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Abstract

In a previous paper we described a natural closed subset ﬁik(X ,A; J) of the moduli space
My 1(X, A; J) of stable genus-one J-holomorphic maps into a symplectic manifold X. In this
paper we generalize the definition of the main component to moduli spaces of perturbed, in
a restricted way, J-holomorphic maps. This generalization implies that ﬁ?yk(X ,A; J), just

like ﬁLk(X,A; J), carries a virtual fundamental class and can be used to define symplectic
invariants. These truly genus-one invariants constitute part of the standard genus-one Gromov-
Witten invariants, which arise from the entire moduli space ﬁl’k(X ,A;J). The new invariants
are more geometric and can be used to compute the genus-one GW-invariants of complete
intersections, as shown in a separate paper.
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1 Introduction

1.1 Background and Motivation

Let (X,w, J) be a compact almost Kahler manifold. In other words, (X, w) is a symplectic manifold
and J is an almost complex structure on X tamed by w, i.e.

w(v, Jv) >0 YoeTX — X.

If g, k are nonnegative integers and A € Ha(X;Z), we denote by M, (X, A; J) the moduli space of
(equivalence classes of) stable J-holomorphic maps from genus-g Riemann surfaces with & marked
points in the homology class A. Let Sﬁg’k(X, A; J) be the subspace of M, (X, A; J) consisting of
the stable maps [C, u] such that the domain C is a smooth Riemann surface. The compact moduli
space M, (X, A; J) was constructed in order to “compactify” fmg,k (X, A; J) and to define invari-
ants of (X,w) enumerating J-holomorphic curves of genus g in X. If g =0, (X,w;A) is positive
in a certain sense, and J is generic, then Emgvk(X, A;J) is a dense open subset of M, (X, A4;J)
and the corresponding Gromov-Witten invariants do indeed count genus-zero J-holomorphic curves
in X; see [McSa, Chapter 7] and [RT, Sections 1,9], for example. However, if g > 1, it is usually
the case that smg w(X, A; J) is not dense in ﬁg,k(X, A; J) and the genus-g GW-counts include J-
holomorphic curves of lower genera.

If g=1 and (X, w; A) is positive, the above deficiencies are due exclusively to the presence of large
subspaces of stable maps [C, u] in 9 (X, 4; J) such that u is constant on the principal components
of C, i.e. the irreducible components that carry the genus of C. More precisely, if m is a positive
integer, let M7, (X, A; J) be the subset of 90 (X, A; J) consisting of the stable maps [C, u] such
that C is a smooth genus-one curve Cp with m rational components attached directly to Cp, u|c,
is constant, and the restriction of u to each rational component is non-constant. Figure 1 shows
the domain of an element of S)ﬁ‘;”k(X ,A; J), from the points of view of symplectic topology and
of algebraic geometry. In the first diagram, each shaded disc represents a sphere; the homology
class next to each rational component C; indicates the degree of u|¢,. In the second diagram, the
components of C are represented by curves, and the pair of indices next to each component C; shows
the genus of C; and the degree of u|c,. We denote by Wh (X, A; J) the closure of Wfk(X, A; J) in
9 k(X, A; J). The image u(C) of an element of ﬁ{”k(X , A; J) is a genus-zero, instead of genus-one,
J-holomorphic curve in X. We note that if J is sufficiently regular, then

dim MY (X, A;J) = 2((c1(TX), A) + k) = dimy (X, A)  and
dim MY (X, A; J) = dimy x(X, A) + 2(n—m),

where 2n is the real dimension of X. Thus, the complement of Dﬁ(l)k,(X, A; J) in My (X, A5 )
contains subspaces of dimension at least as large as the dimension of zm?’k(X ,A;J), as long as
n>1, i.e. X is not a finite collection of points.

In [Z4, Definition 1.1], we describe a subset ﬁgk(X, A; J) of My (X, A; J), for an arbitrary com-
pact almost Kahler manifold (X, w, J), obtained from My 1 (X, 4; J) by discarding most elements of
the spaces ﬁ?,{(X, A; J) with m <n. In particular, ﬁgk(X, A; J) contains m?k(X, A; J). By [Z4,

Theorem 1.2], ﬁ?’k(X, A; J) is a closed subset of My (X, A; J) and thus is compact. If (X,w; A) is
positive in the same sense as in the genus-zero case and J is generic, im% w (X, A; J) is a dense open
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Figure 1: The domain of an element of M3, (X, 4;J)

subset of ﬁ?’k(X ,A; J). In addition, ﬁ?k (X, A; J) carries a rational fundamental class, which can
be used to define a symplectic invariant of (X,w) counting genus-one J-holomorphic curves in X,
without any genus-zero contribution in contrast to the standard Gromov-Witten invariants; see
[Z4, Subsection 1.3]. Unlike the genus-zero case, ﬁ?yk(X , A; J) has the topological structure of a
singular, instead of smooth, orbivariety.

A J-holomorphic map into X is a smooth map v from a Riemann surface (3, 7) that satisfies the
Cauchy-Riemann equation corresponding to (J, j):

- 1

Ojju = i(dquJoduoj) = 0.
The Riemann surface (X, j) may have simple nodes. In this paper we generalize the results of [Z4]
to smooth maps u, from genus-one Riemann surfaces, that satisfy a family of perturbed Cauchy-

Riemann equations:

dyju+ v(u) =0.

The perturbation term v(u) is a section of the vector bundle
A?,:}T*E@u*TX = {neHomg(TE,u*TX): Jon=—-noj} — .

We will study the moduli space My 1 (X, A4; J,v) of (J,v)-holomorphic maps, i.e. of solutions to the
perturbed Cauchy-Riemann equations, for a continuous family »=v(u) chosen from a proper linear
subspace of the space of all such families; see Definition 1.2. A key condition on v will be that if
the degree of u restricted to the principal components of ¥ is zero, then the restriction of v(u) to
the principal components and all nearby degree-zero bubble components is also zero. Such a family
v=v(u) will be called effectively supported.

We will show that if v is sufficiently small and effectively supported, then the moduli space
9y x(X, A; J,v) contains a natural closed subspace ﬁ?vk(X,A; J,v) containing ﬂﬁ?7k(X,A; J,v),
i.e. the subspace of maps with smooth domains; see Definition 1.3 and Theorem 1.4. For a generic
choice of v, the “boundary” of ﬁ(l]k (X, A; J,v) is of real codimension two and thus ﬁ(l]k (X, A; J,v)

determines a rational homology class. This virtual fundamental class (VFC) for ﬁ?,k(X, A; J) does
not change under small changes in v and is an invariant of (X,w). It can be used to define new
GW-style invariants, which we denote by GW?’ i~ These invariants differ from the standard GW-
invariants by a combination of the genus-zero GW-invariants of X; see Subsection 1.2 below for
some special cases.



We note that effectively supported families v = v(u) are in no sense generic in the space of all
families. If fact, for a generic v, i)ﬁ(l) o(X, A; J,v) is dense in My (X, A; J,v), and the latter space
determines the standard GW-invariants of (X,w). In particular, the statements of the previous
paragraph do not hold for a generic family v of perturbations.

An algebraic approach to reduced genus-one GW-invariants is suggested by Vakil and the author
at the end of [VaZ2]. It still remains to verify that the resulting algebraic invariants agree with the
symplectic ones defined in this paper (whenever the target space is a smooth algebraic variety),
but this should be deducible from the desingularizations for certain natural sheaves constructed by
Vakil and the author in [VaZl, Section 5].

Since the symplectic invariants arising from the moduli space ﬁ%k(X ,A; J,v), with v effectively
supported, are closely related to the standard GW-invariants, they do not in principle carry any
new information. In practice, they behave better geometrically. In particular, Li and the author
show in [LZ] that there is a simple relation between reduced genus-one GW-invariants of a projec-
tive complete intersection and twisted reduced genus-one GW-invariants of the ambient space. This
relation mimics the corresponding well-known relation in genus zero (see [LZ, (1.2)], for example),
but no relation in positive genera had been even conjectured until [LZ]. Combining [LZ, Theo-
rem 1.1] for the reduced genus-one invariants constructed in this paper with the desingularization
of Vakil and the author in [VaZl] and Theorem 1.1 below, the author finally confirms the 1993
mirror symmetry of Bershadsky-Cecotti-Ooguri-Vafa [BCOV] for the genus-one GW-invariants of
a quintic threefold!in [Z5].

In Subsection 1.3, we describe a geometric reinterpretation of the VFC constructions of Fukaya-
Ono [FuOn] and Li-Tian [LT] which is well suited for defining a VFC for ﬁ?yk(X,A; J). We
state the main results of this paper in Subsection 1.4. In Subsections 2.1 and 2.2, we generalize
the setup of [Z4] for J-holomorphic maps to (J,v)-holomorphic maps. In Subsection 2.3, we state
three propositions that together are equivalent to Theorem 1.4. They are proved in Subsections 2.4
and 2.5 by extending some of the analytic arguments of [Z4, Sections 3,4] to the present situation.
The difference between the standard and reduced GW-invariants is analyzed in Section 3; see also
the next subsection.

1.2 Standard vs. Reduced Gromov-Witten Invariants

From the construction of VFC for ﬁik(X, A; J) in Subsection 1.4, it is immediate that the dif-
ference between the standard and reduced genus-one GW-invariants of X must be a combination
of the genus-zero GW-invariants of X. The exact form of this combination can be determined
in each specific case from Proposition 3.1. In this subsection, we give an explicit expression for
the difference between the standard and reduced genus-one GW-invariants in the two simplest cases.

For each =1, ...k, let

eVlIﬁg’k(X,A;J)—)Xa [Zvylu"'vyk;u} —>u(yl)7

!This is the genus-one analogue of the 1991 genus-zero mirror symmetry prediction of Candelas-de la Ossa-Green-
Parkes [CDGP], which was proved in several different ways in the mid to late 90s.



the evaluation map at the I/th marked point. We will call a cohomology class ¥ on _ﬁg,k(X yA )
geometric if ¢ is a product of the classes eviyy for y € H*(X;Z). We denote by Z" the set of
nonnegative integers.

Theorem 1.1 Suppose (X,w) is a compact symplectic manifold, A € Hy(X;Z)*, k€ ZT. If J
i an w-compatible almost complex structure on X and v is a geometric cohomology class on
My k(X, A; J), then

. 0 if dimg X =4;
GWL(4;9) — GWIN (As) = 4 ) 7
1x(4i) i (A59) {2<61<2§X>’A> GW (As), if dimg X =6.

Theorem 1.1 is proved in Section 3 by studying the obstruction theory along each stratum of the
moduli space ﬁLk(X , A; J,v), after capping it with 9. This proof generalizes to higher-dimensional
manifolds X and more general cohomology classes; an explicit formula is obtained by the author
in [Z6]. In fact, for geometric cohomology classes and higher-dimensional manifolds X, the dif-
ference is given by an expression similar to the correction term in [Z3, Theorem 1.1]; this can be
seen a priori from Proposition 3.1 and [Z3, Subsection 3.2]. A special case of Theorem 1.1 is [Ge,
Theorem Al; its proof has not yet appeared.

Theorem 1.1 has a natural, but rather speculative, generalization to higher-genus invariants. Sup-
pose that the main component

ﬁ;k(X,A; J) C ﬁg,k(X, A;J)
is well-defined, as is the main component
70 R—
M, (X, As Jv) CONy (X, A; J,v)

for a sufficiently large subspace of perturbations v of the 0-operator so that ﬁ%k(X, A; J,v) has
a regular structure for a generic v in this subspace; see Subsection 1.4 for the g =1 case. If so,
ﬁ;k(X , A; J) carries a virtual fundamental class and determines reduced genus-g GW-invariants
GWS% (A;1). Theorem 1.1 and its proof should then generalize to higher-genus invariants. If
dimg X =6, the expected relationship is

g—1

0 X ALy — ! 0;X 4.
GW (A1) = GWE (A4;9) = Y CF ((e1(TX), A)) GW i (A; ),

g'=0
where GW87,§ =GWy . The coefficients C’g ((c1(T'X), A)) are given by Hodge integrals, i.e. integrals
of natural cohomology classes on the moduli spaces M, . of curves. They are of the form expected
from the usual obstruction bundle approach. For example,
d(a—5)

24

Cs ((5—a)d) =—

1/ 2+d(a—5)\> \ I
CY((5—a)d) = 2(;‘1)> + (c(E*@TX)c(Loy @TPY) ™, [Maa] x [P']),
where Lo 1 —>ﬂ271 is the universal tangent line bundle, E —>M271 is the rank-two Hodge bundle,

and P! is viewed as a smooth degree-d curve in Y. The coefficients Cg/(<cl (T'X),A)) can be
expressed in terms of the numbers Cy (g—g¢', X, A) of [Pa] and vice versa.



1.3 Configuration Spaces

In this subsection we recall certain configuration spaces that are standard in the theory of Gromov-
Witten invariants. We then define what we mean by effectively supported perturbations of the
Oj-operator that are central to this paper.

Fix p>2. Suppose X is a compact manifold, A€ Hy(X;Z), and g, k€ Z*. We denote by Xgk(X,A)
the space of equivalence classes of stable L{-maps u: ¥ — X from genus-¢g Riemann surfaces with
k marked points, which may have simple nodes, to X of degree A, i.e.

u|X] = A € Hy(X; Z).

Let %S,k(X’ A) be the subset of X, (X, A) consisting of the stable maps with smooth domains.
The spaces X, (X, A) are topologized using LE-convergence on compact subsets of smooth points
of the domain and certain convergence requirements near the nodes; see [LT, Section 3]. The
spaces X, (X, A) can be stratified by the smooth infinite-dimensional orbifolds X7(X) of stable
maps from domains of the same geometric type and with the same degree distribution between

the components of the domain; see Subsections 2.1 and 2.2. The closure of the main stratum,
X)X, A), s Xgu(X, A).

If J is an almost complex structure on X, let
0,1
Lo (X, A T) — X (X, A)
be the bundle of (T'X, J)-valued (0,1) LP-forms. In other words, the fiber of FS’i(X,A; J) over a
point [b] =[%, j;u] in X, (X, A) is the space

T (X, A3 )| 0 = TN (b;.7) /Aut(b), where T%'(b;J) = LP(3; AY; T*S@u TX).

[6]

Here j is the complex structure on ¥, the domain of the smooth map u. The bundle A%T*Z@u*TX
over X consists of (J, j)-antilinear homomorphisms:

NG S@uTX = {neHom(TS, w'TX): Jon=—noj}.

The total space of the bundle F (X A; J) — X4 (X, A) is topologized using LP-convergence on
compact subsets of smooth pomts of the domain and certain convergence requirements near the
nodes. The restriction of I ok (X ,A; J) to each stratum X7(X) is a smooth vector orbibundle of
infinite rank. Let
0,1 0,1 .
Qig’k(X, A; J) =T (Xgr(X, A),Fg’k(X,AJ))

denote the space of all continuous multisections? v of FS’IIC(X , A; J) such that the restriction of v
to each stratum X7 (X) is smooth.

We define a continuous section of the bundle Fg’}g(X, A J)— X, 1(X, A) by

5J([Z,j;u]) = 5J7ju = %(du—l— Joduoj).

2Qur term multisection corresponds to locally liftable multisection described by [FuOn, Definition 3.5].



By definition, the zero set of this section is the moduli space ﬁg,k (X, A; J) of equivalence classes
of stable J-holomorphic degree-A maps from genus-g curves with k& marked points into X. The
restriction of 9 to each stratum of X41(X, A) is smooth. The section 0y of FSZIIC(X, A; J) is Fred-
holm, i.e. the linearization of its restriction to every stratum X7 (X) has finite-dimensional kernel
and cokernel at every point of 9;'(0)NX7(X). The index of the linearization of 9; at an element
of img,k(X, A; J) is the expected dimension dim, (X, A) of the moduli space M, (X, 4; J).

If v is a sufficiently small element of F[g):]lq(X , A; J), the space

M,y x(X, A; J,v) = {3;+v} 1 (0) C Xyh(X, A)

is compact, since ﬁgk(X,A;J) is. For a small generic choice of v, ﬁgk(X,A;J, v) admits a
stratification by orbifolds of even dimensions; see the first remark below. The main stratum,

M L (X, A3 J,v) = My (X, A5 J,v) N XD (X, A),

is a smooth orbifold of dimension dimg ;(X, A). Since X, (X, A) is locally a Banach space, there
exist arbitrary small neighborhoods U of

ﬁg,k(X’fk Jv) — m(g),k(X,A; J,v)
in X, (X, A) such that
H(U;Q)={0}  VI>dimgu(X,A)—1.

Since M, (X, A; J,v)—U is compact, via the pseudocycle construction of [McSa, Chapter 7] and
[RT, Section 1], mg’k(X , A; J,v) determines a homology class

(M k(X A5 J,0)] € Hgim, ,(x,4) (W, U; Q)
~ Hdingg(X,A) (W7 Q)v
for any small neighborhood W of ﬁg,k(X, A;J,v) in X4 (X, A). The isomorphism between the
two homology groups is induced by inclusion. Since v can be chosen to be arbitrarily small, this

procedure defines a rational homology class in an arbitrary small neighborhood of ﬁg’k(X VA )
in X4 5(X,A). This topological reinterpretation of the VFC constructions done in [FuOn| and [LT]

turns out to be very suitable for constructing a VFC for the moduli space ﬁ(l)k (X,A4;J).

Remark 1: The strata of My (X, A;J,v) locally are unions of finitely many smooth suborbifolds
of a smooth orbifold. The branches of the strata correspond to the branches of v. We will call such
objects orbifolds, nevertheless, as these generalized orbifolds are just as suitable for the topological
purposes of [FuOn], [LT], and this paper; see in [FuOn, Sections 3,4] for details.

Remark 2: The above construction defines a homology class
Qw € Hgim, ,(x,4)(W;Q)
for every neighborhood W of M, (X, A; J) in X, (X, A). Furthermore, if

Llw' w w— W



is the inclusion map of a neighborhood W into a larger neighborhood W', then

twrwx Qw = Q.

Thus, the above construction defines VFC for ﬁg,k (X, A; J) as an element of the inverse limit of
the homology groups H.(W;Q) under inclusion, taken over all neighborhoods of M (X, 4;J) in
Xgr(X,A). If (X,J) is algebraic, M, (X, A; J) is a deformation retract of a neighborhood W,
and one can then define VFC for ﬁg,k(X ,A;J) as a homology class in such a neighborhood W.
However, these formalities are not essential for defining GW-invariants as intersection numbers of
M, (X, A; J,v) with certain natural classes on X5 (X, A).

For a small generic perturbation v of 97, the closure of S)ﬁg w(X, A; J,v) is the entire moduli space

M, (X, A; J,v). In particular, the results of [Z4], that are summarized in Subsection 1.1, cannot
possibly generalize to fmgk(X, A; J,v), even with g =1, for a generic v. Instead, for g =1, we
consider non-generic perturbations v of 97, which we now describe.

An element [¥;u] of X (X, A) is an equivalence class of pairs consisting of a prestable genus-one
Riemann surface ¥ and a smooth map u: ¥ — X. The prestable surface ¥ is a union of the
principal component(s) ¥p, which is either a smooth torus or a circle of spheres, and trees of
rational bubble components, which together will be denoted by X 5. Let

ﬁ?k}(X,A) = {[Su] € X1 4(X, A): u[Sp] £ 0 € Ho(X;Z)}.

Suppose
] € X p(X, 4) - 210 (X, 4), (1.1)

i.e. the degree of u|y, is zero. Let x°(2;u) be the set of components ¥; of X such that for every
bubble component ¥, that lies between ¥; and X p, including ¥; itself, the degree of uly,, is zero.
The set x(2;u) includes the principal component(s) of ¥.. We give an example of the set x°(2; u)
in Figure 2. In this figure, as in Figure 1, we show the domain ¥ of the stable map (¥;u) and
shade the components of the domain on which the degree of the map w is not zero. Let

o= Uz
i€X(S5u)

Definition 1.2 Suppose (X,w) is a compact symplectic manifold, J= (Jt)iefo,1] @8 a continuous
family of w-tamed almost structures on X, A € Ho(X;Z), and k € ZT. A continuous family of
multisections v = (Vt)iejo,1), With vy € @?:i(X, A; Jy) for all t €10,1], is effectively supported if for
every element

b=[%,u] € X1 (X, )% (X, 4)
there exists a neighborhood Wy, of X0 in a semi-universal family of deformations for b such that

(X5 ')

s, = 0 vV [2hd'] € X 1(X, A), tel0,1].



We use the C''-topology on the space of all almost complex structures on X, in this definition and
throughout the rest of the paper. The bundles FO h (X, A; Jy) are contained in the bundle I'} KX A)
over X (X, A) with the fibers

Le(X, Ay =T (0)/Aut(b), where T'(b) = LP(S;T"S@pu'TX),

and with the topology constructed as for FO 1(X A; J). Finally, let b= [3;u] be an element of
X1%(X,A). A semi-universal universal family of deformations for b is a fibration

O'btz;[b — Ab

such that A,/Aut(b) is a neighborhood of b in X1 (X, A) and the fiber of o, over a point [¥';u/] is ¥'.

If v is effectively supported and [¥;u] is as in (1.1), then the restriction of v; to a neighborhood
W of X0 in ¥ is zero for all t. Furthermore, if {[$);ux]} is a sequence converging to [¥;u] in
X1,,(X, A), then for all k sufficiently large and a choice of representatives (X;uy) there is an open
subset Wy, of ¥y, such that v4(X; ui)|w, =0 and the open sets W, converge to W; see the beginning
of Section 3 in [LT] for a detailed setting.

For example, if [¥;u] is as indicated in Figure 2 and v is effectively supported, then v4(X;u) van-
ishes on a neighborhood of ¥pUX, in ¥. On the other hand, even if ¥;, had not been shaded,
i.e. the degree of uly, were zero, there still would have been no condition on 14(X; u)ls,,, because
the degree of uly, is not zero.

If J=(Ji)iep,1) is a continuous family of w-tamed almost structures on X, we denote the space of
effectively supported families v as in Definition 1.2 by &* (X, A J). Similarly, if J is an almost

complex structure on X, we denote by &% (X, A;J) the subspace of elements v of 05(1) llﬁ(X A; J)
such that the family 1y =v is effectively supported

Remark: Since v is a multisection of F(g]’,lc(X , A; J), which is a union of orbi-vector spaces

0L (X, 4; J)|,; = T (b J) / Aut(b)

[6]

v is a family of equivalence classes of elements of FSZ}g(X ,A;J) and can be locally represented by

a family of elements of T%1(;.J). In order to simplify notation, we will use the same symbol for
both, as the exact meaning will be determined by the context.

1.4 Main Results

In this subsection we state the main results of this paper. We begin by describing the subspace
ﬁ(1)7k(X, A; J,v) of My k(X, A; J,v). We then state the main compactness result, i.e. Theorem 1.4.

One of its consequences is that for a small generic choice of v the moduli space ﬁ?k(X VA Jv)

determines a virtual fundamental class for ﬁ?k(X , A; J), which is independent of J; see Theo-
rem 1.5 and Corollary 1.6.

Suppose [¥;u] is an element of X (X, A). Every bubble component ¥; C ¥p is a sphere and has
a distinguished singular point, which will be called the attaching node of ;. This is the node of
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Figure 2: An illustration of Definition 1.3

Y; that lies either on X p or on a bubble X;, that lies between Y; and X p. For example, if ¥ is as
shown in Figure 2, the attaching node of ¥, is the node ¥, shares with the torus. If [¥;u] is as
in (1.1), we denote by x(X;u) the set of bubble components ¥; such that the attaching node of ¥;
lies on ¥ and the degree of u|y, is not zero, i.e. ¥; is not an element of x°(¥;u); see Figure 2.
These components are called first-level (X;u)-effective in [Z4, Subsection 1.2].

Suppose v € (’5‘if‘k(X,A; J) and [Z;u] is an element of M (X, 4;J,v) as in (1.1). Since ¥; C ¥p
is a sphere, we can represent every element of X; (X, A) by a pair (X;u) such that the attaching
node of every bubble component ¥; C X5 is the south pole, or the point co= (0,0, —1), of S2CR3.
Let eso=(1,0,0) be a nonzero tangent vector to S? at the south pole. If i € x(;u), we put

D;i(L;u) = d{uls, }| e € Ty X.

HACS)

Since uly, is J-holomorphic on a neighborhood of co in ¥;, the linear subspace C-D;(X;u) is
determined by [;u], just as in the v =0 case, which is considered [Z4, Subsection 1.2]. We also note
that U\zg is a degree-zero holomorphic map and thus constant. Thus, v maps the attaching nodes
of all elements of x(X;u) to the same point in X, just as in the =0 case of [Z4, Subsection 1.2].

Definition 1.3 Suppose (X,w,J) is a compact almost Kahler manifold, A € Hy(X;Z)*, and
keZ*. Ifve (’5'fk(X,A; J) is an effectively supported perturbation of the 0j-operator, the main
component of the space ﬁLk(X, A; J,v) is the subset ﬁ(ik(X, A; J,v) consisting of the elements
(S5 u] of My x(X, A; J,v) such that

(a) the degree of uls, is not zero, or

(b) the degree of uls,, is zero and dimc Spanc, ) {Di(X;u): i€ x(X;u)} < [x(3;u)l-

This definition generalizes [Z4, Definition 1.1]. As in [Z4], we let
Hy(X;Z)" = Ho(X;Z) — {0}.

If [¥;u] is as in (1.1), [¥;u] belongs to ﬁgk(X,A; J,v) if and only if the branches of u(3) cor-
responding to the attaching nodes of the first-level effective bubbles of [¥;u] form a generalized
tacnode. In the case of Figure 2, this means that the complex dimension of the span of the images
of du at the attaching nodes of the bubbles hi, hy, and hs is at most two.

Theorem 1.4 Suppose (X,w) is a compact symplectic manifold, J = (Jt)lse[o,l} 1S a continuous
family of w-tamed almost complex structures on X, A€ Hy(X;Z)*, and keZ™. If

ZE(Vt)te[o,l} € nyk(Xa A; J)
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is a family of sufficiently small perturbations of the 0j,-operators on X1 (X, A), then

ﬁ(l),k(Xa A;17Z) = U ﬁ?,k(Xa Aa Jtayt)
te[0,1]

18 compact.

The requirement that 14 be sufficiently small means that it lies in a neighborhood of the zero section
with respect to a Cl-type of topology, with appropriate interpretations of the rate of change in the
normal directions to the boundary strata of X; (X, A). This topology will be made apparent in
the proof.

Theorem 1.4 follows immediately from Propositions 2.5-2.7; see also the beginning of Subsection 2.3.
These propositions generalize [Z4, Propositions 5.1-5.3].

Theorem 1.5 Suppose (X,w,J) is a compact almost Kahler manifold, A € Ho(X;7Z)*, k € Z7,
and W is a neighborhood of ﬁ?’k(X, A J) in X1 k(X,A). If v e 8FL(X, A J) is a sufficiently

small generic perturbation of the dj-operator on X1 (X, A), then ﬁgk(X, A; J,v) determines a
rational homology class in W. Furthermore, if J = (Jt)te[o,l] s a family of w-tamed almost complex
structures on X, such that Jy=J and Jy is sufficiently close to J for all t, and vy and vy are
sufficiently small generic perturbations of 5J0 and 0y, on X1 (X, A), then there exists a homotopy

v=(")iclo] € BT(X, 4;J)
between vy and v, such that ﬁ?k(X,A;i, v) determines a chain in W and
8ﬁ(1),k(X7 A7l7 Z) = ﬁ(l),k(X7 A7 le Vl) - ﬁ(l),k(X7 A7 J07 VO)'

Corollary 1.6 If (X,w,J) is a compact almost Kahler manifold, A € Hy(X;Z)*, and k € Z7,

the moduli space ﬁgk(X, A; J) carries a well-defined virtual fundamental class of the expected
dimension. This class is an invariant of (X,w).

It is straightforward to see that for a generic v € Qj‘ifk(X, A; J) the space My (X, A; J,v) is stratified
by smooth orbifolds of even dimensions. The strata of

% (X, A5 J,v) = Myu(X, 45 J,w) N X (X, 4)

have the expected dimension, based on the index of a certain elliptic operator. In particular, the
dimension of the main stratum of smf’k} (X, A;J,v) is dim; ,(X, A), while the dimensions of all

other strata of i)ﬁiok} (X, A; J,v) are smaller than dim; 4 (X, A).

On the other hand, suppose Uy, (X;J) is a stratum of the complement of smiok} (X,A;J,v) in

9 1 (X, A; J,v); see Subsection 2.2 for more details. The sets x%(X;u) and x(3; u) are independent
of the choice of [¥;u] in Ur,(X;J). We denote them by x°(7) and x(7), respectively. By
Definition 1.3, for every [¥,u] €Ur,,(X;J) and i€ x°(T), uly, is constant. Thus,

Uz (X3 T) € My x X7(X),
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where M7 is a product of |x°(7)| moduli spaces of smooth genus-zero and genus-one curves
and X+(X) is a certain collection of |x(7)|-tuples of stable smooth genus-zero bubble maps. For
example, if the elements of Uy, (X;J) are described by Figure 2,

MT = Ml,g X ./\/l073.

In this case, X7(X) consists of triples of stable genus-zero bubble maps each with a special marked
point, corresponding to the attaching nodes of the elements of x(7), such that the values of three
maps at the special marked points are the same. If v € &{° (X, A;J) is generic, we have a fiber
bundle ’

o uT,l/(X? J) — Mr,

with fibers of the expected dimension. An index computation then shows that
dimhr(X;.7) < dimy (X, 4) +2(n—|x(T)]), (1.2)

where 2n is the dimension of X as before.

We denote by Er — U7, (X;J) the direct sum of the |x(7)| universal tangent line bundles for
the special marked points of the elements of each x(7)-tuple in X+(X) and by

evp: U, (X;J) — X

the map sending an element [¥;u] of U7, (X; J) to the value of uw on ¥p. Let g, — PE7 be the
tautological line bundle. By Definition 1.3,

Ur o (X;7) N (X, A J,v) = 7 (Z7),

where

wr: PEr — Z/[7’7,,(X; J)

is the bundle projection map and Z7 is the zero set of the section of the vector bundle
Vi, @ evpTX — PET

induced by the differentials D;, with i € x(7), defined above. It is straightforward to see that this
section is transverse to the zero set if v € &% (X, A; J) is generic. Thus,

dim Uz, (X; J) NI (X, A; J,v) < dim Z7
= dimUr,,(X;J) + 2(tkc By —1) — 21rke (v, ®evpTX)
< diml,k(Xa A) - 27

by (1.2).

By the above, for a generic v € &%, (X, A; J), ﬁ{ik(X,A; J,v) is stratified by smooth orbifolds of
even dimensions, such that the main stratum is of dimension dim; (X, A), while all other strata
have smaller dimensions. Thus, the first claim of Theorem 1.5 follows from Theorem 1.4 by the
same topological construction as in Subsection 1.3. The second claim of Theorem 1.5 is obtained
by a similar argument.

12



By the first claim of Theorem 1.5, we can define a homology class for ﬁik(X ,A; J), which is

induced by ﬁ?k(X ,A; J,v), for any J. By the last statement of Theorem 1.5, this class is inde-
pendent of the choice v and does not change under small changes in J. Since the space of w-tamed
almost complex structures on X is path-connected, it follows that the virtual fundamental class of

ﬁ?’k(X, A; J) is an invariant of (X,w).

Remark: 1t is simplest to view the last statement above as the independence of all numbers
GW?? (1) obtained by evaluating natural cohomology classes on ﬁ?,&X VA ).

2 Proof of Theorem 1.4

2.1 Notation: Genus-Zero Maps

We now describe our notation for bubble maps from genus-zero Riemann surfaces and for the spaces
of such bubble maps that form the standard stratifications of moduli spaces of stable maps. We
also state analogues of Definition 1.2 for genus-zero maps with one and two special marked points.

In general, moduli spaces of stable maps can stratified by the dual graph. However, in the present
situation, it is more convenient to make use of linearly ordered sets:

Definition 2.1 (1) A finite nonempty partially ordered set I is a linearly ordered set if for all
11,19, h €1 such that i1,ia<h, either i1 <ig or io<i7.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there ezists
0el such that 0<i for alliel.

If ] is a linearly ordered set, let I be the subset of the non-minimal elements of I. For every hel,
denote by ¢, € I the largest element of I which is smaller than h, i.e. 1, =max {iEI 1< h}.

We identify C with S$2 —{co} via the stereographic projection mapping the origin in C to the
north pole, or the point (0,0, 1), in S2. If M is a finite set, a genus-zero X-valued bubble map with
M-marked points is a tuple

b= (Mv Iz, (jay)7u))

where [ is a rooted tree, and
z:[—C=8%—{o0}, j:M-—I, y:M-—C, and u:l—C>(S%X) (2.1)

are maps such that uy,(co) =1, () for all he I. We associate such a tuple with Riemann surface

Yy = <|_| Ebﬂ;>/~, where i ={i}xS* and (h,00) ~ (tn, ) VheEI, (2.2)
el

with marked points
y(0) =0, yi) € Sy, and  yo(b)=(0,00) € 205

and continuous map uy: Xy — X, given by ublgbﬂ. =u; for all i€ I. The general structure of bubble
maps is described by tuples 7= (M, I;j, A), where

A; = ui]S? € Hy(X;Z)  Viel.
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We call such tuples bubble types. Let X7(X) denote the subset of X, {G}uM(X7 A) consisting of
stable maps [C; u| such that

[C;ul = [(Z5, (0, 00), (1, yi)iear); us)

for some bubble map b of type T as above, where 0 is the minimal element of I; see [Z2, Section 2]
for details. For [€{0}UM, let
ev;: X7r(X) — X

be the evaluation map corresponding to the marked point y;.

With notation as above, suppose
[b] = [Ma Ia z, (]7 y)7 U] € %0,{0}I_IM(X7 A)

Let Xo(b) be the set of components 3 ; of ¥ such that for every component 3, 5 that lies between
>; and Eb,f)? including > ; and 21;,()7 the degree of u]gbﬁ is zero. For example, if b is as indicated
by Figure 4 on page 22, the set x"(b) consists of the two components that are not shaded. The set
x°(b) is empty if and only if the degree of the restriction of u; to the component containing the
special marked point is not zero. Let

5p = {(0,00)} U | S

iex?(b)
We denote by x(b) the set of components ¥ ; such that the attaching node of 3 ; lies on Eg and
the degree of up|s, , is not zero, i.e. ¥, is not an element of x°(b). If the degree of ub|gb0 is not

zero, x(b)={0}. If A#0 and the degree of upls, , is zero, the set x(b) is not empty, but does not

contain 0.

Definition 2.2 Suppose (X,w) is a compact symplectic manifold, J = (Ji)ieo,1] 45 a continuous
family of w-tamed almost structures on X, A € Ho(X;Z)*, and M is a finite set. A continuous
family of multisections v = (vt);e(0,1), with vt € (‘58:}0}HM(X,A; Ji) for all t €]0,1], is effectively
supported if for every element b of xoy{o}uM(X» A) there exists a neighborhood W, of Zg m a
semi-universal family of deformations for b such that

Vt(b/)‘zb,mwb =0 v [b/] € %0,{0}LIM(X7 A)a te [07 1]

Definition 2.3 Suppose (X,w), J=(Ji)ic,1), A, and M are as in Definition 2.2. A continuous
family of multisections v = (v¢)e(0,1], with v, € @8’}0 1}I_,M(X, A; Jy) for allt€[0,1], is semi-effectively
supported if for every element b of Xo o, 13um (X, A) such that the marked point y1(b) lies on %)

there exists a neighborhood W, of 22 in a semi-universal family of deformations for b such that

Vt(b/)|2b,mwb =0 VY [V]eXopnum(X,A), tel0,1].
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We denote the spaces of effectively and semi-effectively supported families v as in Definitions 2.2
and 2.3 by
&G royun (X5 43 ) and o.g0.13um (X, A5 ),

respectively. Similarly to the genus-one case, if J is an almost complex structure on X, we denote by
Qi(ef{o}UM(X, A; ) and Qﬁ(sf?m}UM(X, A; J)
the subspaces of elements v of &'} (X,A;J) and e

0.{0}UM 0,{0,1}uM(X’ A; J) such that the family
vy=v is effectively supported or semi-effectively supported, respectively.

If [b] = [¥p; up] is an element of Xy 1oy (X, A) is as above and i €x(b), we put

D;b= d{ub’Eb,iHooeoo eT, (oo)X

blsy

If VE@ZS{O}I_'M(X, A; J) and b is an element of

Mo oyun (X, A; Jv) = {40} 1(0),

then Ub\zb,i is J-holomorphic on a neighborhood of oo in 3 ; and C-;D;b is determined by b,
jus‘fs in Subsection 1.4. This is also the case if v € 6%??0,1}uM(X’A; J) and [b] is an element
of My r0.13unm (X, A; J,v) such that y1(b) € ¥f. In both of these cases, Ub‘xg is a degree-zero
holomorphic map and thus constant. Thus, u, maps the attaching nodes of all elements of x(b) to

the same point in X, as in the genus-one case of Subsection 1.4.

2.2 Notation: Genus-One Maps

We next set up analogous notation for maps from genus-one Riemann surfaces. In this case, we also
need to specify the structure of the principal component. Thus, we index the strata of X; (X, A)
by enhanced linearly ordered sets:

Definition 2.4 An enhanced linearly ordered set is a pair (I,R), where I is a linearly ordered set,
N is a subset of Inx Iy, and Iy is the subset of minimal elements of I, such that if |Iy|>1,

N = {(i17i2)7 (i27i3>7 R (in—lain)a (vall)}
for some bijection i: {1,...,n} —Iy.

An enhanced linearly ordered set can be represented by an oriented connected graph. In Figure 3,
the dots denote the elements of I. The arrows outside the loop, if there are any, specify the partial
ordering of the linearly ordered set I. In fact, every directed edge outside of the loop connects a
non-minimal element i of I with ¢,. Inside of the loop, there is a directed edge from 71 to io if and
only if (il, ig) €N.

The subset N of Iy x Iy will be used to describe the structure of the principal curve of the domain
of stable maps in a stratum of X; 57(X, A). If X=0, and thus |Iy|=1, the corresponding principal

15



o X Xy

Figure 3: Some enhanced linearly ordered sets

curve Y p is a smooth torus, with some complex structure. If X=£(), the principal components form
a circle of spheres:

Sp = ( || {z’}xSQ)/ ~,  where  (i1,00) ~ (i2,0) if (i1,i) EN.
€1y
A genus-one X-valued bubble map with M-marked points is a tuple

b: (M,I,N;S,l‘, (j7y)7u)’

where S is a smooth Riemann surface of genus one if R=( and the circle of spheres ¥ p otherwise.
The objects x, j, y, u, and (X, up) are as in (2.1) and (2.2), except the sphere X, 5 is replaced

by the genus-one curve X, p =S. Furthermore, if X=0), and thus Iy = {0} is a single-element set,
uy € C(S; X) and y, €5 if j =0. In the genus-one case, the general structure of bubble maps is
encoded by the tuples of the form 7 = (M, I,R;j, A). Similarly to the genus-zero case, we denote
by X7(X) the subset of X1 5/(X, A) consisting of stable maps [C; u] such that

[C;u] = [(Ss, (o, Yi)ienr); up)

for some bubble map b of type T as above. If v is an element of Qi‘fM(X ,A), we put

Ut (X; ) = {[b] € X7(X): {95+v}(b) = 0}.

All vector orbi-bundles we encounter will be assumed to be normed. Some will come with natural
norms; for others, we choose a norm, sometimes implicitly, once and for all. If §— X is a normed
vector bundle and JERT, let

gs = {ve&: |U]<(5}.

If © is any subset of §, we take Q5= N §s.

2.3 Outline of the Proof of Theorem 1.4

Suppose (X, w) is a compact symplectic manifold, J = (J;)e[o,1] is a continuous family of w-tamed
almost complex structures on X, A€ Ho(X;7Z)*, M is a finite set, and

v=(U)iejoa] € BT M (X, A5 J)
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is a family of sufficiently small perturbations of the 9;,-operators on X1 p7(X, A). Let ¢, and b, be
sequences of elements in [0, 1] and in ﬁ? m (X, A; Ji vy,) such that

lim t,=0 and lim b, =be€ My (X, A4; Jo, ).
r—>00

r—>00

We need to show that beﬁ%M(X, A; Jo, vp). By Definition 1.3, it is sufficient to assume that b is
an element of Uy, (X; Jo) for a bubble type

T = (M, I,%;5,4)

such that A; =0 for all minimal elements i€ I.

We can also assume that for some bubble type

T = (M1 ,X;j,A)
br €UTry,, (X Jy,) for all r. If A7=0 for all minimal elements i€ I’, the desired conclusion follows
Proposition 2.5 below, as it implies that the second condition in Definition 1.3 is closed with respect
to the stable map topology. If A}#0 for some minimal element i€ I” and ¥’ #(), i.e. the principal
component of ¥ is a circle of spheres, Proposition 2.6 implies that b satisfies the second condition
in Definition 1.3. Finally, if 8 =( and A} #0 for the unique minimal element ¢ of I’, the desired

conclusion follows from Proposition 2.7. We note that the three propositions are applied with b
and b, that are components of the ones above.

Let [n] = {1,...,n}.

Proposition 2.5 Suppose (X,w) is a compact symplectic manifold, J= (Jt)te[og} 18 a continuous
family of w-tamed almost complex structures on X, A€ Ho(X;Z)*, M is a finite set, and

v=()e] € (’58f{o}uM(X, A J)
is a family of sufficiently small perturbations of the 0;,-operators on Xo qoyum (X, A). If t. and [by]
are sequences of elements in [0,1] and in 5)3?8 {0}uM<X’A5 Ji,,1,.) such that

lim t, =0 and lim [b] = [b] € My oym (X, A; Jo, v0),

r—>00 r—>00
then either
(a) dime Spanc,,) {Dib: i€x(b)} < [x(b)], or
(0) (21 Uy €0, Doy © Spanc, ) {Dib: i€ x(b)}-

Proposition 2.6 Suppose (X,w) and J are as in Proposition 2.5, n€Z*, Ay,..., A, € Hyo(X;Z)*,
My, ..., M, are finite sets, and for each k€ [n]

v = (Vkt)ieo1) € G0 jo,130m, (X5 Aks J)

is a family of sufficiently small perturbations of the 0y, -operators on Xo,{0,1}u0, (X,A). Lett, and
[br,r] be sequences of elements in [0,1] and in O (0,1}UM; (X, Ag; Iy, vy, ) for k€n] such that

evy (bkﬂﬂ) = evo(bk+17r) Vke [n—l], evl(bn,,«) = evo(bl,r),
lim ¢, =0, and lim [by,] = [bx] € Mo 10,1300, (X, Ak; Jo, ko) VEe[n].
T—>00 T—>00
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If y1(by) eEgk for all k€ [n], then

k=n
dimgc Spanc j,){Dibr: i € x(br), k€[n]} < Z Ix(bg)|-
k=1

Proposition 2.7 Suppose (X,w), J, A, and M are as in Proposition 2.5 and
v=(U)ieloa] € BT (X, A5 J)

is a family of sufficiently small perturbations of the 0y, -operators on X1 (X, A). Let t, and [b,]
be sequences of elements in [0,1] and in 931(1)7M(X,A; Ji,,4,.) such that

lim t, =0 and lim [b] = [b] € M1 (X, 4; Jo, ).

r—>00 r—>00

If b=(X;u) is such that the degree of u|x, is zero, then

dime Span(c, s, {DPib: i€ x(b)} < [x(b)].

Propositions 2.5, 2.6, and 2.7 follow immediately from the estimates (2.12), (2.17), and (2.35)
below. These estimates are obtained by combining the approach of [Z4, Sections 3,4] with some
aspects of the local setting of [LT, Section 3]. A key step is [Z4, Lemma 3.5] that gives power
series expansions for the behavior of derivatives of J-holomorphic genus-zero maps under gluing.
They lead to estimates on obstructions to smoothing genus-one J-holomorphic maps from singular
domains in [Z4, Lemma 4.4]. While the maps we encounter are not J-holomorphic on the entire
domain, they are J-holomorphic around the part of the domain which is essential for the estimates
of [Z4, Lemmas 3.5,4.4], i.e. X in the notation of Subsections 1.3 and 2.1 above. The argument
in the next two subsections is in fact an extension of [Z4, Section 5], but is far more detailed (as
promised in [Z4]).

2.4 Proofs of Propositions 2.5 and 2.6

Let (X,w), J, A, M, v,
b= (M,I;x,(j,y),u), and up = upls,
be as in the statement of Proposition 2.5. For each i €I, we put
D(b;i) = {€€ LY (Do u;TX): £(00)=0}  and  TOM(byi) = LP(Sy,: A T8y, @u; TX),
where j is the complex structure on ;. We denote by
D gy vobit T(by3) — T (b;4)

the linear operator induced by the linearization D j, ., of the section 5JO—|—1/0 at b.
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We put
I = {iel: A;#0}. (2.3)

For each i€ I", choose a finite-dimensional linear subspace
T (byi) € (S x X5 AGL i T8, @m3 T X)
such that
PO (b;4) = T D gy i @ {{id xu;}*n: ne T (b;4)}

and every element of f‘%l(b; i) vanishes on a neighborhood of oo € 3 ; and the nodes x(b) € £j ;
with v, =i. If icI—I", we denote by f‘(i’l(b; i) the zero vector space. Let 7 be the bubble type of
the map b. We put

U={t=M,Lv,(Gy)d): V]eXr(X),
Wi{5JO’j+V0}ub/ € {1d><u;}*1~“(l’1(b, Z) \V/iEI},
where
e FO’I(b'; Jo) — Fo’l(b’;i)

is the natural projection map. By the Implicit Function Theorem, I/ is a smooth manifold near b.
Let
evop: U — X, b’—>ub/(0,oo),

be the evaluation map for the special marked point 0; see also Subsection 2.1. Let
F=uxc!

be the bundle of smoothing parameters. We denote by FP the subset of F consisting of the elements

with all components nonzero. For each v= (¥, v), where ' €U and v= (vi);c, and i € x(b), we put

pi(v) = th eC and xi(v) = Z (mi/(b’) th) e C,

0<h<i 0<i'<i O<h<i’

where z;(b') is the point of ¥y ,, to which the bubble Xy ; is attached; see (2.2) and Figure 4 on
page 22.

For each sufficiently small element v= (', v) of F?, let
Qv Yy — Xy

be the basic gluing map constructed in [Z2, Subsection 2.2]. In this case, ¥, is the projective line
P! with |M |41 marked points. The map ¢, collapses |I| circles on ¥,,. It induces a metric g, on ¥,
such that (X,, gy) is obtained from Xy by replacing the || nodes of ¥ by thin necks. Let

Uy = Uy © Gy

We fix a Jyp-compatible metric ¢ on X and denote the corresponding Jy-compatible connection
by V. The map ¢, induces norms || - ||, p1 and || - ||, » on the spaces

D(S;upTX)  and  T(S,; A% T8, @uiTX),
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respectively; see [Z2, Subsection 3.3]. We denote the corresponding completions by I'(v) and T'%!(v).
The norms || - ||yp,1 and || - ||, p are equivalent to the ones used in Section 3 of [LT].

Let ¢, and b, be as in Proposition 2.5. Since the sequence [b,| converges to [b], for all r sufficiently
large there exist

V.el, vy = (b, 0,) € FP, and & e D(vy)
such that

. / _ . _ _ . _
lim b, =0, rh_r>noo lvur| =0, &(00) =0 Vr, Tlﬂ}noo 1&r v p1 =0, (2.4)

r—>00
and b= (Ebr ; Ubr) = (Evﬁ €XPy,, fr)-

The last equality holds for a representative b, for [b,].

Remark: The existence of b, v,, and §, as above can be shown by an argument similar to the
surjectivity argument in [Z2, Section 4], with significant simplifications. In fact, the only facts
about the bubble maps b/, we use below are that they are constant on the degree-zero components
and holomorphic on fixed neighborhoods of the attaching nodes of the first-level effective bubbles.
Such bubble maps b/, along with v, and &, can be constructed directly from the maps b,; see the
beginning of Subsection 4.4 in [Z2].

If §eRY, b eld, and v=(V/,v) e F? is sufficiently small, we put

¥9(0) =%y U U Ay ;(0), where Ay ;(6) ={(i,2): || 25_1/2/2} C Yy imS? (2.5)
i€x(b)
and  ¥9(0) = ¢, (Z(9)). (2.6)

Choose § € RT such that for all i € x(b) all elements of T'"*(b; i) vanish on Ap,i(20) and for all r
sufficiently large

l/t(b/r)‘zg/(%):O and Vt(br”ng(m):O vV telo,1].

Such a positive number § exists by our assumptions on the spaces f‘(l’l(b; i) and the family of per-
turbations v; see Definition 2.2.

For every element b = (Sy;uy) of U and every sufficiently small element v = (¥, v) of F?, we
denote by
Holy, (50/(6); Tovo)X)  and  Holyy (39(6); Teve) X)

the spaces of holomorphic maps from 39, (§) and ¥2(§) into the complex vector space (Tevo () X5 Jo)-
Let exp be the V-exponential map. For every b’ €U as above, ub/\zgl is constant and wy | 59,(26) is
Jo-holomorphic. Thus, if § is sufficiently small, there exist continuous families of maps

(I)b’ S L?(Eg/ ((5)7 End(Tevo(b/)X)) and 19(,/ S HOIJO (Eg(é), Tevo(b’)X)
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with & €U such that for all ¥ sufficiently close to ¥’

1

Vo1 S 92’ and

expeVO(b/) (@b/(z)ﬁb/(z)) = ub/(z) Vz € 22/(5)

‘I’bf!zg, =Id, | @y —1d

This statement follows immediately from the proof of Theorem 2.2 in [FIHS]. Similarly, for every

b= (Eb,.; Ub,-) = (Ew; eXp“vr&)

with 7 sufficiently large, up, [50 (25) is Jt.-holomorphic. Since [[&||v, p1 tends to zero as r ap-
proaches oo, if § is sufficiently small and r is sufficiently large, there exist

Oy, € LY (20 (0); End(Toyy) X)), b, € Holyy (59, (8); Tovyer)X)

such that

vr,p,1 S C(HJO_JtT ”Cl +|UT‘1/p+||£THUT7P:1) and

| @b, — v, 0 g,

In the inequality above, both norms ||- ||, p1 are the norms induced from the pregluing construction
as in Subsection 3.3 of [Z2]. With these norms, the existence of @, and ¥, follows easily from the
proof of Theorem 2.2 in [FIHS]; see the paragraph following Lemma 3.3 in [Z4].

If i € x(b) and ¥ €U, let w; be the standard holomorphic coordinate centered at the point oo in
Yy i=52 If meZ™, we put
1 dam

Dz(m)ﬁb/ - mmﬁb/,i(wi) w; =0 € Teyov) X, where ﬁb’,i:'ﬂb/bu,f

Similarly, for all r sufficiently large, we put

1 dam

DMy, = —
0 U, m! dw™

Dy a(w)|

0 € TeVo(b/T)Xa

w=l

where w is the standard holomorphic coordinate centered at the point oo in X, ~ S2. The key
step in the proof of Propositions 2.5 and 2.6 is the power series expansion

k=m
m m—1 m— k k
Dy =Y ( - ) S ) (o) (D0 4B} € (T X. Jo),  (227)
k=1 iex(b)
for some 62(-? € Tovy(v)X such that

™)) < 0672 (|| g, — Joller +1or VP41 Ny 1) - (2.8)

The expansion (2.7) is obtained by exactly the same integration-by-parts argument as the expan-

sion in (2a) of Lemma 3.4 in [Z4]. We point out that 65,11)

the estimates (2.7) and (2.8) is illustrated in Figure 4.

is independent of m. The m =1 case of
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X(b) = {hh h47 hS}
p(U) = (Uhl s Uh3zVhy Uhgvh5)
hs Thy (V) = Ty (0) + vy (b))

Lhs (b;)
xhl( r) A mhs(b;)

Dél)ﬂbr = up, (D;(Lll)'l?b;) +Up,Un, (Dl(zt)ﬁbi-) +Vps Upsg (D;L?ﬂb'r)

Figure 4: An example of the estimates (2.7) and (2.8)

We now complete the proof of Proposition 2.5. By the m=1 case of (2.7) and (2.8),

D00, = > i) (D 9y) | < C(1, = Toller + o P+l o pn) D loion)]- (29)
iex(b) i€x(b)

On the other hand, since @ (i,00)=1Id and Yy (i,00)= 0 for all i€ x(b),
Dt =DM, Viex(b). (2.10)
Furthermore, since

|3, (0, 00) ~1d[ < C|| @y, — Py 0qu,

vr,p,1 = C/(HJO_JU HCl+|U7’|1/p+||frHv7-,p,1)

and 9%, (0, 00) = 0,

1 1
[Dgbe = D00, | < C (1= s +Hor P+ 6y [P,

. (2.11)

By (2.9)-(2.11),

‘D()br - Z pi(vr)(Dib;) < C(HJO_JtrHCl+|Ur|l/p+“§r||vr,p,1) Z ’Pi(vr)‘ (2.12)
i€x(b) iex(b)

for all r sufficiently large. Since
i (oo len +on /P4 el 1) = 0

and D;bl, — D;b for all i€ x(b), (2.12) implies that b must satisfy one of the two conditions in the
statement of Proposition 2.5.

We next complete the proof of Proposition 2.6. By the assumption on the bubble maps by made
in Proposition 2.6 and by Definition 2.3, evq(bx) =evy(bx) for all k. Thus,

evl(bk) = eVo(bk) =evy (bl) A ]{,l S [TL]

Let ¢ denote the point evg(b;). We identify a small neighborhood of ¢ in X with a small neighbor-
hood of ¢ in T, X via the exponential map exp and the tangent space to X at a point close to ¢
with T, X via the parallel transport with respect to the Jp-linear connection V.
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For each pair (k,r), with r sufficiently large, let (b, ., Vg, £k,») be an analogue of (b;., vy, &) for by ;.
We put

Ckyr = eVO(bZVT) e T, X and
516,7‘ = evi(br,r) —evo(bg,) = evi(bg,) — eVO(bZ/»,r) eT,X.

By the assumption on the maps by, made in the statement of Proposition 2.6,

|G + Chir — Gt o NG| Ve [n—1],
Kn,r + En,r - Cl,r‘ < C’Cn,r‘ : ‘gnﬂ“ ;

k=n
— ’51,r+--~+5n,r| < Erz‘&e,r‘v (213)

k=1

for a sequence ¢, converging to 0.

On the other hand, the marked point yi(by,) = y1(vk,) of the bubble map by, lies in 9 (4).
Thus, ’

Cor = Do, (y1 (V) Z Y1 (k) D(m)z?bk BE (2.14)

where y1 (vg,) € S —{oo} is viewed as a complex number. Combining (2.14) with (2.7) and (2.8)
and then taking the lowest-order terms, we obtain an expression of the form

‘fk,r - > (yl;i(b;,r)—xi;l(b;w))*lpi;l(um)(Dgl)ﬂ%)

iex (i) (2.15)

C(IlJo—Te o + s P4 [k o) S |pi(onr)|
1€x(bg)

see the proof of Corollary 3.7 in [Z4] for a derivation and the notation involved. For the present
purposes, the only fact we need to know about (2.15) is that

0 < |pit(vrr)| < |vnre|  Viex(br), ke[n]. (2.16)

In particular, p;1(vg ) is a sequence of nonzero complex numbers that approaches zero as r tends
to infinity. By (2.13) and (2.15),

k=n
’Z > (b ) — i (1)~ it (V) (DL 1917' Z > i (k)| (2.17)

k=1 iEX(bk) k=11iex bk)

for a sequence {€,} converging to 0. Since
Dy =Dilf, — Diby  as r—o0,

(2.16) and (2.17) imply the conclusion of Proposition 2.6.
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2.5 Proof of Proposition 2.7

We prove Proposition 2.7 by combining elements of the previous subsection with a version of the
two-stage gluing construction of [Z4, Section 4]. At the first stage, we smooth out all nodes of an
element [X';u/] close to b that lie away from the principal component(s) ¥ of ¥'. This stage will
be unobstructed. The objective of the second stage of the gluing construction is to smooth out the
remaining nodes of ¥’. We obtain Proposition 2.7 by estimating the obstruction to achieving this
objective.

Let (X,w), J, A, M, v,
b= (M,I,%;S z, (j,y),u), and u; = upls,
be as in the statement of Proposition 2.7. For each i€ I, we define
D jowoibi: D(b;3) — T (b;4)
as at the beginning of the previous subsection. With I™ C I as in (2.3), choose
[0 (byi) € D(Sp x X5 AG) w1 TSy @737 X)

as in Subsection 2.4. Let 7 be the bubble type of the map b. We put

U= {V=(MI,%5.2,,y)u): V]eXr(X),
7i{ 8105 +v0}uy € {idxui} T (b;4) Viel},

where
e FO’I(b/; Jo) — Fo’l(b/;i)

is the natural projection map. By the Implicit Function Theorem, U is a smooth manifold near b.
Ifv'eld, uy|s,, , is a degree-zero Jp-holomorphic map and thus is constant. Let

evp: U — X, V' — uy (Zy.p),
be the map sending each element b’ of I to the image of the main component of its domain.
For each b €U, let
T_(t) = {€€T(V'): miD gy o€ € {idxuy ;} TV (b;0) Vie I},
where Ub’,izub’|2b/,i- We denote by
LM (1 X) C T (Sy x X; A 7T Sy @m TX)
the subspace obtained by extending all elements of each of the spaces
s 0) = 1% (b;4)

with i€ ] by zero outside of the component ¥y ; of Y.
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We put R
I ={hel:yel},

where I is the subset of minimal elements of I. Let
F—U
be the bundle of gluing parameters. In this case, F has three distinguished components:

ﬁ:ﬁN@ﬁO@ﬁla where

—%N :Z;f X (CN, .%1 :Z;{ X (Cffh, and ./_?0 y @Txh(b/)zb/;p A bIEZ;{.
hely

The total space of .7-"0 has a natural topology; see [Z4, Subsection 2.2]. We denote by F FO the subset
of F consisting of the elements with all components nonzero. If ¢ € I, let h(i) € I be the unique
element such that h(i) <i. For each v=(',v), where b’ €lf and v=(v Vi);enuiy and i€ x(b), we put

vo = (', (vi)iexun ) vr = (U, (vi)iei_p,)s
th eC, and  pi(v) = pi(v) - Vh) € Ty (0) s
h(i)<h<i

The component v; of v consists of the smoothings of the nodes of ¥, that lie away from the prin-
cipal component.

For each sufficiently small element v=(b',v) of FO let
vyt Em — Eb/

be the basic gluing map constructed in [Z2, Subsection 2.2]. In this case, the principal component
Yu,;p of ¥y, is the same as principal component Xy.p of ¥y, and X, has |I;| bubble components
Y,.n, With A€ I1, attached directly to ¥,,.p. The map g, collapses |I—I1| circles on the bubble
components of ¥,,. It induces a metric g,, on ¥, such that (3,,, g,,) is obtained from ¥ by
replacing |f —I1| nodes by thin necks. Let

Uny = Uy © oy -
The map ¢, induces norms || - ||y, p1 and || - ||, , on the spaces
{€eP (S}, TX) Elx,, =0} and  {n€D(Sy;; AY T*S,, @u), TX) s, , =0}

respectively; see [Z2, Subsection 3.3]. We denote the corresponding completions by I'g(v;) and
T ().

Remark: The weights for the norms || - ||y, p1 and | - ||v,,p are constructed as [Z2, Subsection 3.3],

but on each of the |I;| bubbles separately. The restrictions of these norms to each of the bubbles
are equivalent to the norms used in [LT, Section 3].
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Fix ¢ € RT such that for every h € I; the disk of radius of 8¢, in Xjp around the node zy(b)
contains no other special, i.e. singular or marked, point of ;. For each (V',v) € F with v e
sufficiently close to b and v sufficiently small, let

Gup:2: 2o — Xy and Guo:2: 2 — Dy

be the basic gluing map of [Z2, Subsection 2.2] corresponding to the gluing parameter vy and
the modified basic gluing map defined in the middle of Subsection 4.2 in [Z4] with the collapsing
radius €. In this case, 3, is a smooth genus-one curve. For each h € I1, the maps gu,;2 and Gy,;2
collapse the circles of radii |vy|'/? and e, respectively, around the point zp,(b') € Yy,.p. Once again,
the map

Qv = Qug;20 Quy * 2y — Dy

induces a metric g, on ¥, such that (X, g,) is obtained from ¥ by replacing all nodes by thin
necks.

For each t€|0, 1], let g; be the J;-compatible symmetric two-tensor on X given by

1

gt(s ) = i(g(JO‘, Ji) + g(Ji-, Jo*)).

If ¢ is sufficiently close to 0, g; is positive-definite, i.e. it is a Jy-compatible metric on X. We denote
the Ji-compatible connection induced by the Levi-Civita connection of the metric g; by V¢ and the
corresponding exponential map by exp?.

If W is a small neighborhood of b in & and § € Rt is sufficiently small, let
X1(W,0) = {(Zu,5 10y £) = (Suys expy, §) s v=(,0) € Flw; €€TB(v1), [|€]|vp1 <3},
For each element (X,,;u,, ¢) of X1(W,4), we put
Uy, = Upy € O Gug;2- (2.18)
The map @y,;2 induces norms || - ||, 1 and || - ||, on the spaces
D(Su;ufTX)  and  D(Sy;AYL T8, @u) TX),

respectively. For t sufficiently small, we use the metric g; on X to define a norm on the latter
space. Let I'(v;€) and F?’l(v; €) be the corresponding completions. If v=(¥,v), we put

I (v;€) = { (Ie(Coqu,)) © Guoiz: CET- (V) } C T(v5€),
where Il¢ is the V-parallel transport along the V-geodesics T —€XDy,,, TE. Let
Iy (v;€) € T'(v;€)

be the L%-orthogonal complement of I'_(v; &) defined with respect to the metrics g, on ¥, and g
on X. For every t€|0, 1], we denote by

m D (S0 T8y @rul, (TX) — (80 AS LTS, @u) TX)
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the natural projection map.

For each b/ €U, each sufficiently small element v= (', v) of FO and §eRT, we define

Ay i(8),55(0) C Ty, 20 (0) C 8y, and X9(8) C X,

(i) the maps g, and Gy,;2 are defined for all vef?!w;

by (2.5) and (2.6). Choose a neighborhood W of b in U, 6, € (0, €;), and § € (0, 67/2) such that
(ii) for all i € x(b) all elements of T%*(b; i) vanish on Api(6p);

iii ut(b’)‘zgl(%b) =0 for every t€[0,1] and b’ € W,

)
iv) ut(l;)‘zg(%b) =0 for every t€[0,1] and every b=(Z,; expuvlygq) such that

VEFW, (Supi ey ) €X1(W,6), CET(v3€), and [[Clupn 5.
Such a positive number § exists by our assumptions on the spaces F(i’l(b; i) and the family of per-
turbations v; see Definition 1.2.

(
(

Suppose v eﬁg)lw and (X4, ; Uy, ¢) € X1(W, §). By the construction of the map §,,;2 in Subsection 4.2
of [Z4] and the assumptions that § <42/2 and &, <ep,

oozt Sv — E0(0p/2) — Suy — 29 (66/2)

is a biholomorphism. Thus, by the assumption (iv) above with ¢ =0, for every ¢ € [0, 1], we can
define

0,1 % * ~%
Ut & € ot (EUI;AJ:]T Em@uvhgTX) by G2Vt = V(o5 Uoge)s Vi g

0 (5 = O
If v=(V,v), we put

Ft,5(v) = {gEPB(Ul): ngvl,p,lgé; {517—’—’/75;01,5}”0175 € Ft{qm Xuvhé}*f%l(b/;X)}-

Let t, and b, be as in Proposition 2.7. Since the sequence [b,] converges to [b], for all r sufficiently
large there exist

b;" eW, v = (b;avr) € f?7 & € Ft,é(vr)a and ¢, € F+(U7‘;£r)
such that

lim B=b, Jim fo[ =0, T [|Gllupn =0, m Gl =0, (2.19)

r—>00
and b= (D, 5w, ) = (S expy, , G)- (2.20)
The last equality holds for a representative b, for [b,]. The existence of (v, &, () for
br € MY 1 (X, A5 Tt 11,) (2.21)

as above will imply that b satisfies the second property in Definition 1.3.
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Remark: Similarly to the genus-zero case, the existence of (v, &, () can be shown by a variation
on the surjectivity argument of [Z2, Section 4]; see also the paragraph following Lemma 4.4 in [Z4].
This is also the case if the map g,,;2 is used instead of Gy,;2 in (2.18) . However, using the map
Juo2 in (2.18) makes the maps u, ¢, with £ € I'y 5(v), closer to being (Jy,¢)-holomorphic. Since
ubf]gb,; » 1s constant, the choice of Gy,;2 for constructing approximately (J¢, v)-holomorphic maps
is analogous to that of Section 3 in [LT].

For each ’Uéﬁg)h/v and £y 5(v), let
Dl T(v;6) — TP (156
be the linearization of section 97, +14 at (Xy;uy¢) defined via the connection V. We denote by
T2 (0;€) € TP (v:€)

the image 'y (v;&) under Df};g. By the same argument as in [Z2, Subsection 5.4], there exists
C eR™ such that

C¢llwpa < || Db

provided W and § are sufficiently small.

< CO¢llopa Y tE[0,0], vEFllw, €€Tss(v), CeTy(v;€), (2.22)

v,p —

Put
I0L (03€) = {m{quxuv e} n: nel2 (¥ X)) C TP (v;€).

If ¢ is sufficiently small, by the same argument as in [Z2, Subsection 3.5] and our assumptions on
the spaces I'_(b; 1),
Iy (v:€) = Ty (0:6) @ T (0:6) @ TR (u36), (2:23)

for some subspace F (U €) of F (v; €) isomorphic to the cokernel of the composition:
70 Dy oty s DO) — TOLY; Jy) — TOLY; Jo) /{id xuy } TO (W X).
This cokernel is naturally isomorphic to
LMW Jo) = Hy' @y Toypy X € TN J0),

where ”Hg,’l is the one-dimensional complex vector space of (0, 1)-harmonic forms on the principal
component Y. p of Xy, If Xy.p is a circle of spheres, the elements of Hg,’l have simple poles at the
nodes of ¥y.p with the residues adding up to zero at each node. Recall that (¥, g,) is obtained
from Xy by replacing the nodes of ¥ with thin necks. The map

qu - EU — Eb/

collapses each neck at its thinnest position to the corresponding node. For each element 7 of
%' (v/; J;), we can construct an element R, ¢n of FS 1 (v;€) by parallel transporting 7 along the
restriction of u, ¢ to gyt (App(62)) for each h € Iy and cutting it off with a smooth function that
drops from 1 to 0 over the annulus g, (A4, (67) — Apn(62/4)); see the middle of Subsection 4.2
in [Z4] for details. We denote by 1“2’1 (v; €) the image of T”!(V/; J;) under R,,.
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Remark: In the construction of the map Gy,.2 in [Z4, Subsection 4.2], dx corresponds to eg above.
In the construction of R, ¢n in [Z4, Subsection 4.2], 6k corresponds to 02 /4 above.

Let {(-,-)); denote the Hermitian inner-product on I'" (v; €) induced by the J;-compatible metric g
on X. For each neT' % (¥'; Jt), let

HTIH = Z <77$h(b’)a77:vh(b’)>t»

hel

where (-, ) is the hermitian inner-product on 7—[2,’1® JiLevp )X defined via the metric g on X and

the original metric gy on Xy. From the construction of R, in [Z4, Subsection 4.2] and Holder’s
inequality, it is immediate that

(', Rogn)),| < Clnlllln lop ¥ neT2 (W5 0y), 0/ €TP (v;6); (2.24)

see [Z4, (4.11)]. Another essential property of the above construction is that

[{(DLeC, Rogn)),| < Clol"2lnlli¢lops ¥V t€[0,8], vEFlw, E€Tys(v), CET(v;€);  (2:25)

see part (7) of Lemma 4.4 in [Z4].

Due to the assumption (2.20), the condition (2.21) is equivalent to
{5‘]757“ +Vt7"}uvr7£r + ‘D'(t):;f,,,c’f’ + Nf;:;gTCT = O (226)

The quadratic term ]\7{‘;;5 satisfies

INEeCll,, S CIClEpa Y EE[0,8], veF|w, E€Tis(v), CET(v;€) st [Cllopr <5 (2.27)

We will obtain Proposition 2.7 by estimating the inner-product ((-, -))¢, of each term in (2.26) with
each element of F?’l (Ur; &r).

L]

First, for every UEJ??|W and €Ty 5(v), let

Aol TP (0) — TRy (0 @ TR (v5€)

be the projection map corresponding to the decomposition (2.23). Then,
ﬁfj;Z{th Ut fuy g = fffjg {07+ @502Vt .¢ } (tor,60Gu02)
= ﬁfj;—g ({05 +Vtwr. ¢ b ttwr £) © Ougi2) + 7}325% (Uo,¢0Gug;2) (2.28)
= ﬁz;zajt (U £0Gug;2)-
The reason for the second equality is that the map gy,;2 is holomorphic over the support of vy, ¢.
This last equality follows from the definition of I'; 5(v) above. By our assumptions on b’ and &,

)= const == duvl,gogc]vo;g ‘(71 =0.

U -1
U1,§ U();qul (Zb/;P)

-1
Q'Ul (Eb/;P
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By the construction of the map gy,;2, the restriction of gy,;2 to the complement of g, I;qull(Eb/; P)
in ¥, is holomorphic outside of the annuli

Avh = Qoo (A n(2lunl?/e})),

with heI;. The map ¢, maps such an annulus isomorphically onto the annulus of radii €,/2 and ¢,
around the point ) € Xy, p. The key advantage of using the map Gy,;2 instead of gy,;2 in (2.18)
is that

||dgv0;2|]CO(AU’h) <Clv,| Vhel, (2.29)

where C%-norm of dqy,;2 is computed with respect to the metrics g,, and g, on ¥,, and 3, re-
spectively.
Since o, ¢g,.5(A, ) 18 Ji-holomorphic, (2.7) and (2.8) give
duer s aamll » < Clonl® S |a)| ¥ e (2.30)
1€x(T),h(i)=h

see part (2b) of Corollary 3.8 in [Z4]. From (2.28)-(2.30), we conclude that

[t {0n+vituell,, <C D lpiv)] VY te[0,8], veFlw, (€Tis(v), (2.31)
1ex(T)

if W and ¢ are sufficiently small. This estimate is the analogue of the first estimate in part (3) of
Lemma 4.4 in [Z4]. Separately, by the construction of the homomorphism R, ¢,

supp Ruen Nsuppi) =0V Ry enelp! (v;€), Relyl (v;€).
Thus, by the Ji-holomorphicity of uv1,£|i]‘u0;2(«4v W) (2.7), (2.8), (2.28), and integration by parts,

‘ <<{6Jt +Vt}uU7£’ Rv»£n>>t + 271—1 Z<le/7 nmh(z) (b/) (pl (U))> ‘
ex(T)

< C(IIe=Tollcr+ 0P + (0] PPt 1)y pa) I D lpi()];
1ex(T)

(2.32)

see the proof of part (6) of Lemma 4.4 at the end of Subsection 4.2 of [Z4]. Here (-,-) is the
Hermitian inner-product on (7¢,#)X, Jo) defined via the metric g on X.

We now finish the proof of Proposition 2.7. By (2.22), (2.26), (2.27), (2.31), and the definition
0,1
Of F+ (Ua 5)7
G llorpr < C Z ‘pi(vr)
1ex(T)

for all r sufficiently large. Combining this estimate with (2.24), (2.25), and (2.27), we obtain that
for all neT% (b Jo),

, (2.33)

‘<<DZTT;§TCT> va-,£1-77>>trl S C|UT|1/2||77|| Z |pZ(UT)
iex(T)

[N s Royeam)), | < Clogllnll D |oi(or)-
iex(T)

)

(2.34)
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Finally, by (2.19), (2.26), (2.32), and (2.34), for a sequence ¢, converging to 0

YDy (i0r))) | < nlinll Yo lpsCon)| Y €M @ Ty X. (2.35)
1ex(T) 1ex(T)

Since v, € F? for all r, pi(vr) #0 for all i € x(b). Thus, (2.35) implies the conclusion of Proposi-
tion 2.7, since D;bl, — D;b as r — 0.

3 Proof of Theorem 1.1

3.1 Summary

Suppose (X,w), A, k, and J are as in the statement of Theorem 1.1 and
€ HmESD (01 4 (X, A;7); Q)

is a geometric cohomology class. By definition,
)= HeVZk,Ul for some € H=d (X;7), d; <2n.

For each [ €[k], choose a pseudocycle representative
fi: Vi — X

for PDxy. In particular, Y] is a disjoint union of smooth manifolds. The dimension of one of
them, Yj.;un, is dj; the dimensions of all others are at most d;—2. The map f; is continuous, and its
restriction to each smooth manifold is smooth; see Chapter 7 in [McSa] or Section 1 in [RT]. Let

I=k 1=k
ev Hevl X1 (X, A) HX,
1=k =k 171 I=k - I=k
f=11rY EHY H and  Vion =] [ Yiirun-
=1 =1 =1 =1

With (f;)iep) as above, for any v e 6(1):,16(X, A; J) and a bubble type T as in Subsection 2.2, let

%l,k(Xu Aa f) = {(b7 Z) E:{l,k(Xv A) X}_/ : ev(b):f(z)},
ﬁl’k(X, A v f) = (ﬁljk(X,A;J, V)xi_/) NX1 (X, 45 f), and
Ur (X T; f) = U (X5 T)XY) N X1 k(X A5 f).

If v is sufficiently small, the space My (X, A; J,v; f) is compact. Let

=k =k
A =T]ax c[[xxx
=1 =1
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be the k-fold product of the diagonals. If v and f; are chosen generically, then
My (X, As v f) €M (X, A3 J,v) X Vi (3.1)

and the map
evx f1 MY 1 (X, A5 J,v) X Yoy — (X )P

is transverse to AI)“(. Thus, My (X, A; J,v; f) is a compact zero-dimensional orbifold. By definition,
GWi(A;9) = HIp(X, 45 v )] (3.2)
if v is sufficiently small and v and f; are generic.
Similarly to the previous paragraph, if ves € 87% (X, 4; J), let
MY (X, A3 J, vess f) = (T (X, A5, ) X V) A1 (X, A3 J, v ).
For generic veg €Q5§fk(X, A; J) and fi,

MY (X, A3 T, vesi £) © MY (X, A; T, Ves) X Yiam (3.3)

and the map
evx f: im(l)’k(X,A;J, V)X Yin — (X2)*

is transverse to A’)“(, by the second half of Subsection 1.4. Thus, ﬁ?’k(X, A; J, ves; f) is a compact
zero-dimensional orbifold. By definition,

GWIX (As) = D) (X, A3, vess £, (3.4)

if veg is sufficiently small and ves € 6‘195k (X, A;J) and f; are generic.

If ves € 67 (X, A; J) and f; are generic, (3.1) and (3.2) do not generally hold for v =ves because
the restriction of the bundle section 9+ ves is not transverse to the zero set along some strata

X7(X, A) € X1p(X, 4) - 2% (X, 4).

Instead, we will apply (3.1) and (3.2) with v replaced by ves+v for a generic v € 6(1)’2(X, A; J)
which is sufficiently small relatively to ves. In such a case, the compact zero-dimensional orbifold

ﬁl,k()(vA;Ja’/'*‘Veshf) (3.5)
will lie in a small neighborhood of
ﬁl,k(‘Xv7 A> J7 Ves; f) - %1,]6(X? Aa f)

We will express the cardinality of this orbifold in terms of data intrinsic to 9 (X, A; J, Ves; f).
From the transversality of the relevant maps, it is straightforward to see that there is a unique
element of (3.5) close to each of the elements of ﬁgk(X, A; J, Ves, f). Thus,

GW1% (A3 y) — GWI (A1)

32



is the number of elements of (3.5) that lie close to the closed subset
_ 40 —
M (X, As T, ves; f) — f)ﬁl’k(X, A; J,ves) XY (3.6)

of My (X, A; J, Ves)xY . The contribution of (3.6) to (3.4) can in fact be split into contributions of
the subspaces Ut .. (X; J; f) of (3.6). By studying local obstructions similarly to [Z1], each of these
contributions will be shown to be equal to the number of zeros of an affine bundle map between
two finite-rank vector bundles over Uy, (X;J; f); see Proposition 3.1 below. Such numbers can
be determined using the procedure described in [Z1, Subsections 3.2,3.3].

If dimg X =4, only two strata of (3.6) are nonempty for a good choice of ves. They are isomorphic to

Mg % WB,{O}UW (X, 4;J,vp; f) and (ml,l_Ml,l) X mg,{o}um (X, A; J,vp; f)

for some 1/3668:}0}%]6] (X, A; J), where

M1,1 C ﬂl,l

is the complement of the equivalence class of the singular elliptic curve. The dimension of
DJTg {0}UIK] (X, A; J,vp; f) is zero, even though no constraint has been imposed on the zeroth marked

point. In other words, 93?8 {O}UlK] (X, A; J,vp; f) is “virtually empty”. It is thus not too surprising
that neither of these strata contributes to GWfk. (A;9).

Remark: If J is a genus-one A-regular almost complex structure in the sense of [Z4, Definition 1.3],
we can take ves=0. If dimg X =4, we then find that the space (3.6) is empty, since

MG (00w (X A3 T3 ) = MG o300 (X, A3 7,05 f)

cannot be zero-dimensional. Thus, if (X,w) admits a genus-one A-regular almost complex struc-
ture, the first case of Theorem 1.1 is immediate from dimension-counting, once it is known that
GW?;? (A; ) is well defined.

If dimg X =6, for a good choice of ves only a few strata of (3.6) are nonempty. All, but two of
them, are either virtually empty or d;-hollow, in the sense of [Z1, Subsection 3.1]. In either of these
cases, U ,,.(X; J; f) does not contribute to (3.2). The two remaining strata are isomorphic to

My x 93?87{0}%@ (X, A; J,vp; f) and My X 93?87k(X, A; J,vp; f)

for some vp € 058%0}%“ (X,A;J) orvpe (’58’,16(X, A; J), respectively. In the second case, one of the
elements of [k] corresponds to the attaching node of the only bubble component of each element in
UT .. (X5 J; f); we will denote it by 0. Let

Ly — My, My and Lo — Mg goyun(X, A; J,vs; f), Mo 1 (X, A; J,vp; f)
be the universal tangent line bundles for the marked points labeled by 1 and 0, respectively. Let

DQ: LO — ev{’-}TX
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be the bundle homomorphism over ﬁo,{o}uk(Xa A; Jvp; f) or MY (X, A; J,vp; f) given by

D(] ([b, ’U]) = dub|y0(b)v.
We denote by

mp, s My x Mo ook (X, A Jovps f) — Mg, Mo oyo) (X, 4; Jvps f) - and
wp, T Mio X (X, A; J,vp; f) — Mua, MG (X, A; J,vs; f)

the two projection maps. In both cases, the linear part of the affine map determining the contri-
bution of the stratum Uy, (X; J; f) to (3.2) is

Dr:rmpli®@npLy — mpE*@7ngeviTX,
{D7lbp,bB, vP@VB]} ([bB, ¥]) = Ve, (bp) (vP) -7 Do([bB vB]),
if  [bp,bp,vp®UE|€TpL1®@nE Lo, [bp, Y] ETPE.

The constant term v of each of the affine maps is generic. In the second case, 9)28’ (X A Jvp; f) is
a finite collection of points. It is then straightforward to see that for a generic v, the affine bundle
map D7+ does not vanish. Thus, the corresponding stratum Uy, (X; J; f) does not contribute
to (3.2). We will show in Subsection 3.4 that the number N (D7) of zeros of Dy+7 in the first
case is

2—(a(TX), 4)
24

N(Dr) = GW{ L (A;9),

proving the second case of Theorem 1.1.

Remark: If J is a genus-one A-regular almost complex structure and dimg X =6, the space (3.6)
is the union of the spaces

ﬁl’k(ﬂ, 1; J],i;ﬂ,{) (3.7)
taken over all degree-A genus-zero curves s in X that intersect fi(Y;mn) for every [ € [k]. Based

on [Pa], one would expect that each of the spaces (3.7) contributes W to GW{{k(A;T/J).

The total number of the curves k is GW()fk(A; ). In particular, the second case of Theorem 1.1,
just like the first, is consistent with geometric expectations.

3.2 Analytic Setup
Let T=([k],I,X;j, A) be a bubble type such that

A;=0 Vielp and ) Aj=A (3.8)
el

For each 1€ I—1Ij, let
H;T={hel:y=i} and MT ={l€[k]: ji=i}.

We denote by
i X7(X) — xO,{O}l_lHiTI_lMiT(Xv A;)
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the map sending each element [b] of X7(X) to its restriction to ¥ ;:

Let Qi%fik(X , A; J) be the subspace of elements v in ?Sk (X, A; J) such that for every bubble type
T as above,

0,1 )
Vi, (x) = Z T VT for some VT € 60,{0}L|H¢TLIMiT(X7Ai’ J)

i€l—1Iop
and for every [b] €M) oyum T (X5 Ais J,vry) the linearization
D vt {EET (S uiTX): E(o(b) =0} — T (S A% TSy @uf TX) (3.9)
of the section 5J+UT;1‘ at b is surjective.

For a generic element v7; 668?{0}uHiTuMiT(X’ A;; J), the operator (3.9) is surjective for every

[b] € Mo soyum Tuns (X, Ass I, vrsi).

This implies that the closure of Qﬁ%dk(X,A;J) in Qﬁ?’i(X ,A; J) contains the zero section, since

we can construct an element v of ®%dk(X , A; J) inductively starting from the highest-codimension
strata of X (X, A). If T is a bubble type as above and v has been defined on

X7r(X) — X7(X) C X16(X, 4)
subject to the above restriction and regularity conditions, then v induces a multisection v7; of
0,1 .
Lo orumrung (X Ais J) — Xo goyumrung7 (X, Ai) — X0 qoyumunT (X5 Ai)-

It extends continuously to an effectively supported multisection over all of X oyp,70n,7(X, Ai)-
By perturbing this extension outside of

Xo {oyum Tuns (X, Ai) = X0 coyum rung (X Ai),

we obtain an element v7; of ®gs{o}uH,»7‘uMﬂ’(X7 A;; J) such that the operator (3.9) is surjective for
every B
0] € Mo royum, 7ur T (X, Ass T, vrsi).

We fix small generic elements
Ves € G55(X, A J)  and v e B (X, A1)
such that for all t€R™ sufficiently small the section

{0rtvesttvt]y  x
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is transverse to the zero set in F?’IIC(X, A; J)|xy(x) for every stratum X7(X) of Xy (X, A). Let

{Y3}rea be the strata of Y induced by the partitions of each Y; into smooth manifolds. By our
assumptions,

dimp Y, = 2nk — dim; ,(X, A) and dimgpY) < dimgp¥y,—2 VAeA—{0}.
For each bubble type T as above and A€ A, let
UT 0 (X3 5 1) = (UT 00 (X5 T) X Y) N 1 (X, A5 J, ves; f).
We will call a bubble type 7 as above simple if
N=0 and I=x(T).

In other words, 7 is simple if and only if for every element [b] € Uy, (X, A;J) the domain %,
consists of a smooth principal component Y. p, on which the map u, is necessarily constant, and
|I| bubble components, all of which are attached directly to ¥, p and on which the map w;, is not
constant.

Suppose M is a compact topological space which is a disjoint union of smooth orbifolds, one of
which, M, is a dense open subset of M, and the dimensions of all others do not exceed dim M —2.
Let

E,0—M

be vector bundles such that the restrictions of E and O to every stratum of M is smooth and
1
kO —rkE = 5 dimg M.
If
o € I'(M;Hom(E, O))

is a regular section in the sense of [Z1, Definition 3.9], then the cardinality of the zero set of the
affine bundle map
’lﬂa’gEOz—i—ﬂl ) — O

is finite and independent of a generic choice of 7 € I'(M; O), by [Z1, Lemma 3.14]. We denote it
by N(a). A key step in our proof of Theorem 1.1 is the following proposition.

Proposition 3.1 Suppose (X,w,J), A, k, ¥, fi, Ves, v, and {Yr}rca are as above. If T is a
bubble as above and A€ A, there exist

Ctr o (X50i0)(00) €Q, € €RY,

and a compact subset K, of Ut ,..(X; J; fr) with the following property. For every compact subset
K of Ut ... (X; J; fn) and open subset U of X1 (X, A; f), there exist an open neighborhood U, (K)
of K in X1 (X, A; f) and €,(U) €(0,€,), respectively, such that

i|ﬁ17k()(, A; J, l/es‘i‘tV;f)mU‘ = CMT,ues(X?J;f)\)(gJ) lf tG(O,GV(U)), KVCKCUCUV(K)

Furthermore, if T is simple and A\=mn,

CUT,ues (X;J;fx)(aJ) = N(Dr)
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for some reqular vector bundle homomorphism Dr over Ur . (X; J; f). Otherwise,

Cltr o (X355 (D7) = 0.

This proposition is proved in the next subsection. In the previous subsection we described the
homomorphism D7 for a simple bubble type 7 such that |x(7)|=1. Below we describe this ho-
momorphism for an arbitrary bubble T satisfying (3.8).

For each i€ , let

HT ={hel:y>i},  MT={lek:j>i}, ad A=Y A
h>i

We denote by 3
T X7(X) — %0,{0}uMiT(X> Ay)

the map sending each element [b] of X7(X) to its restriction to the tree of bubble components
beginning with ¥ ;:

[(57 [k]v I: N; z, (.77 y)7 u)] — [(MzTa {Z}UﬁzTa (Lv $)’Hi7-, (.77 y)|MiT’ u‘{z}uﬁl']')] .
By our assumptions on v,
ﬁ-Tﬂ' : uT,Vcs (X7 J) — ﬁ(),{o}uMZT(X) AZ? J7 I;B,l)

for some ﬁB?iEQﬁg?{o}uMiT(X’ A;i; J). Let

5T = < @ W;Lh(i)@)’fr;—;iLo) /Aut(T) — U 0 (X5 ), UT e (X5 T3 ).
iex(T)

If My is a finite set and h € M, let
sp € F(MLMO; Hom(Lh,E*))
be the the section given by
{sn(b;0)} (@) =Y, yv €C  if v E Lyly, ¥ € By,
where zj,(b) € ¥y is the hth marked point. We define the homomorphism
Dr:§T — (7pE*@evpTX) /Aut(T)
over Ut ., (X;J) or U, (X; J; f) by

Dy = ) Thsnm@%5Do.
iex(T)
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3.3 Proof of Proposition 3.1

We continue with the notation of Subsections 2.4 and 3.2. By our assumptions on v, the operators
Djy...b,i are surjective for all [b]eUr . (X;J) and i€l. Thus, we can take

IOV b:d) = {0} V[beUr, (X:J), icl.

The corresponding space U of Subsection 2.4 is a smooth manifold of (J, Ves)-holomorphic maps. In

Subsections 2.5 of [Z2] and 4.2 of [Z4], we describe a space L[g) ) (X; J) of balanced J-holomorphic
maps, not of equivalence classes of such maps. If v is sufficiently small, the same definitions can
be used to describe a submanifold L{7(9 ) (X;J) of U. In particular,

UT (X3 T) = U, (X50) [Aut(T) oc(S1)
for a natural action of Aut(7) on (Sl)f and of Aut(7T) o (Sl)f onU. Let

FT=Flyo (xuy

where F —U is the vector bundle defined in Subsection 2.5. The above group action on U lifts
to an action on F so that

FT = FT/Aut(T) o (8!
is the bundle of gluing parameters for U7, (X; J).

We will apply the construction of Subsection 2.5, with some refinements, to the entire space

Z/lf(ro )Ves (X;J), instead of a small open subset of U. We will view R-valued functions on UT 1o (X5 T)
(0)

as functions on uTwes (X; J) via the quotient projection map

u7(9,2/es (X7 J) — MT,Ves (X7 J)

Fix small
5,6 € C®° Ut 1 (X;J);RT)

such that the basic gluing map
Qv Xy — 2y

of [Z2, Subsection 2.2] and the modified gluing map
Qugi2: X — Xy
of [Z4, Subsection 4.2] with the collapsing radius €(b) are defined for all v=(b,v) € FT;. For all
(o) st [€llorpr <0(b),
let wy, ¢, wve, Ty (v;€),

DJ,Ves;U;§: F(U; 6) — Fo’l(v; 5)7 Rv7§: F(i’l(ba J) — FO’I(U; 6)7
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and Veg,,, ¢ be as in Subsection 2.5, with J;, v, and V! replaced by J, ves, and a J-compatible
connection V, respectively. The estimates (2.24), (2.25), (2.27), and (2.29)-(2.32) continue to hold
if CeERT, ij;ﬁ, Ji, and vy are replaced by

C € C®°(Ur . (X; J);RT),
Dyt J, and ves, respectively. In (2.31) and (2.32), frﬁjﬁ‘:id and Jo=.J.

With notation as in Subsection 2.5, for each veF 7:;@ let

Lp,_(v1) = {€oqu, : E€ker Dy, Elx,p =0}
We denote by I'p.4(v1) the L?-orthogonal complement of ', (v1) in I'g(vy). Let

B .
vaes HO

Tp(v1) — T (u1)
be the linearization of section 0 +ves at (S, ; Uy, ) defined via the connection V. Similarly to (2.22),
OOl < [Dein€llsyy < CONEhrga ¥ o=(bv) € FTL, €€Tpi(vn),  (3.10)

for some C € C*(Ur .. (X;J);RT), provided that 6 € C°(Ur .. (X;J);RT) is sufficiently small.
In particular, the operator
: T (v1) — T (01)

B
JvVes;'Ul

is an isomorphism. Its norm and the norm of its inverse are dependent only on [b] € Uy, (X;J).
Thus, by the Contraction Principle, for each ve F 7?, the equation

{5J+Ves;vl,§}uv1,§ =0, §€ FB;+(U1)7

has a unique small solution &, _(v1).

Remark: Since veg is a multisection, the uniqueness statement above, as well as similar statements
below, should be interpreted in terms of local branches of ves as defined in [FuOn, Section 3.

Lemma 3.2 If T is a bubble type as in (3.8) and Ves€®%dk(X, A; J) is a sufficiently small generic
perturbation, there exist
§ € C™®(Urp.(X;J);RT)

and an open neighborhood Ut of Ut . (X; J) in X1 (X, A) such that the map
{(0,Q):v=(b,0) €FTY: (T4 (03 & (V1)) [I€llopa <O(b) } /Aut(T) ox (S1)!
— %?,k(Xv A>mU7'>
[(U7 C)] — [(EU7eXpuU,EueS(U1)<):|’

s a diffeomorphism.
It is immediate from the construction that the map

Q)]

(v, C) — [(EU, exp,,

U,8ves (V1)
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is Aut(7) o (S I)VA l-invariant and smooth. The injectivity and surjectivity of the induced map on
the quotient are proved by arguments similar to Subsections 4.2 and 4.3-4.5 in [Z2], respectively;
see also the paragraph following Lemma 4.4 in [Z4].

For each v=(b,v) eF 7:5@, we define the homomorphism
LT (036, (1)) — T2 (0 ) REL () @ Towp(y X

as follows. If {1, },¢|,] is an orthonormal basis for % (b; J), we put

T, —77 = Z <<77 y 4y g0 (v1) 77T>>77r VW'EFO’l (U;fl’es (Ul))-

This map is well defined.

For each (v, () as above, let

¢ : LP(Sy; A T8, @u;

’U7§Ves (’U1

\TX) — LP(S; A TS, @ {exp,, CPTX)

Ves ('Ul )

be the isomorphism induced by the V-parallel transport along the V-geodesics

7¢, T7€10,1].

T XPuy e, (1)

Similarly to (2.26),

(v, () = 170y +ves+tr) eXPu, ¢, ()6 (3.11)
= {8J+VGS}UU + DJ,VCS;U§£ues (’Ul)C + t V(Ev7 u“vgves (Ul)) + Nv;t§7

where the quadratic term N, satisfies

Nut0=0, [ Nowe¢ = Now('|, , < CO)(t+ICNopr+I¢
vV te[0,0(0)], v=(b,v)eFTY, ¢, ¢ €T (v;&. (1)) sit. €

v,p,l) HC_C,HU,p,l (312)
lop.1 1€ o,p1 < 0(D).
Thus, by Lemma 3.2, the analogues of (2.22) and (2.31) mentioned above, for every precompact

open subset K of Ur ,(X; A) there exist dx, Cx € RT and a neighborhood of Uk of K in X7 4 (X, A)
such that for all €0, 0x]

MY (X, A5 J, ves+tv)NUk & {[(v, Q)] € Qe () : 4(v, ) =01}, (3.13)
where Qg (t) = {[(v,)]: v=(b,v) €FTY |k CET4 (V3 & (1)), Ilopi1 < Ci (Ip(v)[+1) }.

For each bEZ/{(O) (X5), let
oy € T (b )
be the L?-projection of v(b). We note that the map

SV (X, A J) — T (Urp (X D) mpE* @evpTX), v — 7,
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is surjective for every bubble type 7. By (3.11), (3.12), and the analogues of (2.24), (2.25),
and (2.32),

[Tt ®1(v, Q) — (Drp(v)+tm) || < (v)(Ip(v)]+1) (3.14)
Y te0,dx], te0,dx], v=(bv) €FTY |k, [(v,C)] €k (),
for some function

e: FT? — R* s.t. lim e(v) =0.

|[v|—0

We denote by
g7 PST — Urw (X5J)  and  ypgr — PST

the bundle projection map and the tautological line bundle. If v € 6%dk(X , A; J) is generic, the
section B
Dy € T'(Ur v (X; J); Hom (ypg7; Tz (mpE* @evpT X))

induced by Dy is transverse to the zero set. For a generic choice of the pseudocycles f;, this is also

the case for the restriction of 757 to IP’%T‘UT (X:T: ) for every A€ A. On the other hand,

dim Uy . (X; J; fr) = dim U, (X; J) + (dim Y\ —nk)
< (dimy (X, A) + 2(n— 1| = [R])) — dimy (X, A) (3.15)
= 2(n—x(T)]) = 2(1 = x(T)|+[R]).

The middle inequality is an equality if and only if A=mn. Thus, the section D7 does not vanish
over IP’S’T‘MT (XoTify)" This is equivalent to saying that the bundle homomorphism

Dr: T — mpE*®@evpT X
is nondegenerate over Ut ., (X;J; f)), i.e. is injective on every fiber over Ut . (X; J; f)).
Suppose T is not a simple bubble type or A#mn. By (3.15),
% dim Ur . (X5 J; 1) +1k§T < rkmpE*@evpT X.
Thus, for a generic v € Qﬁ%flk (X, A; J), the affine bundle map
5T — mpE*®evpT X, v=[b,v] — Dyv+p,

has no zeros over Ut ,,.(X;J; f1). Since Dy is nondegenerate over Ur . (X; J; fr), (3.14) and the
proof of Lemma 3.2 in [Z1] then imply that for every compact subset K of Ur . (X;J; f) there
exist 6x €RT and a neighborhood U} of K in Uy, (X;J)xY such that

{l(v:0). 2 €Qr )]y, : Tt @e(v,)=0} =0V tE(0,0x).
Thus, there exists a neighborhood Uk of K in X1 ;(X, A)xY such that

(m(l),k(Xv A; Ves"‘tV) XY) NUkg = 0.
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The proof of Proposition 3.1 in the case T is not a simple bubble type or A# mn is now complete.

For remainder of this subsection we assume that 7 is a simple bubble type and A = mn. If
v=(b,v) E]:%@, we denote by
F(i’l(v) C Fo’l(v; Evee (vl))

the image of T%!(b;.J) under R, and by F(_);l(v) the L2-orthogonal complement of I''(v) in
I'% (v; &, (v1)). Let
Tk T (03 € (01)) — TG (0)

the L?-projection map. Since R=0),
= 0,1
HRv,iyes(vl)nHU,p < C(b)HR’U,gues(Ul)T,HU72 v U:(bv 1)) 6‘7:7:5@7 nel> (b; J):
for some C' € C®(Ur .. (X;J); RT). It follows that
=S ], < COI oy ¥ o=(b,0) €FTY, i €T (v560,(v1)).
Thus, by the analogues of (2.22) and (2.25),
_ 0,1
CO)HIKlop < 175 Divecsstes )6l p < CONICopan (3.16)
Vou=(bv) €FTY, (€4 (vi&, (1))
In particular, the operator

0,1 0,1
71'_,'_7 DJ,VeS§U§5Ves (v1) : F+ (U’ gl’es (Ul)) — F"f‘7 (U)

is an isomorphism. Its norm and the norm of its inverse are dependent only on [b] € Uy .. (X;J).
By (3.11), (3.12), (3.16), the analogue of (2.31), and the Contraction Principle, for every compact
subset K of Ur .. (X;J) there exists dx € RT such that for all

veFT) |k and  t€[0,0k]
the equation

ng@t(ug) =0, CEF+(U§§VeS(U1))’

has a unique small solution ¢;(v). Furthermore, (;(v) € Qg ().

By the above, for every compact subset K of Uy . (X;J; fn) there exist ik € R* and small
neighborhoods U} and Uk of K in Uy, (X;J) X Ymn and X3 (X, A) XY, respectively, such that

mtl),k(XvA;Ja Ves +1V; fmn)ﬂUK ~ {([U]7Z)G‘F7:S®K|nymn3 71'3’;1_@,5(1)765(1})):0;
{evx [} ((Ev, exp, G(v)), 2) e Ak}

for all t€[0,dx]. On the other hand, the bundle homomorphism Dy is regular over Ur . (X; J; f)
by the m=1 case of (2.7) and (2.8), i.e. Dy can be approximated by a polynomial on the normal
bundle near every stratum of Uy, (X;J; f); see [Z1, Definition 3.9]. Since v is generic, D7 is
nondegenerate over Ut (X; J; fun), and evx f is transverse to A% in (X2)*, (3.13) and the proof
of Lemma 3.5 in [Z1] then imply that there exists a compact subset K, of Uy . (X;J; fin) with

U,Eues(vl)
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the following property. For every compact subset K of Ut (X;J; fmn) that contains K, there
exist g € R and a neighborhood Uk of K in X; (X, A) xY such that

HIM (X, A5 J, Ve +10; fun) Uk | = N(Dr)  Vt€(0,6k].

We note that K, can taken to be any compact subset of Uy, (X;J; fmn) such that all of the
finitely many zeros of the affine map

Dr+v:§T — mpE* ®evpT X

over Ut . (X5 J; fun) lie in §7 |k, .

3.4 Counting Zeros of Affine Bundle Maps

In this subsection we conclude the proof of Theorem 1.1 by computing the numbers N (D7) when
the dimension of X is 4 or 6. Using the method of [Z1, Section 3], N(D7) can be computed for
arbitrary-dimensional symplectic manifolds X and more general cohomology classes 1; this is the
main subject of [Z6]. In order to avoid introducing quite a bit of additional notation in this paper
we restrict the computation to the special cases of Theorem 1.1.

If 7 is a bubble type as in (3.8), let
MpT = {le[k:]:jlgéf} and Aut*(7) = Aut(7)/{gcAut(T): g- h=h Vhel;}.

For each i€ I, let ~ . -
T = (MGT iy UHT: 4l g0 Al o) -

If Veseéif’dk(X, A; J) and R=(), then
UT e (X3 J) = (Mynprun XUz, (X3 J)) [Aut™(T), (3.17)

where M arp70r, is the subspace of the moduli space ML MpTuI, consisting of smooth curves and

Z/[j—’yes (X; J) = {(bi)iéh S HuﬁleB;i : evo(bil):evo(biQ) Vil, 19 GIl}

eh (3.18)

< [0 joyomn,r (X A Jovpa),
i€l

€s N
0,{0}UN, T
we represent an entire stratum U7, (X;J) of bubble maps by the domain of the stable maps in
UT 1. (X;J). The right-hand side of Figure 5 represents the subset of the cartesian product of
the three spaces of bubble maps, corresponding to the three drawings, on which the appropriate
evaluation maps agree, as indicated by the solid line and defined in (3.18).

for some vp,; €& (X, A J ). This decomposition is illustrated in Figure 5. In this figure,

We next define a similar splitting for the space Ut ., (X; J; frn). We can assume that the maps
{ fi;mn }1emp7 intersect transversally. Let

% — () cX
leMpT
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Y1

Q

M1,5 X

Y2
Figure 5: An example of the decomposition (3.17)

be a pseudocycle representative for

() PDxvi € H.(X;Z)
leMpT

such that

fg;—mn: YOZ-mn — ﬂ fl(}_/l;mn)
lGMpT

is one-to-one. We put

ev’ = evgx Hevl cUF L (X5 T) — XX HX ,

lE[k‘]—MPT lE[k‘]—MPT
== J[a:Y"=Ydx [[v —Xx J[X. and Y, =Ylwmx ][]V
lG[k]—MPT lE[k]—MPT le[k}—MpT lE[k]—MPT

Similarly to Subsection 3.1, let

Ur, (X3 T5 ) = {(b.2) €Uz, (X )xY T v ()= f7(2)},  and
UT,V(X;J; fron) = (U’T’,V(XQ J)xYn?n) nz;{T,u(X§J§ f).

We have
Z’{T,Ves (XS J; fmn) ~ (MLMPTLIh ><Z/l7*-’l,es (XS J; fmn))/AUt*(T)' (3~19)

If T is a simple bubble type, we define the homomorphism
Dr: §T — 1hE* @eviTX
over My pp70L ><Z/_{7-7Ves (X; J; f) similarly to the homomorphism Dy. By (3.19),
N(Dr) = N(Dr)/|Aut*(T)|. (3.20)

By Proposition 3.1 and (3.20), the difference between the standard and reduced genus-one GW-
invariants of Theorem 1.1 is determined by the numbers N (D7), where T is a simple bubble type
as in (3.8). We will compute these numbers in the two special cases of Theorem 1.1.
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First, we note that if 7 is a bubble type as in (3.8), not necessarily simple, and R={),

dim zl—,,ycs (X5 J; f) = dim Ur o (X J; f) — dim My ap7ur, (3.21)
= 2(n—|x(T)|—I1|) = 2(|I—x(T)|+|MpT]), '

by (3.15). In particular, if n=2, then
Ur, (X /) #0 = (MI=1 x(T)=hL=1 MpT =0.

Furthermore, if Z’_{T,Ves (X;J; f) is nonempty, it is a finite collection of points. In this case, 757 is
the bundle homomorphism
7p(s180): mpLy — mp(E*GE")

over My 1 xUz,, (X;J; f). Thus,

1 . -
N(Br) = ~ 53 Wy (X: 1 1)

Since i‘?flj—’yes (X505 f )| =+ ‘Z;lj-’l,/(X Ji f )‘ for any sufficiently small v/ such that the restriction of
the bundle section 9+ to every stratum of Xo,{0}u[K] (X, A) is transverse to the zero set, we can
take v/ =m*1g, where

7 Xo,f03ur) (X5 A) — Xo (X, A)
is the forgetful map and vy is a small generic deformation of 0 on Xo,;k) (X, A). Since
ﬁo,k(Xa Aa J7 o; f) = @

for a generic vy for dimensional reasons, it follows 2/7{7—7,/ (X;J; f)=0 as well and thus N (57-) =0,
as claimed by n=2 case of Theorem 1.1.

Suppose n=3. By (3.21),
Ur, (X)) #0 = (TMI=1 (Ll=X(TI) +[I=x(T)| + [MpT]| € {0, 1}.
If T is a simple bubble type and Z/_[T,ues(X ; J; f) is nonempty, it follows that
Ix(T)| =1 and |MpT]| €{0,1}.

If IMpT|=1, Uz, (X;J; f) is again a finite collection of points. In this case, Dy is the bundle
homomorphism
7p(s190®0) : 7pL1 — 7p (E*GE* GEY)

over MyoxUz, (X;J;f). Thus, as in the n=2 case above, N(D7)=023

Finally, suppose n =3, T is a simple bubble type, and |[MpT|=0. If ¢ is the unique element
of x(7), Dy is the bundle homomorphism

Tps1Qm; Do: mpL1@7; Ly — mpE*@mevT X

3As in the n =2 case, i|?fl:r’,,es (X;J; f)] =0. Furthermore, since c1(E*)*=0 on M 2, we can choose v so that v
does not vanish and thus N (D7) =0 by definition.

45



over

Mg x Uz, (X;J; f) = Mig x Mg oo (X, A J, v f).
It can be assumed that vp; =7*vp for a generic element vp 6685{0}(X, A; J), where
7 Xo fopur) (X, A) — Xo 10y (X, A)
is the forgetful map. Then,
™ Mo royui) (X, A5 T, vpgi; f) — Mo 103 (X, A; J,vB) (3.22)

and there are identifications Lo=7*Lg and Dy=7*Dy. Thus,

N(D7) = N(nps1@m;7"Dy). (3.23)

On the other hand, if vp is generic, the image of the projection 7 in (3.22) is contained in

mé?{}o} (X, A; J,vp), while the restriction of Dy to every stratum of Sﬁé?{}o} (X, A; J,vp) is trans-

verse to the zero set. Thus, 7*Dy does not vanish over ﬁo,{o}u[k] (X, A; J,vpy; f) for dimensional
reasons if vp is generic. Since s; does not vanish over Mj 1, the bundle homomorphism
Tps1Qm; m Do: npL1 @7 " Ly — npE @7 i eviTX

does not vanish over My 1 x ﬁo,{o}u[k] (X, A; J,vpy; f). Thus, by Lemma 3.14 in [Z1],

N (D7) = {c(rpE*@mfeviT X )c(mpLi@mim* Lo) ™t Mu 1 x Mo royom (X, As I, vayis f))

1 L — (3.24)
= —ﬂ@l(TX) + 71 (Lg), Mo goyum (X, A J, vy f)).-
By the divisor and dilaton relations for GW-invariants,
(e (TX), My oyum) (X, As Jovps £)) = (el(TX), A) - GWEL(A;9), (3.25)

(m*e1(LE), Mo sorum (X, A; J,vBg; £)) = =2 GWi (A5 9);

see Section 26.3 in [MirSym], for example. Combining (3.23) with (3.24) and (3.25), we conclude

that

2—(c1(TX), A)
24

N(D7) = GW{,(4;9).

The proof of Theorem 1.1 is now complete.
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