ruo, T—(v; L5 [p(v)])

are continuous over F'75—p~1(0), this family of homomorphisms extends continuously over F' 75—
p~1(0), as can be seen by an argument similar to Subsection 3.9 and 4.1 in [Z3]. This extension is
formally described in the same way as the homomorphisms R, for ve F 1’7 0 On the other hand,
if p(v)=0, we put ) 3

R,§ =1, (R0 = Ryo§  VEET (b L).

The second equality above holds by (4.4). By (4.30), the requirement (4.48) is satisfied.
It remains to check that the extension described above is continuous at every
vt =(b*,0") € FLTsnpL(0).
We note that by (4.47),
Ru& =TI, , (Ruobteno(€))  VEET_(b: L), ve F'TP, (4.49)

for some homomorphism

cvo: (0 £) — I'(v; £)

such that
€000 < CONp@)|IElIbp1  FEET—(b:L; [p(v)]). (4.50)

Suppose v,= (b, v;) 6.7-"17:;0 and &, €T (by; £) are sequence such that

lim v, =b* and lim & =& el (0% 2).

Since T'(b,; £) CT_(b,; £; [p(v,)]) and the maps
v — bo(v), Cu0, Rup
are continuous over F'7j,

lim R, & = lim L T, o (Ro, 06 +€0,0(€)) = Rp€™,

r—00 r—>

by (4.49) and (4.50), as needed.

Corollary 4.5 concludes the proof of Lemma 3.4. It remains to finish the proof of Proposition 3.3.
By Corollary 4.5, R,, induces an injective homomorphism
d;m

] d
R[U} : Vl,k;T b - Vl’k‘¢7’([v])

for be Uy, (P"; J) and [v] = [b, v] € F175. If U is an open subset of U (P J) and W — U is a
smooth subbundle of Vfl,k|U such that

Wy CVER L Vb e UNUE (P ), m e (max(|x(T)|—n, 1), [x(T)]).
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then the map [v] — R|,) induces a continuous injective bundle homomorphism
oW T, W — Vi

that restricts to the identity over U and is smooth over F 17}0.

Finally, for each m € (max(|x(7)| —n,1),|x(7)|), let U C Ur be a small neighborhood of
Uz, (P J) in Xy 5 (P", d) and let

WL — Uz (P ) N U
be a subbundle of V{l’k such that

d;m _yydm
d; d;m/ /

Wl,I:?T p C VUZZT b Vb eUr (P J)NUL, m' € (max(|x(T)|—n,1),[x(T)]). (4.52)
By the next paragraph, such an extension of Vﬁ;z?']"uq'rfu;lapn; ) o Ur (P J)NUY exists if UF is
sufficiently small. By the previous paragraph, the bundle homomorphism

im _ 7 . d;m d
¢nTl:¢wiif£?:r' 7r}176|UW1J€;T — Vik

is continuous and injective, restricts to the identity over Uz, (P™;J)NUr, and is smooth over
F'TP). We define the bundle

Vi — D) (P, d; J) N U

to be the image of q}”f This bundle has the claimed rank by the last statement of Lemma 3.4.
The last condition of Proposition 3.3 is satisfied by the definition of the bundles Vf ;]?77\“7@1@71; 7)
following Proposition 3.3. The proof of Proposition 3.3 is now complete. ’

We now prove the extension claim used in the previous paragraph. By definition,
§IT = {wE%’T: Dq—w:(]}.
Since D7 is a continuous bundle section, if U is a sufficiently small neighborhood of 1;{7"-‘;1(]?”; J) in
Z/l(TO ) (P™; J), there exists a vector bundle 7" — U such that
%1 _ Al A~ &l ~
5 Tmb%(w;J) =3 T‘ﬂgl(Pn;J) and STlgCcs§T" C3T. (4.53)

The neighborhood U and the bundle F17™ can be chosen so that they are preserved by the actions
of Aut(7)oc(S1)!. We then define the vector bundle Wf oy — U by

U= {[b|eUr (P";J): beU}  and
Wi = {[)e Vil beU; Dr(€@w)=0 YweF T}

By the same argument as at the end of Subsection 3.3, Wf ;ITT — U is a vector bundle of rank
da+1—m. By the middle statement of Lemma 3.4 and (4.53), this vector bundle satisfies the
requirements (4.51) and (4.52), as needed.
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