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Abstract

For each compact almost Kahler manifold (X,w,J) and an element A of Hy(X;Z), we de-
scribe a natural closed subspace ﬁ?k(X,A; J) of the moduli space My (X, A;J) of stable
J-holomorphic genus-one maps such that ﬁ?,k(x , A; J) contains all stable maps with smooth
domains. If (P, w,Jy) is the standard complex projective space, ﬁ?k(ﬂ’m,A; Jo) is an irre-
ducible component of My (P, A; Jo). We also show that if an almost complex structure J
on P is sufficiently close to Jy, the structure of the space ﬁ?’k(E”ﬂA; J) is similar to that
of ﬁf, w (P, A; Jo). This paper’s compactness and structure theorems lead to new invariants
for some symplectic manifolds, which are generalized to arbitrary symplectic manifolds in a
separate paper. Relatedly, the smaller moduli space ﬁ?k(X , A; J) is useful for computing the
genus-one Gromov-Witten invariants, which arise from the larger moduli space M 1 (X, A; J).
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1 Introduction

1.1 Background and motivation

Gromov-Witten invariants of symplectic manifolds have been a subject of much research in the
past decade, as they play a prominent role in both symplectic topology and theoretical physics.
In order to define GW-invariants of a compact symplectic manifold (X,w), one fixes an almost
complex structure J on X, which is compatible with w or at least is tamed by w. For each class
A in Hy(X;Z) and a pair (g, k) of nonnegative integers, let Mg (X, 4; J) be the moduli space of
(equivalence classes of) stable J-holomorphic maps from genus-g Riemann surfaces with & marked
points in the homology class A. The expected, or virtual, dimension of this moduli space is given by

dim (X, A) = dim"" My 4 (X, A; J) = 2((c1(TX), A) + (n—3)(1—g) + k),

if the real dimension of X is 2n. While in general M, (X, A;J) is not a smooth manifold, or
even a variety, Fukaya-Ono [4], Li-Tian [6], and in the algebraic case in Behrend-Fantechi [2] show
that M, (X, A; J) determines a rational homology class of dimension dimg;(X, A). In turn, this
virtual fundamental class of Mg (X, 4; J) is used to define GW-invariants of (X, w).

We denote by EITI (X, 4; J) the subspace of My (X, A; J) consisting of the stable maps [C,u]
such that the domaln C is a smooth Riemann surface. If (P",w;Jy) is the n-dimensional complex
projective space with the standard Kahler structure and ¢ is the homology class of a complex line
in P™,
MY (P, d) = MY (P, de; Jo)

is in fact a smooth orbifold of dimension dimg;(P",df), at least for d >2g—1. In addition, from
the point of view of algebraic geometry, Mg x(P",d) is an irreducible algebraic orbivariety of di-
mension dimg x(P", d¢)/2. From the point of view of symplectic topology, My x(P", d) is a compact
topological orbifold stratified by smooth orbifolds of even dimensions and 93?87/1C (P™, d) is the main
stratum of My (P", d). In particular, zmg,k(]}»", d) is a dense open subset of My (P", d).

If g > 1, none of these additional properties holds even for (P, w, Jy). For example, the moduli
space My (P, d) has many irreducible components of various dimensions. One of these components
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Figure 1: The domain of an element of Dﬁ‘;’k (P™, d)

contains fmg{k (P™, d); we denote this component by ﬁ?’k(]}””, d). In other words, ﬁ?’k (P™,d) is the
closure of 9.7([1)7k(IP’", d) in My (P, d). The remaining components of My (P",d) can be described
as follows. If m is a positive integer, let M7 (P™, d) be the subset of My 1 (P", d) consisting of the
stable maps [C, u] such that C is an elliptic curve E with m rational components attached directly
to E, u|g is constant, and the restriction of u to each rational component is non-constant. Figure 1
shows the domain of an element of Dﬁi’ x(P",d), from the points of view of symplectic topology and
of algebraic geometry. In the first diaéram, each shaded disc represents a sphere; the integer next
to each rational component C; indicates the degree of u|¢c,. In the second diagram, the components
of C are represented by curves, and the pair of integers next to each component C; shows the genus
of C; and the degree of ulc,. We denote by Wk(ﬁ”", d) the closure of M7 (P", d) in My (P, d).
The space ﬁTk(P”,d) has a number of irreducible components. These components are indexed
by the splittings of the degree d into m positive integers and by the distributions of the k& marked
points between the m+1 components of the domain. However, all of these components are algebraic
orbivarieties of dimension, both expected and actual,

dim{", (P", d¢) = dim M (P, d) = 2(d(n+1) + k +n —m)
= dim; x(P", d¢) + 2(n—m).

In particular, Sﬁ%k(P”, d) is not dense in M 1 (P", d). From the point of view of symplectic topol-
ogy, ﬁLk(Pn, d) is a union of compact topological orbifolds and is stratified by smooth orbifolds
of even dimensions. However, MMy ,(P",d) contains several main strata, and some of them are of
dimension larger than dim, ;(P", d¢).

The above example shows that ﬁ?’ (P, d) is a true compactification of the moduli space MY , (P, d),
while 91y 1 (P, d) is simply a compact space containing 9.7((1)7 x(P", d), albeit one with a nice obstruc-
tion theory. One can view 90T, 5 (P", d) as a geometric-genus compactification of MY, (P", d) and its
subspace ﬁ?,k (P™, d) as an arithmetic-genus compactification. Since the beginning of the Gromov-

Witten theory, it has been believed, or at least considered feasible, that an analogue of ﬁ?k(ﬁ‘m, d)
can be defined for every compact almost Kahler manifold (X,w, J), positive genus g, and nonzero
homology class A€ Hy(X;7Z). In this paper, we show that this is indeed the case if g=1.

We describe an analogue ﬁ?yk(X, A; J) of the subspace ﬁ?’k(ﬂj’", d) of My (P, d) for every compact
almost Kahler manifold (X,w,J) and homology class A € Hy(X;Z) as the subset of elements
of 9y (X, A; J) that satisfy one of two conditions. By Theorem 1.2, ﬁgk(X, A; J) is a closed
subspace of My (X, 4;J) and thus is compact. This compactification of Wt(l],k(X , A; J) satisfies



the following desirable properties:

(P1) naturality with respect to embeddings: if (Y,w, J) is a compact submanifold of (X,w,J), then

MY (Y, A3 T) = Dy (X, A3 T) NI (Y, A; ) C Dy (X, A; J);

(P2) naturality with respect to forgetful maps: if k>1, the pre-image of ﬁ?’kfl(X, A; J) under the
forgetful map
My (X, A J) — My g1 (X, A; )

is Dy (X, A5 J);

(P3) sharpness for reqular (X,w,J): if J satisfies the regularity conditions of Definition 1.4, then
ﬁ?,&X,A; J) is the closure of im(l)k(X, A;J) in ﬁl,k(X, A; J).

By (P1) and (P2), ﬁ?vk(x, A; J), like 90Ty (X, A; J), is a natural compactification of M?, (X, 4; J).
By (P3), ﬁ?,k(X, A; J), in contrast to My (X, 4; J), is a sharp compactification of MY , (X, A; J),
subject to the naturality conditions (P1) and (P2). The first two properties of ﬁ?k(}( ,A; J) are

immediate from Definition 1.1. The last property is part of Corollary 1.5. It is well-known that the
regularity conditions of Definition 1.4 are satisfied by the standard complex structure Jy on P",

and thus the definition of ﬁ?’k(}?”,d& Jo) given in Subsection 1.2 agrees with the description of
ﬁ?,k(ﬂ”", d) given above.

Theorem 2.3 describes, under the regularity conditions of Definition 1.1, a neighborhood of ev-
ery “interesting” stratum of ﬁ[ik(X ,A; J), i.e. a stratum consisting of genus-one maps that are
constant on the principal component. In addition to implying (P3), Theorem 2.3 shows that
ﬁ?,k(X ,A; J) carries a rational fundamental class. It is used in Subsection 1.3 below to define
new Gromov-Witten style intersection numbers via pseudocycles whenever J is regular, mimicking
the approach of McDuff-Salamon [8, Chapter 5] and Ruan-Tian [9, Section 1] to the standard
GWe-invariants. As the regularity requirements of Definition 1.1 are open conditions on the space
of w-tame almost complex structures J by Theorem 1.6, Theorem 2.3 also implies that the general

topological structure of ﬁgk(X , A; J) remains unchanged under small changes in J near a regu-
lar Jo.

The results of this paper have already found a variety of applications:

(A1) ﬁgk(X ,A; J) gives rise to new, reduced, genus-one GW-invariants of arbitrary symplectic
manifolds ([18]);

(A2) in contrast to the standard genus-one GW-invariants, the reduced invariants of a complete
intersection and the ambient space are related as geometrically expected ([7],[19]);

(A3) Theorem 2.3 is used in [12] to construct a natural desingularization of ﬁ?k (P™,d) and thus
a natural smooth compactification of the Hilbert scheme of smooth genus-one curves in P"
for n>3;

(A4) (A1)-(A3) are used by the author in [21] to finally confirm the 1993 Bershadsky-Cecotti-
Ooguri-Vafa mirror formula [1] for the genus-one GW-invariants of a quintic threefold;
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Figure 2: A condition on limits in genus two

(A5) (A1)-(A3), along with [22], have made it possible to compute (standard) genus-one GW-
invariants of arbitrary complete intersections.

If it is possible to define subspaces ﬁ;k(X, A;J) of M, k(X,A;J) analogous to the space
ﬁ?’k (X, A; J) for g>2, their description is likely to be more complicated. The space ﬁ?’k(X, A; J)
contains all stable maps [C,u] in 9 (X, A; J) such that the restriction of u to the principal compo-
nent Cp is nonconstant or such that u|c, is constant and the restrictions to the rational components
satisfy a certain fairly simple degeneracy condition; see Definition 1.1. Thus, in the genus-one case
the elements in ﬁl,k(X , A; J) are split into two classes, according to their restriction to the prin-
cipal component. In the genus-two case, these classes would need to be split further. For example,
suppose the domain of an element [C, u] of Mo 1 (P", d) consists of three rational curves, Cy, Ca, and
C3, such that C; and Cy share two nodes and C3 has a node in common with C; and Co; see Figure 2.
If ule, and ulc, are constant, [C,u] lies in the closure of MY, (P",d) in My (P", d) if and only if
the branches of the curve u(C) =wu(C3) corresponding to the two nodes of C3 form a generalized
tacnode, i.e. either one of them is a cusp or the two branches have the same tangent line; see [14]
for the n=2 case.

The author would like to thank J. Li for suggesting the problem of computing the genus-one
GW-invariants of a quintic threefold, which led to the present paper. The author first learned of
the arithmetic/geometric-genus compactification terminology in the context of stable maps from
G. Tian a number of years ago.

1.2 Compactness theorem

In this subsection, we describe the subspace ﬁ?’ W(X, A J) of My 1 (X, A; J); it is a closed subspace
by Theorem 1.2. We specify what we mean by a regular almost structure J in Definitions 1.3
and 1.4. If J is genus-one A-regular, the moduli space ﬁ?k(X , A; J) has a regular structure, which
is described by Theorem 2.3. Since the rather detailed statement of this theorem is notationally
involved, we postpone stating it until after we introduce additional notation in Subsections 2.1
and 2.2. In this subsection, we instead state Corollary 1.5, which describes the two most important
consequences of Theorem 2.3.

An element [C,u] of ﬁl’k(X , A; J) is the equivalence class of a pair consisting of a prestable genus-
one complex curve C and a J-holomorphic map u: C — X. The prestable curve C is a union of
the principal curve Cp, which is either a smooth torus or a circle of spheres, and trees of rational



hQ h1 4

ha h
@ X(C,u)={h1, hq, h5}
h

5

Y

“tacnode”
Figure 3: An illustration of Definition 1.1

bubble components, which together will be denoted by Cp. Let
szk}(X, A; J) = {[C,u] €My (X, A; J): ulc, is not constant} O Sﬁ?,k(X, A; J).
{0} . : : o .
The space M) 1/ (X, A; J) will be a subset of the moduli space My ;. (X, 4; J).

Every bubble component C; C Cp is a sphere and has a distinguished singular point, which will
be called the attaching node of C;. This is the node of C; that lies either on Cp or on a bubble
Cp, that lies between C; and Cp. For example, if C is as shown in Figure 3, the attaching node of
Ch, is the node Cj, shares with the torus. Since C; is a sphere, we can represent every element of
M x(X, A4; J) by a pair (C,u) such that the attaching node of every bubble component C; CCp is
the south pole, or the point oo = (0,0, —1), of S? CR3. Let ex = (1,0,0) be a nonzero tangent
vector to S? at the south pole. Then the vector

DZ(C,u) = d{u‘ci}’weoo eT, (oo)X

le;
describes the differential of the J-holomorphic map u|c, at the attaching node. While this element
of T, Ci(OO)X depends on the choice of a representative for an element of ﬁuf (X, A; J), the linear
subspace C-D;(C,u) of Ty,
stant, the branch of the rational J-holomorphic curve u(C;) C X corresponding to the attaching
node of C; has a cusp if and only if D;(C,u)=0. If D;(C,u)#0, C-D;(C,u) is the line tangent to
the branch of u(C;) C X corresponding to the attaching node of C;.

(00)X is determined by the equivalence class [C,u]. If u|c, is not con-

Suppose [C,u] € My x(X, 4; J)—fDTi?,j(X, A;J), ie. ulc, is constant. In such a case, we will call
the bubble sphere C; C Cp first-level (C, u)-effective if u|c, is not constant, but ul¢, is constant for
every bubble component C;, C Cp that lies between C; and Cp. We denote by x(C,u) the set of
first-level (C,u)-effective bubbles; see Figure 3. In this figure, as in Figures 1 and 2, we show the
domain C of the stable map (C,u) and shade the components of the domain on which the map u

is not constant. Note that u maps the attaching nodes of all elements of x(C,u) to the same point
in X.

Finally, let B
Hy(X;Z)" = Hy(X;2)— {0},  Z* =2+ L {0},

Definition 1.1 If (X,w,J) is a compact almost Kahler manifold, A€ Hy(X;Z)*, and k€Z™, the
main component of the space My (X, A; J) is the subset ﬁ?’k(X, A; J) consisting of the elements



[C,u] of My (X, A;J) such that
(a) ulc, is not constant, or
(b) ulep is constant and dimc Spanc ) {Di(C,u): i€ x(C,u)} < [x(C,u)|.

We call a triple (X,w,J) an almost Kahler manifold if w is a symplectic form on X and J is an
almost complex structure on X, which is tamed by w, i.e.

w(v, Jv) >0 VoeTX-X.

Definition 1.1 actually involves only the almost complex structure J, but one typically considers the
moduli spaces M, (X, A; J) only for w-tamed almost complex structures J, for some symplectic

form w; otherwise, M, (X, A; J) may not be compact. An element
C,u] € My (X, A; 7)) (X, 45.7)

belongs to ﬁ?k (X, A; J) if and only if the branches of u(C) corresponding to the attaching nodes
of the first-level effective bubbles of [C, u] form a generalized tacnode. In the case of Figure 3, this
means that either
(a) for some i €{hq, ha, hs}, the branch of ul¢, at the attaching node of C; has a cusp, or
(b) for all i€ {hy, ha, hs}, the branch of u|¢, at the attaching node of C; is smooth, but the
dimension of the span of the three lines tangent to these branches is less than three.
This condition is automatically satisfied if 2|x(C,u)| > dimg X.

Theorem 1.2 If (X,w) is a compact symplectic manifold, J=(Ji)ie(o,1) is @ C'-continuous family
of w-tamed almost complex structures on X, A€ Ho(X;Z)*, and k€Z™, then the moduli space

My (X, A ) = | T (X, A5 )
te[0,1]

18 compact.

If (X, J) is an algebraic variety, the claim of Theorem 1.2, with J; =J constant, is an immediate
consequence of well-known results in algebraic geometry. In the case (X, J) is a complex algebraic
surface, [11, Lemma 2.4.1] can be used to extend the statement of Theorem 1.2 to all genera.

If J; = J is constant and genus-one A-regular in the sense of Definition 1.4 below, Theorem 1.2
follows immediately from the first statement of Theorem 2.3. If J; is genus-one A-regular for all t,
but not necessarily constant, Theorem 1.2 follows from the Gromov Compactness Theorem and
Corollary 4.6. In Section 5, we combine the main ingredients of the proof of Theorem 2.3 with
the local setting of [6] to obtain Theorem 1.2 with J;=.J constant for an arbitrary almost Kahler
manifold. The proof for a general family J is similar and is described in detail, in an even more
general case, in [18, Section 5].

If u: C— X is a smooth map from a Riemann surface and A€ Hy(X;Z), we write

u<, A if  w[C]=A or (w,uC])<(w,A).



Definition 1.3 Suppose (X,w,J) is a compact almost Kahler manifold and A € Ho(X;Z). The
almost complex structure J is genus-zero A-regular if for every J-holomorphic map u: P! — X
such that u<, A,

(a) the linearization Dy, of the 0j-operator at u is surjective;
(b) for all z€P!, the map D5 ker Dy — Ty X, D7,(§)=&(2), is onto.

Definition 1.4 Suppose (X,w,J) is a compact almost Kahler manifold and A € Ho(X;Z). The
almost complex structure J is genus-one A-regular if
(a) J is genus-zero A-reqular;
(b) for every non-constant J-holomorphic map u: P* — X such that u<, A,
(b-i) for all z€P! and veT,P*—{0}, the map D7, ker D7, — Ty X, D7.(§) =V,
1s onto;
(b-ii) for all z € P! and 2’ € P! —{z}, the map @j-:i/: ker®%  — Ty X, @i:i/ (&) =¢(7),
18 onto.
(c) for every smooth genus-one Riemann surface ¥ and every non-constant J-holomorphic map
u: X — X such that w<, A, the linearization D j, of the Jj-operator at u is surjective.

In (b-i) of Definition 1.4, V,{ denotes the covariant derivative of ¢ along v, with respect to a
connection V in T'X. Since {(z)=0, the value of V¢ is in fact independent of the choice of V. If
J is an integrable complex structure, the surjectivity statements of (a) and (b) in Definition 1.3
and of (c) in Definition 1.4 can be written as

H'(Phu'TX)={0}, H'(PLu'TX®O0p(-1)) ={0}, and H'(Z;u*TX)= {0},

respectively. In the integrable case, the two surjectivity statements of (b) in Definition 1.4 are
equivalent and can be written as

H' (PLu*TX ®0pi (—2)) = {0}.

It is well-known that the standard complex structure Jy on P" is genus-one df-regular for every
d€Z; see [15, Corollaries 6.3,6.5], for example.

If J is a genus-zero A-regular almost complex structure on X, the structure of the moduli space
Mo £(X, A; J) is regular for every k € Z*. In other words, Mo (X, A; J) is stratified by smooth
oriented orbifolds of even dimensions and the neighborhood of each stratum has the expected form.
One of the results of this paper is that if J is genus-one A-regular, the structure of the moduli
space ﬁ%k (X, A; J) is regular for every k€Z%; see Theorem 2.3 and Subsection 4.1. In particular,
we have

Corollary 1.5 (of Theorem 2.3) Suppose (X,w,J) is a compact almost Kahler manifold,
A€ Ho(X;Z)*, and k € Zt. If J is genus-one A-regular, then the closure of Sﬁ?vk(X,A;J) in

Mk (X, A5 J) is ﬁ?’k(){, A; J). Furthermore, ﬁi,&X, A; J) has the general topological structure
of a unidimensional algebraic orbivariety' and thus carries a rational fundamental class.

leach point of ﬁ?,k(X,A; J) has a neighborhood which is a quotient of an affine algebraic variety of complex
dimension dim; (X, A)/2 by a finite group



The first statement of Corollary 1.5 follows from the first claim of Theorem 2.3, along with stan-
dard gluing arguments such as in [8, Chapter 5|; see also Subsection 4.1. The middle statement
of Corollary 1.5 summarizes Theorem 2.3, while the last one is obtained at the end of Subsection 2.3.

We will also show that the genus-zero and genus-one regularity properties are well-behaved under
small perturbations:

Theorem 1.6 Suppose (X,w,J) is a compact almost Kahler manifold and A € Ho(X;Z)*. If
g=0,1 and the almost complex structure J is genus-g A-reqular, then there exists §;(A) € Rt
with the property that if J is an almost complex structure on X such that ||J—.J||c1 <38;(A), then
J is genus-g A-regular. Furthermore, if J is genus-one A-reqular, k € Z*, and J = (Jt)te[og} 18
a continuous family of almost complex structures on X such that Jo=J and ||Jy—J||c1 <I5(A)
for all t € [0,1], then the moduli space ﬁ?’k(X,A;J) has the general topological structure of a
unidimensional algebraic orbivariety with boundary®and

O (X, A J) = I (X, As Ji) — Iy 4, (X, A; Jo).

The norms ||J—J||c1 and ||.J;—J||c1 are computed using a fixed connection in the vector bundle T'X,
e.g. the Levi-Civita connection of the metric on X determined by (w,.JJ). The regularity claims of
Theorem 1.6 follow from the compactness of the moduli spaces ﬁg,k(X , A; J) and Corollaries 3.2,
3.6, 3.7, 4.2, and 4.5. The final claim of Theorem 1.6 follows from a family version of Theorem 2.3.
It can in fact be used to show that under the assumptions of Theorem 1.6

M (X, A5 T) = [0,1] x D 4 (X, A5 Jo).
The conclusion, as stated, can be obtained with weaker regularity assumptions on J.

The key ingredients in the proofs of Theorems 1.6 and 2.3 are the gluing constructions of [16],
adapted to the present situation, and the power series expansions of Theorem 2.8 and Subsection 4.1
in [15], applied via a technical result of [3]. The power series of [15] give estimates on the behavior
of derivatives of holomorphic maps under gluing and on the obstructions to smoothing holomorphic
maps from singular domains. A technical result of [3] shows that locally a J-holomorphic map is
very close to a holomorphic one. Ionel [5] essentially shows that the above obstructions do not
vanish on the complement of ﬁgyk(P”, d) in 90 (P, d); this is the main portion of Theorem 1.2
for (X, J)=(P", Jp) and thus for all algebraic varieties. This theorem can be viewed as describing
ltmits in ﬁLk(X , A; J); in comparison, Theorem 2.3 can be viewed as describing limiting behavior.

1.3 Some geometric implications

Theorem 1.2 implies that under certain assumptions on A and J the number of genus-one degree-
A J-holomorphic curves that pass through a collection of cycles in X of the appropriate total
codimension is finite. Furthermore, each such curve is isolated to first order, as explained below.

Zeach point of ﬁ?’k(X, A; J) has a neighborhood which is a quotient of a fibration over (0,1) or [0,1) of affine
algebraic varieties of complex dimension dim; x(X, A)/2 by a finite group



Throughout this subsection, we assume that the dimension of X is 2n>4.

A simple J-holomorphic map into X is a J-holomorphic map u: ¥ — X such that u is one-to-one
outside of finitely many points of ¥ and the irreducible components of ¥ on which u is constant.
A genus-g degree-A J-holomorphic curve C is the image u(X) of an element [¥, u] of M, x(X, 4; J)
such that u is simple and the total genus of the components on which « is not constant is g. Let
Mgy(X, A; J) be the space of all genus-g degree-A J-holomorphic curves in X. The expected di-
mension of this space is dimg (X, A).

A J-holomorphic curve C C X will be called regular if the operator D, is surjective for a (or
equivalently, every) stable-map parametrization u: 3 — C of C as above. We will call a regular
curve C C X essentially embedded if C is an irreducible curve that has no singularities if n >3 and
its only singularities are simple nodes if n=2. In other words, if u: ¥ — C is a parametrization
of C with k=0, then X is a smooth Riemann surface of genus g. Furthermore, if n >3, u is an
embedding. If n=2, then

dimc Spang{Imdul,: z€u"'(q)} = {ufl(q)‘ Vge X.

In particular, v is an immersion.

Let p=(p1,. .., 1x) be a k-tuple of cycles in X of total (real) codimension dimgo(X, A)+2k, i.e.

=k
codim p = Z codim iy = dimg (X, A)+2k = dim, (X, A).
=1

We denote by My(X, A; J, i) the set of genus-g degree-A J-holomorphic curves that pass through
every cycle pui,..., ug, i.e.:

Mg(X, A5 J, 1) = {CeMy(X, A; J): Cn #0 ViE[k]},
where k] ={1,...,k}.

We will call an element C of M4(X, A; J, 1) isolated to first order if for every parametrization
u:x —CCX
of C, where ¥ is a curve with k marked points yi, ..., yx such that u(y;) € y; for all [ € [k],
{¢eker Djy: &(yr) €Ty pu+Imduly, Vie[k]} € T(S;Im du) C T(S;u"TX).

If My(X, A; J) is a smooth manifold with the expected tangent bundle and the constraints p, . .., ug
are in general position, then My(X, A4; J, u) is a discreet set consisting of elements isolated to first
order. Below we describe some circumstances under which this set is also finite.

We recall that Ae Hy(X;Z) is called spherical if
A = £.[S?] € Hy(X;7Z)

for some smooth map f: % — X. A symplectic manifold (X,w) is weakly monotone if for every
spherical homology class A such that w(A) >0, either

(a(TX),A) >0 or (a(TX),A) <2—n,

10



where 2n=dim X, as before. In particular, all symplectic manifolds of (real) dimensions 2, 4, and 6
are weakly monotone. So are all complex projective spaces, which are in fact monotone; see |8,
Chapter 5] for a definition.

Finally, if (X,w) is a symplectic manifold, we denote by J(X,w) the space of all almost complex
structures on X tamed by w, endowed with the C'-topology.

Proposition 1.7 Suppose (X,w,J) is a compact almost Kahler manifold, A€ Hy(X;7Z)*, g=0,1,
and J is genus-g A-regqular. If p is a k-tuple of cycles in X of total codimension dimg (X, A)
in general position, then Mg(X,A;J, 1) is a finite set and every element in Mg(X,A;J, 1) is
wrreducible, reqular, and isolated to first order.

Proposition 1.8 If (X,w) is a compact weakly monotone symplectic manifold and A€ Hy(X;7Z)*,
there exists a dense open subset Jreg(X,w;A) of J(X,w) with the following properties. If J €
Treg(X,w; A), g =0,1, and p is a k-tuple of cycles in X of total codimension dimg (X, A) in
general position, then every element in My(X, A; J, ) is essentially embedded and isolated to first
order. If in addition <cl (TX), A>7é0, then My(X, A; J, 1) is a finite set and its signed cardinality
is independent of the choice of J € Jreg(X,w; A).

Most of the genus-zero statements of these two propositions are well-known; see [8, Chapters 5-7],
for example. The signed cardinality of the set M(X, A; J, ) is the corresponding Gromov-Witten
invariant, GWy 1(4; ), of (X,w). The remaining statements are obtained from minor extensions
of some results in [8], along with Theorem 1.2 in the genus-one case. For each [ € [k], let

evl:ﬁg,k(XaA;J)—)Xa [anla"'ayk;u} —)u(yl)a
be the evaluation map for the [-th marked point.

Suppose (X,w,J) and A are as in the statement of Proposition 1.7 and J is genus-one A-regular.
By (c) of Definition 1.4, the moduli space 919 w(X,A; J) is a smooth orbifold with the expected
tangent bundle. Thus, if i is a tuple of constraints as in the g=1 case of Proposition 1.7, then

MY L (X, AT, ) = {beMY (X, A5 J): evi(b) €y VIE K]}

is a zero-dimensional oriented submanifold. If {b,} is a sequence of distinct elements in 931(1)7 (XL AT ),
by Theorem 1.2 a subsequence of {b,} must converge to an element

b€ MMy 4 (X, As J, 1) ={bEDM, (X, A5 J): evi(b) €y VIE[K]}
C My (X, 45 ).

Since all elements of 9ﬁ?7k(X , A; J, ) are isolated,
be My (X, A5 J, 1) — MY (X, A; ).
On the other hand, by the regularity assumptions of Definition 1.4,

O (X, A; ) = I (X, As J) — MY (X, A; J)
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is a union of strata of dimensions smaller than dim; (X, A). Thus, if p is a tuple of cycles of total
codimension dim; (X, A) in general position, then

ﬁ(l),k()QA; Jop) — m(l],k:(X7A; J)=10.
It follows that i)ﬁ(l)’k(X, A; J, ) is a finite set, and so is its subset M1 (X, A; J, p).

We next move to Proposition 1.8. For any B € Ho(X;Z)*, almost complex structure J on X, and
gEZ™T, let

MNP (X, B;J) C M (X, B; ),
X, By e i (x, B;J),
MR (X, B; ) C Myu(X, B; J)
denote the subspaces of simplg maps. By [8, Chapter 3], for a generic choice of J, D, is surjective
for every element [3, u] of E)JTZIEP(X , A; J). Thus, as before,
My (X, As T, ) m MR (X, A T, ) = I (X, A J, ) 0O (X, As )

is a zero-dimensional oriented manifold, if x is as in Proposition 1.8. On the other hand, by the
same argument as in [8, Chapter 6], the evaluation map

. simp .
€VEy1 XeVgyo: 93?Lk+2(X, A, J) — X x X

is transverse to the diagonal, for a generic choice of J. Let
Lipr — MR (X, 4; )
be the universal tangent line bundle for the last marked point, i.e.
Lk+1|[2,u] = Tyk+12 V[E,U] € mil’rélil(X, A, J)
By a small modification of the proof of Lemma 6.1.2 in [8], the bundle section
du‘yk+1 : mil,rl?fl(X’ A5 J) - thJrl ®evlt+1TXa [Ev u] - du|yk+17

is transverse to the zero set, for a generic choice of J. The key part of this modification is to view
the relevant first-order equation as an elliptic operator acting on the space of smooth sections of
the vector bundle nOp1(1) over S2. The last two transversality properties imply that for a generic

element [%, u] of Sﬁi?;mp}(X , A; J) its image u(X) is essentially embedded. This concludes the proof
of the first statement of Proposition 1.8.

By in [8, Chapters 3,6], for a generic choice of J, Dy, is surjective for every element [X,u] of
smf;gmp}(X,B; J). In particular, iméslzmp}(X,B;J ) is a finite union of smooth orbifolds of the
expected dimension. Thus, if p is a tuple of constraints as in the statement of Proposition 1.8,

(oM™ (X, 45 0): evi(b) € VI [k]} — MY (X, A3 ) = 0.
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Furthermore, if (¢;(7X), A)#0, every element of
ﬁl,k(Xa Aa J, M) = {beﬁl,k(Xv Av J) : evl(b) €W vie [k]}

is simple. This can be seen by considering the dimension of the image of the multiply covered
elements of ﬁl,k (X, A; J) under the evaluation map evix...xevg. This is done by passing to moduli
spaces of maps consisting of simple elements; see [8, Chapter 5|. The argument requires two separate
dimension counts for multiply covered maps: one for the elements in Sﬁiok} (X, A; J) and the other

for those in its complement in My (X, 4; J). In addition to the assumption (c1(TX), A)#0, the
weakly monotone condition on (X,w) enters directly into both dimension computations. Finally,
by the same modification of the proof of Lemma 6.1.2 in [8] as described above, but applied to
tuples of genus-zero maps instead of genus-one maps,

MR (X, A3 ) 0 (D 4 (X, A J) -~ (X, A;.0))
is a finite union of smooth orbifolds of dimensions less than dim; ;(X, A). We conclude that
Mu(X, A T, ) ~ TP (X, A T, 1) = Iy (X, As T, )

is a compact zero-dimensional manifold. By a cobordism argument as in [8, Chapter 7], the signed
cardinality of M (X, A; J, u) is independent of a generic choice of J.

The signed cardinality GW?vk(A; p) of the set My (X, A; J, 1) is an integer-valued invariant of
the symplectic manifold (X,w). The difference between this invariant for an arbitrary symplectic
manifold (when the invariant may not be an integer) and the standard genus-one GW-invariant is
described by [18, Proposition 3.1] and explicitly given by [22, Theorems 1A,1B].

2 Preliminaries

2.1 Notation: genus-zero maps

We now describe our notation for bubble maps from genus-zero Riemann surfaces, for the spaces of
such bubble maps that form the standard stratifications of the moduli spaces of stable maps, and
for important vector bundles over them. In general, the moduli spaces of stable maps can stratified
by the dual graph. However, in the present situation, it is more convenient to make use of linearly
ordered sets:

Definition 2.1 (1) A finite nonempty partially ordered set I is a linearly ordered set if for all
11,19, h €1 such that i1,ia<h, either i1 <ig or io<i7.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there exists
0l such that 0<i for alliel.

We use rooted trees to stratify the moduli space ﬁ07{0}u m (X, A; J) of genus-zero stable holomor-
phic maps with marked points indexed by the set {0}LIM, where M is a finite set.

If I is a linearly ordered set, let I be the subset of the non-minimal elements of I. For every hel,
denote by ¢, € I the largest element of I which is smaller than h, i.e. 1, =max {2’6] 1< h}.

13



We identify C with S2—{oo} via the stereographic projection mapping the origin in C to the north
pole, or the point (0,0, 1), in S?. A genus-zero X-valued bubble map with M-marked points is a tuple

b= (M, Iz, (j,y),u),
where I is a rooted tree, and
r:1—C=8%—{x0}, j:M—I, y:M—C, and u:l—C>(S%X) (2.1)
are maps such that up(co0)=u,, (z3) for all hel. We associate such a tuple with Riemann surface
¥ = (|_| zb,i) / ~, where S, ={i}xS> and (h,o0)~ (tn,an) Vhel, (2.2)
i€l

with marked points

ud)=0nw) €5, and  yo(b)=(0,00) € Ty 5

and with the continuous map uy: ¥, — X, given by up|s, , =wu; for all i€ I. The general structure
of bubble maps is described by tuples 7 = (M, I; j, A), where

A; = {’U,byzb’i}*[sa] Viel.

We call such tuples bubble types. Let Ur(X;J) denote the subset of ﬁo,{o}uM(X, A; J) consisting
of stable maps [C,u] such that

[C;ul = [(Z5, (0, 00), (1, yi)iear); us)

for some bubble map b of type T as above, where 0 is the minimal element of I; see [16, Section 2]
for details. For e {0}UM, let
evi:Ur(X;J) — X

be the evaluation map corresponding to the marked point y;.

We denote the bundle of gluing parameters, or of smoothings at the nodes, over U7 (X; J) by F7.
This orbi-bundle has the form

FT = (€D Lno®Lna ) /Aut(T),

hel

for certain line orbi-bundles Ly o and Lj ;. These line bundles® are the line bundles associated
to certain S'-principal bundles. More precisely, there exists a subspace Z/{g) ) (X;J) of the space
Hr(X;J) of J-holomorphic maps into X of type 7, not of equivalence classes of such maps,
such that

Ur(X;J) = U (X; 7)) Aut(T) o (S1)L.

The line bundles Ly, o and Ly arise from this quotient; see Subsection 2.5 in [16]. In particular,

fT:]}T/Aut(T)oc(Sl)I, where fT:Z/I?)(X;J)X(Cf%Z/Ig))(X;J).

3also known as the inversal tangent line bundles at the node, but this is not essential here
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We denote by F 7" and FT? the subsets of T and F7, respectively, consisting of the elements
with all components nonzero.

The subset ng))(X; J) of H7(X; J) is described by the conditions (B1) and (B2) in Subsection 2.5
of [16]. It is the preimage of the point (0,1/2)! in (CxR)! under the continuous map

Ur=(Ur,)ier: HT(X;J) — (CxR)!

defined in the proof of Proposition 3.3 in [16]. The statements of the conditions (B1) and (B2) and
the definition of the map W7 require a choice of a J-compatible metric gx. It can be assumed that

/Pl duf?, > 1

for every non-constant .J-holomorphic maps u: P! — X. Such a metric gy will be fixed once and
for all. If the almost complex structure J is genus-zero A-regular, where A=3)"._;A;, the space
Hr(X;J) is a smooth manifold of the expected dimension; see Chapter 3 in [8]. In such a case,
the map U7 is smooth and transversal to every point (0,7;);er such that |ri—%\ < i for all ¢ € I;
see the proof of Proposition 3.3 in [16]. Let

X(T) = {i€l: Ai#0; Ay=0Vh<il}; (2.3)
- 1 13
U (x;) = U7 ({(0,7:)ies € (CxR): ri=g VieI-x(T), rie (3. ) Viex(T)},
FT = (x; yxc! —u(x; 7).
— —
As before, we denote by F7 the subset of 7 consisting of the elements with all components
Nonzero.

2.2 Notation: genus-one maps

We next set up analogous notation for maps from genus-one Riemann surfaces. In this case, we
also need to specify the structure of the principal component. Thus, we index the strata of the
moduli space My ar (X, A; J) by enhanced linearly ordered sets:

Definition 2.2 An enhanced linearly ordered set is a pair (I,R), where I is a linearly ordered set,
N is a subset of Iy x Iy, and Iy is the subset of minimal elements of I, such that if |Iy|>1,

N = {(i1,2), (i2,13), - - -, (in—1,%n), (in, i1) }
for some bijection i: {1,...,n}— Iy.

An enhanced linearly ordered set can be represented by an oriented connected graph. In Figure 4,
the dots denote the elements of I. The arrows outside the loop, if there are any, specify the partial
ordering of the linearly ordered set I. In fact, every directed edge outside of the loop connects a
non-minimal element h of I with ¢,. Inside of the loop, there is a directed edge from ¢; to io if and
only if (il, iQ) EN.

The subset N of Iy x Iy will be used to describe theistructure of the principal curve of the domain
of stable maps in a stratum of the moduli space My a7(X, A; J). If X=0, and thus |[y| =1, the
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.

Figure 4: Some enhanced linearly ordered sets

corresponding principal curve Yy is a smooth torus, with some complex structure. If R # (), the

principal components form a circle of spheres:

Sk = ( |_|{z'}><52>/~, where (i1, 00) ~ (i,0) if (i1,42)€EX.
i€lp

A genus-one X-valued bubble map with M-marked points is a tuple

b= (MalaN;va’ (j’y),U),

where S is a smooth Riemann surface of genus one if X={ and the circle of spheres ¥y otherwise.
The objects x, j, y, u, and (X3, up) are as in (2.1) and (2.2), except the sphere X, 5 is replaced

by the genus-one curve ¥, x =S. Furthermore, if N=0), and thus Iy = {0} is a single-element set,
uy € C*°(8; X) and y; € S if j;=0. In the genus-one case, the general structure of bubble maps is
encoded by the tuples of the form 7 = (M, I,R;j, A). Similarly to the genus-zero case, we denote

by Uz (X; J) the subset of My (X, A; J) consisting of stable maps [C, u] such that
[C;ul = [(Sy, (o, Y)ienm); up)

for some bubble map b of type 7 as above.

If 7=(M,1,X;5, A)is a bubble type as above, let

L ={hel: e}, My = {le M: jiel}, and
76 - (Mol—ljla-[OaN;j|MOU[’|Ilaé|Io)7

where Iy is the subset of minimal elements of I. For each hée€ I, we put

Iy ={iel:h<i}, My={leM:jely}, and T, = (M, I;j|m,,Alr)-

We have a natural isomorphism

Ur(X; 7) % ({ (bo: (nnen) €U (X5.7) x [ Juhr, (1)
hel

evo(br) =ev,, (bo) Vhe[1}> /Aut*(T),
where the group Aut*(7) is defined by

Aut™(7T) = Aut(7)/{g€Aut(T): g- h=h Vhe,}.
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Figure 5: An example of the decomposition (2.6)

This decomposition is illustrated in Figure 5. In this figure, we represent an entire stratum of
bubble maps by the domain of the stable maps in that stratum. The right-hand side of Figure 5
represents the subset of the cartesian product of the three spaces of bubble maps, corresponding
to the three drawings, on which the appropriate evaluation maps agree pairwise, as indicated by
the dotted lines and defined in (2.6).

Let F7T — U7 (X;J) be the bundle of gluing parameters, or of smoothings at the nodes. This
orbi-bundle has the form

FT = ( P Lno@Lia © @ Lno@Lna ) /Aut(T),
(hi)er hel

for certain line orbi-bundles Ly o and Ly ;. Similarly to the genus-zero case,

Ur(X;J) = U (X 7) JAut(T) o< (SY)!,  where (2.7)
M#”(X; J) = {(bo, (bn)ner, ) €Uz, (X; J)XHU%)L)(X; J):evo(by)=ev,, (bo) YRE T } (2.8)
hely

and U(T?I )(X ; J) is the subspace of the moduli space of holomorphic maps from genus-zero curves as
in Subsection 2.1. The line bundles Ly o and Ly ; arise from the quotient (2.7). More precisely,

FT = FT/Auw(T)x (S,  where FT = ARToRhToAT —UlY (X;J),

FT=@QAHT. FAT=ud(X;J)xc-h,
hel;

and F, 7T and Fn7T are the pullbacks by the projection map
mp U (X5 T) — U (X;.T)

of the universal tangent line L, 7y at the hth marked point and of the bundle F7 g of gluing parame-
ters. In other words, if {7y — Uz, (X; J) is the semi-universal family, i.e. the fiber at by €Uz, (X; J)
is the Riemann surface ¥, =%, n, L1, 7o is the vertical tangent space at the point xp,(by) of Xy, .

Remark 1: The above description is slightly inaccurate. In order to insure the existence of the
space g, with the fibers as described, we need to replace the space Uz, (X;J) by a finite cover,
analogous to the one used in [10]. However, correcting this inaccuracy would complicate the nota-
tion used even further, but would have no effect on the analysis, and thus we ignore it.
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Remark 2: The rank of the bundle F7 is |X|, the number of nodes in the domain of every element

of Uz, (X;J). If N#£(), FT can be written as the quotient of the trivial bundle of rank [R|, over

a space L{T(—g ) (X;J), by an Aut(7p) o< (S')N-action in a manner similar to the previous subsection

and to Section 2 of [16]. With the above identifications, the singular points of every rational com-
ponent X; of ¥y are the points 0 and oo in S2. Thus, the equivalence class of the restriction of a
stable map in Uz, (X; J) to 2;, with its nodes, has a C*-family of representatives. This family is cut
down to an S'-family by restricting to the subset defined by the condition (B2) of Subsection 2.5
in [16]. This is the preimage of 1/2 under the last, real-valued, component of the function Wz ;«
defined in (2) of the proof of Proposition 3.3 in [16].

If 7T=(M,I,R;5, A)is a bubble type such that A;=0 for all minimal elements i of I, i.e.

Ur(X:J) € Myar(X, A7) — MO (X, A7), where A= 4,

i€l
it is again useful to define a thickening of the set Ll#) ) (X;J). Thus, we put

A0 (X3.0) = { (b, (bu)ner,) €Uz (X3 0)x [ U5 (X;.0): evo(bn) =ev., (bo) VhE L}, (29)
hely

where the space Z/N{(TSL) (X;J) is as in Subsection 2.1. Let

FT = RToRToRT (X)),  where

AT =ipFTo, FT =@ FT. FT =iplnT, FT =U(X;J)xClh)
hely

- —0
and 7p: UT@ (X;J) — Uz, (X;J) is the projection map. As before, we denote by F7  the subset
of FT consisting of the elements with all components nonzero.

Suppose 7 = (M, I,N;j, A) is a bubble type as in the previous paragraph. Since every holomorphic
map in the zero homology class is constant, the decomposition (2.6) is equivalent to

Ur(X; J) ~ (U (pt) x Uz (X3 ) [ Aut*(T)
- (2.10)
C (Mg x Ur(X;.0) ) /Aut*(T),

where ko=|Mo|+|I1|, My, is the moduli space of genus-one curves with ky marked points, and

Up(X;J) = {(bn)nen, € [ [Un, (X:7): evo(bn,) =evo(bn,) Yhi, ho €11},

hel
Similarly, (2.9) is equivalent to
U (X3 0) = Uz (pt) x UL (X50) © Mygy x UL (X5),  where (2.11)
19X 7) = {(0n)nen € [JUS (X;5.7): evo(b,) =evo(bny) Yhi, ha€ 11 }. (2.12)
hely
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We denote by

mp: Ur(X;J) — My g, /Aut*(T), Tp: Z:lg))(X; J) — M1 ks
and evP:UT(X;J),Z:Ig))(X;J)—>X
the projections onto the first component in the decompositions (2.10) and (2.11) and the map

sending each element [C,u] of Uy (X;J), or (C,u) of Z;{? ) (X; J), to the image of the principal com-
ponent Cp of C, i.e. the point u(Cp) in X.

Let E —>M1,k0 denote the Hodge line bundle, i.e. the line bundle of holomorphic differentials. For
each i€ x(7), we define the bundle map

—_—~—

Dy FpyT — #pE* @ evpTX,  where  h(i)=min{hel: h<i} € I,
over Z;{?)(X; J) by

{D1i(0)} (W) = Va1 (0) 5 Dib € Toy iy X if

VETHE, ©=(b,7)eFunT, bEUNV(X;J),

and zp,(;)(b) € Xy is the node joining the bubble ¥, j,;) of b to the principal component ¥ x of 3.
For each ve FT, we put

p(0)= (b, (pi())iex(r)) € P FnyT. where pi(v)= []Jvn € Fry7, it
iex(7) hel h<i

v=(biog, (v),e), bEUD(X;T), (byon) €FRT, (byon)€FyT ithely, veCificl—Iy.

These definitions are illustrated in Figure 6. While the restrictions of these bundle maps to
Z/lg)) (X;J) Clxlg)) (X; J) do not necessarily descend to the vector bundle 7 over U7 (X; J), the map

Dr: FT — 7pE* @ evpTX /Aut*(T),  Dr(v)= Y Dyipi(v),
iex(7)

is well-defined.

Finally, if 7" is any bubble type, for genus-zero or genus-one maps, and K is a subset of Ur(X;J),
we denote by K(© and K(© the preimages of K under the quotient projection maps

U (X: ) —Ur(X: D) and U (X50)—Ur(X: ),

respectively. All vector orbi-bundles we encounter will be assumed to be normed. Some will
come with natural norms; for others, we choose a norm, sometimes implicitly, once and for all. If
mg: § — X is a normed vector bundle and §: X — R is any function, possibly constant, let

Fs = {vesF: Jv|<d(nrz(v))}.

If © is any subset of §, we take Q5= N §s.
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2.3 Boundary structure theorem

In this subsection, we formulate Theorem 2.3, which states that an element
be Myp(X, A;J) — MY (X, A7)

lies in the stable-map closure of the space 932(1)7,{(X , A; J) of genus-one J-holomorphic maps from

smooth domains if and only if b lies in ﬁgk (X, A; J), provided the almost complex structure J is
sufficiently regular. In addition, Theorem 2.3 describes a neighborhood of every stratum of

MY (X, A3 J) — MY (X, 457
in ﬁ?,k(X, A; J). If k€Z*t, we denote by [k] the set {1,...,k}.

Theorem 2.3 Suppose (X,w,J) is a compact almost Kahler manifold and A€ Ho(X;Z)*. If the
reqularity conditions (a) and (b-i) of Definition 1.4 are satisfied and T = ([k], I, N; j, A) is a bubble
type such that Y. ;A=A and A;=0 for all minimal elements i of I, then the intersection of the
closure of Sm?,k(X, A; J) in My (X, Ay J) with U (X; ) is the set

Ura(X;J) = {[b] eUr(X;J): dime Span(QJ){Dib: iex(T)}< ])((’T)\}

Furthermore, the space
FT0 = {[v]=[b,0] € FT?: D7 (v) =0}

is a smooth oriented suborbifold of FT . Finally, there exist § € C(Ur(X;J);RT), an open neigh-
borhood Ut of U (X; J) in X1 (X, A), and an orientation-preserving diffeomorphism

¢: F'T) — M) (X, A;J) N Ur,
which extends to a homeomorphism

¢: F' Ty — M (X, A; J) N U,
where FYT is the closure of F*T? in FT.

We now clarify the statement of Theorem 2.3 and illustrate it using Figure 6. As before, the
shaded discs represent the components of the domain on which every stable map [b] in Uz (X; J)
is non-constant. A stable map

[C.u] € Ur(X;J) € Myp(X, A5 T) — M (X, 437,
is in the stable-map closure of mt‘{,k(X , A; J) if and only if [C, u| satisfies condition (b) of Defini-
tion 1.1.

Standard arguments show that the regularity condition (a) of Definition 1.4 implies that the space
Z/lg) ) (X;J) is a smooth manifold, while U7 (X;J) is a smooth orbifold; see Chapter 3 in [8], for

example. Thus, the total space of the bundle F 7" is also a smooth orbifold. The second claim of
Theorem 2.3 is immediate from the transversality of the bundle map

Dr: FT' — 7pE* @ evpTX /Aut*(T),  Dr(v)= > Dyipi(v),
iex(T)
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X(T) = {hlﬂ ha, hS}v p(’U) = (Uhl y UhgUhys 'Uh:svhs)

h2 hl h3 h4
;g flT@ = {[ba Vh15yVhyy Uhzs Uhys ’Uh5] 1 Uhyy Uhy s Vnhg € C*a
’ hs Uhy ETwhl ZP_{O}’ Uhs eTzhs ZP_{O};
'UhIDJJLlb+'Uh3Uh4DJ)h4b+vh3vh5DJ7h5b:O}
“tacnode”

Figure 6: An illustration of Theorem 2.3

to the zero set. In turn, this transversality property is an immediate consequence of the regularity
conditions (a) and (b-i) of Definition 1.4.

The middle claim of Theorem 2.3 is needed to make sense of the remaining statement. This final
claim, proved in Section 6, describes a normal neighborhood of Uz, (X; J) in ﬁ?yk(X ,A; J) and
implies the first statement of Theorem 2.3.

Remark: The regularity assumptions on J used in Theorem 2.3 do not guarantee that the entire
space Sﬁ(ik(X, A; J) is smooth. However, the proof of Theorem 1.6 implies that 9)?[1)7k(X,A; J) is

smooth near each stratum Uz, (X;J) of ﬁ?yk(X, A;J). This can be seen from the J=.J case of
Corollary 4.5 and standard Implicit Function Theorem arguments such as those in Chapter 3 of [§].

Proof of Corollary 1.5: It remains to construct a fundamental class for ﬁ?’k(X ,A; J). Theorem 2.3

describes a neighborhood in ﬁ?k (X, A; J) of every stratum ﬁgk (X, A; J)NUr(X; J) for a bubble
type T =(M, I,X;j, A) such that A;=0 for all minimal elements i€ I. If 7 is a bubble type such
that A;#0 for some minimal element i € I, a neighborhood of

ﬁ(1),19()(714; J) ﬂUT(X; J) = UT(X; J)

in ﬁ?’k(X , A; J) is homeomorphic to a neighborhood of U7 (X; J) in the corresponding bundle of
gluing parameters F7, as can be seen from Subsection 4.1 and the continuity arguments of [16,
Subsections 3.9]. Since

O (X, A; ) = M (X, A; J) — M (X, A; )

is a union of smooth orbifolds of (real) dimension at most 2({c;(TX), A)+k) — 2, it follows that
there exist arbitrary small neighborhoods U of 8@?7,6 (X, A; J) such that

H(U;Q)={0}  VI>2((ci(TX),A)+k) — 1;
see [20, Section 2.2]. Since the moduli space W?,k(X, A; J) is a smooth oriented orbifold,
dimp MY (X, 4; ) = 2((c1(TX), A)+k),
and the complement of U in ﬁ?k(X , A; J) is compact, Sm(ik (X, A; J) determines a class
[ﬁ(l),k(Xv A; J)]| € Ho((ey (1), 4)+k) (ﬁ(l),k(Xa A;7),U;Q)
~ Ha((ey (). 10 (T (X, A3 7); Q),

as claimed. The isomorphism between the two homology groups is induced by inclusion.
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3 A genus-zero gluing procedure

3.1 The genus-zero regularity properties

In this subsection, we prove the g = 0 case of the first claim of Theorem 1.6. It follows from
Corollary 3.2 and the compactness of the moduli space My 1(X, A;J). Corollary 3.2 is obtained
by a rather straightforward argument via the analytic part of [6]. Throughout this subsection, we
assume that J is a genus-zero A-regular almost complex structure on X.

In order to prove Theorem 1.6, we need to describe smooth maps w: P! — X, with one or two
marked points, that lie close to each stratum Uz (X J) of My 1(X, A;J) and of

Mo2(X, A; J) = My 010013 (X, 45 7).

We denote by X ar(X, A) the space of equivalence classes of all smooth maps into X from genus-
zero Riemann surfaces with marked points indexed by the set {0}LIM in the homology class A and
by 3687M(X7 A) the subset of X (X, A) consisting of the maps with smooth domains, i.e. P! in
this case.

Let 7=(M,I;j,A) be a bubble type such that ), ;A;=A, i.e. Ur(X;J) is a stratum of the mod-
uli space My (oyunr (X, 4; J). We will proceed as in Subsections 3.3 and 3.6 of [16]. Subsections 2.1
and 2.3 in [15] describe a special case of the same construction in circumstances very similar to the
present situation.

— -
For each sufficiently small element v=(b,v) of F7 , where b= (X, up) is an element of L{(TO )(X AR
let
qu - EU B Z:b

be the basic gluing map constructed in Subsection 2.2 of [16]. In this case, ¥, is the projective line
P! with |M|+1 marked points. Let

b(’U) = (Z’Uu ul})7 Whel"e u’u == ub o q’U7

be the approximately holomorphic map corresponding to v. The primary marked point yo(v) of
¥, is the point oo of ¥, ~ S2.

Let V7 be the J-linear connection induced by the Levi-Civita connection of the metric gx. Since

_ —0
the linearization D jj, of the 0 -operator at b is surjective by Definition 1.3, if ve F7T  is sufficiently
small, the linearization

Dyp: T(0)=LE(S0; up TX) — T} (03 J) = LP(Sy; AY T8, @u TX)

of the 9 -operator at b(v), defined via the connection V7, is also surjective. In particular, we can
obtain a decomposition
INv)=T_(v)®I'i(v) (3.1)

such that the linear operator D, : I'y(v) — I'%1(v; J) is an isomorphism, while
I_(v) ={€oqu: £€T_(b)=ker Dy}
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For the purposes of this subsection, the space I'y (v) can be taken to be the L?-orthogonal com-
plement of I'_(v), but for use in later subsections it is more convenient to take

I'y(v) = {¢€N(v): ¢(0,00)=0; ({,&Nv2=0VEET_(v) s.t. £(0,00)=0}, (3.2)

where (0,00) is the primary marked point, i.e. the south pole of the sphere X, ~ S2. This choice
of 'y (v) is permissible by Definition 1.3. The L%-inner product on I'(v) used in (3.2) is defined
via the metric gx on X and the metric g, on 3, induced by the pregluing construction. The
Banach spaces I'(v) and I'%!(v; .J) carry the norms || - || p1 and || - ||, respectively, which are also
defined by the pregluing construction. Throughout this paper, p denotes a real number greater
than two. The norms || - ||, 1 and || - ||,,p are equivalent to the ones used in [6]. In particular, the
norms of Dy, and of the inverse of its restriction to I'y (v) have fiberwise uniform upper bounds,

i.e. dependent only on [b] €U7(X;J), and not on veC* . We denote by
To—: I'(v) — T'_(v) and 74 [(v) — Ty (v)

the projection maps corresponding to the decomposition (3.1). The relevant facts concerning the
objects described in this paragraph are summarized in Lemma 3.1:

Lemma 3.1 Suppose (X,w,J) is a compact almost Kahler manifold and A € Hy(X;7Z). If J is
a genus-zero A-regular almost complex structure and T = (M, 1;j,A) is a bubble type such that
A =314, there exist 6,C € C(Ur(X;J);RY) and an open neighborhood Ur of Ur(X;J) in
Xo,m (X, A) with the following properties:

(1) for allv:(b,v)eﬁ'?,

17oi-Ellopa < COElvpr VEET(@),  [1Dsullup < CO)IYPlEllopr VEET-(v),
and — CO) " €llopa < 1Dsutllop < COEllopr  YEET+(v);

(2) for every 0] 6%87M(X, A)NUrg, there exist Uef’]:;@ and €'y (v) such that ||C||vp1 <d(b) and
[expy ()¢ =[0].

The first two bounds in (1) follow immediately from the definition of the spaces I'_(v). The third
estimate can be deduced from the facts that

I€lop1 < COYIDswEllop+€lop) and  [Ellgo < CONElops  VEET(v),  (3.3)
and  lim I (v) =T-(b) if b= (S, up) € UL (X T);

see Subsection 3.5 in [16]. In (2) of Lemma 3.1, expy,,)( denotes the stable map that has the
same domain and marked points as the map b(v), but the map into X is exp, ¢, where exp is the
exponential map of the connection V”. The final claim of Lemma 3.1 also follows from the above
properties of I'_(v), along with the uniformly smooth dependence of the spaces I'_(v) on v; see
Section 4 of [16]. In fact, for each [b] in Uz N %87M(X, A), the corresponding pair (v, () is unique,
up to the action of the group Aut(7)oc(S)”.

Corollary 3.2 If (X,w,J), A, and T are as in Lemma 3.1 and M =0, for every precompact
open subset K of Ur(X;J), there exist §i,Cx € RT and an open neighborhood Uk CUr of K in
X0,9(X, A) with the following properties:
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(1) requirements (1) and (2) of Lemma 3.1 are satisfied;

(2) if J is an almost complex structure on X s.t. |J—J||c1 <0k and [b] € UKH%&l(X, A), there
exists a smooth map @: P' — X such that [b)=[P', @] and, for a choice of linearization of d; at @,
the operators Dj,a and Q?a are surjective.

Remark: If the map @ is J-holomorphic, i.e. & 7 vanishes at 4, there is only one linearization of 0 5
at 4, though there are different ways of writing it explicitly. In the proof of this corollary, whether
or not @ is a J-holomorphic map, Dj . denotes the linearization of d; at @ with respect to the

connection V7 ; see [8, Chapter 3].

Proof: (1) By (2) of Lemma 3.1, it is sufficient to check the surjectivity claims for every smooth
map @=exp,, ¢, where v= (b, U)GJ:IZ:SQHK(O) and ||C|lvp1 <dg. If

¢ € T(@) = LX(Sy; a*TX),

we define £ eT'(v) by .
£(z) =T LE(z) V¥ zeP!,

where II:(,) is the parallel transport along the geodesic ¢ — exp,, (,)t¢ (2) with respect to V.
By (3.3),

I1D.1€|

op 1D g€llop + Cx (1T = Tllor+ ¢ llo.pa) lI€]
=Dj z&llvp + Cx (17 =T ller +i¢llvpa) IE]

v,p,1

v,p,1 vV Eel(a).

Thus, by (1) of Lemma 3.1,

Tr; 3 v < Cf J—J + v 3 v
I lion < Ch (=Tl 1o Willoa e op
— 1€llop.1 < Ckl[To—Ellop,1 7
if 0 is sufficiently small. By (3.5) and (a) of Definition 1.3,
dimker Dj . < dimI'_(v) =ind Dy = ind Dj ..

In particular, the operator Dj . is surjective.
(2) The surjectivity of the map ’D(}oﬂ is proved similarly. Let

T T_(v) — T_(v)={€€l_(v): £(00) =0} ~ ker D7, and
Pt T (1) — T4 (0) = {EET_(0): (€,€)02=0 V€' €T (1)}

be the L?-orthogonal projections onto I'_(v) and its orthogonal complement in I'_(v). Then,

[€llop1 < Cilé(o0)] ¥ E€D(v), (3.6)

since the analogous bound holds for the map

@fbi ker DJM I Tu(oo)Xa
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by Definition 1.3. Combining (3.3)-(3.6), we obtain

vt T~ Ellop1 < Ciclmo—E(00)] < Cl (1€(00) |+ |4 £(00)])
< O (1€©)| + (IS =Tller+l¢lop)IEllop1) ¥V E€ker Dy,
lop,1 v fekeri)of’ﬂ,

—  |l€lopa < Ok ||t mo €

if 0 is sufficiently small. Thus,
dimker 5, < dim I'_(v) = ind®F, = ind DY, (3.7)

and the operator ’Dof’ﬁ is surjective.

3.2 Some power-series expansions

In Subsection 2.5 of [15] we describe the behavior of all derivatives of rational Jp-holomorphic maps
into P near each stratum Uz (P"; Jy) by making use of special properties of the standard complex
structure Jy on P™. In this subsection, we obtain analogous estimates for modified derivatives of
J-holomorphic maps into X for an arbitrary genus-zero A-regular almost complex structure J; see
Lemma 3.5. We use these estimates a number of times in the rest of the paper.

If b = (X, up) is as element of Z;lép ) (X;J) as in the previous subsection, the tangent bundle
Tbl;lq(p)(X;J) of Z;lq@)(X; J) at b consists of the pairs (w,§), where £ € ker D, and w € ¢l en-
code the change in u;, and in the position of the nodes on X, respectively, that satisfy a certain
balancing condition; see Subsection 2.5 in [16]. We denote by Tbljlg) ) (X;J) the subspace of the
tuples (0,&) of Tbl;{g)) (X;J). In particular,

TP (X;J) < T (0)={(&1)ner € P ker Dy, €(00) =€y, (21 (b)) YRET},
hel

where up, p =upls, ,. If i€x(7), where x(7) is as in (2.3), the image of the projection map
{(Ener € T (X;5J): €(0,00) =0} — {¢€ker Dy, C(0,00) =0},
52 (gh)hEI B 6|Eb1i :gia

has real codimension two. Its complement corresponds to the infinitesimal translations in CC X ;.
Thus, if J satisfies the regularity conditions (a) and (b-i) of Definition 1.4 and 0 is the minimal
element of I, for all i€ x(7) the map

D jui: T (b)= {5€Tb?/~f§0)(X; J): €(0,00)=0} — Toyon) X, D u:i(§) = VI &,
is surjective.
Lemma 3.3 If (X,w,J), A, and T are as in Lemma 3.1, for every precompact open subset K of
Ur(X;J), there exist 0k, ex,Cr € RT and an open neighborhood Ux C Ur of K in Xom(X, A)

with the following properties:
(1) the requirements (1) and (2) of Corollary 3.2 are satisfied;
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(2) if J is an almost complex structure on X s.t. ||J—J| 1 <0k,

(2a) for all v=(b,v) EﬁgK the equation

‘f((o) ’
05exp,, ¢ =0, CETL(v), [Cllop1<ex,
has a unique solution Cj’v;
(2b) the map <]3j: .%\’]/'gK]k(o) —>93?87{0}HM(X, A; )N Uk, v— [expy() C5,)5 is smooth;
(2¢) for all v=(b,v) € FT 5, | w» evo(ds(v)) =evo(b):
(2d) for all v=(b,v) Eﬁ'gK‘R(O),

V¢l ot < Cr (7= Tllcr+]o]'/P), (3.8)

ch,’UH'u,p,l’ p,1 —

where VTCiU denotes the differential of the bundle map v — Cf,v along f_(b) with respect to a
connection in the bundle I'((-,v)) over L~I7(9) (X;J).

Remark: Let p: T_(-) —>Z/~{$)(X; J) be a smooth map such that

(b,0) : f_ (b) — Tblflg)) (X; J)

de
is the inclusion map for all ber{(TO )(X ;J) and

S0 =% and evo(p(s)) = evo(b) V¥ belP(X;J), seT_(b).

Let
Bt D)= T (S TX) — T((-0))

be a lift of ¢ to a vector-bundle homomorphism that restricts to the identity over Z;{T(p )(X ;J). For
example, we can take ¢ to be given by

{0 0}2) = Me(g,@n€() ¥V 2E€X00) = (p(0)0)
if gef_(b) and p(s) = (Ebvexpub ¢(2)),

where Hc(q(bm)(z))ﬁ(z) is the parallel transport of {(z) along the geodesic
Ye(z) ¢ [Ov 1] — X, T expu(b,u)(z) TC(Q(b,v)(Z))'
We can then define V7 (; (o) I_(-)—T((-,v)) by

. Cj v _§5(<j bv)
R I e e (CT)

for X €' (b). Finally, a choice of metric on LNI(TO)(X; J) determines |V7¢5  [lopa-
Claim (2a) of Lemma 3.3 and the first bound in (2d) follow immediately from (1) of Lemma 3.1

and (3.3) via a quadratic expansion of the 0 j-operator at u, and the Contraction Principle; see
Subsection 3.6 in [16]. Claim (2c) is a consequence of (3.2). The smoothness of the map ¢ ;7 follows
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from the smooth dependence of solutions of the equation in (2a) on the parameters. The second
bound in (2d) is obtained from the uniform behavior of these parameters; see Subsection 3.4 in [16].

If bEZ:{?) (X;J) is as before, the domain ¥, of b has the form

Sy = <|_|{z'}><52)/~, where  (h,00) ~ (tn, (b)) Vhel, (3.9)
i€l

and x5,(b) € S?—{oo}. The basic gluing map ¢, : 3, — X used in this paper is a homeomorphism
outside of at most || circles in ¥, and is holomorphic outside of the annuli

Aih = qgl(Aih(|vh|))7
with hE.f, where

Ay (0) = Ay, (8) = { (R, 2)e{h}x 8% |2|>571/2/2},
A (6) = {(on, 2) € {n} x 873 |z—an(b)| <262},

for any § € R*. For each h¢e I, fl;f R [L; , is the thin neck of X, corresponding to smoothing the
node of X joining the spheres X, and ¥ p,. If 6€R™T, let

0 5,(0) = (1) () <% =272}, 5900 = (Z= ) Uzaa) U U0

’ iex(T) h>i iex(T)
Aih@) = q;1<A25h(5>> C Yy, 0 A4,,0)= QJl(afAb_,h@)), 20(8) = g, ' (Z4(9))-

In the case of Figure 7, ¥2(§) consists of the two non-shaded components, with the node joining
them turned into a thin neck, the three thin necks corresponding to the nodes attaching the bubbles
hi, hy, and hs, and small annuli extending from each of these three necks into the interior of the
corresponding bubble, provided |v| <§. If v=(b,v), with v € C*/| the complement of ¥?(§) is the
union of |x(7)| disks that support nearly all of the map wu, =upoq,.

Lemma 3.4 If (X,w,J), A, and T are as in Lemma 3.1, for every precompact open subset K of
Ur(X;J), there exist 0k, ex,Crx € RT and an open neighborhood Ux C Ur of K in Xom(X, A)
with the following properties:

(1) the requirements (1) and (2) of Corollary 3.2 are satisfied;

(2) if J is an almost complex structure on X s.t. ||J—J||c1 <0k, there exist a smooth map

. 9 -
07 FT syl o — Mo opune(Xs A J) N Uk

such that the requirements (2a)-(2d) of Lemma 3.3 are satisfied. Furthermore, for every be K©)
and v=(b,v) € FT s, |z, there erist

@, € LY (2)(6k); End(eviT X)), 9y € Holy (37 (0 ); eveTX),
®; € L (2)(0k); End(evpTX)), 9, € Holy (9 (0 ); evTX),
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such that
(2a) the maps b~—> (®p,Up) and v— (P .,V ;,,) are smooth;
(2b) for all be KO,

€XPevo (b) (@b(z)ﬁb(z)) = up(z) Vz € 2)(0k);

1
Po|50(0) = Id, and H(I)b_Ide,p,p HVT(tln,—_fd)Hb’p’1 <3

—0
(2¢) for all v= (b, v)E.’FT(;K‘K(O),

€XPevy (b) (<I>j7v(z)'l9j7v(z)) = Uy(2) Vz €X2(6k)
and ||®;,—Pyogy|| V(@5 ,~Byoq)|],,, < Cx (17— Tller+]v|*P),

v,p,1’ | v,p,1

if Uy =exp,, ijv.

In the statement of this lemma, Hol () (dk); ev§T X ) and Hol;(29(6k); eviTX) denote the spaces
of holomorphic maps from X{(dx) and X0(dx) into the complex vector space (Tpyyr)X,J). In
brief, the substance of Lemma 3.4 is that a J-holomorphic map can be well approximated by
a holomorphic map on a neighborhood of the primary marked point, or any other point, of the
domain. Due to Lemma 3.3, Lemma 3.4 is essentially a parametrized version of Theorem 2.2 in [3],
and only a couple of additional ingredients are needed. The crucial fact used in [3] is that the
operator

E: LY (5% Endc(C")) — LP(S% AY' T*S?@Endc(C")) @ Endc(C"), E(0)=(00, 6(0)),

is an isomorphism. The map = is still an isomorphism if S? is replaced by a tree of spheres ¥ and 0
by any point on X. Furthermore, if y is a smooth point of ¥ for all sufficiently small smoothings v
of the nodes, the operators

Ep: LY (Z4; Ende(C")) — LP(Sy; A% T*S, @ Endc(C™")) & Endc(C"),  E,(0)=(00,0(y)),
are also isomorphisms. In addition, for some C' € R™ and for all sufficiently small smoothings v,
O 2Ol < Ol < ClIEOy ¥ O LE (Sy5 Ende(C)). (3.10)

If all components of v are nonzero, ¥, is topologically a sphere, but should instead be viewed as
a tree of spheres joined by thin necks. As before, we denote by || - ||y p1 and || - ||, the norms
induced by the pregluing construction above. In particular, (3.10) can be viewed as a special case
of (1) of Lemma 3.1. We need to use the norms || - ||, 1 and || - ||,p, since these are the norms
used in Lemmas 3.1 and 3.3. Keeping track of all norms in the proof of Theorem 2.2 in [3], we see
that the maps @, Uy, @5, and 7 satisfying (2b) and the first condition in (2c) exist, provided
that dx is sufficiently small. The last two estimates in (2c) are obtained by an argument similar
to Subsection 4.1 in [16].

Before we can state Lemma 3.5, we need to introduce additional notation. For each v = (b,v),
where bEZjlg))(X; J) and veC’, and i€ x(7), let

pi(v) = th eC, pi(v)=(b,pi(v)); zi(v) = Z (xi/(b) th) e C,

O0<h<i 0<i'<i O<h<i!
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X(T) = {hla h‘4a h5}
p(v) = (Uh1,Uh3Uh47Uh3Uh5)
Ths (U) = Thg (b) + VhyTh (b)

Dgl)l;j(v) = 'D‘(]T})Ll Uh,y —I—’Dgzu Uh3Uhy —I—’DSI?LE) Uh3Uhs

Figure 7: An example of the estimates of Lemma 3.5

where z;(b) is as in (3.9); see Figure 7. If K and ¥}, are as in Lemma 3.4, b= (X3, u) € KO, veC,
i€x(T), and reZ*, we put

r 1 d r r
( )b = 'd Tﬁb7i(w,;) — & evo(b)X and DSZ)(() U) =v- Z( )b,

where ¥y ; =[5, ,, -7 is the scalar multiplication in (7'X, J), and w; is the standard holomorphic

—0
coordinate centered at the point oo in X, ; =52 If vEFTs, |, we similarly set

~ )7 1 dT‘
bi(v) = (Su, @), Dbj(v) =

’I"' dwr Jv(w) w=0 € TeVO(b)X’

where w is the standard holomorphic coordinate centered at the point co in ¥, ~ S2. The value of
Dlmb depends on the choice of ¥y in Lemma 3.4, which can be uniquely prescribed by the choice
of §x € RT. Alternatively, one can replace small positive numbers dx dependent on compact
subsets K of Ur(X;J) by a small function § : Uz (X;J) — R, which can be used to choose a
holomorphic map

Oy Zp(6(b)) — (Tewoy X, J)

for each J-holomorphic stable map b EZ/?? ) (X; J). Of course, the definition of Dé b 7(v) depends
on even more choices, including those involved in the gluing construction of Lemma 3.3.

Lemma 3.5 If (X,w,J), A, and T are as in Lemma 3.1, for every precompact open subset K of
Ur(X;J), there exist 0k, ex,Cx € RT and an open neighborhood Ux C Ur of K in Xonm (X, A)
with the following properties:

(1) the requirements (1) and (2) of Corollary 3.2 are satisfied;

(2) if J is an almost complex structure on X s.t. ||J Jllcr <Ok, there exist QSJ, @, and 9y for

each be KO and ®;, and V5, for each v G]—"T(;K|I~<(0), such that the requirements (2a)-(2d) of

Lemma 3.3 and (2a)-(2c) of Lemma 3.4 are satisfied. Furthermore, for each k€Z* and i€ x(7T)
there exists a smooth map

5((?2 ﬁgK |70 — evpTX,
such that:
(2a) for all T €Z* and v:(b,v)eﬁgK’K(o),
k=r
Z ( > ZIUT : ){DSZ +€~ V) 195 (V) € Ty X
k=1 iex(T)
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—0
(2b) for all keZ*, iex(T), and v=(b,v) €FT s, |z

W1, IV TN < Cro (1Tl +v] 7).

Proof: (1) We apply, with some modifications, the argument for the analytic estimates of Theo-
rem 2.8 in [15] to holomorphic functions ¥, and ¥ 5, instead of the functions u;, and @, which are

J-holomorphic and J-holomorphic in this case. We will use coordinates z on S2 —{o0} ~ C and
w=2"" on $2—{0}. Since ¥, is holomorphic on X2 (),

) 1o _ 1 f - w) B
D() bJ(U) ’f" ow" ﬁJ U(w)‘wzo - 2mi 950 (6%) ﬁ‘]’v(w) wrtl
1 dw
= 2771'1 Z %814_' ﬂj}v(w)m (3.11)

- Y el n) + )

) 1AL o)

where CJ € C™°(X0(0k ); Tovy () X) is defined by

€XPev, (b) (expe_vlo(b)uv(z) + Cj,v) = Uy(2) = XDy, (2) ijv(z).

(2) In order to estimate each integral on the last line of (3.11), we expand 2"~ around x;(v), the
center of the circle 07 A, ;(0k), as a polynomial in Z;=z—w;(v):

]g i ‘P}L(Z) (P50 0 qu(2) + ¢ jo(2))2 2
| (3.12)

:k:T <r_1>a:’f_k(v)% i (zl)(tl)bﬁboqv(z,)—i—c (%))z sh1az,.
— \k—1/" oA (6xc) T v

o

By construction, z;=q, (%) =p; ' (v)Z; near (‘)_A;i(é K ), if z; is the standard holomorphic coordinate
on %, ;—{oo} ={i} x (52 —{oo}) and |v]| <dx. Since Jy;=Vp|s,, is Jovy()-holomorphic,

7{ ~ Y (qU(ZZ)) 2 1dzz = Pz( )y{ Uy 1(Zz) 1dz,
0= A (0k) 0~ A; (Ok)

dw;
k [
= —p; (v }1{ 0, i\Wi) ——/ 3.13
()8_7(6)b( )wk+1 ( )

o o o (k
= =) 7 GO, _o = —2mi DY) pk(v),

where w; =2z; * is the standard holomorphic coordinate on {i}x (S?—{0}). Similarly,

ij ({q> (Z0)®s(q0(2:)) — 1} 0p(qu (%) + 5 (20)(5 ,(20) 21z
0= A7 (0x) ’ (3.14)

= —2miell) (v)pk (v),
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dwi

gg’fg@):?im jcé n ({<I> (w3)®p(qu (wi) — A}y (0 (ws)) + (wz)ch(w1>)@. (3.15)

The expansion in (2a) of the lemma follows immediately from (3.11)-(3.14). By definition, 0~ A; (k)

is a circle of radius 25%2 around the south pole in the sphere X ;. Thus, part (2b) of the lemma
follows from (3.15), along with (3.8) and the bounds in (2b) and (2c¢) of Lemma 3.4.

3.3 The genus-one regularity properties (b-i) and (b-ii)

In this subsection, we show that if J is an almost complex structure on X that satisfies the reg-
ularity conditions (a) and (b-i) of Definition 1.4, then so does every almost complex structure .J
on X which is sufficiently close to J. This claim follows from Corollary 3.6 and the compactness
of the moduli space ﬁ071(X ,A; J). We also show that if J is an almost complex structure on X
that satisfies the regularity conditions (a), (b-i), and (b-ii) of Definition 1.4, then so does every
nearby almost complex structure J on X. This conclusion is immediate from Corollary 3.7 and
the compactness of the moduli space Mg 2(X, A4; J).

If 7 is a bubble type as in Corollary 3.2 with Ay =0, where 0 is the minimal element of I, the
analogue of (3.6) does not hold for the map ”}3301)’” for any fixed nonzero vector v tangent to P! at co.
The reason is that D7, 7, b is the zero homomorphism on ker % Tb since the map uy is constant on the
component %, b0 of the domain ¥, of b which contains the marked point co. In particular, D% J Y need
not be surjective for a smooth map @: P* — X arbitrary close to the moduli space 9)?071()(, A J).
Thus, a different approach is required to understand the behavior of the regularity condition (b-i)
of Definition 1.4 near Uz (X; J).

Claim (c) of Theorem 1.6 can alternatively be viewed as a statement concerning the behavior of
the first derivatives du|s of J-holomorphic maps. Lemma 3.5 describes the behavior of modified
first and higher-order derivatives of J -holomorphic maps near a stratum Uy (X; J) with 7 as in the
previous paragraph. We use the estimate for the higher-order derivatives to describe the behavior
of the regularity condition (b-ii) of Definition 1.4 near Uz (X; J).

Corollary 3.6 Suppose (X,w,J), A#0, and T are as in Lemma 3.1 and M =0. If the almost
complex structure J satisfies the regularity conditions (a) and (b-i) of Definition 1.4, for every
precompact open subset K of Ur(X; J), there exist i, Cx €RT and an open neighborhood Uy C Ut
of K in Xy ¢(X, A) with the following properties:

(1) requirements (1) and (2) of Lemma 3.1 are satisfied;

(2) if J is an almost complex structure on X s.t. || J—J| o1 <Ok and [P, 1] €My {0}(X A; )NUg,

the operators D ’DOO , and ’Dc}oﬁe‘x’ are surjective.

Proof: (1) By Corollary 3.2, it remains to show that the operator S) e s surjective. If 7= (0,1, A)

with Ay #0, the argument used twice in the proof of Corollary 3. 2 can be repeated once more to
show that the operator ’DOO > is also surjective for any smooth map @ sufficiently close to K.

Thus, we will assume that AO—O
(2) Let g be any point in X. By (a) of Definition 1.4,

0 (q;.7) = et (X J): evo(b) =q)
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is a smooth submanifold of Z;{T(p) (X;J). By Corollary 3.2, 99 .. (X, A;.J) is a smooth orbifold,

while

0,{0}
Smo {0}(% ) = {bgfmo {0}(X7A;j)3 evo(b)=q}

is a smooth suborbifold of 9718 {0} (X, A;J). By Lemma 3.3, every element of 93?8’{0} (¢; J) N Uk has

a representative of the form (P!, @), where
~ —=0
U:eXPuUijva v=(b,v) 67:75K‘[((0)a

and (5 is as in (2a) of Lemma 3.3. By (2c) of Lemma 3.3,

d 00
dt puw(tg) U)CJ (p(t&),v ‘t =0 = ker@jﬂ Cker Dj’ﬁ (316)

v ee T (X5 7) N T (g5 ) = T_(b),

where ¢ is the map defined in the remark following Lemma 3.3. We will show that the map

r_(b) — T,X, §—>dt{d{ XPus)0) C (0(t6) ) T 1o0€00 } L= (3.17)

is surjective. Along with (3.16), this claim implies Corollary 3.6.

—0
(3) Let @y, 0, @5, and ¥, be as in Lemma 3.4. Since for all o' =(V,v) E}—T(SK‘K(O)’ Py, is an
LY-map on 9, (6x) C P!, while the Jevo(tr)-holomorphic map 5 , vanishes at o0 eX? (6k),

d{expuv, ijv, oo = d{‘pjv/ﬁj,y €00
= {<I>jyv,(oo)}(d79j,v,|ooeoo).

Thus, by the r=1 case of (2a) of Lemma 3.5,

d{eXpuUICf,v’ b0 = {(I)j,v/(oo)}pél) j(U/)
= {@,,(00)} Y {DM)+ () pi0). (3.18)
iex(T)

Replacing b with ¢(t£) in (3.18) and differentiating at t=0, we obtain

{d{ p“(go(ts) U)CJ (t&),w }|ooeoo}|t 0

= VT<I>~ 00 D(l) } pi(v
tve®s }zeg(;){ Z T w1} (3.19)
+{2;,(00)} D {VI@I0)+VID ()} pi(v).
iex(T)

By (2b) and (2c) of Lemma 3.4 and (2b) of Lemma 3.5,

@7, (00)-

0 W) < Cr (1T =Tller+vl/7);

. X (3.20)
Ej,h(v)\ < Cr (T =Tller+101") [1€]lo p.1-

Vid; (
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On the other hand, since ¥,(c0) =0,

Ty dr _d
VE (Dy7h) = @y(00) 2V (e iloceoo) |y = 7 (dtgie) ilooeoo) g
=V (Els,,) =Dupil YV EET_(b).

By (a) and (b-i) of Definition 1.4, the map

(3.21)

QJ,b;i: f— (b) I evo(b)X

is surjective for all i € x(7); see the paragraph preceding Lemma 3.3. Since p;(v) € C* for all

v=(bv) € ﬁgx‘}%@) and ¢ € x(7), it follows from (3.19)-(3.21) that the map in (3.17) is also
surjective, provided dg is sufficiently small.

Remark: At the end of the argument above, we use the fact that x (7). This is the case if and
only if A#£0.

Corollary 3.7 Suppose (X,w,J), A#0, and T are as in Lemma 3.1 and M ={1}. If the almost
complex structure J satisfies the regularity conditions (a), (b-i), and (b-ii) of Definition 1.4, for
every precompact open subset K of Ur(X;J), there exist i, Cx € RT and an open neighborhood
Uk CUT of K in X 113(X, A) with the following properties:

(1) requirements (1) and (2) of Lemma 3.1 are satisfied;

(2) if J is an almost complex structure on X s.t. ||J—J||c1 <0 and

[Pla yha] S Emg,{og}(XaA? j) N UKa

the operators Dy ., @‘}Oﬂ, and @39;/1 are surjective.

1

Proof: (1) By Corollary 3.2, it remains to show that the operator ’D;O%Ly is surjective. If

7 =({1},1;5,4)

is a bubble type such that A; #0 for some i < j;, the argument used in the proof of Corollary 3.2

can be repeated once more to show that the operator @;o%tyl is also surjective for any smooth

map (y1, %), with two marked points, sufficiently close to K. Thus, we will assume that A; =0 for
all 4 <ji. In this case, evg(b) =evy(b) for all beUr(X;J), as there are no non-ghost components
between the marked points (0, oo0) and y;. In the case of Figure 7, this means that j; € {O, hs},
i.e. y1 lies on one of the non-shaded bubbles.

(2) For any point ¢ € X, let ?/Niq(f))(q; J) and MY (© 1}(q; J) be defined as in (2) of the proof of
Corollary 3.6. By Lemma 3.3, every element of 93?8 (© 1}(q; J )N Uk has a representative of the form
(]P)lv gl) ﬂ), where

- - —0
i=exp,, (i =y1(v)= Y z:®) [Jon+w [Jon€C,  v=(bv) € FT5, |z,
O<i<ji ~ O<h<i 0<h<j1
and (5, is as in (2a) of Lemma 3.3. We will show that the map

d -
F—(b) B TqX7 §— %{equ C(]j((p(tg),v) (Z/l)}‘tzov (3-22)
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is surjective. Note that ¢=1wu(,(¢).0) (0,00). Along with (3.16), this claim implies Corollary 3.7.
(3) Let &, Uy, ®5,, and ¥5  be as in Lemma 3.4. Since ﬁjv is @ Jey,(p)-holomorphic map on

evop

(8K ), vanishing at co, and §; € X0(dg ), for all o' = (b, v) E}_T&K‘R(o)a

y =1 d . -
’ﬂj,v’(yl) = Zﬁdwrﬁjﬂ)( w=0 Y1 ZD b
r=1
(3.23)

:Z Z(gl_ k{Djl +5 }pz eTevo b’)X

k=1iex(T)

by (2a) of Lemma 3.5; see the proof of Lemma 4.2 in [17] for more details. For each i€ x(7), we
denote by h(i) the largest element of I such that h(i) <i and ¢,y <j1. We set

b, if upy=1J1;
pa () = xpi (0 and (V) = (b)), ) ’
w1 () i (b) yn(¥) {xh(b’), if h<ji and tj, = vy

If '=(V,v), we put

pin@) = [l on  za@)= > <xz’ th) C,

h(i)<h<i h(i)<i’'<i h(z)§h<z
/
ya(@) = > ws®) [Jon+wm [Jwn € C
Lh(i)<’i/<j1 Lh(i)<h<i’ Lh(i)<h§j1

It is straightforward to see from the definitions that

(1) —zi(0) " pi(v') = (yra(v) i1 (V) " pia (V). (3.24)
By (3.23) and (3.24),
V.0 (1) = Z(yl;i(b (D (l)b, jo N }pia(v) € Togo) X,
iex(T) (3.25)
and [0 ()], V7D )] < O (1T = Tllen +10'[7).

Finally, for all £€ Tbi{? ) (X;J),

91(p(t8),v) = 41(b,v),  Gui(p(tE)) = 41 (b), i (p(t€)) = wia(b)  Viex(7T). (3.26)

The surjectivity of the map in (3.22) follows from (3.25) and (3.26), along with (2) of Lemma 3.4,
by the same argument as in (3) of the proof of Corollary 3.6.

Corollaries 3.6 and 3.7 complete the proof of the parts of Theorem 1.6 that concern genus-zero stable
maps. However, this is a convenient point to deduce a few more conclusions from Lemma 3.5. We
use Corollary 3.8 in the next three sections. Suppose 7 = (M, I;j, A) is any bubble type and
v=(b,v) € FT is sufficiently small. With notation as in the proof of Corollary 3.6, we define the
homomorphism

Rj,: I'_(b) — ker 97, C T(v; J), where T(v;J)=L}(S,; @5 TX), Uy =€XPp,yy, (o

- d
by Rivfz dt XPu, e, v)C I, ((t€),v) |t 0
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We denote the image of ij by I'_(v;J). Let

A (6)

v,

0mA(0)

{(0,2)€{0}x 8%: |2|>071/2/2} € 5,
{(0,2)€{0}xS%: |2|=6712/2} C =,.

Corollary 3.8 If (X,w,J), A, and T are as in Lemma 3.1, for every precompact open subset K
of Ur(X; J), there exist 0x,ex,Crx €ERT and an open neighborhood Ux CUr of K in X0 0 (X, A)
with the following properties:

(1) the requirements (1) and (2) of Lemma 3.1 are satisfied;
(2) if J is an almost complex structure on X s.t. ||J—J||c1 <Ox, there exists Cjo €4 (v) for each

v=(b, v)E}"T(;K‘f((O) such that:
(2a) the requirements (2a)-(2d) of Lemma 3.3 are satisfied;

—0
(2b) for all U:(b,v)ef’féx‘f{(o) and 0 <405, if Uy =exp, (j,,;

”da’U|A76(5)Hv,p = CKél/p Z ‘Pz(U”
v iex(T)

—0 -
(2¢) for all v= b, v)E}"T(;K‘K(O) and 6 <40y, if €XPeyy (s fov(2) =Tu(2) for zeA;O(éK),

o) < Cxlul 3 |oiw)|  Ywe A7 (6x);

iex(7)

| 74 ) = 2mzz>m )| < Cre(IT=Tller + o] 7 4+677277) 37 oy v)
B*Av’ﬁ(d) w iex(T 1ex(7T)

where w is the standard holomorphic coordinate on the complement of (0,0,1) in S?;

—0 ~
(2d) for all v=(b,v) E]-"T(;K‘f((o), cel_(b), and 6 €(0,40k),

HRifov,pJ < Ckll§

b,p,15
dw .
(RS 2 Y pi)Dunt
974, 50 iex(T)
< Crc (T =Tl + v P +6@72P) N pi(0)] - €] o s

iex(7)
0 - 5
(2e) for all v= (b, U)E.’FT(;K‘K(O), Eel_(v;J), and 6 <4d,

[€lw < Cclwl Y [pi(0)] - [€llopn Fwe A ;(8);

iex(T)

V€l o)l < Cx8P _ loi(@)] - ellua
h iex(T)

where w is as in (2c).
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The first part of the proof of Corollary 3.2 shows that

Cic I€lbps < IR Ellop < Cxlléllopr ¥ EET-(D).

In fact, Cx can be required to be arbitrary close to one in this case. By the proof of (3.25),

Folw) = @5 (w)9; (w) =5, (w) > w{(DF)b)+ JP )} pi(v) + £(v, w) (3.27)
iex(7)

for all wEA;G((SK), where

ew.w)| < Cxlwf 3 [p(w)] and [due(v,w)] < Cilu] 3 |pilv)
iex(T) iex(T)

Both estimates in (2c) are immediate from (3.27), (2b) and (2c) of Lemma 3.4, and Holder’s
inequality, since

(DIb) - pi(v) = Dyaps(v).

Differentiating (3.27) with respect to w and integrating, we obtain (2b). The first bound in (2e)
is obtained by differentiating (3.27) with respect to &, as in (3) of the proof of Corollary 3.6. The
second estimate in (2e) follows by differentiating the resulting expression with respect to w and
integrating. Finally, in the remaining statement of (2d), each element &(w) of T, (w)X is identified
with its preimage in T}, ;)X under the parallel transport along the geodesics. This estimate follows
by differentiating (3.27) with respect to . Due to the first bound in (2e), the parallel transport
and the geodesics can be defined either with respect to the J-compatible connection V7 or with
the respect to the j—compatible connection

1 - .
vi= (V= IV

in the bundle TX — X.

4 Genus-one gluing procedures

4.1 A one-step gluing construction

Our next goal is to show that the regularity condition (c) of Definition 1.4 is well-behaved under
small perturbations of the almost complex structure J. Corollaries 4.2 and 4.5, along with the
compactness of the moduli space 91 (X, J; A), show that this is indeed the case. They conclude
the proof of the g=1 case of the first claim in Theorem 1.6.

We denote by X p/(X, A) the space of equivalence classes of all smooth maps into X from genus-
one Riemann surfaces with marked points indexed by the set M in the homology class A and by
X0 ,,(X, A) the subset of X1 (X, A) consisting of maps with smooth domains, i.e. smooth tori
in this case. Similarly to the previous section, we need to describe smooth maps @: ¥ — X in
X1,9(X, A) that lie close to each stratum U7 (X; J) of the moduli space M; (X, J; A). If Ur(X; J)

is contained in Zmiow} (X, A; J), the surjectivity of the operator D 5 ja can be shown by an argument
similar to the proof of Corollary 3.2. This case is handled in this subsection. We will assume
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that J is an almost complex structure that satisfies the regularity conditions (a), (b-ii), and (c) of
Definition 1.4.

Let 7 = (M, 1,X;j, A) be a bubble type such } ;.;A; = A and A; #0 for some minimal element

—0
of I. We proceed similarly to Subsection 3.1. For each sufficiently small element v=(b,v) of F7T ,
let
b(U) = (Elhj'ua uv); where Uy = Up O Gy,

be the corresponding approximately holomorphic stable map. Since the stable map wp; is not
constant on the principal component, the linearization D jj of the Jj-operator at b is surjective
by (a), (b-ii), and (c) of Definition 1.4. Thus, if v is sufficiently small, the linearization

Dyo: T(0) =LA (S0 up TX) — TON (03 J) = LP (S5 AY; TSy @u TX),

of the dy-operator at b(v) , defined via the connection V7, is also surjective. In particular, we can
obtain an orthogonal decomposition

IMw)=T_(v)®Ty(v)

such that the linear operator D, : 't (v) — I'%!(v;.J) is an isomorphism, while I'_(v) is close
to I'_(b) = ker D ;. The relevant facts concerning the objects described in this paragraph are
summarized in Lemma 4.1 below.

Remark 1: The focus of the pregluing construction described in [16] is attaching bubble trees
of spheres to a fixed Riemann surface . The present situation is of course different. However,
the main ingredient in the pregluing construction is a smooth family of nearly holomorphic maps
Qv : Xy — Xp, constructed using a metric on X. All other objects that appear in the above para-
graph are essentially determined by the map g¢,, and the homeomorphism type of > plays little
role. In the case X =), i.e. the principal component ¥ of the domain X, of every element b

of Z/NI(TO ) (X;J) is a smooth torus, we choose a family of Kahler metrics {gs,} on the fibers of the
semi-universal bundle LUz — Uz, (X; J); see Subsection 2.2 for notation. If v = (b,v) is a small

—0
element of 7 and by =7p(b), we construct the map ¢, : X, — X as in Subsection 2.2 of [16],
using the metric gy, on X x.

Remark 2: In the case N#(), i.e. the principal component 3 x of any bubble map b EZ/{(O) (X5J)
is the circle of spheres Yy, we split the pregluing construction into two steps. The first step will
correspond to gluing at the nodes N of the principal curve and the second to attaching the trees of
spheres to the resulting elliptic curve. The bundle of gluing parameters F7 over Uz, (X;J) has

the form
FTy= @L(h,i) = @L(h,i);0®L(h,i);1
(h3)eRr (hyi)en
for some line bundles L3, ;).0, L(n,5);1 — Uz, (X; J). In addition, there exist bundle maps
Ph,iro: Lin,iyo — Y and P Ly — Uz

over Uz, (X; J) such that for all bg €Uz, (X; J)

D(hivolbo : Liniyolve = o Phiysilve : Liniyiiloo — Sig,i
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are biholomorphisms that take (bg,0) to the node (h,i) of ¥;,. Let
or,: g — FTos, where §€C™® (UL (X;J);RT),

be a semi-universal family of deformations of the elliptic curve Yy, along with the marked points
indexed by MyU I;, where My and I; are the sets of marked points lying on ¥y and of first-level
bubbles of the elements of Z;{g) ) (X; J), respectively; see Subsection 2.2. In particular,

u% ’UQ(%)(X;J) = i’[%

A small neighborhood in $l7; of the section Zj; of oz, over Uz (X;J) corresponding to the
node (h,i) of Xy can be identified with the set
Uin,iy = {(bo,viz,y): bo €Uz (X5 J); (bo,v) €FTo, (bo, )€ Lnivo, (bo,y) € Ly
o], |, [y <3(b); 2y=v(n,p)},
in such a way that oz (bo, v;x,y) =(bp,v) and the fibers of oz, are identified holomorphically. For
each (bg,v) € FT s, we set E(bo,v):agbl(bo,v). Let
o1 : Uy, — Ug, = o7 (U (X5 7)) (4.1)

be a smooth map such that 67, (X)) C Zbg, 01l5,, ,, 15 holomorphic outside of the X[ open
sets Up,i),

(b0, 03 p(riy0(@)), i || >20vg4 Y%
(b0, 03 pniy1 (1), if [yl =>2[v |3
and &7, (bo, v; zp(bo, v)) = (bo, 0; 21, (bo, 0)) for all h € My Uy and for all (by,v) € F7Tg,5, where
xp(bo, v) is the marked point indexed by h on X, ) and vy is the L ;)-component of v. The
last condition can be used to define the points zp,(bo, v) for v#£0. Let q,,0);0 denote the restriction

615 (bo, v; 2, y) = { if (bo, v; z,y) €Uy,

of 7, to X(p,0)- We choose a Riemannian metric on {1 such that its restriction 9(bo,v) O each fiber
Y(bo,v) of o7y is Kahler. Along the way, we have made a number of choices. These choices will be

fixed once and for all. If ve FT , let
UN:(ba UN)v if U:(ba UNan)a (baUN)Gﬁa (b,Uf)eﬁ@ﬁi—,

see Subsection 2.2. If v is sufficiently small, we denote by >,,, the Riemann surface obtained from
Yp by replacing the circle of spheres ¥ x with |My| U |/;| marked points, which together we denote
by by, by E(b(),'UN)' Let

Quy - E’UN — 2
be the smooth map obtained by extending the map q(y, 1,0 by identity to the rational components
of ¥p. We put

UN = (b(UN)u (quvh)hef)) where b(UN) = (EUN)U’UN)u Upy = Up © Quy s

-1 . X
and qzﬂvhz{d%”'w&)“hETxhwx)E(bww Lhel;

v, €C, if hel—1I.
Let (X, ju, gv) be the Riemann surface obtained by attaching the bubble trees of spheres to the
elliptic curve X, using the gluing parameter o® and the metric Juvy, On the principal component

B(bo,vn) Of Ly, via the procedure described in Section 2 and Subsection 3.3 of [16]. We take the
key basic gluing map g, : 3, — X to be simply the composition g, ogq,x.
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Lemma 4.1 Suppose (X,w,J) is a compact almost Kahler manifold, A € Ho(X;7Z), and J sat-
isfies the regularity conditions (a), (b-ii), and (c) of Definition 1.4. If T = (M,I1,R;j, A) is a
bubble type such that A = Y, ;A; and A; # 0 for some minimal element i of I, there exist
5,C € C(Ur(X;J);RT) and an open neighborhood Ur of Ur(X;J) in X1 pm (X, A) with the fol-
lowing properties:

(1) for allv:(b,v)Eﬁg,

IToi-Ellops < COElvpr VEET(@),  [IDsukllup < CO)IVPl€llopr VEET-(v),
and — CO) " €llopa < 1Dsutllop < COEllopr  YEET+(v);

(2) for every [b] € %?,M(X, A)NU7, there exist v=(b,v) € FT5 and €Ty (v) such that ||C||vp1 <5 (b)
and [expyu() =[]

This lemma is obtained by an argument analogous to that for Lemma 3.1. In particular, the
bijectivity arguments in Section 4 of [16], with minor modifications, apply in the present situation.

Corollary 4.2 If (X,w,J), A, and T are as in Lemma 4.1 and M =0, for every precompact
open subset K of Ur(X;J), there exist 5x,Cx € RT and an open neighborhood Ux CUr of K in
X1 9(X, A) with the following properties:

(1) requirements (1) and (2) of Lemma 4.1 are satisfied;

(2) if J is an almost complex structure on X s.t. ||[J—J||c1 <Ok and [b] € Ug N %?’Q(X, A), there

exist a smooth Riemann surface ¥ and a smooth map @ : ¥ — X such that [b] = [, 4] and a
linearization Dj . of 5 at @ is surjective.

The proof is identical to that for Corollary 3.2.

4.2 A two-step gluing construction

We prove the analogue of Corollary 4.2 for bubble types 7 = (0, I,R;, A) such that A; =0 for all
minimal elements ¢ of I, i.e.

Ur(X;J) © My (X, A7) — ) (x, 4;),

in the next subsection. In this subsection, we modify the gluing construction of [16] in two ways.
First, we subdivide this construction into two steps. At the first stage, we use Lemma 3.3 to
smooth out all nodes of the domain of a stable map that lie away from the principle component.
At the second stage, we smooth out the remaining nodes, but at this step it may not be possible to
perturb each approximately holomorphic map into a J-holomorphic map. The second modification
is that the second-stage approximately holomorphic maps are closer to being holomorphic than
they would be if constructed as in Subsections 3.1 and 4.1 and in Subsection 3.3 of [16]. This
modification is motivated by the pregluing construction of Section 3 in [6]. The two adjustments
allow us to obtain estimates on the behavior of the operator D ja that are similar to the estimates
of Corollary 3.6 for the operator ’DC}O{;‘X’.

If 7T=(M,I,%;j,A) is a bubble type such that A; =0 for all i € Iy, let I, C I, for he€ I, be as in
Subsection 2.2. We put

AW(T) =D A

iely
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Let 7p: Z;I;O) (X;J) —>L~{(TS) (X;J) be the projection corresponding to the decomposition (2.11).
If v=(b,v) € FT, let

vo = (b,vn,v0), v1=(bv1), vy = (ﬁ'h(b),v{h}) for hely, if
(0) T 7

UZ(b,?}N,Uo,Ul), bEZ;{T (X; J), (b,vN)G}" T, (b,’l)())Ef T, vlz(v{h})heh E@th.
hely

The component vy of v consists of the smoothings of the nodes of ¥, that lie away from the principal
component. In the case of Figure 5 on page 17, these are the attaching nodes of the bubbles ho,

— 0
hy, and hs. The bubble map b(vy) for vy € F17T  is of the bubble type
0, if 1€ ly;
Az(T), ifiely.

T=(M,IpUI,N;j,A), where A; = {

Similarly to (2.11) and (2.12), we put

Mz (X;5.J) = Ur, (pt) x {(bn)nen, € [[Hz, (X:7): evo(bn,) =evo(bn,) Vhu, ha €T}, (4.2)
he]l

where Hf'h (X;J) is the space of all J-holomorphic maps from P! of type T,. For each h e I,
§eR*, and ve FT as above, let

AL n(0) = {(h,2) €{n} x S%: 225712 /2} C Sy i
9~ A; ,(0) = {(h,z)€{h}xS?: |z|=0"12/2} C ¥y, 4

v1,h

Finally, if he I} and i€ x(7) N I, we put

pi(v) = (b, 0;), where 0; = H vy € C.

h<i'<i

In the case of Figure 5 on page 17,
Phy (U) = (ba 1)7 Phy (U) = (b7 Uh4)v and Phs (U) = (bvvh5)'

Lemma 4.3 Suppose (X,w,J) is a compact almost Kahler manifold, A € Ho(X;Z), and J is a
genus-zero A-regular almost complex structure. If T = (M,I,X;j, A) is a bubble type such that
YiciAi=A and A; =0 for all minimal elements i of I, for every precompact open subset K of
Ur(X;J), there exist §x,Cx € RT and an open neighborhood Uk of K in X1 p (X, A) with the
following property. If J is an almost complex structure on X such that ||j—JHC1 <0k, there ewist
a smooth map

- — -
(bj;l: flTaK‘[{(O) - HT(X; J)

such that
(1) the image of Im qgj;l under the quotient map Hz(X;J) — Uz (X; J) is Uz(X; J) N Uk;
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- — 0
(2) evp(¢j,(v1))=evp(b) for all vi=(b,v1) EF1T s, |gw):
: —0 L _
(3) valeflTéK’f((Oﬁ hel, Fh((bj;l(vl)):(ﬂblvuvhh)f and 6 <4ér,

[ dito pla- (s Hvl < Crot? Z i ().
v h( ) P
v iex(T)NIy,

The smooth map ¢ j.1 is defined by

(07, (00) = (B expy, Cjop,) YHED,

where vyy,) is as above and (; iy is as in (2a) of Lemma 3.3. By (2¢) of Lemma 3.3, the value of

the map 7~rh($j_1(vl)) at the attaching node of the bubble A is the same for all h € I, as needed,
and (2) of Lemma 4.1 is satisfied. The bound in (3) is simply a restatement of (2b) of Corollary 3.8,
since

()] = |pi(vgy)| ¥ hex(T)NT.

With notation as above, for each v=(b,v), let
Cj,vl S F(Evl;uleX)

be given by
gy (#)y 1 2€X0n, heli;

Cioy (2) = {

0, otherwise.

We write i ] ~
¢j;1(U1) =bj(v1) = (Boy, U, ) € HF (X5 J).

The domain ¥,,, of the stable map b 7(v1) consists of the principal component X, », which is either
a smooth torus or a circle of spheres, and |I;| rational bubbles 3, , with h € Iy, attached directly
to Xy, x. The J-holomorphic map ., is constant on X, x. Let

[(v; J) = LE(Sy, ;i TX).

V1 Yoy

We denote by T'_(vy;J) € T'(vi;J) the kernel of the linearization ngj('Ul) of the Oj-operator
at l;j(vl).

For each h € I, £ € T_(7u(b)), and £ € f‘(v{h};j) with £(h,00) =0, we define Ry¢ € T'_(b) and
Ry, €€l (vy; J) by

£(z), if zedy,;

0, otherwise;

L 3 if z€X, n;
and Ry ()= S T 2€ B (1.4
0, otherwise;

Ryé(2) = {
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see the paragraphs preceding Lemma 3.3 and Corollary 3.8 for notation. We put

I_(b) = {Ryé: €T _(7n(b)), hel} C T_(b); (4.5)
,(Ul;j) = {vag: £Ef‘,(v{h};j), he]l} C F,(Ul;j).

=

Let va It I'_ (b)) —T_(v1;J) be the homomorphism such that

R, jR&=RuR, & VT (b)), hel,

where Rv{h} iD= (Tn (b)) — T (vgny; J) is the homomorphism defined just before Corollary 3.8.

If U:(b,v)eﬁ—gK|K(0), let
vj= (I;j(vl), R, vo).
We denote by (X, j,) the smooth Riemann surface constructed as in Remark 2 of Subsection 4.1
and by
Quo;2 = Quj,y qu§ e :E(Bj(Ul),UN,UO) — X, :El;j(m)’

the corresponding basic gluing map. We next construct another map
(jvo;Q ZQUJ;N qu;i 1Yy, — Zvl

by defining the map
q’U?: Z’U — Z(Ej(vl)y'UN)‘

By construction, E(EJ(vl),vN) is a smooth torus X, x with |[I;| bubbles attached at the points
{zn(vr) }her, of ¥y ». For each he I, we identify a small neighborhood Up (vy) of p(vx) in 3y, »
with a neighborhood of xy(vx) in Ty, (1) Sy x» biholomorphically and isometrically, with respect to
the metric g,,, on X, x of Remark 2 in Subsection 4.1. We assume that all of these neighborhoods
are disjoint from each other and from the |N| thin necks of ¥, x. If z € Uy(vx), we denote by
z—xp(vy) the corresponding element of T, ()X x and by |z —zp(vy)] its norm with respect to

the metric g,,. Let §: RT — [0, 1] be a smooth cutoff function such that

0, ifr<t;
=<7 - d ! 0 if 1,2).
5(r) {1’ oy md FF0ire.2)
For each e eR™, we define 3. € C®°(R;R) by Bc(r)=p(r/\/€). If |z—zp,(vx)| <24/6(b), we put

Uh

q;%h(z) = (1= Bs, (2lz—zn(vn)])) (m)

qj%h(Z) = 2 (08) + 85 (|2 =20 ()] (2= 20 (V%)) € Big (1) )0

e C;

where vg = (vp)per,- By construction, the smooth Riemann surface ¥, is the main component
E(Ej(’l)l)ﬂ)}{),N of 2@;@1)4};«)‘ We define the map qv§; EU_>E(BJ(U1) ) by

yUR

(h,qg(q;bi.h(z))) S E(Ej(Ul),U}z),h’ if ’Z—xh(UN)’/\/(SKSL he[l;
J,
cjv‘}]f(z) = q;@i_h(z) € B(5 (v1) o) if 1<|z—zp(vp)|/VoKk <2, hely;
J7
A Z(Bj(

1) o) N otherwise,
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where gg: C — S? is the standard (antiholomorphic) stereographic projection taking the origin in C
to the south pole in S?. Like the map Quo:25 Guo:2 Smooths out the nodes of the principal component
and stretches small neighborhoods of the points zj(vx) around the |;]| bubbles. Furthermore,

[ddugi2]| o < C(0), (4.6)

for some C'€ C®(U7(X;J); RT), if the norm is taken with respect to the metrics g, on ¥, and gy,
on ¥,,, constructed via the basic gluing maps ¢, and g,,, respectively; see Subsection 3.3 in [16].
The map Gyy;2 is a homeomorphism outside of |[X|+|I1]| circles of ¥,, and is biholomorphic outside of
the |R| thin necks corresponding to the nodes of the principal component of ¥y and the |I;| annuli
Ab hUAb p, with he Iy, where

App = {2€20: 1/2< |z —an(ww)|/ Vo <1},
A, = {2€350: 1< z—an(vn)| /0K <2}
The key advantage of the map Gy,;2 over g2 is that
Hddvo;Quco(AI:h) < C(b)|vnl V hel; (4.7)

this bound is immediate from the definition of the norms.

If ¢~5j~1(U1)=(2U1,11U1) as above, we take
bj(v) = (Bu, Jo, t), where Uy = Uy © Gug;2,

to be the approximately J-holomorphic map corresponding to the gluing parameter v at the present,
second, stage of the gluing construction. By (4.6) and (4.7),

- p=2
HduvHv,p < C(b)HdumHva and HaJUU”UP <C@® Z HduUl‘A v1p‘ vpl P, (4.8)
hel
where A} = Guy; Q(Ab_h) C Xy, and || - ||vp and || - ||, ,p are the norms corresponding to the basic

gluing maps ¢, and ¢y, ; see [16, Subsection 3.3]. The second bound follows from the fact that the
map ,, is J- holomorphic on ¥,, and is constant on the principal component of ¥, ; thus, 05 Uy
is supported on the annuli Ab n With hely.

If v=(b,v), we denote by
T(v) = LX(S,;uiTX) and T%(v;J) = LP(EU;A% T*S,@u TX)

the Banach completions of the corresponding spaces of smooth sections with respect to the norms
|lv,p,1 and ||| p, induced from the basic gluing map ¢,,: £,, — Xy, as before, and the J-compatible
metric

970+ = 5(ox (7 7) +gx (7 7))
on X. We put
T_(v;J) = {Ru&: €€T_(v1; )} C T'(v)
f_( = {Ry&: €€T_(vy; )} C T_(v; J)
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where R, {=¢ 0 Guy;2. Let

With (5, asin (4.3), we set
P_(v) = {Rull, (€00,): €€T_(B)} € T(v)
We denote by I'y (v) the L%-orthogonal complement of I'_(v) in I'(v), as in Subsections 3.1 and 4.1.

It remains to describe the obstruction bundle, i.e. a complement to the image of Iy (v) under D ,,,
or Dj if J is sufficiently close to J. First, we describe the Fredholm situation along Z;{(TO ) (X;J).

The linearization D j; of the dj-operator along Z:l§) ) (X;J) is not surjective. From the decompo-
sition (2.11) and the regularity conditions of Definition 1.3, we see that the cokernel of D, for

bei:{gj ) (X;J), can be identified with the vector space
T2 (b J) ~ BE ) @ Tevpn) X

of ( evp(b)X J)-harmonic antilinear differentials on the main component ¥ . In other words, if
1 € Hpx is a nonzero harmonic (0, 1)-form on 3y,

4 01) = {7 45 ¥ €Ty )

If R#(), i.e. Xy is a circle of spheres, the elements of Fgl(b; J) have simple poles at the nodes of
Ypx with the residues adding up to zero at each node. Let

0,1/7. 7\ ~ %
26 J) = EZ L) @5 Tevp )X

be the vector space of (T, X, J)-harmonic differentials on the main component Ypx of Xy, If

evp(b)

=(b,v) E]—"T(;K]f((o), with notation as above, let
0,1 7 *
- (UN; J) ~ EZU R ® 7 TevP(b)X

be the space of (Tevp(b)X J)-harmonic differentials on the main component Yogr of Egoo IER=0),

Fgl(UN’ j) (ba J)
We now construct a homomorphism
RY: T2 (g J) — T% (03 ).
For each he€ I, and z€ A} (40k), we define
gb;v(z> € TevP(b)X by expevp Cb v( ) = 7]’U1 (Z>7 ‘gb;v(z)‘ < T 7

where expj is the exponential map for the connection v/ and r j is its injectivity radius. If
nel! (vy; J), we define R¥neT%!(v;.J) by

0, if \/3 ‘Z*f;;i““ <1 hern;
{Rontzw = 5|vh|2/6K(4|Z—wh(vz<)l)ﬂgbquo2( J1e(w), i 1<V0 ‘H\Z,ET“ <3 hel;
Nz (w), otherwise,
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for all z€ >, and w € T,3,,, where 1/ ~denotes the parallel transport of the connection Vj . Let
1'% (v; J) denote the image of T'°! (vy; J) under RX.

If nef‘gl(b; j) and ﬁefo_’l(vﬁ; j), we put
Il =3 sy and 1l = 3 oy oy
hely hely
where [1];, ) is the norm of 7|, ) with respect to the metric g; on X and the metric gz, ) on

Ypx. Similarly, |ﬁ|mh(5j(v1),vn) denotes the norm of ﬁ]rh(l;j(vl)’v&) with respect to g7 and the metric

9(#p (b)) OD E(Ej(m),vx),N =Y (sp(b),0n)- If N7 (), we can obtain an isomorphism

Ry : TV (b; J) — T (0y; J)
by requiring that

{RoxnYanon) = o[y o) Meny  YnETZ (B30), hely ! (4.9)
If N= (), we take R, to be the identity map. In either case, we denote by
Ry: F%l(b; J) — Fgl(v; J)
the composition RﬁoRUN. It is immediate from this construction that for every g€ [1,2),

Rl < Callnll ¥ ner® (). (4.10)

U7q -

Finally, we denote by D, the linearization of dy at b 7(v) defined via V7 and by D j, the lin-
earization of 0 5 at bj(v) defined via V7. Let D} ,, denote the formal adjoint of Dy, defined with
respect to the metrics g, on X, and g7 on X; see Chapter 3 in [8]. For any hel; and 6 e RT, we
take

Al (0) = {2€8pn: [z—an(wy)[ €202} C 2y,

Aih(5)=qg§(AiN,h(5)), AL p(0) =050 (A7, 1(0) =4, (4;,(6)) € S,

and a—A;h(a) = qzjong (a—A;hh(a)),

where A7 ;(6) and 9~ A ,(6) are as in the paragraph preceding Lemma 4.3. If Y1, Y2 € T; X for
some g€ X, we put 3
<Y1,Y2>j: j(Yl,YQ)—i-igj(Yl,JYQ)EC.

Similarly, if 71,72 € [%!(v; j), we put

(msm2) = (1 wa + i, Jn2)ws € C,

4A harmonic (0, 1)-form on the cicle of spheres ¥ » is determined by its value at any smooth point; the same is
the case for a harmonic (0, 1)-form on the smooth torus 3, x. Thus, (4.9) with a fixed h€ I, determines R,,. On
the other hand, one can easily choose &7, in (4.1) so that (4.9) can be satisfied for all h€ I at the same time.

®The LY-norm, with ¢ <2, of a harmonic (0, 1)-form on X » is finite and is determined by the value of the form
at any smooth point.
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where (-, -)v2 is the (real-valued) L?-inner product on T'%!(v;.J) with respect to the metric g 5
on X. Note that by Holder’s inequality and (4.10)

(', Rom)), | < Clnllll Il ¥ neD2 (b5J), o' €D (vs ). (4.11)

Lemma 4.4 If (X,w,J), A, and T are as in Lemma 4.3, for every precompact open subset K
of Ur(X; J), there exist 6k, Cx €RT and an open neighborhood Uy of K in Xy M(X, A) with the
following property. If J is an almost complex structure on X such that || J—J||c1 <Ok,

(1) the second-stage pregluing map, v—"b;(v), is defined on .’FT&K‘K(O) ;
(2) for every [b] € %?,M(X’ A)NUg, there exist UEf%%{‘K(O) and (€' (v) such that ||C]|vp1 <Ok

ond exp] ) 1= B
—0
(3) for all v=(b,v) € FTs |z,

p—2 -
vp < Cklp(v)], 1D &llop < Crlvl # [Ellopr  VEET_(v;J),
and KIHva,p,l < ||DJ,U§||U,p < Oklléllopy  VEETL(v);

nguv

0 - -
(4) for allv=(b,v) € FTs, |z, h€li, and €T _(v; J),

1D5.8llop < Cilp@)] - €lopr and  [l€l15 50l < Crc[voY7]p(v)] - I€]

v,p,13

—0 ~ -
(5) for all v=(b,v) EFTs, | g, EET_(b), and neT>" (b;.J),

IR, 7ot < €llbp,1s HRUTI\A;h(MK va < Cxlv|"?|nl| ¥ hel,
’<<Dj,vRU,j£’ Ryn)) + 2mi Z(’DJ,W‘&ﬁmh@)(b)(ﬁ'i(l})»b’
iex(7)

< Cx ([T =Tl #0240 P=2/2) |p(0)] - nlllI€]lbp.1;
—0 ~
(6) for all v=(b,v) € FT, |zw) and nel>!(b;J),
(@10, Bon) + 270 > (Do (0), 1y )y
iex(T)
< Cx (I[7 =Tl +oY? +[o|P27P) | p(v)] - |In]|;

—0 ~
(7) for all v=(b,v) EFTs, |z, EET(v), and neT™" (b; J),

(D & Rom)vz| < CrcloV2|nllll¢

|U7p71'

Remark: In (6) above, (-, -), denotes the combination of the inner-product defined before Lemma 4.4
with a contraction. More precisely,

(D (b, v),ma)p = P (VDY) if n=v¢RY € E*®evpTX;
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see the paragraph preceding Lemma 3.5.

The first statement of this lemma is essentially a restatement of Lemma 4.3, in the light of the
constructions following Lemma 4.3. In (2),

eXpl;]j(U)C = (ZU, j’u, eXp;{U C), lf bj(’U) = (Z,U’ j’U) uv).

The arguments of Section 4 in [16] can be modified, in a straightforward way, to show that for every
[b] € %(iM(X, A) sufficiently close to Uz (X; J), there exists a pair (v, () as in (2) of Lemma 4.4 and

this pair is unique up to the action of the group Aut(7) o (S')!, i.e. the present two-stage gluing
construction retains the essential bijectivity property of the one-stage gluing construction in [16].
The key point is that the metrics g, on ¥, and the weights used to modify the standard Sobolev
norms, as in Subsection 3.3 of [16], are the same in the one-stage gluing construction and in the
present case, while the difference between the data appearing in the two constructions is very small.

The first bound in (3) of Lemma 4.4 is immediate from the second bound in (4.8) and (2b) of
Corollary 3.8, since

qvo;Q(JZ(;h) == ‘A;,h C A;1,h(|vh|2/5K)'

The two bounds in (4) follow from (2e) of Corollary 3.8 in a similar way. The second estimate
in (3) is obtained by the same argument as the second bound in (4.8). The final claim of (3) is a
consequence of the analogous inequalities for D, ; see Subsection 3.5 in [16]. The first inequality
in (5) is clear from the first inequality in (2d) of Corollary 3.8. For the second one, it is enough
to observe that the L?-norm of a one-form is invariant under conformal changes of the metric on a
two-dimensional domain, while the larger radius of the annulus A; p(0) is lup |12, with respect to
the metric g,, on X, x.

For the remaining three estimates, we observe that for any h € I,

|D}7URU77|gv,z < Ck|duylg, - ||n]l VzE[l:;h(éK), (4.12)

D% R < Ckld Jon] Vun=-—c Az, (6 d 413

D5 Ronlg,w, < Ck| uu!gu,wh‘wﬂll’nll wp=—€4A,,0k),  an (4.13)
Vo oa_ <

’D}vRvn’gv,wh < CK(1+|dUU’9u,wh)‘UhH‘nH vwh:?GA“’h(Zl(SK)_AU,h((SK)’ (4.14)

where z is a holomorphic coordinate on a neighborhood of zj(vyx) in Xy, which is unitary with
respect to the metric g,, on X, x, and |z| denotes the norm in the standard metric on C. These
estimates are obtained by a direct computation from an explicit expression for D}’U, such as the
one in Chapter 3 of [8], and simple facts of Riemannian geometry, such as those in Subsection 2.1
of [13]. The difference between (4.13) and (4.14) is due to the fact that the cutoff function used
in the construction of R,n is constant outside of the annuli fl;h(élé K)—fl;h(é K), with hel;. An
explicit computation of the contribution of this cutoff function on A;h(élé K)—A;h (0k) is given in
Subsection 2.2 of [15]. From the definition of the map §y,;2 and the metric g,,, it is easy to see that

A

‘d(jvo;g‘gv,zgzlw Vze Al (0k) and  |dGug:e

<4 vwhzi—heﬁ;hmm. (4.15)

Ju,Wh
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By (4.12), the first bound in (4.15), Holder’s inequality, and a change of variables, we obtain
1D7, Bonl a5 5,0 [l SCKHdﬂm’qm(ﬁ o HM| onl"7 [l

< Ciclon| "+ > 1ai)] - lInll,
iex(T)NIy

(4.16)

by (2b) of Corollary 3.8, since Go.2(A, (0r)) CA,, p(lvp]). Similarly, by (4.13), (4.14), the second
bound in (4.15), and Holder’s 1nequahty,

1D Benl -, as Loy < Coc (1 |dun L= qas o, ) 1ol - Il
< Ciclonl - [l

by (2b) of Corollary 3.8. Since D}7vRvn is supported on the annuli fl;h(éK)Ufl;h(éK), with he€ I,
by (4.16) and (4.17),

(4.17)

PO (4.18)

105 R

The last inequality in Lemma 4.4 is immediate from (4.18), since p > 2.

We next prove the last estimate in (5) of Lemma 4.4. By the first inequalities in (2d) and (2e) of
Corollary 3.8, for all £€I'_(b),

) ~
R, 5|, < _CK| h' Z i) lEllopr ¥V z€AT, (0K). (4.19)

lGX NIy,

By (4.12), the first bound in (4.15), (4.19), a change of variables, and Holder’s inequality, we obtain

[(By 5 D% Rl 3 510 Mool < Crclldionlaz unpllus plonl > InlIE s
< Ciclon™ 3 1pi@)] - [l €]l 1,

ex(T)NIy,

(4.20)

by (2b) of Corollary 3.8. Since the map §o.2 is holomorphic outside of the annuli Abih with he I
and R,£ vanishes on A;rh,

<<DJ By 565 Rw) Z/ <DJURU§ Ryn)dz dz.
i€l b,h
Since A, CAJF (0K ), by (4.20) and integration by parts,

(psum e mm) 43 (BT 0

hely

< Crlo["? Y 1pi()] - [nlll1Eb.p,1
iex(7)

Thus, by a change of variables and the definition of R 7,
dwh ‘

(D Ry € Ron) f R, 6T o)
‘ Twted ;%1:1 o-Ay h(lvhl/éK) B G (1) TR wy, (4.21)

< Cklo"2lp(0)] - Inl1I€]lo,p,1,
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where wy, =wvp/z. The last estimate in (5) of Lemma 4.4 is immediate from (4.21) and the second
estimate in (2d) of Corollary 3.8.

It remains to prove part (6) of Lemma 4.4. Let fb;ui A
and z € Ab_m

(40K ) — Ty p(v) X be as above. If he

v1,h

J-1 5 5 o : o _
‘ch g2 (2) o ajuv - 8jevp(b)(4b;voqvo;2)|z < CX‘Cb;vOQUo;Q’Z‘d(gb;voquoﬂ)‘za (4.22)

see Subsection 2.3 of [13]. Thus, by integration by parts, if n=Y ®dz,

‘/ ]uvu vl] >b—f _ <§b;vgvo;2(z)ay>dz‘
O~ A,

) ) (4.23)
<Cx /~_ |<b;voq~vo;2|z‘d(Cb;quvo;Q)‘Z dzdz - ||77||7
‘Ab,h
since fb;v vanishes on ¥, x. Since
- - dwy,
f (Gutuao) V)=~ f (oo 0 0y (0)) 5
“Agn 0= A n(vl?/0K) Wy,
where wy, is as in the two previous paragraphs,
\ 7{  (Glue(2), Y)dz +2mi Y (Dyipilv), nzh<b>>b(
Ao iehmx(T) (4.24)
< Cr (T =Tllcr +1o"P+ 0| ®=272) 3 |pi(w)] - [In]l,

i€lpNx(7T)

by the two estimates in (2c) of Corollary 3.8. On the other hand, by Holder’s inequality, change
of variables, (2b) and the first estimate in (2c) of Corollary 3.8,

/~ |CbUOQUo,2‘ ‘d Cb’qu'Uo, )| dzdz < CKHCI)UHCO (dvg 2(A |Uh| P Hduv1|

b,h
<Ck Y Ip)

ielhﬂX(T)

QUOQ bh)H”Uhp

(4.25)

since Gugi2(A; ) C A u(lvnl?/8k). Since Oju, is supported on the annuli A, ,, with h € Iy, the
estimate (6) of Lemma 4.4 follows from (4.23)-(4.25).

4.3 Some geometric conclusions

We now use the two-step gluing construction of the previous subsection to conclude the proof of
Theorem 1.6.

Corollary 4.5 Suppose (X,w,J), A#0, and T are as in Lemma 4.3 and M =0. If J satisfies the
regularity conditions (a) and (b-i), for every precompact open subset K of Ur(X;J), there exist
dx,Cx €ERT and an open neighborhood Uy of K in X19(X, A) with the following properties:

(1) all requirements of Lemma 4.4 are satisfied;

(2) if J is an almost complex structure on X s.t. | J—J||c1 < 6k and [b] € i)ﬁ(i@(X,A; J), the

linearization Djj) of 8j at b is surjective.
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Proof: (1) We continue with the notation preceding Lemma 4.4. By Lemma 4.4, it can be assumed
that

B:(Ev,jv,ﬂv), where ﬂvzexpivgiv, UE]}’]:;%K(O), CJ’UEF+(U), ”Cj,u||v7p,1§5Kv

for some O € (0,9k) to be chosen later. Since 5jﬂU:0,

djup +Dj (5, +Nj, (i =0 (4.26)

where NV Ju is a quadratic term. In particular, N j,v():O and

o) 6= lop1, (4.27)

| <6k. By (4.26), (4.27), and (3) of Lemma 4.4,

HNj,vé_Nf,vg/H < CK(H€||v,p,1+||f/

v,p —
if §,¢" €T (v) and [|¢]lvp.1, [I€

/!
v,p,

1650/l p1 < Crlo(o), (4.28)

provided Ok is sufficiently small.
(2) Since 4, is J-holomorphic, all linearizations D i of 0 ;7 are the same. We give an explicit
expression for D ja and show that the dimension of its kernel does not exceed the index of D ja
For any £€T'(3,;u;TX), let

E=I07 "¢

Cio

We put
05 =T, oIl 00;e], (€+¢5,)
=10/, o (F5un+ Dy, (E+¢;,) + Ny, (6+¢5,))
=107, o (Dj &+ Ny, (€+¢5,) = Ny (s,
by (4.26). By (4.27), we can write
Nj o (64+C5,) = NjoCio = Li £+ N8,

where N 7. i a quadratic term, while the linear map Lj : I'(v) —T0%1(v; J) satisfies

1Z5.8ll,, < CrlICs lloplléllopr < Cklp()] - 1€lops ¥ ET(v), (4.29)

v’p -

by (4.28). We conclude that

—1
Dy =T oDy, +1Lj,) el .

v

Thus, it is sufficient to show that the dimension of the kernel of D; +Lj ~does not exceed the
index of Dy .

(3) Suppose { €ker(Dj; +Lj, ). Since the dimension of I'_ (v; J) is the same as the dimension of
I'_(v), by (3) of Lemma 4.4, we can write

£=¢ +&, whee £ €T (v;J), & €Ti(v).
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If 0 is sufficiently small, by (3) of Lemma 4.4 and (4.29),
Hg"'Hv,p,l = CK(HDj,vg_HUaP + HLj,vg—HMP)

L (4.30)

< Cklol 7 €~ llopa V& & eker(Dy  +Lj,).

Thus, the projection map, { — ¢ is an injection on ker(Dj +Lj, ). We denote its image
by I'* (v;.J). Furthermore, by (4) of Lemma 4.4 and (4.29),

€41y p1 < Cr (1D &= llvp + 1L 716 lop) Ve el (v;J),
< Cklp()] - €= [l pa § +& eker(Dy +1Lj ).

(4.31)

(4) We now use Lemma 4.4 to estimate the L?-inner product of {D; +L;j }(&-+&4) with an

element Ryn of T (v;.J), whenever £ e T'_(v;J), & €y (v), and £_ +&, € ker{Dj +Lj }.
By (4.11), (4.29), and (4.31),

(L 76 B < Crclp(o)? - i€
By (4.31) and (7) of Lemma 4.4,
[(Dj &t Rom))| < Crclol ()] - [nlll[é=Nlwp1, ¥ & €T—(vs]). (4.33)
For each he I, by (4.29) and (5) of Lemma 4.4,

opls  VEET_(v;J). (4.32)

‘<<Lj,v§|A;;h(45K)v Rv”»‘ < CKH”‘A;}L(MK) HU,QHLJ,Uva,p

(4.34)
< Cx[v["2lp()| - Inlllléllopr; ¥ EET ().

Since the metric g, on the annulus flj,h(é i) differs from the standard metric on the annulus with
radii 21/0x and +/|vp| by a factor bounded above by four and below by one-quarter,

€llco < Cklléllopr ¥ EET(AL, (6K); uiTX);

see Subsection 3.1 in [13] and Subsection 3.3 in [16]. Thus,

H(Lj7v§)|14;h(51() Hup < CKHCj,UHvavl Hé-|A;L;h(5K)HU,p,1

<Ci 1) €, o lopy  VEET@), 45
iEX(T)ﬁ[h

since (4.27) is obtained from a pointwise bound; see Subsection 2.4 in [13]. By (4.29), (4.35),
and (4) of Lemma 4.4,

‘<<LJ,U5*|Aj;h(5K)>Rv77>>{ = CK||’7||H57|Aj;h(5K)HU,p,1

=~ z 4.
< Cxlol? S )] - nlllle gy V& eT_(wi ). (439)
iex(T)NIy

Since the intersection of the support of £ € T'_(v;J) with the support of R,n € F(l’l(v; J) is
contained in the |I;| annuli A;h(éléK)U;l;:h(éK), by (4.34) and (4.36),

(L& Rom)| < Crlol"Plo@)] - [nlI€-llopr Vel (B ), & eT_(v;).  (4.37)
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Finally, by (4.32), (4.33), (4.37), and (5) of Lemma 4.4,

’<<{Dj,’U+Lj,’U}(R’U,j§+£+)’ Rv77>> + 2mi Z<©J:b§i§’ nxh(i)(b) ('Ol(v>)>b’
iex(7T) (4.38)

< Ok (1T =Tller + 0 YP+ ol P27 | p(0)] - [0l 1€ 1,1+
for all £€T_(b) and &, €T (v) such that R, ;6+& €ker(Dj, +Lj ).

(5) Let {n} be a basis for T°!(b; J) =E%, )@ Tevp(n)X, orthonormal with respect to the inner-
product corresponding to the norm || - ||. We define the homomorphism

Du: T (03 ]) — T2 B T) by D= {({Dj,+Lj }E+E), Rune )i
if  &reli(v), (& eker(Dy, +L5,).

Since the projection map ker(Dj +Lj, ) — I (v; J) is an isomorphism by (3) above, the map
D, is well-defined. By definition, ©,=0. On the other hand, by (4.38),

DuR, 6= =2mi Y {Dypitei(v)}@pi(v)  VEE€R T (v; ), (4.39)
iex(T) ’

where ¢;(v): RU,_}F*,(U; J)—T,, »(b)X is a homomorphism such that

lei(0)] < Cic (|T=Tllor+ o[P[0 P=27P) e FT). (4.40)

’K(O)'
By (a) and (b-i) of Definition 1.4, the map

D it T-(b) — Ty X
is surjective for all i € x(7); see the paragraph preceding Lemma 3.3. Since p;(v)#0 for all i € I
and ve FTY, it follows from (4.39) and (4.40) that if o5 is sufficiently small,
dimker D ; = dimker(Dj,+Ljz,) = dimI'Z (v; J) = dimker ®,,
< dim_(v;J) — dim % (b; J) = dim T_ (b) — dim T (b; )
=ind D = ind Difw

as needed.

Corollary 4.5 concludes the proof of the genus-one regularity property of Theorem 1.6. Corollary 4.6
below and the Gromov compactness theorem imply that if J is a genus-zero A-regular almost
complex structure on X, J, is a sequence of almost complex structures on X such that J, — J
as 1 — oo, and b, € im‘i v (X, A;J,), then a subsequence of {b.} converges to an element of

M 0y (X, A5 ).

Corollary 4.6 If (X,w,J), A#0, and T are as in Lemma 4.3, for every precompact open subset
K ofUr(X; J)—Ur1(X;J), there exist i €RT and an open neighborhood Uk of K in X1 a1 (X, A)
such that 3

MY (X, A J) N Uk =0

if J is an almost complex structure on X such that ||J—J||c1 <Ok
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Proof: (1) Suppose [b] EW?’M(X, A; J)NUgk. By Lemma 4.4, it can be assumed that

b= (E’LHjUa Uy), where 1, = eXPiUCj,Ua UE]},Z:SQL |K(o)a Cj’v €l (v), ”Cj,UHv,p,l SgKa
for some o € (0,05) to be chosen later. Since 5j11v:0,

8juv + Djyvgiv + NijCj’v =0. (4.41)

By (4.27) and (3) of Lemma 4.4,

HNj,UCj,UHv,p = CKHCj,v 121,[)11 - HCJ,UHv,p,l = CK|p(U)|’ (4'42)

provided éx is sufficiently small.
(2) It neT%(b; J), by (4.11), (4.42), and (7) of Lemma 4.4,

(D i Rom))| < Crclo'2[p(w)] - ]l and

(4.43)
(NG 0 Bom))| < Ciclp () - ]l
By (4.41), (4.43), and (6) of Lemma 4.4, for all neT!(b; J),
| S Do), ey )] < O 1T =Tl o7+l D7) p(w) -l (4.49)
iex(7)
On the other hand, since the closure of K in Uy (X;J)—Ur,1(X;J) is compact,
‘ ZDJ,i(ban) > Cit| vboe KO, v=(0i)iex(T)> (4.45)

iex(7)
for some Cx € RT, by definition of the set Uz (X;J) C Ur(X;J); see Theorem 2.3. Since
1% (b; J)=E*®eviTX, (4.44) and (4.45) imply that
1T =Tller + [0 VP + o] P=27P > O,

as needed.

5 Completion of proof of Theorem 1.2

5.1 Summary and setup

In this section we sketch proofs of Propositions 5.1-5.3, based on the arguments of Sections 3 and 4.
Detailed proofs of generalizations of these propositions can be found in Section 5 of [18]. These
three propositions are special cases of Theorem 1.2, but together they imply Theorem 1.2 for an
arbitrary compact almost Kahler manifold (X,w, ), J; =J constant, and A € Ho(X;Z)*. They
also show that a limiting curve of a sequence of J-holomorphic curves in X of arithmetic genus
of at least one must have arithmetic genus of at least one as well, as is the case in algebraic geometry.
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Suppose {b,} is a sequence of elements of ﬁ?’ wm (X, A; J) such that

lim b.=b¢€ ﬁl,M(X, A; J)

T—00

We need to show that beﬁ?M(X, A; J). By Definition 1.1, it is sufficient to assume that b is an
element of U7 (X; J) for a bubble type

T = (M, I,%;5,4)

such that A; =0 for all minimal elements i€ I.

We can also assume that for some bubble type
T = (M, I'N; 5", A")

by € Ur/(X; J) for all r. If A, =0 for all minimal elements i € I’, the desired conclusion follows
from Proposition 5.1 below, as it implies that the second condition in Definition 1.1 is closed with
respect to the stable map topology. If A} 0 for some minimal element i € I’ and N #(), i.e. the
principal component of ¥, is a circle of spheres, Proposition 5.2 implies that b satisfies the second
condition in Definition 1.1. Finally, if X' =0 and A}#0 for the unique minimal element ¢ of I’, the
desired conclusion follows from Proposition 5.3.

We note that the three propositions are applied with b and b, that are components of the ones
above.

Proposition 5.1 Suppose (X,w,J) is a compact almost Kahler manifold, A€ Ho(X;Z)*, and M
is a finite set. If [by] is a sequence of elements in 9] {o}uM(X’A? J) such that

lim [b,] = [b] € Ur(X;J) C My goyum (X, A5 J),

r—00

then either
(a) dimc Spanc j{Dib: i€ x(b)} < [x(b)], or
(b) m;o:l Ur’>r C- Dﬁbr’ C Span(C,J) {Dzb 1€ X(b)}

Proposition 5.2 Suppose (X,w,J) is a compact almost Kahler manifold,
nezr, Ay, ... A € Hy (X Z),

and My, ..., M, are finite sets. If [by,] is a sequence of elements in 9)?8 {0,1}UM,, (X, Ag; J) for each
ke [n] such that

evy (bk,r) = eVO(bk-l-l,T) Vke [n_l]v eVl(bn,r) = eVO(bl,r)v and
Thl}llm[bk,r] = [bk] S Z/{T(m (X; J) C ﬁo,{o,l}l_le (X, Ag; J) Vk e [n],

where each T®) = ({1}UM,, I(k);j(k),A(k)) is a bubble type such that Agk) =0 for all i <jy1, then

k=n
dime Spanc,y) {Dibk: i€ x(bx), k€n]} <> [x(be)l-
k=1
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Proposition 5.3 Suppose (X,w,J) is a compact almost Kahler manifold, A€ Ho(X;Z)*, and M
is a finite set. If [by] is a sequence of elements in SJTQ,M(X, A; J) such that

lim [b,] = [b] € Ur(X;J) C My (X, A; ),

T—00

where T = (M, I,R;j,A) is a bubble type such that A; =0 for all minimal elements i € I, then
dimc Spanc ) {Dib: i€ x(b)} < [x(b)]-

We prove these three propositions in the next two subsections by combining the approach of
Sections 3 and 4 with some aspects of the local setting used in [6]. The latter makes it possible to
proceed with the genus-zero gluing construction of Subsection 3.1 and the first step of the genus-
one gluing construction of Subsection 4.2 near a given bubble map b even if J is not genus-zero
regular. The maps we encounter are not holomorphic on the entire domain, but are holomorphic
on the parts of the domain that appear in Lemma 3.4. This is sufficient for the purposes of the
key power series expansion in Lemma 3.5.

5.2 Proofs of Propositions 5.1 and 5.2

Let (X,w,J), A, M, by,
b:(M,I;.’IJ,(j,y),U), uiEub|Eb,z”

and 7 be as in the statement of Proposition 5.1. We put
I = {iel: A;#0}.
For each i€ I", choose a finite-dimensional linear subspace
L% (byd) € T(Spi x X3 A i T8, @m3 TX)
such that
(S5 AY TS0 @u; TX) = {D g, £ §ET(Spi5ui TX), §(00) =0}
@{{id Xupi}n:ne f(i’l(b; z)}

and every element of fgl(b;z’) vanishes on a neighborhood of oo € 3, ; and the nodes x5 € X ;
with ¢, =4. If ic I —I", we denote by fgl(b; i) the zero vector space. Let

Z/?T(X’ J) = {b,E (M’ I $/7 (]7 y/)7 ul): b’ = bubble map of type T7
Oy uj € {idxuf} T (bid) VieT}.

By the Implicit Function Theorem, U7 (X; J) is a smooth manifold near b. Let
FT =Ur(X;J) x Cl

be the bundle of smoothing parameters.

Since the sequence [by] converges to [b], for all r sufficiently large there exist

Ve Ur(X; ), ve=(u) €FT, and & € D(v,)=D(Sy;ul, TX)
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such that
&(00) =0 Vr, lim b, =b, lim |v,| =0, lim [[& v, p1 =0, (5.1)
r—s00 r—00 r—00

and br = expy(y,) &r-

The last equality holds for a representative b, for [b,].

Remark: The existence of b, v,, and &, as above can be shown by an argument similar to the
surjectivity argument in Section 4 of [16], with significant simplifications. In fact, the only facts
about the bubble maps b/, we use below are that they are constant on the degree-zero components
and holomorphic on fixed neighborhoods of the attaching nodes of the first-level effective bubbles,
i.e. on XY (6) in the notation of Subsection 3.3. Such bubble maps b, along with v, and &, can
be constructed directly from the maps b,; see the beginning of Subsection 4.4 in [16].

By the same argument as in the proofs of Lemma 3.5 and Corollary 3.6, but now applied to the
sequence (vy, &) with sufficiently small dg,

Dabr = > (Dith)pitor)| < Col P+l 1) Y lilor) (5.2)
iex(T) iex(T)

This estimate follows from equation (3.18) with ', v, and (., replaced by b;., v, and &, respec-
tively. Recall that ®; ,(cc)=id for J=.J. Since b, —b, (5.2) implies that

Do = > (Db)piton)| < C(loel "7+, p) Y i), (5:3)

iex(T) iex(7)

where the difference is computed via a parallel transport of Ty, (5 )X t0 Toyy )X With respect to
the J-linear connection V7. By (5.1) and (5.3), b must satisfy one of the two conditions in the
statement of Proposition 5.1.

The proof of Proposition 5.2 involves a similar extension of Lemma 3.5 and Corollary 3.7. By the
assumption on the bubble types 7*) made in Proposition 5.2, evo(br) =evi(by) for all k. Thus,

evl(bk) = evo(bk) = evl(bl) Vk,l € [n]

Let g denote the point evy(b;). We identify a small neighborhood of ¢ in X with a small neighbor-
hood of ¢ in T; X via the exponential map of the metric gx and the tangent space to X at a point
close to ¢ with 75X via the V”/-parallel transport.

For each pair (k, ), with r sufficiently large, let (b}, 7 Uk &k.r) be an analogue of (¥, vy, ;) for by ;.
As before, the key point is that the bubble maps b , are constant on the degree-zero components
and holomorphic on fixed neighborhoods of the attachlng nodes of the first-level effective bubbles.
Let

Ck,r = eVO(bz,r) € TqX and

e = evi(bry) — evo(bry) = evi(bry) — evo(by,.) € Ty X.
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By the assumption on the maps by, made in the statement of Proposition 5.2,

|Cr + S — G| < Clrr] - !fkr! Vke [n—1],
‘Cn,r + 571,7’ - Cl,r‘ < C}Qn,r‘ : |§n,r ;

k=n
= ‘51,r+“-+§n7r| Serz‘ék,r7

(5.4)
for a sequence {e,} converging to 0. On the other hand, by the proof of (3.25),
Gor = 2 b, =i (¥ ) (Db )it (v1r)
i (k)
T (5.5)

C(|ora P+ &k loprpr) D |pi(vra)]s

iex(7 (k)

see (3) of the proof of Corollary 3.7 for notation. By (5.4) and (5.5),
k=n k=n
‘Z > (rab,)— xi;l(bz,r))_I(Dibz,r)m;l(vk,r)‘ <&y D ekl (5.6)
k=1 jex(T(*) k=1 i (T(8))

for a sequence {€.} converging to 0. Since D;b} . — D;by, as r — 00, (5.6) implies the conclusion
of Proposition 5.2.

5.3 Proof of Proposition 5.3
Let (X,w,J), A, M, by,
b:(MalaN;Sax7(jay)7u)7 uiEub|Eb,i7

and 7 be as in the statement of Proposition 5.3. Let 73, and by, for h € I; be as in Subsection 2.2.
For each hel; and i€l ;Lr , choose a subspace

T (b; 1) =T (bys ) € (84, x X3 AY i T8, 0 w3 TX)

as in the previous subsection. If A; = 0, denote by f‘(i’l(b; i) the zero vector space. We define
Ur(X;J) as at the beginning of Subsection 5.2. Let

FT — Ur(X;J)
be the bundle of gluing parameters. For each b €Uy (X; J ), let
L) € T(Sy x X5 AY TSy @ T X)

be the subspace obtained by extending all elements of T'%!(¢/;4) =T%!(b; i) by zero outside of the
component ¥ ; of Xy
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The sequence [b,] converges to [b]. Thus, with notation as in Subsection 4.2, for all r sufficiently
large there exist

- —=0
b, € Ur(X;J), vy = (b, v,.) € FT & € T(vp), and

§T72 € F+(U’r) C F(ﬂvr;l oqu;0§2)7 Where {LUT;l = eXpuUT;lgT;17
such that
a ~ - =0,1
5r;1|2“r;1?N =0, 8Juvr;1 € {qu;l Xuvrﬂ}*r—7 (b;‘)v b, = eXPaumoqu;O;gfﬂ? V’I“, (57)
TH_IFOO b, = b, Th_{noo lur| =0, Th_r)noo &1 llora,p1 =0, Th_{noo 1&r;2llvr p1 = 0. (5.8)

We note that just as in the first step of the gluing construction in Subsection 4.2, there is no
obstruction to smoothing the internal bubble nodes of the bubble map ¥/ subject to the second
condition in (5.7), as long as b.. is sufficiently close to b,. For defining the spaces I';(v,) at the
second step of the gluing construction, we take

T_(V) = {€eT(t)): Dyyé € {idxuy } T2 ()}

The proof of the existence of the elements v, &1, and ..o as above is similar to the proof of the
surjectivity property for the gluing map in Lemma 4.4, but simpler.

Since for each h € I; the map i, , is holomorphic on X9 (6) CX,,,, for § € R sufficiently small,
the estimates of Corollary 3.8 apply to each map ., ’E”r-lvh . Thus, we can define an obstruction

bundle F%l(vr) for the second stage of the gluing construction in Subsection 4.2, with the estimates
of Lemma 4.4 remaining valid. The claim of Proposition 5.3 is then obtained by the same argument
as Corollary 4.6, with J, u,, and (5, replaced by J, iy, ©Gu, o2, and &2, respectively.

6 Proof of Theorem 2.3

6.1 A multi-step gluing construction

The first part of the last claim of Theorem 2.3 can be proved by showing that a fine version of
the converse to the J =.J case of Corollary 4.6 holds. More precisely, using the two-step gluing
construction of Subsection 4.2 and the Inverse Function Theorem twice, we can construct an
orientation-preserving diffeomorphism

¢: FIT) — md (X, A; )N U7

Unfortunately, one of the families of the domain spaces involved in this construction does not extend
continuously over F!75Mp~1(0) for a general bubble type 7 as in Theorem 2.3. As these domain
spaces are needed to apply IFT over F'75—F 7%, the above map ¢ cannot extend continuously
over F1T5, except for bubble types 7 such that either [y (7)|=1 or x(7)=1. In the first case, both
families do extend continuously over F!7. In the second case, p(v) =v for all v € F7 and both
families extend continuously over F!7 —{0}. On the other hand, as v — 0 both perturbations
approach zero. This means that the corrections to be chosen in the domain spaces approach zero
as well and thus extend continuously over F175.
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In this subsection, we describe a multi-step variation of the two-step gluing construction of Sub-
section 4.2. In the next subsection, we will use IFT multiple times to construct an orientation-

preserving diffeomorphism
¢: FIT) — 9 (X, A; ) N U7

Some of the domain spaces involved will not extend continuously over F'7s5. However, whenever
a domain space cannot be extended to a point v* € F7s, the corresponding perturbations will
approach zero as a sequence of elements v, € F 1’]:5(2) approaches v*. For this reason, the above
diffeomorphism ¢ extends to a continuous map

¢: F'T5 — 0 1 (X, A; J) N U7,
This map can shown to be a bijection by the same argument as in Subsection 4.1 of [16].

The multi-step gluing construction described in this subsection is suitable for the purposes of Sub-
section 4.3 and thus could have been described in Subsection 4.2 instead of the two-stage gluing
construction. However, describing the former in Subsection 4.3 would have further obscured the
proofs of Corollaries 4.5 and 4.6. As these two corollaries appear far more central, than Theorem 2.3,
to applications in the Gromov-Witten theory and enumerative geometry, we have postponed de-
scribing the multi-step gluing construction until the present section.

If b= (Xp,up) is any genus-one bubble map such that uyly, , is constant, let 9 C ¥} be the
maximum connected union of the irreducible components of Y such that ¥.p C 22 and ub’zg is
constant. We put

Lp(b) = {£€T (2 uyTX): §[gp=0}  and
T3 (b ) = {n €T (Tp; AT T* S @u TX): g =0},
We denote by
D%, Tp(b) — T (b; )

the restriction of the linearization Dy of the 0j-operator at b defined with respect to the connec-
tion VX. Let
I'_(b) = ker D, and I'p,—(b) = ker Dﬁb.

If b is J-holomorphic, let T_(b) C T'p._(b) be the subspace defined in Subsection 4.2; see (4.4)
and (4.5).

Suppose 7 = (M, I,X;j, A) is a bubble type as in Theorem 2.3, i.e. A;=0 for all i € Iy, where o C I
is the subset of minimal elements. We put

XNT)={hel: 4;=0Vi<h}, X (T)={hel:h<iforsomeicx(T)} cx*(T),
(T) =max {|[{hel: h<i}|:iex(T)} 21,  Tin=x(T), TLi=1-x(T)-x(T)-1,
where I; C 1 is as in Subsection 2.2. For each s€{0}U[(7)—1], let

s—1
I, = {iex(T)ux (T): {hel: h<i}|=s}, I =T,U| ] (LNx(T)).
t=0
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In the case of Figure 5 on page 17,
(T)=2, Zo={h,hs}, Iy ={hs,hs},  Io={ha}.
In general, the set Z;y could be empty, but the sets Z; with s <(7') never are.

If b is a bubble map of type 7 as in Subsection 2.2 and s€ [(7)], we put

EI()S) = U Xpi U U U Ypi C Xp.

iex0(T)—x—(7) heZl_ji<h
With notation as in Subsection 2.2, let

37 = @JELE)/T%L??)(X;J).
iex(7)

If se[(7)] and heZ} |, let
n(T) = {iex(T):h<i},  §T =UL(X;J) x CnlT),
If in addition v = (b,v) € FT, let

psn () = (b, (pri(0))iexy (1)) € S17 s where ppi(v) = [Juw € C;

h<h'<i
ps(U) = (b7 (ps;h(v))hEZj_l) €T = @ghT
heTr_,
Note that p(v) €37 see Subsection 2.2.
As in Subsection 4.2, for each v=(b,v) eFT we put
vo = (b, vy, o).
Let vy =v. If s€[(T)], let
Vs = (b, (Uh)heIs) and U(s) = (b7 (Uh)hEIt,tzs)-

The component v 7y of v consists of smoothings at the nodes of X that do not lie between the
principal component 3.z of ¥j and the first-level effective bubbles and do not lie on ¥j.x. These
nodes will be smoothed out at the first step of the gluing construction, as specified by v(7). At the
next step, we will smooth out the nodes indexed by the set Z;7y_y, according the tuple of gluing
parameters v(7y_1. As in Subsection 4.2, at the last step we will smooth out, if possible, the nodes
that lie on the principal component ¥j.x of ¥j according to vg. This step will be obstructed.

—0
Suppose v = (b,v) € FT is a sufficiently small element. We will inductively construct approxi-

mately J-holomorphic bubble maps

bS(U) = (EU<S> ’ u'u,s)7 Vs= 0, cey <T>’
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J-holomorphic bubble maps

and injective homomorphisms

Rys:T_(b) — T(Sy,;us  TX) and Ry T_(b) — T(Z

Vis)y?r 7,8

TX),

’U("Us

such that the following properties are satisfied. First, for all s€[(7)],

Egs(v) = Egs( )= qv< (2(5)) and Uy (Egs(v)) = Uy,s (Egs(v)) = up(XY) =evp(b),

where as before
QU<S> : 2’U<S> ’ Eb

is the basic gluing map of Subsection 2.2 in [16]. Second, for all £ € T'_(b)

Ry s€|so = const, Usg\zo = const, vasg(z‘gs(v)):Rmsg(zgs(m)zg(zg); (6.1)

bs(v) bs(v)
C(b)_1\|§||b,p,1 < }RU s£| V() L HRU sf”v<s>m,1 < C(b)Hgnb,p,l, (6.2)
1D 300000 o€l 10150 Bl < CO (0240 =22) 1€ 1, (6.3)
for some C € C(Ur(X; J);RT).
Remark: Similarly to Sections 3 and 4, above and below || - ||, p,1 denotes the weighted L{-norms

on the spaces

Ip(u.up,TX) and  Tp(Zy,; @, TX)

7 U S

induced from the basic gluing map ¢y, as in Subsection 3.3 of [16]. Similarly, [| - ||, ,» denotes
the weighted LP-norms on the spaces

L5 (Do, s AYT Sy, @ul TX)  and  Tp(Sy, Ay TS, @) TX).
We denote the corresponding completions by I'p(v(s)), fB(v<S>), F%’l (v(sy; J), and f%l(v<s>; J).
For s {0}U[(T)], let I'_(wvs) be the image of R, s. Similarly, if s€[(7T)], we denote by
Ppi—(vg) CTp(bs(v))  and  T_(vy), - (vyg) C Tp(bs(v))

the image of I'g._ (b) under R, s, the image of R, s, the image of I'g._ (b) under R, s, respectively;
see (6.1). Let I'p,4(v(y) and Tp. (v v(s)) be the L%-orthogonal complements of I'p._ (v v(g)) and
f‘B;,(U<s>) in I'p(vs) and f‘B(v<S>). These spaces will satisfy

C®) M€l mt < [[Dpo) §HU< < C(b)llva<s>,p,1 V& € piy(vy)); (6.4)

OO el < D550 Ellu » < CONluyr Y EETBL().  (65)
Furthermore,

s = Xy, ,Cus for some  Cus € P (vgg) st [[Gus| COY?. (6.6)

Uesy Pl —
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Finally, for § € C(U7(X; J); RT) sufficiently small, all maps

v — bs(U)7 ZN)S(U), CU757 RU,C; RU,C
— —
are smooth on F7 5 and extend continuously over F7 5.

—0

We now describe the inductive construction referred to above. If v € F7T is as above and b=
(3, up), we put

Uy (T) = U O Quirys  Roy)§ =E€0qu ., VEET_(D).
The first bounds in (6.3) and (6.4) with s = (7) hold for the same reasons as the corresponding
estimates in Lemma 3.1. Since the operator be is surjective, by the first bound in (6.3) the
operator

B ) 0,1 .
Dy Uit (0) — Tg (v J)

is an isomorphism. On the other hand, by the construction of the map ¢, (7y in Subsection 2.2
in [16],
< C(b)|u)'7. (6.7)

“EJUU,<T> HU<T> D —

Thus, by the Contraction Principle, if v is sufficiently small, there exists a unique small element
Cv,(T) S FB;+ (U<T)) s.t. a] expuMT} Cv,(’]') =0. (6.8)

Furthermore, by (6.7),

vyl S C)fvl".

G, |

We thus define l~)<7> (v) by the first equation in (6.6).

If se [(T)—1], let
Qus;(T)+1—s"+ EU<S> - EU<S+1>

be the basic gluing map of Subsection 2.2 in [16] corresponding to the gluing parameter vs. If

bst1(v) and Ry, s41 have been defined, we put

Uy,s = av,s+1 o Q’US;<T>+17$7 fiv,sé~ = Ru,s—i—lg © qu;(T>+lfs VﬁEF_(b)

The first bounds in (6.3) and (6.4) follow from the second estimates in (6.2) and (6.3) and from (6.5),
with s replaced by s+1. On the other hand, by the inductive construction and (6.6),

st = Py, Gt (6.9
- ‘ N . .
for some Co,s41 € FB(EU<SH>,uz<SH>TX) s.t. HCUVSHH%HNM < C(b)|v| /v
where
uU<s+1> =upo qU<s+1> :
Thus, if ¢ is sufficiently small, the estimate in (2b) of Corollary 3.8 implies
dvsila-  o)llyp < C(b)5 7| psp(v)]  VheTi,  where (6.10)
Y(s+1)> ’

<5) - qu(i+1) ({(h7 z) Ezb,h:{h} x 52 ‘z’ 2(5—1/2/2})_

V(st1),h
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It follows that B
18 5t04]1,, < COIYP| e (v)] < CO)[o] 7. (6.11)

Thus, similarly to the s = (7) case above, if v is sufficiently small, there exists a unique small
element

Cus S FB;—I— (U<S>) s.t. a] eXpuv,SCmS =0. (6.12)

Furthermore, by (6.11),

1
et S CO)u[VP.

[Co.s

We again define b,(v) by the first equation in (6.6).

If s€[(T)] and by(v) has been defined via (6.6), we put

Rus€ =g, Rus§  VEET_(b),
where Il¢, , is the parallel transport along the geodesics

T — expy, TCu,s T €[0,1].

The bounds on R, 5§ in (6.1)-(6.3) and the estimate (6.4), along with (6.6), imply the bounds on
R, s€ in (6.1)-(6.3) and the estimate (6.5).

At the final step of this inductive construction, we put

Up,0 = U,1 © Gugy(T)+1> Ryo€ = Ru1€0 Gy VEET_(D)},
where
QUQ;<T>+1: 2’U B EU<1>

is the modified basic gluing map constructed in Subsection 4.2 as G,,;2. In order to construct this
map in this case, we need to replace dx € R with § € C°(Ur(X; J), which we view as a function

on Z;{g] )(X ;J) via the quotient projection map
UP (X5.0) — UL (X5).

The homomorphism R, satisfies the required properties. Let I';(v) CT'(v) be the L2-orthogonal
complement of I'_ (v).

For each hel and §eRY, let
A (0) = {(wh, 2) €S, - |2 — ()] <261/},
A, (8) = {(h, z) €Spn={h}x S*: |2|>671/2/2},
br(6) =S — Ay, (0) = | A (9),

Lh/:h
AEL(0) = g7 (AF,(0)) € Doy S5,(0) = 45 (554(0)).

We define the homomorphism
Ry: T (b; J) — % (v; )
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similarly to Subsection 4.2, but with two changes. First, we replace the number dx with the
function § € C®°(Ur(X;J);R*). Second, we cut-off REn over the annuli

AL (45(b)) — AT (5(b))

with i € x(7), instead of h € I;; see Subsection 2.2 in [15] for a version of this construction.
Let T%'(v;J) be the image of R,. We note that due to (6.9), the estimates in (3) and (6) of
Lemma 4.4 remain valid. Of course, in this case J = .J and Cx € Rt should be replaced by an
R*-valued continuous function on Uz (X;J). We summarize the key results of this construction
below.

Lemma 6.1 Suppose (X,w,J) is a compact almost Kahler manifold, A € Hy(X;Z), and J is a
genus-zero A-regular almost complex structure. If T = (M,I,X;j, A) is a bubble type such that
YicrAi=A and A;=0 for all minimal elements i of I, there exist §,C € C(Ur(X;J);R") and an
open neighborhood Ut of U (X; J) in X1 am (X, A) such that

(1) bs(v), bs(v), Rys, and R, s as above are defined for all Ueﬁ?;

(2) for every [b] G%%M(X, A)N Uy, there exist v=(b,v) € FT5 and C, o€y (v) such that

||Cu,0||v,p,1 < 0(b) and [eXPbo(v)Cv,O] = [b]

Furthermore, such a pair (v, (o) is unique up to the Aut(T)m(Sl)f-action;
(3) for all v=(b,v) Eﬁg,

3 p—2
10510 0llop < CO)p®)], 1D spo)Ellop < CO) (7P +[v] 7)€
and  C(O) M|€llupa < 1Dspo()€

op1 VEET_(v),
vp SCO)IElopr VEET 1 (v);

(4) for allv:(b,v)eﬁ'g, ¢el’(v), and nelr™ (b;J),

1/2

(D 100016 Romv2| < CO)] o) Inlll€llvp.;

(5) for all v=(b,v) Eﬁ'g, se[(T)], and heT: 4,

?

Dabs(v) = Y Daapna(v)] < COI P logn(w)
i€xn(T)

(6) for allU:(b,v)ej-:’Z/'g and neT% (b; J),

(0.0, Rom) + 27 S (Dipi(0), 1, ) )g| < COY(0]7+[0] 727 |p(0)] - 1]
iex(7)

(7) all maps i )
v bS(U>v bs(v)a Cu,sr Rus, Ros

—0 —
are smooth on FT s and extend continuously over F7T 5.

64



Due to (6.9), (5) is proved by the same argument as the r = 1 case of the expansion (2a) in
Lemma 3.5. Part (2) of Lemma 6.1 holds for the same reason as part (2) of Lemma 4.4. Regarding
part (7) of Lemma 6.1, it is immediate from the inductive construction that each of the maps

v— bs(v), Bs(v)’ R’U,Sv Ry s

)

is smooth on F7° ? and extends continuously over FT s, provided this is the case for all the objects
defined at the preceding steps of the construction. Under these circumstances the map v — (s
is also smooth, by the smooth dependence of the solutions of (6.8) and (6.12) on the parameters.
It extends continuously over FT s by the same argument as in Subsection 4.1 in [16].

The estimate in (4) of Lemma 6.1 is an improvement on (7) of Lemma 4.4 and is proved by a
similar argument. In this case, the support of D}’vRvn is contained in the union of the annuli

A7, (6(0), hex (TUX(T); A, (8(), hex (T)ux(T);
o (00), hexT(T) AL, (46(b) A, ((),  hex(T).
Similarly to the proof of (7) of Lemma 4.4,

| D5 Runl,, . < Cxlduvol,, _Inlg, . (6.13)

for every point z of any of the annuli of the first three types above. Thus, the estimate (4.16) still
applies to the annuli of the first type with he€ I;. By definition of the metric g,

1Nlgo.. < CO)Inll - th/ v zez‘iih(&b)), hex (T)ux(T); (6.14)
h’elh’<h
lg,. < COnll - [ow vV ozeX;,(6(b), hex (T); (6.15)
el h/<h
7lg,.. < CO)Inll - Jws] ™" thf v Zefl;h(‘lf;(b)), hex (T)ux(T), (6.16)
el h<h

where wy, is the coordinate on fl;h(élé (b)) defined similarly to w; in (2) of the proof of Lemma 3.5.
On the other hand, by (6.10) and the assumption (a) of Definition 1.4,

HCU s’z (O)H v(sy 1 < C(b)}PS;h(U)‘ VheI, y, i>h (6.17)

v,

the above assumption implies that the operators D}} be(v) defined in Subsection 6.3 below are sur-
jective. Note that by the inductive construction,

Coslgs =0  VheI;,, i<h.
Combining this observation with (6.17), we find that
|ps r(U ‘ V he j,

[Conls @l mn <
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where (, 1 is as in (6.9). Thus,

' B ex— (T)Ux(T),h'>h

|dusolss e llops < CO) I v V hex (T); (6.19)
' R ex— (T)Ux(T),h/>h

sl i syl ps < CG) II v V hex (T)ux(T). (6.20)

hex— (T)Ux(T),h'>h

Combining (6.13)-(6.16), (6.18)-(6.20), and Holder’s inequality, we find that the L'-norm of D3 Run,
with respect to the metric g, on each of the annuli above is bounded by C(b)|p(v)|||n||. Finally,
analogously to (4.14),

Do Ronl,, . < CO)(1+|duvol, nlg.. ¥ z€ Ay, (46(b)) AL, (5(b), hex(T).
Thus, by (6.16) and (6.20) the L'-norm of D% Ry on such annuli is also bounded by C(b)|p(v)][[n]-

Remark: The exponent 1/2 in (4) of Lemma 6.1 is due to the exponent (p—1)/p in (4.16).

6.2 Construction of diffeomorphism

—0
We continue with the notation of the previous subsection. For each v=(b,v) € F7T 5, we define the
homomorphism

mpl i TO ) — T2 b d) by mln = (n, Ron)ne € T2 (b5 ),

r

where {1, } is an orthonormal basis for I'° (b; J) as in (5) of the proof of Corollary 4.5. We denote
the kernel of 7721_ by FS_’I(’U; J). By Lemma 6.1,
Ur = {lexpyy)¢l: v=(b,v) € FT5, CE€T4(v), [Ilup1<d(b)}
C {lexpyy ¢l v=(b,v) €FTs, CET1(v), [I¢vp1<d(b)}

is an open neighborhood of U7 (X;J) in X1 a(X, A). Thus, we need to solve the equation

it (80,0 D g0y C+ NooC) =0 € TV (b 1),

_ (6.21)
87,0+ D 1 () ¢+ NooC =0 € TV (v5.7),

a; expuMOC:O <= {

where Ny is the quadratic term satisfying (4.27), for v = (b,v) € .7-:\’1/'? and ¢ € I'y (v) such that
[¢l[v.p,1 < 3(b). By the proof of (1) of Corollary 4.6, there exist d,C € (Ur(X;J);RT) such that
d <6 and every solution (v, () of (6.21)

0] <80, [Clops <306) = [l < CG) - [p(0)]. (6.22)
On the other hand, by (4) and (6) of Lemma 6.1 and (4.27),
T2 0(v, €) = i (95tte,0+ D b0y +NooC) = —2miDr(v) + (v, C), (6.23)

)
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where D is as defined in Subsection 2.2 and

le(w, Ol < COl P+ 10| T2 P4 o) - (1o +IE o) (6.24)
it ¢el(v), [Cllopr<d(b).

We will first solve the top equation in (6.21) for b’ = pig(v, ¢) and then use the Contraction Principle
to show that the resulting bottom equation has a unique solution in ¢ for each veF 1’]?.

For each s€ [(7)+1] and he Iy, let

u%)(X; J) = U7 ({ (0, ri)ier, € (CxR)™: n:% Viel—x(T),
1 s ‘
rie <§_4(<T>+1)’§+4((7>+1)> Viexn(T)};

see the end of Subsection 2.1. We put

UL (X5.7) = { (b, (bn)ner,) €Uz (X T) x [ U (X3 7):
hely

evo(bn) =ev,, (bo) Yhe I} c U (X;.7);

see Subsection 2.2 for notation.
For each s€ [(7T)] and heZ} ,, let
P T (s+1) /3. < T
Th ! PShT‘L{é:””(X;J) — Uy (X5 J) and Vs:h — [P’%’;LT’M(TSH)(X;J)

be the natural projection map and the tautological line bundle. With

‘/s;h = F:;heV}TX I Pﬁ}ungrl)(X'J)’

we define

asn (b, ()iexym) = D Dri(byvi) € TovpyX i (b (00)iex (1)) €Vsih
iexn(T)

We denote by
t: BT =[] (B30T mon) — UV (X; )
heT?

the fiber product of the bundles IF’S/;:’? over L[é—s Jrl)(X ;J). Let

Vs =mievpT X — P, T and Vs = @ Tan Ysshos
heT*

where 7g.p,: PsT —>IP’§;§' is the natural projection map. We denote by

as € D(PT;vi®Vs)
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the section induced by the sections 7}.; o, with s€Z;_,. Similarly, let

mo: Po7 = ]P’S?luy — (Tl)(X; J) and Vo =7 (ﬁ}E*(X)ev}TX) — PyT.

(X3

Let 7o —Pg7 be the tautological line bundle. We define ag € F(IP’OT ; 7§®V0) by

{ao (b, (vi)iexw)) } (b, 0) = —2mi Z Dy, (b, %h(i)(b)vi) € Tovp) X
iex(7)

if (b, (vi)iexw) €70, (b,0) € Bzpgy.-

Let
pT_ ()= JTI-) —ud(x;J)
bV (X)

be the smooth map induced from the maps ¢ of the remark following Lemma 3.3 via the decom-
position (2.11). In particular,

Some) =S and  evp(p(b;) =evp(d) Y beUlT(X;0), €eT_(b).
Thus, the fibers of the vector bundles
FT, #5E*, evpTX, F7T, and §,7 for hel’ |, se[(T)),
at b and at (b, £) are canonically isomorphic. If ¢ €T'_(b) is sufficiently small,
v=(b,v) Gﬁ'g and v =(p(b,€),v) Gﬁg
are corresponding elements of the fibers of 77 at b and at (b, ), let ¢y 0(§) €T'(v) be given by
eXPy, ,Gv,0(§) = w0 and luvollco < 7.

We identify T'y (v) and F(J)r’l(v; J) with T'; (v') and F?r’l(u’; J) by composing the V7-parallel trans-
ports
Iy(v) —T@) and T (v;J) — TONW; )

along the geodesics corresponding to ¢, 0(£) with L2-projection maps
') — T () and ot Jg) — Fg_’l(vl; J)

corresponding to the metric g, =g, on %,,.

For each s€{0}U[(7)], the map ¢ induces a smooth map

vs: Gy Eﬂ':f— — P,T.

(')|u<;)(x;J)
Similarly to the previous paragraph, the fibers of vector bundles

W:E:’Z/', vs, and Vg
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at b and ¢,(b, ) are canonically isomorphic, if (b,€) € & is sufficiently small. By the regularity
assumptions (a) and (b-i) of Definition 1.4, the differential

VTO‘SZ Gy — ’Y:®VS

of s, defined via the above isomorphisms, is surjective. Let QSSL be the L2-orthogonal complement
of ker V7o, in &,. By the surjectivity of VZay, the Contraction Principle, the precompactness of
the fibers of

mome: BT — UST (X T) — Ur (X ),

there exists €, C' € C(Ur(X; J);RT) with the following property. If beUr(X;J) and
K€ F(]P’ST‘FA([));’)/:@VS)

is a smooth section such that

k(D)|| < e(b) VbePT\qw

then for every b* e PyT | the equation

O)NU (X;7)

s (ps(b, ) + K(ps(b°,6)) = as(b*) € 1i®Vs,  £€85., €] <2C(b)e(b),

has a unique solution &, (b*). Furthermore,

|€:(6%)] < 2C(b) max {||x(b

O bRl )
see Subsection 3.6 in [16], for example.

We are now ready to return to the gluing construction of the previous subsection. For every element
—0
v= (b,v) of FTg, let

. —0
wry () =beUP(X;0)  and  jupyar(v) = (niry (v),0) € FTg.

—0
Suppose s € [(7)] and for all ¢ € [(7)] such that t > s and v € F7T ] as above we have

constructed

U (x;7)

p(v) 0P (X:T)  and (o) = (me(v),v) € FT,
such that
Dby (Bt (v)) = {wn(b) } (prn(v)) Vhel, and (6.25)

Mt( ) = :U’t+1( (b 51} t) ) for some fvt € f (b)

6.26
6t [Tt < COMP, (060 € O] o0

0 —0
where [pi(v)] €P;T denotes the image of p;(v) €F¢7 under the projection map §;7 —P;7 and
Vva,t is the covariant derivative of &, ; along the directions in I'_(b) as before.
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By (5) of Lemma 6.1, its proof, and (6.26),
Dhi)s (/]s+1(v)) = {as;h(b) + 55;h(U)}(ps;h(U)) Vhe I:—lv (6'27)
where e, € Ty (1) X satisfies
ean()]. [V ean(w)] < CO)lu] 7. (6.28)
The estimate (6.27) can be restated as

(Dhl;s (fis+1 (U))) heTr_, {as ([ps (U)]) +e5(v) } (ps (U)) )

where £5(v) €7;®Vs||,, (1)) satisfies the analogue of (6.28). Thus, by the previous paragraph, (6.27),
and (6.28), there exists a unique small element &, €T (b) such that

([ps(v)],€u,s) € (’5l‘ (s (0)] and
'Dhl;s (ﬁs-ﬁ-l ((p(b, év,s)ﬂ))) = {Oés h )}(ps A ) VY he 1—:71

Furthermore, &, s satisfies the first estimate in (6.26), with ¢ =s, for some C € C'(Ur(X;J);R™).
The second estimate is obtained by differentiating (6.27). Thus, we take

s(0) = ps41 (b Eu.s) 0).

Suppose we have defined us(v) for all s€[(7)]. By (6.23), (6.24), their proof, and (6.26),

7o (fir (v), ¢) = {ao(b) +eo(v,¢) } (p(v)), (6.29)

where o(v, () €75 @Vo|[p(v) satisfies

eo(v,Q)|| < C®)(JoMP+10|P P4 (|Clupa) - (1+1p@) " N7 @) pa)  (6.30)
it CeT(a1(v)), 1<l w)p1 <I0).

H50(U’C)

Thus, for every

v=(bv) €F'TY  and  CET((®) st [<lnwpa < 200) W),
the equation
W(l’lbo (ﬂl (gO(b, ‘g)v U) ’ C) = {QO(b)} (p(U)) =0
has a unique small solution &, ¢(¢) €T _ (b) such that
([p(0)):€00(0)) € B[

provided that
C(b) ([o|YP+|v|P=2/P £ O (b)) p(v)]) - (1+2C(b)) < C(b)e(b). (6.31)

Furthermore, this solution satisfies
[€0.0()] < CO ([P 40|27 - (L+1p()] Il (1) 1) (6.32)
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We put
po(v, Q) = 1 (e (b, &00(¢)),v)  and  fig(v,¢) = (uo(v, (), v).

Let po(v)=po(v,0) and fig(v,0)=fio(v, 0).
For every v=(b,v) in F 179 sufficiently small, we define the map
Wy {CET (0 (0): [€la(uypa <20 oW} — T (o(v): ) by
Vo(€) = O5tpow.0) + Drotuo(0.0)6 T Npow.0)6-

Let
D}, T (fio(v)) — I (fio(v); J)

be the derivative of ¥,, at (=0 and let NL}FUCEI‘?;I(/IO(U); J) be given by

Wy (Q) = Wo(0) + D ¢+ Ny, €.
By the construction of ¥,, (3) of Lemma 6.1, (4.27), and (6.32)

120 (0) | w) 1 < 2C(B)]p(v)], (6.33)
-1 ~
(2C(b)) HCH,&O(U),p,l < HDIUCH,&()(’U),p < QC(b)HCHﬂo(v),p,l VCEF-F (MO(U))7 (6'34)
INF =N o o S 2CO U o) o1 1€ o) 5. 1€ =C (o) p1 V€, ¢ € Dom ¥y, (6.35)

provided that v is sufficiently small. Since the index of D7 is zero, if C e CUr(X;J);RT) is

sufficiently large and v € F1 7§ is sufficiently small, by (6.33)-(6.35) and the Contraction Principle,
the equation

U, (¢) =0

has a unique solution (, o €Iy (fig(v)).
If e C(Ur(X;J);RT) is sufficiently small, we define the map
¢: FIT) — 0 (X, A5T) by (v) = [ @Dy (00,00 Cor0) (6.36)

By construction, the map ¢ is Aut(7) (Sl)f—invariant and smooth, and thus descends to a
smooth map
¢: FITY — M 1 (X, A; ).

By an argument analogous to that in Subsection 4.2 of [16], the map ¢ is an immersion into
%(1)7 wm(X,A), if ¢ is sufficiently small. By the proof of Corollary 4.6 and the construction of

the map ¢, the image of ¢ contains Wl‘iM(X,A; J) N Ur for a neighborhood Uz of U7 (X;J)
in X1 (X, A). Thus, the map

¢: FITV — o 1 (X, A;) NUT

is a diffeomorphism. It can be seen to be orientation-preserving by an argument similar to that of
Subsection 3.9 in [16].
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6.3 Extension to homeomorphism

In the rest of this section, we show that the map ¢ extends continuously over F 1’]'5. This will be
achieved by combining the approach of Subsections 3.9 and 4.1 in [16] with the conditions (6.25)
and (6.29) on the corrections &s(v) to the maps bs(v).

For every bel\) (X;.J), s€[(T)], and heTr |, let

Sh=UShi C % TR0 ) = {n€ly (5 7): nls, s =0},

h<i

La(b) = {€€T5(0): €5, _sp =0}, and p_(b) = Ta(b) NT_(b).
We note that by (a) of Definition 1.3, the operator
Dh Ty (b) — T (b; )

induced by Dy is surjective. By the regularity assumptions (a) and (b-i) of Definition 1.4, the
differential

VTOés;hZ Qﬁs;hzﬂ':-h Ufh b) I ’)/;k;h@)‘/s;h
bl (X;)
of a., is surjective. We denote by Qﬁj-;h be the L2-orthogonal complement of ker VTas;h in &, If
wp, 6Pﬁ|b and w P T |y, let

L (bywp) = {€€Th—(b): (wp, £) €&y, } and T_(byw) = {£€T_(b): (w,§) €B; }.

We note that

P Tw-(bswn)  if w=(wp)rez: - (6.37)
heTr

If v=(b,v)€FT and s and h are as above, let
Ig—l(v) = {heIs—l: Ps;h(U):O} and EZI( = qv< (Eh)
We note that Zﬁ@ is a union of components of ¥,

The multi-step gluing construction of Subsection 6.1 extends continuously over FT 5. This extension
is formally described in exactly the same way as the construction itself; see Subsection 3.9 in [16] for
a description of the continuous extension for a similar gluing construction and Subsection 4.1 in [16]
for a proof of its continuity. Using the notation of Subsection 6.1, we now make an observation
regarding this extension. For each s€[(7T)] and heZ} ,, let

Th(vie) = {€€TB(v): f|zv 2=, =0},

F(})Z’l(/U(S); J) = {nery (vig: J): mzvm_z%(s) =0

By the surjectivity of the operators D?,bv with heZ?_,, for all heTZ} ;| the operators
0,1 .
Dy Thlvg) — Ty (vgg); J)
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induced by D () are surjective, provided v is sufficiently small. Since 0 JUy,s Vanishes on »h -
for all h€Z? ;(v) and (, ¢ is the unique small solution of (6.12), it follows that

Cu,s\% = 0 VYheIl (v). (6.38)

We next extend the construction of perturbations §, s for v € .7-"75| in Subsection 6.2 to

FTslyo

Ul (x;7)

(X)" Suppose s € [(T)] and for all ¢t € [(7)] such that ¢t >s and for all elements v = (b, v)

in fT5|u(Tt)(X~J we have constructed

i)
() €U (X50)  and  fu(v) = (m(v),v) € FT,
such that

Dby (7it(v)) = {un ()} (pn(v)) Vhel, and (6.39)

pe(v) = preg1 (@ (b, &ut) v) for some &,: € @Fh (v))
heTy \—19,(v) (6.40)

st [€ut], | VT €| < CB) |07

We note that Dybs(jiz(v)) = 0 for any h € Z0 ,(v) and u(v) € Q(T())(X;J). Thus, (6.39) is a

nontrivial condition only for h€Z; | —Z? ;(v). In particular, if Z0 | (v)=Z7_;, for the inductive

step in the construction of the previous subsection we simply take &, s =0. On the other hand,
if 70 | (v)#Zr 4, the inductive step is nearly the same as the before. The only difference is that
instead of workmg with the section

as = {asntner: |

over PsT, we work with the section {ontpers 70 (1)

over the fiber product of the bundles
~ T ~(s+1
PST bher: 10, 0) — U (X5 ).

We note that in this case the orthogonal complement of the kernel of

T
Vi asnthers_ 10 w)

1

is given by (6.37) with Z* | replaced by Z; ;—Z? ;(v). In summary,

fv,s € @ Fh ps h ))

hel; | — 5—1(U)
is the unique small solution to the system of equations

Qs:h (90(b7 EU,S)? wh) + Es;h (‘P(bv €’U,$)7 U) = Qs;h (b, wh)7 h e I:—l _Ig—l (U)

The final, s=0, step splits into two cases as well. If p(v) =0, then we take
CU,O =0 and fU,O = é’U,O(CU,O) =0.
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Otherwise, the argument of the previous subsection still applies.

We will show that the above extension of the construction described in Subsection 6.2 is continuous
at every step. First, note that by definition, for every s€[(T)—1] and heZ} ;Nx~ (7),

psn(V) = (Uwpssiw(v)), _, YV U=(b (vi)ienp) € FT (6.41)

In this case, by the proof of Lemma 3.5,

- - ——
Dpbs(v) = th/Dh/bs+1(v) + Z €h:i (V) phsi (V) Vu=(bv) € FTy, (6.42)
Lh/:h iEXh(T)

where ep,.i(v) € Tey (5 X i given by the right-hand side of (3.15), with
k= 1, Cjw :CU,Sa Uy = 1953+1(U)’ P, = (I)J,’U<S+1>7 <I>j’v = <I>J,v<s>7

and with i replaced by a function 6 =4(b). Since 0~ A; (6(b)) C EZ(S) for all i€ x1(7), it follows
that

[ens (V)] [V eni(w)] < CO[[Coslzr Mot IV sl )
¥ w=(bv) € FTo, heT* Ny (T), i€ xn(T).

Let €55, =€54(v) be the bundle map as in (6.27). Combining the last estimate with (6.42), (6.41),
and (6.25) with t=s+1, we find that

lesn ()], [V esn(v)] < C(b)(HCv,s|zg<5> H%p’l‘i‘HVTCU,S‘Zﬁ(S) Hv,p,l) (6.43)

—0
vV v=(bv) € FT| heZ; ;.

Ul (xy

We note that if heZ? | —x"(7), (6.43) follows immediately from (6.25) with t=s+1.
We next observe that by the proof of the estimate in (6) of Lemma 4.4,

_ - —0
wggl_é)Juvp = Z (= 2miv,Dpbi(v)+ep(v)+ER(V)) Vo=(bv) € FTs. (6.44)
he(x(T)ux~(7))Nl1

The error term e5,(v) is described by the left-hand side of (4.22). This term and its V7 -derivative
are bounded by the last expression in (4.25). The other term is given by

Ep(v) =y (27Ti Dpby (v) — % &,;Ud—w;), where
8AZM,h(|vh|2/5(b)) wp,
gb;v: A;u),h(é(b)) I TevP(b)Xa expevp(b)gb;v = Uy,1, Hgb;vHCO <TJ;

see the proof of (6) of Lemma 4.4. Applying the approach of Lemma 3.3 and Cauchy’s formula,

we find that

- ~ = dw
En(v) = vy, (D1 —id) Dy —, (6.45)
DAL ) (lonl?/5(0)) wj,
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where
1|, =1d,  [|Pu1—idllu, p1 < C(b)Hduv,ﬂA_< 6ty p1 < CO|pr V)], (6.46)
‘191, 1! |wh|‘ph ‘ (6.47)

by (2b) and the first estimate in (2c) of Corollary 3.8. By (6.45)-(6.47) and Holder’s inequality

27r
|&n(v)| < C0)|val|pn(v \/ o (funl*/5(b).0) ~id| df
2m rlup|?/8(b) ~
B)lon(v) / [ iy dras
) , . (6.48)
< C)|p(v)]|| P, —id||, / o)
|@ua=idl,, ,,( [ W(onl2/50)) )

< CO)lp)l|an@)] - ol 7 < C( )Ip(v)l 7 o))

Let eg=¢¢(v, () be the bundle map as in (6.29). Combining the last estimate with (6.42), (6.44),
(6.25) with t=1, and (4) of Lemma 6.1 we find that

[e0(v, Q)] [V7e0(v,0)] < CB)lp()] T (6.49)
Y u=(6,0) € FTalocy CET) st [Cllupa < CO)lp)]
The same holds for the derivatives of eq(v, ¢) and V7 gy(v, ¢) with respect to ¢.
Suppose s € [(T)] and for every t€ [(7)] such that ¢>s the bundle map
FTs—T-(), vty

and its V7 -derivative are continuous over Z/{(Tt)(X ;J). We will show that this must also be the case
for t=s. Since the maps

ﬁ—g — U FB;+(U<S>), U—><U,Su and
UGﬁ—g

FTd‘M§f+1)(X;J) — FTs, v — fis+1(v),
are continuous, so are the maps
fTa}ugfsﬂ)(X,J) — Ve ®Ven, v—€5n(V),

for all heZ* . Suppose v, = (b, v,) is a sequence of elements in .7-"75} such that

U (X37)

lim b, =¥ € U(s)(X; J) and lim v, =0 =) € ﬁd.

r—>00 r—00
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Let
wp, = rhmoo [ps;h(vr)] € Pﬁ‘y if heI:—l; w = (wh)heIt eP,T

6’{/,85(55)/75;}1)}161; 1 hm é"Ur s € F @ Fh b 'U]h
hel?r

e

We recall that

61}7»,5 = (&;T,s;h)hez;l S f— (br7 ps 'Ur @ I‘h ps h Ur)])
hel?

is the unique small solution to the system of equations
Qs;h (go(b, urs) [ps;h(Ur)]) t Esih (90(67 ur,s) 'UT) = Qgh (b7 [Ps;h(UT)D> h eIy ;.
Thus, 51’/’8 eT_(V;w) is the unique small solution to the system of equations
asn (o, & )y wn) +esn(0(b,& ), V") = asn(bywn),  heIy,

Since
Es;h (SD(bv 5{;’,5)7 ’Ul) =0 Vhe Ig—l(vl)

by (6.43) and (6.38), &, ., =0 for all heZ? | (v') and 5{},75:&,/75, as needed.

We finally show that the map
v — by(v)= (Zo; eXPbo(go(U,gvyo))Cu,o) (6.50)

is continuous over F 1’]:50). First, the map
U{cers@): [llopr<s®)} —  J T2 0:0), (0, —ev,0),
VEFT 5,p(v)#£0 bl (X;)
of (6.23) is continuous. Since so is the map v —¢,1, the map
U {¢ers@): lKlopr <CO)lp(0)]} — w50V, (0,¢) — eo(v,¢),
VEFT 5,p(v) 0

is also continuous. It then follows immediately from the construction that the maps
(U, C) B gv,O(g) and v — Cv,[)

are continuous over F 175—p~1(0). On the other hand, suppose v, = (b, v;) is a sequence of elements
in F 1’1:5@ such that

lim b, = € U (X;.7), lim v, =0v'=,v) € F'T5, and p(v)) =0.

T—00 r—00

Let

w= lim [p(vr)} and f'U/’O = rli—1>noo§UT70(<vT’0) € f‘_(b’; w).

r—00

76



Since p(vr) — 0, (6.49) implies that &, el'_(V;w) is the unique small solution of
ao(cp(b/,@’j/,o),w) =0= ozo(b/,w).
Thus, &, (=0=E&y . Furthermore, by (6.22)
lim C’UT,O =0= Cv’,()'

It follows that the map (6.50) is continuous.

We have thus constructed a continuous map
¢: F'Ty — 0y 1, (X, A; J) N U,

where Uz is a neighborhood of Uz, (X;J) in X p(X,A). By the same argument as in Subsec-
tions 4.2 and 4.5, this map is injective if § € C(Ur(X;J);RT) and surjective if Uz is sufficiently
small. Since the space ﬁ? m (X, A; J) is Hausdorff and ¢y, (x.y is the identity map, it follows
that ¢ is a homeomorphism for ¢ sufficiently small.
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