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Abstract

We describe the structure of mirror formulas for genus 0 Gromov-Witten invariants of projec-
tive complete intersections with any number of marked points and provide an explicit algorithm
for obtaining the relevant structure coefficients. As an application, we give explicit closed for-
mulas for the genus 0 Gromov-Witten invariants of Calabi-Yau complete intersections with 3
and 4 constraints. The structural description alone suffices for some qualitative applications,
such as vanishing results and the bounds on the growth of these invariants predicted by R. Pand-
haripande. The resulting theorems suggest intriguing conjectures relating GW-invariants to the
energy of pseudo-holomorphic maps and the expected dimension of their moduli space.
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1 Introduction

Gromov-Witten invariants of a smooth projective variety X are certain counts of curves in X. In
many cases, these invariants are known or conjectured to possess rather amazing structure which
is often completely unexpected from the classical point of view. For example, the genus 0 GW-
invariants of a quintic threefold, i.e. a degree 5 hypersurface in P4, are related by a so-called mirror
formula to hypergeometric series. This relation was explicitly predicted in [7] and mathematically
confirmed in [5], [11], [13], [20], and [22]. In fact, the prediction of [7] has been shown to be a spe-
cial case of closed formulas for 1-pointed genus 0 GW-invariants (counts of curves passing through
one constraint) of complete intersections of sufficiently small total multi-degree ([12], [22]). It is
shown in [6] and [31] that closed formulas for 2-pointed genus 0 GW-invariants of hypersurfaces are
explicit transforms of the 1-pointed formulas; this is extended to projective complete intersections
in [8] and [27].

The classical localization theorem of [3] reduces the computation of genus 0 GW-invariants of pro-
jective complete intersections to a sum over decorated graphs. In this paper, we use the method
of [30] for breaking such graphs at special nodes to show that closed formulas for N-pointed genus 0
GW-invariants of projective complete intersections are explicit transforms of the 1-pointed formu-
las, with the key link provided by the transform for the 2-pointed invariants obtained in [27].
We show that closed formulas for N-pointed genus 0 GW-invariants of projective complete in-
tersections, with N > 3, are linear combinations of N-fold products of derivatives of 1-pointed
formulas with coeflicients that are polynomials of total degree at most N —3. While we describe
two explicit ways of computing the coefficients of these polynomials, the final formulas become
rather complicated as N increases. Nevertheless, our qualitative description of generating func-
tions for N-pointed GW-invariants as linear combinations of N-fold products of derivatives leads
to some simple-to-state qualitative results concerning these invariants; see Theorems 1 and 2 below.

Throughout the paper N >3, n>2, and [ >0 will be fixed integers and

a=(ag)p=12,.1 = (ar,...,a)

a tuple of positive integers, with N and a denoting the number of marked points and the multi-
degree of a fixed complete intersection X, CP" !, respectively. Let

[N]:{1727’N}7
k=l k=l l k=l k=l
al =) ar, lal=> kap, (@)=][ar, a*=]]ap*, al=][a!, va=n—]lal.
k=1 k=1 k=1 k=1

k=1
For any nonnegative integer d, we denote by Mg n(Xa,d) the moduli space of genus 0 degree d
N-marked stable maps to X,. For each s=1,..., N, let

k=

evs: Mo N (Xa,d) — Xa, Vs = c1(LE) € H* (Mo, n(Xa, d)),



be the evaluation map and the first chern of the universal tangent line bundle at the s-th marked
point. Denote by H € H2(P"~!) the hyperplane class.

The main theorem of this paper, Theorem A in Section 2.3, provides a closed formula for the V-
pointed version of the standard (one-pointed) Givental’s J-function. This is a generating function
for genus 0 GW-invariants

s=N
H o my HON) 2 = bs eyt Hs 1.1
(rn 0= [ o LLOEH) ()

of a complete intersection X C P"~! of multi-degree a with |a] <n. In particular, it encodes the
famous big J-function (which allows powers of only one t-class). The precise statement of this
formula is quite involved and is thus deferred until Section 2. We instead begin by describing some
qualitative corollaries of Theorem A, Theorems 1 and 2, and special cases, Theorems 3 and 4.

Theorem 1. I[f n€Z", ac (Z*)l, and Xa CP" 1 is a complete intersection of multi-degree a,
there exists Ca € R such that

<b1!7—b1H01 . bN'TbNHCN>g(d
N!

<coN+d ¥y NeZ*, d,bi,...,by,c1,...,cNEL.

This bound holds for d=0, since

Xa +...+en+l b b
<Tb1HCI=~--vaNHCN>0,0 - <a>(/pn—1HCI " ) ( M (O NN)
o,N

N-3
= <a>5c1+...+cN,n717l <b1 > Ver,.o..,eny >0,

by

where M y is the Deligne-Mumford moduli space of genus 0 curves with N marked points. Theo-
rem 1 implies that for every Calabi-Yau complete intersection threefold X, CP"~! (|a|=n, [=n—4)
there exists C' € R such that

N'C

}<> }< ¢4 Yd,NezZ*:

for N <2, this bound also follows from the one-point mirror formulas. According to [24], the
Xa=P3 case of Theorem 1 (Pandharipande’s conjecture) and [14, Theorem 1] should imply such
bounds in all genera via [23]. In turn, the latter imply that generating functions for GW-invariants
of any genus have positive radii of convergence, as expected from physical considerations. If ng is
the number of degree d rational curves passing through 3d—1 general points in P?, by Theorem 1

v <
(3d—1)! ~ ¢

for some C' > 0. This recovers the bound established in the proof of [10, Proposition 3| using
Kontsevich’s formula [28, Theorem 10.4].!

!This bound for ng is implied by the statement of [10, Proposition 3], but the argument in [10] does not establish
the proposition itself. It only establishes a positive lower bound on liminf and an upper bound on limsup for the

sequence {/nq/(3d—1)! and not even that it converges.



The rather direct approach of [10] can be used to obtain a bound as in Theorem 1 on primary
GWe-invariants (bs = 0 for all s in Theorem 1) of P? and perhaps of P*. While the recursions
of [21, (1),(2)] reduce descendant GW-invariants (bs #0) to primary GW-invariants, they involve
a significant number of cancellations and do not appear to lead to the bound of Theorem 1, even
for P*. We instead deduce the non-trivial cases (J]a|<n, N >3) of this theorem from Theorem A;
see Section 5.

Theorem 2. Suppose n,N € ZT with N >3, ac (Z*)!, Xa CP"! is a complete intersection
of multi-degree a, and (bs)se;n] and (cs)sen) are N-tuples of nonnegative integers. If there exists
S C[N] such that bs+cs <va for every s€S and Z bs> N —3, then

ses

Xa
<7'51H01,---,7’bNHCN>07d =0.

This theorem is an immediate consequence of Theorem A; see Remark 5.1. Because of the condition

on bs, the assumptions of this theorem are never satisfied if v, =0,1 (Calabi-Yau and borderline

Fano cases). For the same reason, it is most useful if |a|=0 (projective case). For example,
<Tan_b, - ,Tan_b, ) >H0N; =

N—-2

0 VN>3,b=12...,n (1.2)

Theﬂ”l—case of (1.2) follows from the dilaton relation [17, p527]. For n>2, 7, H"~? is not a divisor
on My n(P",d) and there appears to be no direct geometric reason for the vanishing (1.2).

Theorems 1 and 2 are potential indications of fundamental properties of GW-invariants that are out
of reach of the current methods. Their statements have natural intrinsic extensions to more general
symplectic manifolds, formulated in the two conjectures below. The failure of these conjectures
would suggest that GW-invariants detect whether a symplectic manifold is projective or even of
some more restricted class (such as a toric complete intersection); this would perhaps be even more
astounding than if the conjectures were true. Note that in Conjecture 1 the exponent (w, 3) is the
energy of the J-holomorphic maps of class 3, while N4+(w, 3) is essentially the energy of the induced
“graph map”. Theorem 1 establishes the first conjecture for projective complete intersections X,
H; being in the image of the cohomology pull-back for the inclusion map X —P", and g=0. The
approach of [24] should remove the genus restriction and establish the dependence of Cx 4 on g and
even on X. Theorem 2 establishes the second conjecture for projective complete intersections X
and Hy=H°®.

Conjecture 1. If (X,w) is a compact symplectic manifold, g €Z, and Hy,...,H € H*(X), then
there exists Cx g €RY such that

X
<b1!Tb1Hcl,...,bN!TbNHCN> N
9. + bl
N 9.8 §C’X,g<wﬂ> VBeHy(X), N,bs>0, cs €[k

Conjecture 2. Let (X,w) be a compact monotone symplectic manifold with minimal chern num-
ber v.2 If N >3, (bs)sein) and (cs)sen) are N-tuples of nonnegative integers, and Hy € H**(X)
for every s€[N], then
X
<Tb1H1, e ’TbNHN>O,,B =0

2Thus, ¢1(X) = A[w] € H*(X;R) for some A € RT and v is the minimal value of ¢1(X) on the homology classes
representable by non-constant J-holomorphic maps S? — X for every w-compatible almost complex structure on X.



if there exists S C[N] such that bs+cs<v for every s€S and Z bs >N —3.
ses

The genus 0 GW-invariants of a complete intersection X, C P"~! are related to certain twisted
GW-invariants of P"~!. Let
S( ev Pnfl

|-

ﬁ()’N(Pn_l, d)

be the universal curve over 9y n(P" !, d). The GW-invariants of (1.1) then satisfy

k=l s=N
(o, H, ... ,TbNHCN>g(2 = / H e(mev*Opn-1(ag) H YreviH). (1.3)
’ gﬁo N P'n 1 d) =1

Since the moduli space My y(P" 1, d) is a smooth stack (orbifold) and

k=l
P mev Opn-1(ar) — Mo v (B, d)
k=1

is a locally free sheaf, i.e. the sheaf of sections of a vector orbi-bundle V; over ﬁ& ~N(P L d),
the right-hand side of (1.3) is well-defined; its computation will be the main focus of this pa-
per. In (2.1), we combine all GW-invariants (1.3) with fixed N into a generating function. We
show that for V>3 this generating function is a certain transform of the N =1 generating function.

The main splitting principle of this paper described in Section 4.1 is valid for all a, but the
explicit expressions for the transforms apply only for v, >0. This means that the main equivariant
statement of this paper, i.e. Theorem B, holds for any a for some structure coefficients CI(;?])D;
the main non-equivariant statement, i.e. Theorem A along with (2.33), holds for any a for some

(d,0)

structure coeflicients Cpb if Ap is replaced by its geometric analogue or equivalently by the non-
equivariant analogue of (3.5). In the v, >0 cases, we specify the structure coefficients ci)di? ) and CI()d])O

completely based on the hypergeometric series

lakd
o wvad H I (arw+r)
)= qu =tr=l ; (1.4)

% T (- )

this series also describes the one- and two-pointed GW-invariants of X,,.5 if v > 0.3 In the re-
mainder of this paper, we assume that v, >0 for the purposes of all statements directly related to
explicit hypergeometric series.

The power series (1.4) in ¢ is an element of 1+¢Q(w)][[g]] such that the coefficient of each power
of ¢ is holomorphic at w=0. The subgroup

P C 1+ qQ(w)[[q]]

3For the purposes of Theorems 3 and 4, the term w™ can be dropped from the definition of F.




of such power series is preserved by the operator

: _ g d\(Hwq)
M: 1+ qQ(w)[[g]] — 1+qQ(w)[[q]], {MH}(w,q)= {1 * wda } ( H0d) )
We define I € 1+¢Q[q]] for ¢=0,1,... and J €4¢Q][g]] by
1> if |a <’I’L’
I(g) = it fal
{MCF}(OaQ)a if |a|:n,
0 if Ja] <n—2;
alg, if |a|=n—1; (1.5)
J(q) = . 00 J :ﬁi(akd)! k=l ad . .
gl d | S (X X %), iflal=n
d=1 k=1r=d+1

The power series J(q) is the coefficient of w in the power series expansion of F(w, q)/Io(q) at w=0;
thus, I1(q) = 1+qdiq J(q) if |a| #n—1. Similarly to the 1- and 2-pointed cases, the explicit expressions
of Theorem A for generating functions for N >3 involve the power series Iy, I1,...,I,_; and J; see
Section 1.1 for some examples.

The author would like to thank D. Maulik, R. Pandharipande, and V. Shende for many enlightening
discussions related to this paper. He is also grateful to the referee for detailed comments on the
initially submitted version of this manuscript and a quick response time.

1.1 The Calabi-Yau case

If |a] =n, Xa is a Calabi-Yau (n—1-1)-fold. The virtual dimension of Mg y(Xa,d) and of the space
of N-marked rational curves in Xj,

dim"" My n (Xa,d) = n—4—1+ N,
is independent of d in this case. If ¢y, ..., cy are nonnegative integers such that
ci+...+ecy=n—4—1l+ N,

the corresponding genus 0 degree d GW-invariant of X,,

Ni=(cty...,en) = / (eviH®) ... (eviyH), (1.6)

Mo, v (Xa,d)]Vi"

is a rational number. These numbers define BPS states of X, via [19, (2)], that are intended to be
virtual counts of curves (rather than maps) and are conjectured to be integer (see also Footnote 6).
For a sufficiently small value of the degree d, the corresponding BPS number is known to be the
number of rational degree d curves in a general complete intersection of multi-degree a that pass
through general linear subspaces of codimensions ¢y, ..., cy.

Theorem A yields fairly simple closed formulas for the numbers (1.6) with N =3,4. Theorem 3
below follows immediately from (1.3), (2.1), (2.35), (2.20), (2.18), (2.40), (2.42), (2.29), (2.36),
(2.41), (2.3), (2.23), and (2.25).*

4(2.40) is needed for (1.7) only; (2.42), (2.29), (2.36), (2.41), and (2.25) are needed for (1.8) only



Theorem 3. Suppose n € ZT, Xa C P" ! is a nonsingular Calabi-Yau complete intersection of
multi-degree a, I. and J are given by (1.5), and Q = q-e’9 € qQ|[[q]]. If c1, c2, c3 are nonnegative
integers such that c1+co+c3=n—1—1, then

S ()

> QNS (cr, 2, 03) = g — (1.7)
=0 (1—aa)()HHI()
s=1 c=1
If 1, c9, c3, cq are nonnegative integers such that c1+co+cg+ca=n—1, then
D
N (a) n—1—2c4 [ a?q I}(q)
ZQdNi( (61762703704): s=4 c=cs 9 1—adq _QIg(q)
d=0 (1-a2q)I5(q) T] 1T Ic(q)
s=1 =1 (1.8)

s=4
+Z Se. (@) _ Strte2 (@) S<I:1+CB(‘]) S<I:2+CB(‘])
1 Seo(@)  Ser+ea(@) Sertes(@)  Seates(@) |7
where " denotes the operator qd% and S, = If71]2672 S I0.

Since J(q) € qQ[[q]], there exists J(Q) € QQ[[Q]] such that ¢ = Qe’ (@ Thus, the relations (1.7)
and (1.8) determine the numbers N j(a (c1,¢2,c3) and N C‘lXa(cl, 2, C3,¢4), respectively. Since

Se(q) _ Sn—i—elg) n—l-2c( a%¢ _Iy(q) o .
500 " 8l 5 (l—aaq 210(q)> Ve=0,1,...,n—1 (1.9)
by (2.23)-(2.25) and (2.3), (1.8) is equivalent to
3 (a) e, Ija)
> QNS (cr, 2, c3,04) = = {cl — — 220
= (-2 13(0) TT T Lla) (5 2000)

s=1 c=1 (110)

+ Z cS q) 01-‘,-02 (Q) o Sél-i-cg (Q) 521—1—04 (Q) )
Se, ‘I) Serrer (@) Se +c3 (@) Seivea(q)

By (1.9), RHS of (1.8) is symmetric in ¢q, co, ¢3, ¢4, as expected. By (1.10),
N;lxa(01762>c3ac4) =0 if 06{01762763704}7
as expected. By (1.7), (2.23), (2.24), and (2.3),

(a), if d=0;

if 0¢€{c1,co,c3}.
0, ifd>0; ter, ez, cs)

Nj(a(clacQ,CS) — {

Since Il(q)zl—i—qdqu(q), (1.7) and (1.10) immediately give
de(CQa Cc3, C4) — Nglxa(la C2,C3, 04)7

as expected from the divisor relation [17, p527]. By the divisor relation and (1.7),

o o) B - ol (4e)



whenever X, is a Calabi-Yau threefold, which recovers the famous mirror symmetry formula [7,
(5.13)]; see [30, Appendix B] for a comparison of notation. By the divisor relation, (1.7), (2.23),
(2.24), and (2.3),

9] .
<a>+ZQddN§a(Cl,Cz)= (a)ﬂ if c1+ea=n—2—1;

= Ii(q)

— d 2 Xar o 20

() + D QNG (n=3-1) = (a) 77 s
d=1

these identities are equations (1.5) and (1.6) in [27].

The first true cases of (1.7) and (1.8) occur for Calabi-Yau 6-folds and 7-folds:
(n,a,ci,c2,c3) = (8,(8),2,2,2) and (n,a,c1,c2,¢3,¢4) = (9,(9),2,2,2,2).

Tables 1-4 show some low-degree BPS counts obtained from (1.7) and (1.8) via [19, (2)] for all
complete intersections X, C P"~!, with n < 10, of suitable dimensions, with H® indicating that
one of the constraints is a general linear subspace of P*~! of codimension ¢;. All degree 1 and 2
numbers agree with the corresponding lines and conics counts obtained via classical Schubert
calculus computations (the 3-pointed numbers for hypersurfaces can be found in [18], which also
describes the classical methods). The degree 3 numbers for the hypersurfaces Xg and Xy agree
with [9]; the remaining degree 3 numbers can presumably be confirmed by similar computations.
The most noteworthy is the agreement of the 4-pointed numbers, since these do not naturally arise
in the physics view of mirror symmetry as originally presented in [15].> There are currently no
direct methods of counting curves of degree 4 or higher on projective complete intersections; so
the numbers in these degrees obtained from (1.7) and (1.8) cannot be compared to anything at
this time. Finally, all BPS counts computed from (1.7) and (1.8) via [19, (2)] for d <100 and all
compete intersections X, CP"~! with n<10 are integers, as expected.b

d 1 2 3 4

Xg 59021312 | 821654025830400 | 12197109744970010814464 | 186083410628492378226388631552
Xo7 || 19133912 | 52069545843672 150771900962422866056 448721851648931529402358688
X36 9303984 9656915909184 10669913703022812624 12119013327306237518117376
Xus 6536800 4306289363200 3019921285456823200 2177140100777199737600000
Xoog || 7036416 4323279882240 2819049510852887040 1889305224389886741405696
Xo3s || 3936600 1091194853400 321105896368043400 97128823290992207460000
Xoaa || 3252224 699998060544 159942140236292096 37565431180080918822912
X334 || 2589408 396151430400 64359976334347296 10748812573405031454720

Table 1: Low-degree genus 0 BPS numbers (H?, H?, H?) for some Calabi-Yau 6-folds

5This viewpoint is extended to arbitrary number of marked points in [4].

5The genus 0 GW-invariants of CYs with at least 3 marked points are integers; see [25, Section 7.3] and [28].
Since the GW-BPS transform of [19, (2)] is always lower-triangular with 1’s on the diagonal and integers everywhere
else if the number of marked points is at least 3, it follows that the BPS numbers are integers as well in this case.



d 1 2 3

Xog || 1579510449 | 506855012110118424 | 174633921378662035929052320
Xog || 466477056 | 25865899481481216 1538349758855955308748800
X37 || 200848599 3684692607275358 72513809257771729565550
Xy || 122812416 1209608310822912 12780622639872867502080
X5 || 104480625 841277146035000 7266883194629367785000

Table 2: Low-degree genus 0 BPS numbers (H?, H?, H?) for some Calabi-Yau 7-folds

d 1 2 3
Xg || 2395066806 | 1718927099008463268 | 957208127608222375829677128
Xog || 702562304 86939314932416512 8348345278919524413816832
X37 || 302321376 12364886269091538 392695531026064094763648
Xup || 184771584 4056318495977472 69156291871338627290112
Xs5 || 157178750 2820556380767500 39310596116635041745000

Table 3: Low-degree genus 0 BPS numbers (H?, H2, H%, H?) for some Calabi-Yau 7-folds

d 1 2 3
(H?,H3 H?) 51415320000 | 444475303469701680000 | 4089048226644406809222184680000
(H?,H? H*) 38922224000 | 295035175517918176000 | 2467449594491156931046837776000
(H?,H? H? H?) || 75062592000 | 1394799570099498816000 | 20109980886063766606715932224000

Table 4: Low-degree genus 0 BPS numbers for Xg in P?

1.2 The projective case

Throughout the paper, we denote by Z* the set of nonnegative integers. If N,d,n€Z™, let

s=N

Pn(d) = {d=(d1,dy, ..., dn)€(ZN)N: > d=d}; (1.11)
s=1

Pi(d) = {d=(d1,ds,...,dn) EPN(d): ds<nVs€e[N]}.

For any pe Py (d), let
(p) = min {ps+1,n—1—ps: s€[N]}.

If (CS)se[N] S (Z+)N, let

s=N HCS pr—1 s=N pr—1
< > = ) ho 70 |y HOY L HON )
hs—1 0,d 1 ’

b1,b2,...,bw >0 s=

Theorem A yields fairly simple closed formulas for the genus 0 GW-invariants of projective spaces
with 3 and 4 insertions. Theorem 4 below follows immediately from (2.1), (2.35), (2.33), (2.40),

(2.44), (2.20), (2.18), (2.14), and (1.4).7

Tin this case, &2 =380.40p.« in (2.18) and (2.40); (2.44) is needed for the second identity in Theorem 4 only




Theorem 4. The 3- and 4-pointed Gromov-Witten invariants of P~ are described by

Hn—1-ps >IP’" 1 d'=1 Ho+d, ﬁ e
> (Il S S |
p1,p2,p320 " s=1 st 0.d d'=0  deP3(d-d') s=1 f H( Hg+rhg)"

pePL((2— d’)n 2)

gn—1-ps \P" -t
E <H M> le sz Hp3 H;D4
o —

P1,p2,p3,p4>0"s=1 0,d

s=4 d'=2 =
. Hy+dshg)Ps
{ zw o (Ee)X b reser
dePs(d—1) s=1 =0  dePy(d—d') =1, H( Hy+7hy)"
pPEP] (2n—4) pEPY((3—d)n—3)

both identities hold modulo H? and as power series in hy'.

Since the d = 1 Gromov-Witten invariant counts lines in P*~!, the d = 1 case of the 4-pointed
formula in Theorem 4 gives

s=4
(0e,0ey0c30c,,G(2,n)) = min {e;+1,n—1—cs: 5=1,2,3,4} ifc,€Z%, Y ey =2n—4,
s=1

where o, is the usual codimension ¢ Schubert cycle on G(2,n). As pointed out to the author by
A. Buch, this identity can be confirmed by applying Pieri’s rule [16, p203] to o, 0., and o.,40., and
counting pairs of dual cycles in its outputs. The d=2 case of the 4-pointed formula gives

(H® H*, H, HC4>E;71 —0.

This is indeed as expected, since every conic lies in a P? [16, p177] and no P? meets general linear
subspaces of P! of total codimension 3n (the space of planes meeting the constraints is the
intersection of Schubert cycles in G(3,n) of total codimension 3n—8 and is thus empty).

2 Main Theorem
In addition to the notation introduced at the beginning of Section 1.2, for any m,l€Z* we define
Umﬂ:{sezJﬁ s<m}, “_mﬂl:{seu_mﬂ: SZZ}

We denote by Py, ([V]) the set of unordered partitions S={S; }c[mm) of [V] into nonempty subsets S;
such that one of them is {N}.8 If p is an N-tuple of integers, S C[N], and p’ €Z, let p|s and pp’
denote the S-tuple consisting of the elements of p indexed by S and the (IN41)-tuple obtained by
adjoining p’ to p at the end, respectively, and set

Ipls = [pls| =D ..

seS

If Ris aring and z=(x1,...,2y) is a tuple of variables, let

R[&] = R[J}l, N ,.I‘N]

8More precisely, Py, ([N]) consists of unordered partitions with a choice of some ordering for each of the partitions.
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be the ring of polynomials in z1,...,zy. If € R[[¢]] and d€Z, let [®],.q € R denote the coefficient
of ¢? ([®]4a=0 if d<0).

Let IP%fl:(IP’”_l)N. For each s=1,..., N, we set
Hy=miH € H*(Py 1),

where 7, : ]P”]\,_1 —P" ! is the projection onto the s-th coordinate. Since ﬁ07N(IP’"*1, d) is smooth,
there is a well-defined cohomology push-forward

evy = {evy x...xevy}  H* (Mo n (P, d)) — H*(P1).
With h=(h1,...,hn), A = (k... hy'), and H=(Hy,..., Hy), let
= Va) e
Z(hH,Q) =) Q° {e(d}eﬂ Py Y [a ] [[Q]]- 2.1
(0 2,0) = 3 Q"ev-) = 5[] (2.1)

By (1.3), this power series encodes all genus 0 GW-invariants of X, with constrains that arise
from P*~1. If b=(by,...,bx) €ZV, let

2.1 An asymptotic expansion

The power series F' defined by (1.4) admits an asymptotic expansion w — oo which plays a central
role in this paper and which we now describe.

Define
L(q) € 1+ qQ[[q]] by  L(q)" —a%qL(g)!* =1 € Q[lq]], (2.2)
k=l r=ay i=|a
X05 X1+ -+ X]a| EQ by (akD+T) EaaZX‘al_iDiGZ[D].
kel r—1 i—0

In the two extremal cases, (2.2) gives
(1+q)'/m, if |a] =0;
L(g) = 2.3
@) {(1 —ang)"/n, if |a|=n. (23)

Setting x; =0 if ¢ <0 or ¢ > |a|, we find that

a|+l
xo=1, X1:7| |2 : (2.4)

For m, j € Z, we define H,, ; € Q(u) recursively by

Hm; =0 unless 0<j <m, Hoo = 1;
(2.5)

u—1 d . . .
Hmj(u) = Hm—1,;(u) + [t 7vau <nudu + m—]>7'lm—1,j—1(u) itm>1,0<j5<m.
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In particular, for m >0

Homo(w) =1, Hoa(u) = <m> _uml (2.6)

2 ) |la|+vau

Finally, we define differential operators £1,..., £, on Q[[¢]] by

Ly = ; [(TZ) L"Hp i p—i(L") — (L”—l)i <|a|i—r) Xr H|air,kir(Ln)] D', (2.7)

where D = qdiq. By (2.6), (2.4) and (2.2), the first of these operator is

In—1 vanL™ [+1
— L") D 3 B
£1 (|a|—|—7/a ){ + |a|—|—1/aLn (2(|a|+VaLn) 2 )}

1 (2.8)
(=) s\ p( (=) s
— 2 2 .
(laf+vaL") la|+va L™ la]+va L7
Proposition 2.1. The power series F' of (1.4) admits an asymptotic expansion
F(w,q) ~ ef@v Z Dy (q)w as w —» 00, (2.9)
b=0
with £, ®1,...€qQ[[q]] and o€ 14+qQ[[q]] determined by the first-order ODEs
1 1
1+&(q) = L(qg), £19, + zﬂz@bq +.+ Fﬁn@bﬂw =0, (2.10)
where &, =0 for b<0.
From (2.8) and (2.10), we immediately find that
n i (1+1)/
P =|— L(gq)1/2, 2.11
O(q) <‘a +VaL(Q)n> (q) ( )
In the extremal cases, this reduces to
L(g)~(=1/2 = (14¢)~(=D/2n if la|=0;
Po(q) = ( )(z+1)/2 ( a : —(41)/2n (2.12)
L(q) = (1-a%) ", if |al=n.

Proposition 2.1 in the |a| =n case is proved in [26, Section 4], building up on the a = (n) case
contained in Lemma 1.3 and Theorems 1.1, 1.2, and 1.4 in [29]. The remaining cases are addressed
in Appendix A.

2.2 One- and two-pointed formulas

By the dilaton relation [17, p527] and [12, Theorems 9.5,10.7,11.8], the generating function (2.1)
with N =1 and the degree 0 term defined to be (a)H!h; is given by

F H
Z(h,Hy,Q) = <a>H{€_J(q1)wlh17(w1’ql) where w; = 717 Q1e60"a‘](q1) = Q@

, < (213
Tolar) o e (219
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The generating function (2.1) for N =2 is given in [27, Section 2] in terms of certain transforms
of F', which we describe next.

Define
q d
D:Q)fd] —wlld] b DHwa={1+ Ll a2
k=l apd—1
o0 IT II (akw+r)
qu Vadk 1 r=0 €P; (2.15)
Hl((w+7")” —w")
F,=DPFy=MPF, € P Vp=12,...,L (2.16)
In particular, F; = F. For v, >0, we also define c;flg,él(i)p’lﬂ €Q with p,s,d>0 by
! akd
s (w+d)PI] II (axw +7)
Z C(d) Z qd ;C:l r=1 — wprF(w’ q/wl/a)7
d=0 s=0 d=0 n
M) (2.17)
p—vady

dl) dz) =+
E E ClapitrC $,52 = 00,d0p,s Vd,s€Z™", s<p—uvad.
di+do=d r=0
dy.d>0

0) _

Since ¢ps = 0p s, the second equation in (2.17) expresses El(j-)p,l 45 With s <p—vad in terms of the

~(d1)
numbers ¢ Cl+p,l+7‘
~(0)

Cp,s =0p,s for all p,s>1. For p>1, set

with dy <d; the numbers él(i) with s> p—v,d will not be needed. In particular,

p,l+s

MpF(waQ)a if Va:();
F w, = 0o p—l—vad =(d) d 2.18
(v, 4) > 2 %DSF(U) q), if va>0. ( )
d=0 s=0

Thus, F, € P for all p€ ZT by (2.17) and F,, = DP~'F unless p>I+v,. By [27, Theorem 3], the gen-
(a)H{H} H ' Hy !
h1+ho Hi—H>

erating function (2.1) with N =2 and the degree 0 term defined to be the image of
is given by

Z(h1, ha, Hy, H2,Q) = @) e~ @)wi—J(az)w Z H Fo. ws’qs), (2.19)
hi+ho ps—l )
p1t+p2=n—1+1s=1
p1,p2=>l
where " 0
Ws = hiss 9 qseéouaj(qs) = Higa .

Remark 2.2. The mismatch in the indexing of I, and F} is unfortunate for the purposes of this
section. However, the choice of the indexing for the former is intended to simplify the explicit
formulas for the Calabi-Yau Cls in Section 1.1, while the choice of the indexing for the latter is
intended to simplify some of the formulas in the proof of Theorem A in the rest of the paper.
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2.3 Multi-pointed formulas

Similarly to (2.19), the generating function (2.1) for N >3 is a linear combination of the N-fold
products

s Sy Ys HS
Ap(h H, Q) = H h n]isz(_lf : )’ where - w, = hy gseova () = ]?Va ’ (2.20)
s=1 [1 I{’(Qs)
T=pPs—

with p=(p1,p2,...,pN)E unﬂ{\[ and with coefficients that are polynomials in hl_l, ol h]_vl of total
(d)

degree at most N —3. These coefficients are described below inductively using the coefficients ¢y s
defined above and the asymptotic expansion of F'(w,q) provided by Proposition 2.1.

For r <0, we set I,(q) = 1. By Proposition 2.1, (2.14)-(2.16), and (2.18), there are asymptotic
expansions

F I -
M ~ eg(Q)’wI](O)((Sz) Z@p.b(q)w—b as  w —> 00, (221)
n—Il— q)%vam )
HIZT(‘I) b=0
r=p—

with @,.0€14¢Q][¢]] and ®p.1, Pps2 . .. €qQ|[g]] described by

r=p 1
A A A I'\ - A
Op1p = LOpy + D)y g — (Z ;‘) bpp1 VpEZ, oy =Py,
r=0""
00 p—Vad (d) (222)

~(d 2 .
P b(q) _ dz:O EO CvaquDS—l;b—(p—Vad—s) (Q)v if Va>0>
Dp; - =0 s=

A

Q,_1:6(q), if 1, =0,

where Cﬁp;b =0if b<0, 6;‘2 =00,40p,s unless p,s>1, and ’ denotes qdiq as before. In the Calabi-Yau

case, Vs =0, the recursion (2.22) for the coefficients ®,.,=®,,_; in the asymptotic expansion (2.21)
is obtained using the first two identities in the following lemma.”

Lemma 2.3 ([26, Proposition 4.4]). If |a|=n, the power series I,, defined by (1.4) and (1.5) satisfy

In_1—p =1, Vp=0,1,...,n—1; (2.23)
Ioly - Iy = L™ (2.24)
el 0 = p (2.25)
For example, by (2.22),
o0 E(d) dqd f
. . D, L, it va>0;
Ppio = LPy, Ppi1 = Lp((l)l + Aél)(bo); qiw@ = L(Q)pfl dgo Llg)vac hre (2.26)
0(q) 1, if Vo =0;
oo =(d) d oo =(d) d
Cpp-vadd [ 21(q) 1) Cpp-vad—19 :
Ppi1(q) _ L(q)pfl dgo pr(q)Uad <c1>o(q) +Ap—l—uad(Q)> +d§0 pr(q)l’ad-‘rl , if va>0, (2.27)
@ P 1 .
(a) 20 4D (q), if 1o =0,

9The last identity in Lemma 2.3 follows from the first two; it was used in Section 1.1.
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where

), plp—-1)L =X I
cd =0 j 1) _g-1(,20  PPZ) L )i
Cps =0 if s+vad > p, Ay) =1L <pq)0 t—5 7 ;(p T) Ir>. (2.28)
In the two extremal cases, (2.12) gives
" ool if |a| =0;
A =171 o =P I (2.29)
’ el =S =) itfal=
If meZ*, d,t€Z, and c=(c;)pez+ €(Z1)%°, let
Sp(d,t) = {(p,b)€[[n]|™"xZ™: |p|—|b| =n—2+4 (m—1)(1+2) + vad + nt},
o2 1 P o (2.30)
Bye = 2B (_pymtie T A (% T
7z (DT el Hl e\ r 1) g
For any p,p’ €||n]| and bV, d,t€Z, let
b [ Lig)ovatitor ; I I :
o _ D |2 ]]q-d o 020, b= ppint=n—lth g 5
(p.p"),(b,0") ’ . :
0, otherwise.
For any N-tuples p&|[n|”, be(ZT)N with N>3 and d,tcZ*, we inductively define
=m (d“tl)
W x>y ()
m,d t'€Z  SEPm([N]) b e(Z)™ i=1
m>3 dePp, (d—d’) ce(ZT)e
tePm (t—t')  |b” =m—3
(p’,b’)esm(d’,t')| [+l (2.32)
o ( )iﬁnfo( ) q’p;,b’+1+b”(Q)
=8\ L LT T ()00 (q) ’
i=1 ad
where ®,,=0 if b<0 and Cgl’tp)“bls b, =0 if b, <0 and |S;|>2. By induction,
W20 = |b|<N-3, |p|—[b|+vad+nt=(N-1)(n—2)+2+1. (2.33)
Since @m—3,c, Pprpr 1147 €qQ[[¢]] unless c=0 and b;+1+b =
0, N-3
Cé,l? :5pl+nt,(N—1)(n—1)+l< b ) (2.34)

Theorem A. Suppose n, N € Z*+, with N >3, and ac (Z*)! is such that ||al| <n. The generating
function (2.1) for N-pointed genus 0 GW-invariants of a complete intersection Xq C P71 is
given by

Z(h H,Q) = (a) - E e >y Zc(“) AP AL (h H, Q), (2.35)

pelln]N be(Z+)N d=0

where ws=Hg/hs, gse®ovallas) = Q/HY>, and gedovaila = Q.

15



We show in Section 3 that this theorem follows from Theorem B.

By (1.3), (2.1), (2.35), (2.34), and (2.20)

<7'b1 (HCI)7 < Toy (HCN)>ng - 5‘0"nilil<a> (Nb_3>

whenever b;, c; > 0, as expected.

By (2.31), for each p€||n||, there exists a unique pair (p,t,) € |[n|| X Z such that ng p) b.b) # 0 at

least for some b, V', d € Z:

. n—14+0l—p,0), if p>I;
(B tp) = ( ) _ (2.36)
(I—1-p,1), if p<l.
For any p€ |n]V, let
s=N
tp= > tp, = |{s€[N]: ps<i}|. (2.37)
s=1
We note that
7p Vad ?é 0 == p+ Vad + (n—l)tp <n-—1. (238)

If N>3, pe|n]V, be(Z1)N, deZ*, and t €Z satisfy the last property in (2.33) and |b|=N—3,
the only nonzero terms in (2.32) arise from (m,c)=(N,0), p,=p;, b, =—1—0b;, and b =b;. If in
addition v, #0, by the last statement in (2.26), (2.11), and Lemma B.4

() N-3 i (=) nL(q)vad +n(+t—to)
pb b p la] + vaL(q)" .,
q;

U

j 3 (2.39)
Z d/—i-t tp (d d"
p )
with the binomial coefficients defined as in (B.5) and
(@ (@ @ _ e
b= D% & =g
dePn(d) s=1
If v, =0, the last property in (2.33) imposes no restriction on d. In this case, we find that
- (d,t) d N=3 L(Q)n(1+t)
= —_—. 2.4
Zcp,b q < b ) Io(q)? (2.40)

In the v4 =0 case, the last property in (2.33) forces ¢t >0 and ¢, =0 if t =0, whenever |b|=N—3.
The proof of Theorem A implies that the right-hand side of (2.39) also vanishes if either ¢ <0 or
t=0 and tp >0. By (2.38) and the last property in (2.33),

(n=0)(d'+t+1—tp) — (la|-0)d' + 1t —1>0
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whenever the d’-summand in (2.39) is nonzero; this implies that
1<tp,—t<d

whenever the triple product in (2.39) is nonzero and either t <0 or t=0 and tp >0. The explicit
expression on the right-hand side of (2.39) thus provides a direct reason for the vanishing of c;di;)

in these cases.

(d,0),
p,0 >

and (2.40). If N =4, the only possibly nonzero coefficients in (2.35) are ¢

If N =3, the only possibly nonzero coefficients in (2.35) are c these are described by (2.39)

(d,0)

.0 and

(do) _ (40 _ (do) _ (d0)
Cp,1000 = €p,0100 = €p,0010 = €p,0001 >

with p € |[n]|*; the latter set of coefficients is given by (2.39) and (2.40) whenever p satisfies the
last property in (2.33) with N =4, |b|=1, and t=0. We next give a formula for the former set of
coefficients. For p,d€Z, define

[pla; [Pla: Ta(p). ta(p) € Z by
0 < [pla, [pla < n—1, [pla+vad+n7a(p) =p, [pla+ [Pla+ nta(p) =n—1+L (2.41)

If p,deZ?, let
So(p,d) = {p1+p2+va(di+da),p1+ps+va(di+ds), po+ps+valda+ds)}.

If va =0, [pla, [Pla, and Xa2(p,d) do not depend on d or d, and so we omit d and d from the
notation in this case. In the v, =0 case, a direct computation from (2.32), (2.40), (2.31), (2.26),
and (2.27) gives

0o s=4
d,0 L(Q)n+1 1 1
> epod’ = Io()? S Al o)=Y Al (q) 5, (2.42)
s=1

d=0 p'—1€%2(p)

whenever p satisfies the last property in (2.33) with N =4, |b|=0, and ¢=0.

If v, #0, d,d',peZ*, and t=0, 1, let

B nlL Vad'+n(1—t) ~ ~
g4 = u (9) (Cu) LAY, , g+ )ﬂ
gd’

la| +vaL(q)" p,p—vad p—Vad—1
Vad' +n(1—t)+1 ’_ ,
_ @ nlL(q) (1) d'—t\ ( ayd-(d) .
= Cpp—rad |’ la|+vaL(q)" Aza—l—uacl(q) + d (a ) Cpp—vad—17
q.d/

the equality above holds by Lemma B.4. On the other hand, by the second equation in (2.28),
(2.11), (2.2), and Corollary B.5,

nL(q)yad’+n(17t)+1 A(l) (q)
la[+vaL(gn P o

—1(a*\" , ,
= pT (a) (d/|a|d — (n—p) Z la|@t (n—vat)?2 — (d/—1+50,d/)tp|a|d 1)
n

di+ds =d'—1
dy,d2>0
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whenever t=0, 1. In particular, Ez(g%t) =0. For d,peZ* such that p<2n—1, let

=(d) avds (A3 Tdytds (D) —tdyrds (D) ~(do) _(d1,Tdy+d5 (D))
Cp o d 'pz(d) (a ) < d3 C[[ﬁﬂd2+d3v[[m]dQ-O-dg_VadQCﬂp]]dz-fdgvzél ’
€Pa

Since 0<p<2n-—1,

<d3 +Td2+d3 (p) _td2+d3 (p)> 6(d2)

ds [Blay+ds [Plag+a; —vadz 70 = Tda+ds (p) = {Oa 1}

(d

by (2.38), and so Cp ) is well-defined. For example, CI(JO)

last property in (2.33) with N =4, |b|=0, and ¢=0, then

d'=d r=4
W=y ¥ OEEAED DI (1 CENI L2) YT

=0. If ¥4 #0, tp =0, and p satisfies the

d'=0dePys(d—d') \2n—2+1—p'€X2(p,d) r=1 “seld]-r
This is obtained by a direct computation from (2.32), (2.39), (2.31), (2.26), and (2.27) except the
vanishing of the coefficient of ®1(q) follows from Corollary B.8. If éé)d) #0 in (2.43), then

I < pg+rvads <n—1 vV se[4]
by the assumption that ¢, =0 and (2.38), and so
1<p <2n—-2-1 if 2n—2+1—p' € ¥y(p,d);

thus, the right-hand side of (2.43) is well-defined. In the case of a projective space, a={, the above
formulas give

s _pig;pz, if d=0, d'>0, t=0; P (8 U TP
~(a,t) p(n—p : / — . = " ’ ’
Ga =, @4 )=0.11:  Gl=y, if d=0;
0, otherwise;
20 0, ifd=0,2;
L’O): . . (2.44)
min{ps+1,n—1—p}, ifd=1;

the last statement holds under the assumption that |p| +nd=3n—4.

The N-pointed formula of Theorem A takes the simplest form in the two extremal cases, vy =0

(Calabi-Yau) and v, =n (projective space), as Egg =00,40p,s in these two cases. However, it is also

straightforward to compute all the relevant coefficients in the intermediate cases. For example, for

(d)

a cubic threefold X3 CP4, the only non-trivial coefficients ¢y are

W=l=-n =2

as computed in [27, Section 2.1 From this, (2.39), and (2.43), we find that the only nonzero
coefficients in the N =3,4 cases of (2.35) with d€Z" and b=0 are

(1,0) (1,0) (2,0) (2,0) (3,0)

Cig30 = 0,  Cooz0 =19, cCyj3p =36, iy =126, ¢y = 216,
(1,00 _ (1,00 _ (2,00 _ (2,00 _ (3,00 _
Cig330 = 0, Cogsg0 =19, Cii330 = 72, Ciygz9 = 292, Ciyi309 = 648,
(2,0) (3,0) (4,0)

C22220 = 729, C11220 = 2484, Ci111,0 = 5184,

%Tn this paper, the subscripts on & are shifted up by I from [27].
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where 133 denotes any of the tuples (1,3,3), (3,1,3), and (3,3,1) and similarly with the other
subscripts. From (2.35), we then find that

(H® H,H){ = (H* H,H,H){} = 18, (H? H? H){$ = (H? H? H,H){{{ = 45,
, 1 : : :
(H® H* H){$ = §<H3,H3,H, H)y3 =108, (H® H? H?)§3 = §<H3,H2,H2,H>gf§ = 378,

1
(H?, H? H? H?)§3 = 2187, (H® H® H*){{§ = g<H3, H? H® H);'3 = 648,
(H®, H® H* H*)% = 7452, (H® H® H® H?)% = 15552.

These conclusions are consistent with the divisor relation. The above invariants are enumerative
at least for d = 1,2,3. The degree 1 and 2 numbers agree with the classical Schubert calculus
computations on G(2,5) and G(3,5), respectively. The approach of [9] can be used to test the two
degree 3 numbers.

Based on (2.32), the coefﬁcient c;di?) in (2.35) with p€||n]|" involves the power series ®, of Propo-
sition 2.1 with r=0,1,.. —3—|b| only. By (2.42) and (2.43), only the power series ®( enters
(d,0)
p 0 -
However, at least for a= (n), i.e. when X, is a Calabi-Yau hypersurface, ®; cancels with ®%/®,
(these two power series are equal in this case).

in the N =4 case. For N = 5 the power series $1 and $o do enter in the final expression for ¢

2.4 Alternative description of the structure constants
(d,0)

We now describe the constants c p.b defined above as sums over N-marked trivalent trees.!! It is
fairly straightforward to see that the two descriptions are equivalent; this also follows from the two
variations of the main localization computation in Section 4.

A graph consists of a set Ver of vertices and a collection Edg of edges, i.e. of two-element subsets
of Ver. In Figure 1, the vertices are represented by dots, while each edge {v1,v2} is shown as the
line segment between v; and vy. For such a graph I' and v € Ver, let

E,(I') = {ecEdg: vee}

be the set of edges leaving v. A graph (Ver, Edg) is a tree if it is connected and contains no loops,
i.e. for all v,v’ € Ver with v#v’ there exists a unique ordered collection

— !
VI=V,V2,...,0m_1,Um=0 € Ver,

with m>2, such that
{{vl,vg}, {va,v3},..., {vm,l,vm}} C Edg.
An N-marked graph is a tuple I'=(Ver, Edg; ), where (Ver, Edg) is a graph and n: [N] — Ver is a
map. In Figure 1, which shows examples of 4-marked graphs, the elements of the set [N]=[4] are
shown in bold face and are linked by line segments to their images under n. An N-marked graph
= (Ver, Edg; n) is called trivalent if

my = valp(v) — 3 = |E,(D)| + |n~ ' (v)| =3>0

( St

"1 The constants Cp ) with £ >0 can be described in the same way as well, but they are not needed in this approach.
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2 X 3 2 : : 3 3 : : 2 4 : : 3
1 4 1 4 1 4 1 2
Figure 1: The trivalent 4-marked trees

for every vertex v € Ver. There is a unique trivalent 3-marked tree; the four trivalent 4-marked
trees are shown in Figure 1. For any N-marked tree,

> my +|Edg| = N - 3. (2.45)

vEVer

We will call a partial ordering < on a set Ver linear if for any pair of distinct incomparable elements
v1, U2 € Ver there exists a third element v € Ver such that v <wvy,ve. A finite linearly ordered set Ver
has a unique minimal element vy € Ver. For each trivalent N-marked tree I'= (Ver, Edg;n), we fix
a partial ordering < on Ver so that if v <v’, then there exist

V1, .., vmEVer st vi_1=<v;, {vi_1,v;} € Edg Vi€[m+1], where vg=v, vy =0v". 12

For every edge e € Edg, let v, , v} € Ver be the elements of e C Ver with v, <v}. For each v € Ver,
let
E, (') = {ecEdg: v, =v}

v

be the set of edges descending to v. If v#wy, let e, € Edg be the unique edge descending from wv.

Let (p,b,d) € | n|N x (Z*)N xZT be a tuple satisfying the two properties on the right-hand side
of (2.33) with t=0, I'=(Ver, Edg; n) be a trivalent N-marked tree, and

d=(dy)vever € Pr(d) = Pyer(d)
be a partition of d into nonnegative integers. We denote by
Sr(p, b, d) C [|n]/Fe x (z1)Eds x zVer
the subset of triples (p/,b’, t) such that

> (bstbs) + > (Fa—1-b.) + (B, +V.,) =n—=3+ (my+2)(I+1) + vady + 1ty  (246)
sen~1(v) e€E, ()

for all v € Ver, where p is as in (2.36) and we set p, +b., =0 if v=1vo. Each choice of b’ determines p’
and t uniquely by solving (2.46) for p, and t, starting with maximal elements of Ver and moving
down; the equation for v=wvg will then be automatically solvable for ¢, because of the last property
in (2.33). Furthermore, for every (p’,b’,t) € Sp(p, b, d)

tor + Ztvzo,

veVer

12Such a partial ordering is determined by the minimal vertex vo, which could be taken to be 7(IN), for example.
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with ¢y as in (2.37).

b)€ |[n]|N x (Z*)N and d€Z" satisfy the last property in (2.33) with =0, set

(d 0) Z Z 1)/bl+b Z H |l‘1>mv,cv (q)

dePr(d) b"e(Z+)N;b~ ,bte(ZT)Ede veVer
(p b’,t)eSr(p,b,d) (Co)vever €((ZT)o°) Ver
|b//‘n*l(v)+‘b_|E;(F)+b2_v+||cv”:mv (247)
1 valt, 1 2
% H q)ﬁs;bé’fbs(Q) XH L(q)™ " pe@ﬁg;bgﬂ%@@) y Io(q) q’pév;b;rv_b/ev (Q)H
/1 —1 -+ | S valt 9
Se’r]il(’U) bs' ¢O(q) eEE;(F) be ° ®0(q) be’v' L(q) 0 (po(q) q d

where ijo = 0, the last fraction is defined to be 1 for v = vy, and the outer sum is taken over
all trivalent N-marked trees I' = (Ver, Edg;n). For example, the contribution of the one-vertex
N-marked tree is

S:NQ)A b’ —b (q)
b Ps;0g —0bs
(—1)l Z M‘PN—&C(Q) Hb”'CI)o(q)]] :
b e(ZT)N ,ce(Z 1) s=1 % a:d
[b”|+lc|=N-3

If |b| = N —3, this gives (2.39) and (2.40) with ¢, £, =0.
For a nonzero summand in (2.47),
bs < V! V s€[N] and Ib"| < N-3 — |Edg];

the latter inequality follows from (2.45). This implies the bound on b in (2.33). If d € Z* and

(p,b) € [n]|¥ x (ZT)N do not satisfy the last condition in (2.33) with =0, set c(dl?) =0.

In the Calabi-Yau case, vy = 0, the collection Sp(p,b) = Sr(p,b,d) does not depend on d. In
the projective case, vy =n, the collection of pairs (p’,b’) does not depend on d. As ¢, in (2.46)
is determined by b’, we abbreviate the elements of Sp(p,b) as (p/,b’) in either case. In these
extremal cases, (2.30) and (2.12) reduce (2.47) to

o —Z > (= 2 |lL( ) P 0, v (@)

/b/ ESF( ) b//6(2+)N;b_,b+€(Z+)Edg
(C )vGVcre((Z+)oo)ver
b, 1y +b~ |ef(v>+b;z+||cuu=mv
X H Zhaip-ss't) 7bs H Ly 1+, (4 )‘I’pe,lﬁ p, (@)
b”'q) —1 +‘ ’

where

I lal—(n—1-1)|Ver| 4 | 1 Cosr
_ My T |Cou
¢Fv(cv)v€Ver - Ig H (_1) +|CU| ‘H <7~_|_1 '®0> ’
r:l

veVer
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The coefficients cl(Ddf) must be invariant under the permutations of [N] (same permutations in the

components of p and b). For N >4, this is not apparent from either of the above two descriptions of
these coefficients, even in the extremal cases; thus, this is a consequence of the proof of Theorem A
below. In the case of (1.8), this invariance can be seen directly using Lemma 2.3, as indicated in
Section 1.1.

3 Equivariant GW-invariants

In this section we first review the relevant aspects of equivariant cohomology; a more detailed
discussion can be found in [30, Section 1.1]. We then state an equivariant version of Theorem A
and use it to obtain Theorem A.

We denote by T the n-torus (C*)™. Its group cohomology is the polynomial algebra on n generators:
Hi= H*(BT;Q) = Qlo] = Qlas, ..., o,
where a=(aq,...,a,) and a; =7}c1(v*) if
m;: BT — BC*=P> and v — P
are the projection onto the ¢-th component and the tautological line bundle, respectively. Let
Hi =Qa = Q(aq,...,an) and T CQaa,...,an) C Hy

be the field of fractions of Hj and the ideal in Q[a] generated by the elementary symmetric
polynomials o1, 09,...,0,_1 in oy, s, ..., ay, respectively. Let

6'7-:(—1)7’—10'7'6(@05 T:O,1,2,..., Da:H(O‘j_O‘k;),
J#k

where og=1.
If T is acting on a topological space M, let
Hi(M)= H*(BM;Q), where BM = ETxtM,

be the equivariant cohomology of M. The projection map BM — BT induces an action of Hy on
H3(M). We define
H(M) = Hp(M) @py Hr.

If the T-action on M lifts to an action on a (complex) vector bundle V. — M, let
e(V)=e(BV) e Hp (M) C Hp (M)
denote the equivariant euler class of V.

Throughout the paper we work with the standard action of T on P"~!:

(ewly...,@wn) ’ [Zla-~ 7zn] = [eielzlv"' 7€i9nzn};
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it has n fixed points:
P =[1,0,...,0], p,=]0,1,0,...,0], ... P,=10,...,0,1].

The T-equivariant cohomology of }P”](,_l with respect to the induced diagonal T-action on IP”]([_l is
given by
Hi(PY o) ax/{ Xs—1) ):3:1,...,N}7 (3.1)

where x=(x1,...,X,) and x;=7ix if 75: ]P”f\,_1 —P"~ 1 is the projection onto the s-th component
and x € H:(P"™1) is the equivariant hyperplane class. For each p€|[n|/V, let
i=N
X = [[xr € Py );

i=1

these elements form a basis for H:(P% ') as a module over H:=Qla].

The action of T on P! naturally lifts to the tautological line bundle v, the vector bundle

k=l k=l
L=y =P Opn-r(ar) — P,
k=1 k=1

and the tangent bundle TP"~! so that

p= JJ(i-x) Vi=12,...,n (3.2)

Via composition of maps, the action of T on P! and £ induces actions on ﬁQ ~(P*1 d) and
Va = Mo n(L,d) — Mo n (P, d)
so that the evaluation maps
ev=evyX...Xevy: ﬁ()’N(P"*l,d) — ]P”](,_1 and  evg: Mo y(L,d) — evil
are T-equivariant. In particular, V; has a well-defined equivariant euler class
e(Vy) € Hy (Mo n (P, d)).

Since the bundle homomorphisms evs are surjective, their kernels are again equivariant vector
bundles. Let
V” = ker &/2 — 932072(]?”_1, d)

With A and B! as in (2.1) and x as in (3.1), let

e(Vd) * mn—1 -1
Z(h,x,Q) = EdeeV* — b € Hy(P 01, 3.3



where ev: 9y (P" 1, d) —>IP’R,_1; for N=1,2, we define the coefficient of Q° to be

!
a)x
(a)x} and - h< —>{—hl E Grx)'xb?
! 2p1+p2+r =n—1
P1,p2,m20

respectively. For each pe ||n]|, let

e(V)evixP

Z,(h,x,Q) =xP + Qdevl*{
p dz:l h— 1/]

} e HxE [, Q)] (3.4)

where evy,eva: Mg o(P* 1, d) — P~ L. Similarly to (2.20), let
= 1 Z Xsa Q)
Zp(h,x,Q) = H }’717 (3.5)
s=1 IT Ir(gs)

r=ps—I+1

Theorem B. Suppose n, N € Z*, with N >3, and ac (Z*)! is such that ||al|<n. The generating
function (3.3) for equivariant N -pointed genus 0 GW-invariants of a complete intersection X, C
P~ s given by

ZhxQ) =@ Y > Zc( P2, (b, %, Q) (3.6)

peunuN be(Z+)N d=0

for some Cl()(fl)) €Qla] such that

o0
el - St e, (3.7)
t=0
where ci)d’g) €Q are the numbers defined above Theorem A.

Setting =0 in Theorem B and using [27, Theorem 3], we obtain

J(gs)ws
Z(h,H,Q) = (a) Z (@) >y Zc(do)qdh PAL (B, H, Q). (3.8)
pellnlN be(Z+)N d=0

(d,0) _

This implies Theorem A provided c Cp.b

paragraph.

=0 if ps < for some s € [N]; this is shown in the next

Suppose instead cl(;fi?) # 0 for some triple (p, b, d) with p; <[. Choose (p,b,d) minimizing p;, as
well as minimizing d for the smallest possible p;. We show that

(rp H" 1P ,TbNanlpr%fZ = <a>c§£) . (3.9)

s=N
By (1.3) and (2.1), this GW-invariant is the coefficient of Q¢ [] hy TV HPs of the right-hand
s=1

side of (3.8). Suppose a triple (p’,b’,d’), with cgli?/) #0, contributes to this coefficient. Since the
lowest power of H in the coefficient of a product of powers of ¢ and A=t in HPF),(w, q) is min(p, ),
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py =p1 by the mmlmahty of p; and thus d’ =d by the minimality of d. Since the coefficient of ¢"
in HPF,(w,q) is HP, pl,=ps for all s€ [N] and thus b, =b, for all s € [N]; this gives (3.9). Since

H"17P1] ¢ =0 for p; <I, we conclude that c;di())) =0.

The proof of Theorem B below provides an algorithm for computing the structure coefficients Cr(> )
completely. On the other hand, they may be irrelevant in many applications. For example, the one-
and two-point equivariant generating functions (3.3) play a key in the localization computation
of the genus 1 GW-invariants of Calabi-Yau complete intersections in [30] and in [26], but the
structure coefficients lying in Z are ignored. Similarly, the equivariant generating functions with
N <g with the structure coefficients lying in Z ignored should play a key role in computing genus
g>2 GWe-invariants of complete intersections.

4 Proof of Theorem A

4.1 Localization Setup

If T acts smoothly on a smooth compact oriented manifold M, there is a well-defined integration-
along-the-fiber homomorphism

/ L Hi (M) — H
M

for the fiber bundle BM — BT. The classical localization theorem of [3] relates it to integration
along the fixed locus of the T-action. The latter is a union of smooth compact orientable mani-
folds F' and T acts on the normal bundle N'F of each F'. Once an orientation of F' is chosen, there
is a well-defined integration-along-the-fiber homomorphism

/ : Hy(F) — Hr.
F
The localization theorem states that

/¢ Z/ w‘F e%;g Vo € Hi(M), (4.1)

where the sum is taken over all components F' of the fixed locus of T. Part of the statement of (4.1)
is that e(N'F) is invertible in i (F).

The standard T-action on P?\fl has n'V fixed points:

P iy =Py x...xPy

The restriction maps on the equivariant cohomology induced by the inclusions F;, iy — }P’?V_l
are the homomorphisms
Hi(Pu Y — Qlag,...,an), x5 — iy, s=1,...,N. (4.2)

By (3.1) and (4.2),

n=0€Hi(Py") < nlp

i1 IN

=0€ Hy Vis=1,2,...,n, s=1,..., N,
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i.e. an element of H:(P% ') is determined by its restrictions to the n’V T-fixed points. For each

i=1,2,...,n, the equivariant Poincare dual of P; in P"~! is given by
¢i = [[(x—on) € HF(P" ). 13 (4.3)
ki

Thus, by the defining property of the cohomology pushforward [30, (1.11)], the power series
Z(h,x,Q) in (3.3) is completely determined by the n’Y power series

Z(hy iy, ins Q) ZQ/m

where a;, iy = (a4, ..., Q).

s=N

oo I «

ONle ld

As described in detail in [17, Section 27.3], the fixed loci Zr of the T-action on 90y n(P"~1, d) are
indexed by N-marked decorated trees I"'. An N-marked decorated tree is a tuple

= (Ver, Edg; 1,0,7), (4.5)
where (Ver, Edg) is a tree and
w: Ver — [n] ={1,...,n}, 0:Edg — Z", and n:[N] — Ver

are maps such that
p(vr) # p(vz) if {vr, v} € Edg. (4.6)

In the first diagram of Figure 2, the value of the map p on each vertex is indicated by the number
next to the vertex. Similarly, the value of the map 9 on each edge is indicated by the number next
to the edge. By (4.6), no two consecutive vertex labels are the same. Let

T = )" o).

ecEdg
For each e={v,v'} € E,(T), let p,(e)=pu(v") €[n].
If T is a decorated tree as in (4.5) and v € Ver, let
valp (v ‘E )’ + }77_1(1))‘
be the valence of v in I'. If in addition N >3, the core of I is the tuple I'= (Ver, Edg; ji, ;) such that
(R1) (Ver,Edg) is a tree, Ver={v € Ver: valp(v) >3} and 1= plyg:
(R2) {v,v'}€Edg if and only if v, v’ € Ver, v#v’, and for some m >0 there exist distinct

v1,...,vmEVer—Ver s.t. {v;_1,v;} € Edg Vi€[m+1], where vog=v, vn1=v;

nle; E/ nle; :/ ng;.
P; pn—1
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Figure 3: The strands of the graph in the first diagram in Figure 2.

(R3) if sen~(Ver) C [N], 7(s)=n(s); if s€n~1(Ver—Ver), there exist distinct elements
V1,...,vm EVer—Ver s.t. {v;_1,v;} € Edg Vi€[m+1], where vo=7(s), vmi1=n(s).
The core of a graph with N >3 is obtained by repeatedly collapsing all vertices with valence less

than 3 onto their neighbors, until no such vertices are left; see Figure 2. We will call the vertices
Ver of the core I' the special vertices of I'.

The localization formula (4.1) reduces the restriction of (3.3) to each fixed point P;, ;, €P% ! to
a sum over decorated trees. This sum can be computed by breaking each such tree I' at its special
vertices into strands, with each of the strands keeping a copy of the special vertex, with its label,
which will have a new marked point attached; see Figure 3. There are three types of strands:

(S1) one-marked strands;
(S2) strands with two new marked points;

(S3) strands with one new marked points and one of the original N marked points.

By (4.1), each one-pointed strand at a special vertex v € Ver C Ver contributes to

Z/* h, '7@ = Qd
(hes,@) =3 /%Yl(

eVTqu

h—1’

e(Va)
[Pln717d)

where j=pu(v) € [n] is the label of the vertex v of I and

VCII — ﬁo}l (Pn_l, d)
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is the kernel of the surjective vector bundle homomorphism ev; : Vg — eviL. By the dilaton
relation [17, p527],

*(h,,Q) ZQ/

Mo,2 (Pm— 1d

eVI®i\ _ 1 1m ,
)<h wi)-h zZ"™(h,a;,Q).

Each of the two-pointed strands contributes to

evig,, evao
B By o e / V1P, €VaPiha
(1 25 Cbjy JzQ ZQ oz(Pnld) >ﬁ1—¢152_w2

where j1, jo € [n] are the labels of the vertices to which the marked points are attached. Thus, the
power series Z(h, x, Q) in (3.3) is determined by the previously computed power series for one- and
two-pointed GW-invariants.

While the number of one-marked strands at each node can be arbitrary large, as indicated in [30,
Sections 2.1,2.2] it is possible to sum over all possibilities for these strands at each special vertex; see
Corollary 4.3 below. On the other hand, the number of special vertices, the number of two-pointed
strands of type (S2), and the number of two-pointed strands of type (S3), are bounded (by N —2,
N-3, and N, respectively). Using the Residue Theorem for S2, one can then sum up over all pos-
sibilities of the markings for each of the distinguished nodes. Thus, the approach of breaking trees
at special vertices reduces (3.3) to a finite sum, with one summand for each trivalent N-marked tree.
The description of the structure constants e i:.) in Section 2.4 is obtained by breaking the trees at
all special vertices. On the other hand, the descrlptlon in Section 2.3 is obtained by breaking at
the special vertex 7(IN) only. In addition to the strands (S1), we would then obtain strands with
marked points indexed by the sets S;L{0}, for a partition {S;};c[, of [V] so that one of the sets S;
is {N}. With either approach, the main step is summing over all possibilities for the strands (S1),
as done in Corollary 4.3.

4.2 Notation and preliminaries

If f=f(h) is a rational function in & and kg€ S?, let

1
R0} = 5 f San

where the integral is taken over a positively oriented loop around A= hy containing no other singular
points of f, denote the residue of f(h)dh at h="hy. With this definition,

S AFm} == R {w 2 fw )}

If f involves variables other than A, hi)‘% { f (h)} will be a function of such variables. If f is a power
=10

series in ¢ with coefficients that are rational functions in & and possibly other variables, denote
by ri)‘}7 { f (h)} the power series in ¢ obtained by replacing each of the coefficients by its residue at
1=Tio

h=hgo. If hy,..., h is a collection of distinct points in S2, let

i=k

{rm} =23 {r(m}

R
hi=h,....h, =1
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be the sum of the residues at the specified values of h.

We denote by
Q. = Q[ 07", D3] € Qa

the subring of rational functions in aq, ..., a, with denominators that are products of o,, and D,,.
Let
Q/a;h,x = @,Oz [h7 Xil] k=n k=n C Qa(ﬁ7 X)
<(x+rh)”x”, T (x—ag+rh)— [T (xak)\rez+>
k=1 k=1

be the subring of rational functions in aq, ..., ay,, A, and x with numerators that are polynomials
in ay,...,a,, b, and x and with denominators that are products of

k=n k=n

on, Do, x, (x+rh)"—x", H(X—ak—l—rh) — H(x—ak), with r e ZT.
k=1 k=1

If R is one of the rings Q/,, Q/,[x*!], or Q and f; and fy are elements of R or R[[Q]], we will

a;h,x
write fi~ fo if fi—f2 liesin Z- R or Z - R[[Q)]], respectively. By the next lemma, certain operations
on these rings respect these equivalence relations.

Lemma 4.1. (1) If feQ! there exists g€ Q! [x*1] such that

a;h,x?

hf):‘io{f(h,x:aj)} =g(x=q;) Vj€[n].

(2) If ge Q@ [x*"],
x=0,00 | k=n

(8) For every peZ,

xP 6L, ifp=n—1+nt witht € Z;
) 0, ifp+ldnZ.

Proof. If feQ’ then

a;h,x?

R A{f(hx=a;)} = <h9jg{f(h7 X>}>

where  o,_1(x) = Z H(x — ). (4.8)
i=1 ki

The first claim of this lemma thus follows from the observation that

gn_ll(x) o, = Dlg <§ (}_[#(a,v—ak)2> (g(x—ak))> Vj e [n]

ki’
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The second claim is immediate from the third. The third claim of this lemma follows from the
power series expansions

1 - 1 >
_ — = Z&;T—lxnr7 _ Za_;wnr
X" — oy 1 —o,w™
r=0 r=0
around x=0 and w =0, respectively. ]

We will also use the Residue Theorem on S2:

> A {fx}p=0

X0652

for every rational function f= f(x) on S?>C.

4.3 Equivariant one- and two-pointed formulas

The most fundamental generating function for GW-invariants in the mirror symmetry computations
following [12] is

Z(h,x,Q) =1+ Z*(h,x,Q)

e(Vy) (4.9)

_ > dev * rmpn—1 -1
_1—1—;1@ 1*{h¢1}€HT(P [P Q)]

where evy : Mo o(P" 1, d) — P! and V), — Mo o(P" 1, d) is the kernel of the surjective vector

bundle homomorphism évy : Vg — eviL. By [12], Z(h, o, Q) € Qq(h) for j € [n]. Thus, we can
define

C(O‘jaQ) = hgjo{ In (1 +§*(h7aij))} € Q ) QaHQHa

_ oo ’ | k=m' 1)tk _
Zplog @ =y "M 5 ( 1" hsjo{hbkz*m,aj,@}) e @a[[Q]].
m'=0 " beP, (m-Bim)\ k=1 *F T

for m, B€Z™". Since the power series Z *(h,x, Q) has no (-constant term, the above sum is finite in
each @Q-degree. It is shown Section 4.4 that the power series Z,, p(x, Q) describe the contributions
of the strands (S1) at a vertex v of the core of a tree with m, =m (with m, computed with respect
to the core). Let

M8

24 (s 1, %2 Q) = Qdev*{ e(V) }eH%(P’;*)Hh;%h;%QH,

- (1 —=1p1) (he—1p2)
! (4.10)
_é]iaj—);ilz Z (ATrXflx‘SQ +Z*(h1,h27xlax27Q) )

pit+p2+r=n—1
p1,p2,7>0

<9

Z(hi, ho,x1,%X2,Q) =

where ev: Moo (P? !, d) — P51 is the total evaluation map.
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Proposition 4.2. The power series (4.9) and (3.4) admit expansions

Z(h,a;,Q) = 1AM Wy (0, Q)R (4.11)
b=0
zZ (ha Qj, Q Yy >
:;7?]):64( ],Q)/hqup;b<aj;Q)hb, (412)
H Ir(‘]) =0
r=p—I+1

for some ¢, Wy, ¥, € QL [xF][[Q]] such that

Io(a)Ppp(Q) _ps
L(g)ovan

Pp(q)
\/j ~ W . ~ 4.13
b(x7 Q) IO(CI) X ) p,b(xa Q) ) ( )
where qedova’(@) = Q /xa,

Proof. The existence of the expansion (4.11) follows from Lemmas 2.2 and 2.3 in [30], but a direct
argument is provided below and in Appendix A. Let

. T 11 G+ o)
e S e e N =7 € (QunxnQup ) [[Q]].
a=0 ] < (x—ag+rh) — H(x—ak))
r=1 \k=1 k=1
y [17, Section 29.1],
g(hjx’ Q) —e —J(q)* OVa +f(q )%M (414)

Io(q)
for some f € ¢Q|[q]] (which is 0 unless v4 =0), where ge®»a”’(@ = Q. Since

Y(h = 1—|—h d ly h
(7X7Q)_ ;qdi(] 0( 7X7Q),

with Yo(h, x,q) given by (A.1), Lemma A.1 implies that }(h, x, ¢) admits an expansion of the form
Y(h,x,q) = DN " dy(x, ) B (4.15)
b=0
with £(x, q), Po(x, q), P1(x,q), ... € Qua(x)[[q]]. Since

§x,0) = R{mYV(hxa)},  Blxq) = R{n D MY (hx,q)],
and y(ha X, Q) - F(’Uj, q) €q- I@/a;h,x ’

where w=x/h, Proposition 2.1 and the first statement of Lemma 4.1 imply that there exist

g(x, q), éo(x, q), él(x, q),... € Q;[xil] Hq“
such that

V(h,aj,q) = DN by (az, gk V)€ [n],
— (4.16)

£(x,q) ~E(@)x,  Dy(x,q) ~ Bp(@)x " VbeZt.
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By (4.14) and (4.16), (4.11) and the first statement in (4.13) hold with

(6 Q) = E(x,0) — J@x + f@or,  Tp(x,Q) = q’;f)’(‘éf) = (bﬁf(i;?)

The existence of the expansion (4.12) follows from the existence of the expansion (4.11) and the
description of Z,(h, x, Q) as a linear combination of the derivatives of Z(h,x, @) in [27, Theorem 4].
By [27, Theorem 4],

_ Fp(w, q)
Z,(h,x,Q) ~ e J(@QuypZ P\ )
P( Q) Ipfl(q)

Along with the first statement in Lemma 4.1 and (2.21), this gives the second claim in (4.13). O

Corollary 4.3. For allmeZ" and c€(Z*)™, there exists Uy, o € QL [xT][[Q]] such that

Znpl0;,Q) =3 ((—1)mc“< b >c<aj7Q)B<m“°”>wm,c<aj,c2)> (4.17)

- m—||c|
ce(ZT)

for all BEZ* and j€[n] and

Ui e(X, Q) ~ <IO(q) )m+3¢)mvc(Q)X_”c” ) (4.18)

where qeva’ (@ = Q /xVa.

Proof. By Lemma B.2 and (4.11), (4.17) holds with

1 o 1 1 U.(x,Q)\“
Ve = (—1)mHlel l— — T . 4.19
Q) = et T, (rrea) (4.19)
Along with the first statement in (4.13) and (2.30), this implies (4.18). O

Lemma 4.4. There exists a collection {Cp_p, Yy, en) C Qo] [[Q]] such that

1 1 7((:17]#,@)
@hﬁo T Z(h-,hy, 05, 05,,Q)
+
_ 4.20)
bo=b, b (
(_1) Zf(h—aa‘va)
- Z W Z Co_py (Q)\I’p+;b+—b— (aj+ ,Q) . n_l_lj
b-=0 — pyp-€ln) he II Ir(q)
r=p_—I+1

for allby €Z* and j_,j, €[n] and

LigSoattom o o B
Cp_p+(62)~{ Loz On Ep-Apytnt=n—1+1,t=0,1,

0, otherwise,

(4.21)

where qedva’(@) = Q.
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Proof. By [27, Theorem 4],

Z(h—7h+7x—)x+7Q)

- h<4a—>h+{ N Z + Z }6er_(h_,x_7Q)Zp+(h+,x+,Q). (4.22)

p—+p++r=n—1+I p—+p4+r=n—1+I
p—.p+€|nl,reZt p—.p+€lnl,rezt
p—.p+>1 p—p+<l

Combining this identity with (4.12), we find that (4.20) holds with

n—[-1 n—[-1 L, if p—7p+<l;
G @ = T[0@)( TI0@)owripp {10 itpopezt (429
r=p4+—i+1 r=p-—i+l1 0, otherwise.
Along with the first two statements in Lemma 2.3, this implies (4.21). O

4.4 Main localization computation

(dyt)
p,b 9 by

summing up the contributions of the T-fixed loci Zr of 9 y(P" !, d), with d€Z*. As outlined
in Section 4.1, this will be done by breaking each I' (and correspondingly each fixed locus Zr) at
either one special vertex, v=[(IN), or at every special vertex of I'.

We now prove Theorem B, with each of the two definitions of the structure constants c

Let T be a decorated tree with N marked points as in (4.5). Let T' = (Ver, Edg; ji, 77) be the core
of T' as in Section 4.1 and v=7(N). Similarly to Figure 3, we break I' at the vertex v € Ver C Ver
into strands I'. indexed by the set E,(I") of the edges with vertex v in I'; each strand T'. keeps
a copy of the vertex v and gains an extra marked point, which will be labeled e, attached at v.
For each e € E,(I"), denote by S. C [N] the subset of the original marked points carried by the
strand I'.. Let

E;(D) = {e€E,(I): Se#0}un '(v), E,(I)={ecEyI): S.=0},

E,(T) = EX)UE,(T) C E,(T) U [N].
Thus, [E,,(I')] >0, [E;(T')[>3 (because T is a trivalent tree), and {Se}ceg: () € Pz r)([V]), where
S.={e} if eecn~(v).

The fixed locus Zr corresponding to I, the restriction of e()) to Zr, and the euler class of the
normal bundle of Zr are given by

. e(V) mye()V)
Zr=Mogm % []2r, o= II 2
P eegr) e(Luw) eegu[(F)e(ﬁ“ ©)
4.24
M) el -
e(NZr) e (F)e(NZFe) (h—mzve)’

where MOEU () & ﬂ0,|Ev(F)| +ln—1(v)| is the moduli space of stable rational E,(I')-marked curves,
hé =C (Lé) S H* (MO,EU(F))
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is the first chern class of the universal tangent line bundle for the marked point corresponding to
the edge e, and

Te: Zr — 21, C U Mo 5,00y (P~

L de)
de=1

is the projection map. By [17, Section 27.2]

« e) ~ %puv
¢6|Zre — ko (e) w(v)

o(e)
Thus, by [17, Exercise 25.2.8],

/MO,EU(F) {( eegF) he— *we )( H (v) h ~Ye >}
e o) o)
2): (F)/MO,EW(F){< eey H

(4.25)
e(zZ+ e€n~1(v)
[E, ()] -3 () =)\ -
2 {( b 56 L5y
be(Z+)Ev (D) e€By(I) e€n=t(v)
Combining this with (4.24), (3.2), and (4.3), we obtain
H(Oé (v)_ak) 5=
o) /em ﬁcmﬂ
<a>ai(v) Zpe(NZI‘) el hs —1)s
[Eo(I)| -3 b
Z {( b H hybs 1H (v) k) (4.26)
be(Z+)Ev(D) sen~1(v) kis

)e(./\ere) —lZJs

SGSe
The equality holds after dividing the right-hand side by the order of the appropriate group of
symmetries; see [17, Section 27.3]. This group is taken into account in the next paragraph

Bl L )

We now sum up (4.26) over all possibilities for I'. If e E/ (T")

with V'=V. | as in (4.7). Thus, in this case, by [30, Section 2.2]

—be—1 *
RO IO e(V)eveduw) ( evidi, )
2.9 (%) /zre<a>ag(v)ewzre> 1l

hs_ws
€Se
o) {( Qo) =)\ T eV )evidu) - (4.27)
) ZQ < o(e) ) /zpee(-’\/’ZFe) N _h(?io{he 2 (he’o‘u(v%Q)}?
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where the sum is taken over all possibilities for the strand I, leaving the vertex v, with u(v) fixed.
By a similar reasoning, if e€ E;(T"),

> QI (%(e) — () >_be_1/ e(V)evedu() 10 ( evidi, )
™ o(e) ZFg(a)aL(v)e(/\/'Zpe) ses. hs—1)s
1

= —%hio{hebelz* ((hs)seser hes (s =i, )ses.s Xe = Qp(), Q) },

(4.28)

where the sum is taken over all possibilities for the strand I, leaving the vertex v, with p(v) fixed,
ITe|>0, and carrying the marked points S, C [IV], and Z* is the positive-degree part of the power
series (4.4) with [N] replaced by S.U{e} if |Se|>2 (for |Se|=1, Z* is defined in (4.10)).* Finally,
if sen~1(v),

b (—=1)" b
hs ) IH(Q#(U)_ak) = <a>al()h?%0{he 1[[Z(h&hevaisva,u(v)aQ)]]Q;o } . (429)
k#is p(v

This corresponds to the strand I'; in (4.28) with || =0 whenever S, ={s} is a single-element set.
On the other hand, if |S.| >2,

h?io{he_be_l [2((Rs)ses.s hes (%=, )seser Xe = (), Q)] 0 } =0

Putting this all together, taking into account the group of symmetries (permutations of the one-
marked strands), and summing over all possibilities for m’=|E,(T")|, while keeping

m = ’ET)(F” > 3, {Sz}ze[m] = {Se}eEE:(F) € Pm([N])v and J= 77(1)) € [TL]
fixed, we find that

IT(ey—u) n

J e(V EVE< is ~
szlFl Z[‘e(j\(/"z)r) H(ﬁs_qi/]s> = Z {ZmB,bH(aj?Q)

J I s=1 be(z+)m

X H( l ( bz') h?{o{h; h 12((h8)865i7h§7(ais)SGSwajaQ)}>} .

i=1 <a>0‘j

(4.30)

1By the proof of [17, Chapter 30, (3.21)], LHS of (4.27) summed over I'. with d(e)=d and p,(e) =i fixed is the
residue of K=" Z*(h, vy, Q) at h=(ai—ay(yy)/d; see also [30, Section 2.2]. Since Z*(h, Qi (v, Q) vanishes to second
order at h= o0, ntz* (B, (), @)dA has no residue at i= oo for all b€ ZT. Since z* (R, vy, @)dh has poles only
at h= (i —ay(y))/d with i € [n]—u(v) and d€Z", and at h=0, (4.27) follows from the Residue Theorem on S*. By
(4.22), the same reasoning applies to h™' Z* (hs, B, ci, , (), Q), giving the |Se|=1 case of (4.28). Since |Ej(I")|>3,
|Seli{e}| < N; by Theorem B and induction on N, the same reasoning is applicable to (4.28) for |Se|>2 as well.
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By (4.17) and the first statement of Lemma B.1, the right-hand side of this expression reduces to

DS {mgc%,@

be(Z+)m b'e(Z+)™

ce(Zt)>
[b”|+||c]|=m—3
1 (g @\ /
X H((a)aé@'(@') h?:i[]{hi <_ T Z((hs)SGSwh’i? (ais)sesivajaQ)
i=m C(Ot ,Q)
- v S P L S h
- Z m—3,c(ozjaQ)H f@yal DR R ((hs)sesys By (i) sesi @, Q) ¢l e
b"e(zZt)™ i=1 J
ce(Zt)>®

[b”|+]|e[|=m—3

Since m > 3, |S;| < N —2 for every i € [m]. Thus, each of the power series Z appearing in the
last expression above is described either by (4.22) or Theorem B with N replaced by |S;|+1< N
(which we can assume to hold by induction). By the last expression for the left-hand side of (4.30),
Lemma 4.4, (3.6) with N replaced by |S;|+1< N whenever |S;|>2, and (4.12), the sum on the left
hand-side side of (4.30) equals

i—m (di)
h P25 (R, iy, Q) i=m ey .| _b’\I’p;,b’-i—l—i-b”(a]aQ)
(@) { oy e T ey, Q) [ R
i=1 i

m—1)

pelnV\ & H(aﬂ'_ak)de(%)m b e(Z+)m

be(ZH)N k#j p'eln]™ ce(zt)>
b'€Z™ [b”|+|c|=m—3

with W, =0 if b <0. In the two-pointed case (for |S;| = 1), the above structure constants are
given by

Z q°C pp’ by — 5b+b’,—1(_1)bcpp’(Q)a (4.31)
with Cp,y as in (4.23). Summing over all
j€mll,  S={Si}epm) € Pm(IN]), and m >3

d)

and using the Residue Theorem on S?, we obtain a recursion for the coefficients Cr() b in Theorem B:

Gv=— 2 > 2

m,d €Zt SEPm ([N]) b"e(Zt)™
m23 dePp, (d—d’) ce(Zt)oe
(', b )Eln]™ XZ™ |b”|+||c[|=m—3
” (4.32)
s | noselx @ T Coliia Vo 4
x=0,00 k=n Al
xlm=1) T (x—ay,) i=1 i
k=1 g;d’
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By (3.6) and (3.4), if b€ (Z*)Y and d€ Z*, the coefficient of

d H b +1
in the power series Z(h, x, Q) is

d
[[Z(EL, X, Q)Hﬁfl,q;b—l-l,d = Z Cl(),l):)zg’

pen]V

+ Z Z Z Cpb'H[[Z(p h87x87Q]]r— L giba—bl.ds

d'elld] peln]N be(
dePy(d—d) b’<b9

(4.33)

where [ 2, (7, x,Q)], - is the coefficient of ¢% (h~1)? in

q;b,d’

24 (%, Q) = M e mp(E Y [[7,Q)) = B (") [, Q).

IT Ir(qs)
r=ps—I+1
Since H:(P"1) and HA(Ph ') are free modules over Q[a] with bases {xP}peing and {XPloc|n)n,

respectively, and
[[Z(p) (h7 X, Q)]] h=1,q;b,d’ € H%‘(Pnilx [[Z(E7 X, Q)]]Efl,q;b—kl,d S H']?(]PNN_l)
by (3.4) and (3.3), (4.33) and induction on d imply that Cédl)o € Q[a] as claimed in Theorem B.

We now confirm (3.7) by induction on N. For N =2, (3.7) holds by (4.31), (4.21), and (2.31). On
the other hand, by (4.32), (4.18), the second statement in (4.13), the inductive assumption (3.7),
and the last two statements in Lemma 4.1,

d A
R ED DS >, o
m,d' €eZt SePm([N]) b"e(Zt)™
m>3 dePy, (d—d') ce(ZT)>®
te(ZH)™  |b"|+c[l=m—3
(p",b)€ln]™ 2™

X|p/‘,‘b/|,(l+2>(m,1)+1q) . (q)iﬁé(di,ti> To(@)* @yt 1447 ()
x=0,00 k=n m=ee Pls;pibls; b b1 [(q)%0vandy(q)
[1(x—ax) =1 '
k=1 ad’

Since q=¢/x"2, by the last statement of Lemma 4.1 the negative of the expression on the last line

(b (q)zﬁn C(di,ti) IO( ) (p : b/+1+b"(Q) OA_t'
m—3,c Pls,Pi-bls;b; b/l L(q )6ouanq>0( ) n
q;d’

i=1

is equivalent to

with ¢’ €Z defined by

p'| =0 | = (0+2)(m—=1)+1—vad =n—1+nt — (p',b') € Sy (d',t');
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(d

)
b €Qla] by the

if such an integer ¢’ does not exist, the above residue is equivalent to 0. Since C
previous paragraph, we conclude that

@ T
At isti
Wy X X s (Tt
t=0 m,d' t'€Z  SEPm([N]) b"e(Zt)™ =1
m2>3 dePm, (d—d") ce(ZT)>®
tePm (t—t")  |b”|+(c||=m—3
(p' b )ESm(d' t')

X ﬁ@m—&c(fn b;’! L(q)doyanq)o(q)

=1

iy IO(Q)Q‘I’p;;b;Jer;'(Q)ﬂ

d’
Comparing this expression with (2.32), we conclude that (3.7) holds.!®
We next show that (3.7) holds with the coefficients cgg) as defined in (2.47). Let I be an N-marked
decorated tree and T its core as before, with a partial ordering < as in Section 2.4. This time, we
break I' and Zr at all vertices Ver C Ver of I', adding a marked point to each of the strands; see
Figure 3. There are now three types of strands, (S1)-(S3), described in Section 4.1. Each strand of
type (S3) carries one of the original marked points s €[N] and an added marked point &', which we
associate with the element of E,(I") that leaves v in the direction of 7(s). These strands are thus
naturally indexed by the complement of the subset n~!(Ver) C [N] of the marked points attached
to a vertex of the core in I'. Each strand of type (S2) runs between vertices in Ver C Ver in T’
that are joined by an edge e ={v,,v}} in [, with v; <v}. Tt carries two added marked points,
which we label e~ and e, attached to the vertices v, and v, respectively, in the strand T'.. We
associate the marked point e~ (resp. e™) with the element of E,-(T) (resp. E,+(I')) that leaves v,

(resp. vJ) in the directions of v (resp. v; ). Similarly to the first approach, for each v € Ver,
denote by E! (T') CE,(T") the set of one-marked edges at v and set

E,(I) = E,(D) Un ' (v) UE,(T) CE(M)UN],  E()= | |E(I).

veVer

As before, this set indexes the marked points on the contracted component.

The analogues of the decompositions (4.24) in this case are

zr=[] <MO,EU(F) X HZFe> < []2r.,

veVer e€E;, (T) ecEdg
e(V H H mre(V) mre(V)
e e 1] |
Ueﬂwe(ﬁﬂ(v)) vever et L) o ellany)e(Lag)
I e(TpwP) ~
veVer ! _ H ( H e(Tﬁ(v)Pn 1) H 1 ) v H 1
! _ % 3
e(./\/Zp) vever \ ecE () he ﬂe¢e eeEL(F)e(NZFE) ccBdg e(/\/Zpe)
5 As can be seen by induction on n, ZQ, N Q[a] = Z. Since Cl(:l,l is a symmetric function in a1, ..., ay, it is even

sufficient to check that the symmetric polynomials in ZQ), N Q[a] are contained in Z; this is immediate from the
algebraic independence of the elementary symmetric functions.
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For each v € Ver, (4.25) still applies. The analogue of (4.26), but weighted by the automorphism
group, is then

H k#l_ﬁ[&(x)aﬂ(v)_ak) / e(V) sﬁv< evngis)
o @) zreW2r) 5\ he—¥s
e L)
be(z B0 lveVer v e (Ve zrf@)ag e(N2r,)
bl (1) =B (1) -3 (4.34)
< 11 ( ( ) Ms/)) 1/ V)evh dp(w)evidi, )
e T ARG 20 (@)al, e(N 2, ) (hs—1)s)
XH( D 'H( >b*1></ e(V) eVe- (bu(v) e+¢ > 7
ecEdg be-tber! 20 2 ()% M(U . (N ZFe)

where

1 Oé,z(v)—%v(s')>_b5’_1/ e(V)evidpwevedi, 1 < h_1 )
— =—|h Qi) —
bs/!< (s 2 (@l (N2, ) () b kl;[( ) ~ k)

if sen~1(v).

For each v € Ver, (4.27) still reduces the summation of the factor on the second line in (4.34) over
all possibilities for T'c with e € E}(I") and for mj, =|E ()| to Z,,, b, | (@j,, @), where

my, = my(T) = ‘7771(“)‘ + ‘Ev(f)‘ -3, b, = b|ﬁ—1(v)UEU(f) ) Jv = (v).

For each s €7~ 1(v), (4.28) and (4.29) with v=7(s) and S, = {s} still compute the sum of the factors
on the third line in (4.34) over all possibilities for Iy of positive and zero degree, respectively. By
a similar reasoning (see Footnote 14), for each e € Edg

5 (O‘%e () =%, )be = (%vj () =%+ >be*1/ e(V)eve-dj _eviidj
o(e7) o(et) 2n, e(NZr,)

e
b —1.—bT_ %
- h_gio{h_?i(]{h_be 1ﬁ+b€ 12 (h_’ h+7 ajvg ’ a‘jv;r ’ Q) }},

where the sum is taken over all possibilities for the strand I'c between the vertices v,- and v.+ in I'
with pi(v;)=j,- and ,u(vg‘):jv;r fixed. Since

_ (a)al _
DR S Ty T S sral- ot Y0 vpo bt e 27,
ho=0 | hi=0 o h_+hy ere
p—+prtr=n—1
p—,p+,r>0

we can replace Z* in the previous expression by Z.
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Putting this all together, we obtain a replacement for (4.30), involving products over v € Ver and
e€ Edg, which (4.17) and the first statement of Lemma B.1, reduce to

[1(aj, —a) ;
0% |20 e (?sfz;)

vEVer
¢l ,Q)
e h
= Z H\Pmmcv CK]U,Q X H l b”'h 0 BbI+1 Z(h57h7aisaajsaQ)
b"”e(Z)N \veVer
b~ b+e(Z+)Edg
(Cv)vevﬁe((zﬂw)wr
|b”‘n*1(v)+‘b | U(F)+bev+‘|cv||:mv
Claj Q) (e Q)
1 1 { e - Ry
X H( DR Z(ho,hy, 05 05 ,,Q)
20l o b IRI= - be +13bd+1 P Ty T ’
-1 \{(a)?at ab  belbg 'h-=0 | Ayr=0 e +1300 + : d
ecEdg < > Ty i € ve h’e 7‘2+

where be, = 0 for the minimal element vy € Ver, js = Ju(n(s))» and the sum is taken over all
possibilities for I with the core I'=(Ver, Edg; ji, ) fixed. Using Lemma 4.4 and (4.12) to compute
the residues, we find that the sum on the left-hand side of the above expression equals

(a) Z {thp(h, iy ins @) Z(_l)lelb’\ Z H Uy (@, Q)

mv+2
pel|n ||y peln¥ b’ €(ZH)NveVer Yiv kH<O‘Jv_O‘k)
be(zZT)N p’.p'€lln|Pd® b~ bte(Zt)e 7dv
b'e(Z+)Pde (c0)yevar€((ZF)>)Ver

O N L

x Sﬁv Cpos (@) Wity - (4,, Q) Coidt (Yt (0 Qo1 (5, Q)

b b 1!
5 ecEdg ee

For each v € Ver, we now sum up the product of the corresponding factors above over all possibilities
for j, € [n] (which also determines js and j,+ whenever n(s) =v and vE =wv). Using the Residue

(d)

Theorem on S?, we now obtain an explicit formula for the coefficients Cp b in Theorem B:

/ Vi, e (X,
S M 3 D S |

' dePr(d) pelnlV b"’c(zt)N  veVer X mv+2)H(X—ak)
p’,p’€lln|/Bde b~ b““E(ZJr)Edg k=1
ble(z+)Edg (Cv)UGVcre((2+)m)ver
1B 1 0y HI0 ™ g oy 0 Flleull=me (4.35)
Cpopa (Q) V5,011, (X%, Q) Corp Q)W 100, (@) Wy g gy (%,Q)
X H N X H bl X b1
sen—1(v) s e€E; (I) <

q;dy

where the outer sum is taken over all N-marked trivalent trees I'=(Ver, Edg; n) and
\ij% g —Oey (x7 Q)

b+'

evo

Il
—
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for the minimal element vy € Ver. Using (4.18), (4.21), the second statement in (4.13), and the last
two statements in Lemma, 4.1 as before, we conclude that

C(d ’“Z Z (_1)\b|+|b’|&flp+tp/+\t| Z H |l<1>mv,cu(Q)

dePr(d) b"€(ZT)N, b~ bte(Zt)Fde vEVer
pGILnJJEdg b’ (ZF)Pds (co)vever€((ZF)>)Ver
\b'/|n71<v>+|b_\E;(F>+b2’v+||ch=mv
dow /
L(g) "y 1y (@) 1)@y, 4y ()
X
be'! o(q) bé,! L(q)%va"®o(q)

Soyantpsq% o ( )
Ps;b —bs q
I b/ ®o(q) < 11

sen—1(v) ecE; ()

q;dy

with the last fraction above set to 1 for v = vy and t € (Z+)V®" defined by (2.46); if an integer
t, satisfying (2.46) does not exist for some v € Ver, the corresponding summand above is defined

to be 0. This confirms (3.7) with ci)di?) as defined in Section 2.4 (and describes ci)diz) with t € Z*
as well).

Remark 4.5. The recursion (4.32) and separately the closed formula (4.35) compute the coeffi-
(d)

cients C,}, in (3.6) and thus provide a straightforward algorithm for computing the equivariant
N-pointed generating function (3.3). Following the proof of the first statement in Lemma 4.1, the
power series Wy, o(x,Q) and ¥, (x,Q) can be computed directly from the power series ®4(x,q)
appearing in (4.15). The latter can be computed similarly to the power series ®;(q) appearing
in Proposition 2.1; see Appendix A. For example, we first find that the power series £ appearing
in (4.15) is described by

£ exq- Q[a,x,an_l(x)_l] [[q]], x+¢&'(x,q) = L(x,q),

where / denotes qd% as before L(x,q) is defined by

L(x,q9) € x +x?g - Qla, x,0,1(x) 1 [[x*1q]], 0n(L(x,9)) — qa®L(x,9)1? = 0, (x), (4.36)

with o, (+) defined analogously to (4.8); setting « =0 and x=1 above gives (2.2). We then find that

Bo(x.q) = ( X on1(x) )1/2 (L(x, q>><’“>/ ,
’ L(x,q) on-1(L(x,9)) = [al(on(L(x,q)) = on(x)) X ’
setting =0 and x=1 above gives (2.11). This suffices for the N =3 case of (3.6).

5 Proof of Theorem 1

In this section we prove the bound of Theorem 1 for d € Z* by considering four separate cases:
la| >n and |a| <n with N =1,2,3+. The first case is fairly straightforward, since there are only
finitely many nonzero GW-invariants modulo the string, dilaton, and divisor relations [17, p527].
In the |a] <n cases, we use explicit mirror formulas. For N =1,2, (2.13) and (2.19) reduce The-
orem 1 to extracting the coefficients of w’q? from the power series F/(w,q) and F,(w, q) defined
n (1.4) and (2.18); Corollary 5.3 below presents them in a convenient form. For N >3, the coef-
ficients ci)d’ig) in Theorem A must also be suitably bounded. This is done by Proposition 5.4; its
proof constitutes most of this section.
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We begin by considering the |a| >n case. Let
dmax = max {d€Z: (la]—n)d < n—4-1}.

If d > dyax, the virtual dimension of Mo o(Xa, d) is negative, and so all genus 0 degree d GW-
invariants vanish. Thus, we can assume that dy.x € Z". Let C €RT be such that

|[(bi! 7y, H, . .,bN!T,,NHCN>gf;\ <C

whenever bs+cs > 2 for all s or N <dpax; the number of nonzero invariants of this form is finite.
Let bpmax be the largest of the sums b1+...+by for nonzero invariants of this form. It then follows
by induction via the dilaton, string, and divisor relations that

‘<b1!Tbchl,...,bN!TbNHCN,ToHl,...,ToHl,T()HO,...,ToHO,TlHO,...,T1H0>é(Z
k1 ko ;;
bmax+ko)! (N +ki+ka+ks)!
< O (bt )t - LRt (N R ths)

bmax! ' (N+k1+k2)'
< C- O™ gbmaxthy (N k) 4y +k3)!

This implies the bound in Theorem 1.

In the remainder of this section, we treat the |a| <n cases.

5.1 Outline of proof
By (1.3) and (2.1), the GW-invariant in Theorem 1 is the coefficient of

s=N
QIHPL P = Q¢ H Hg’shs_bs_l, where ps=n—1—c;,

s=1

of the right-hand side of the identity in (2.13) if N =1, in (2.19) if N =2, and in (2.35) if N >3.
In particular, we need to bound the growth of the coefficients of

/g IR € QU QI where el =) .
p—l

By (1.4), (2.14)-(2.18), for every peZ* there exists Fj, € Q(w)][[q]] such that

o~ (@ H/h pr = PF,(H /K, Q/1™), (5.1)

and the coefficient of each power of ¢ is holomorphic at w=0.

If b1+c1=vad+n—3—1, (1.3), (2.1), (2.13), and (5.1) give

= [l mled o, ) =@ [Awa] ]

where py =n—1—c; as before. Thus, by Corollary 5.3 below,

by!
[(ort o 3] < s < (acin3-01

< (n—3—l)!<a)Cg . Qradin=3-L.

I/ad—i-n—?)—l)

Vad
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this confirms the statement of Theorem 1 for N =1.

If by+c1+bo+cy =vad+n—3—1, (

1.3), (2.1), (2.19), and (5.1

) give

Xa ]
Z <Tb1+§1Hcl,Tb2+§2HC >0d = Z |:|:|:|:[[Z(B7H7Q)]]Q,d]:| _
1 +02=1 81 +02=1 BH(br+1400,b2+1402) || j; ()
01,6220 01,02>0
@ Y T [[Fswa] ]
di+do=d s=1 750s | W;Ps
dy,d2>0

Vads 2l+1+b5 —Ps

with ps=n—1—cs, h=(h1, h2), and H=(H;, Hy). This gives

Xa b b
<Tb1+1HCI,Tb2HCQ>O,d - <a> Z 2 Z H |:|:|:|: Vads+ps— b/ (qu):ﬂ y :|:|
b'1+b’z:b1+bz+2 dy+da=d s=1 Gds || 1y,
d1,d2>0

0<b,<b
="2="2 Vads>1+b.—p

Thus, by Corollary 5.3 below,

=d
c co\Xa d(bl‘f‘l)'bZ' 21 : Vad
(D)t H bl H?) ] < () (b2 +1) C P adl = \ady
-

< (a)Cl. (n15)!<”ad+”_1_l> . grad

Vad
< (n—1-0){a)Cy . g2vadtn=1-1,

this confirms the statement of Theorem 1 for N =2.

Finally, we consider the N >3 case. For each pe||n]);, let

~ F qu)
Fp) (w,q) = _pl(_l

[T I:(q)

r=p—I+1

(5.2)

It is sufficient to assume that the tuples b= (bs)c[n] and ¢ =(cs)s¢[n) in the statement of Theorem 1

satisfy
bl +|c| =vad+n—4—1+ N,

Let ps=n—1—c,. If d,b’€(Z")V, define

bs,cs > 0, cs <n—1-—L.

p'(d,b) e (ZNHYN by  pi(d,b') = vads + ps — bs + ),

By

(1.3), (2.1), (2.35), (2.20), and (5.1),

dl
Z C db’)b’ H
0<d’'<d
dePy (d—d')

b'e(ZH)N

(T H, oy HV Yo

Hﬂﬁ(pg(d’b/)) (w, q)ﬂ q;dsﬂ ;

WiPs
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(d',0)

the above summand vanishes unless | < p/(d,b’) <n—1 for all s € [N]. Since Cprpy = 0 unless
|b’| <N -3, Corollary 5.3 and Proposition 5.4 thus give

‘<b1!TblH017,,,,bN!TbNHCN>§fZS<a>N!CéV+d Z Z H(ps b/' ‘ps )

0<d'<d b'e(Zt)N s=1
dePy(d—d') |b’\<N 3
b, >bs—vads—ps

s=N

< <a>N!C’éV+d Z Z n'3b

0<d'<d btV s=1
dePy(d-d’)  |p/|<N-3
b/s >bs—vads—ps

< (a)NICN . ()N grad-ntN . <d;rVN> (N—;‘FN) < NICN+ L gd N 92N~3

This confirms the statement of Theorem 1 for N > 3.

Remark 5.1. For any non-vanishing summand on the right-hand side of (5 3), pi(d,b) <n—1
and so bs+cs > vads. Thus, dg =0 if by+cs < va. Since the coefficient of ¢° in F( y(w, q) is wP, it
follows that p/(d,b’)=ps and b, =b, in such a case. Since |b’| <N —3, this implies Theorem 2.

5.2 Bounds on the coefficients of generating functions

In this section, we obtain the bounds on the coefficients of the power series Fp,ﬁ’p € Q(w)[lq]]
defined in (5.1) and (5.2) that are used in the proof of Theorem 1 above.

Lemma 5.2. There ezists Cy €RT such that

(17 (w01, ]

for all p,p'=0,1,...,n—1 and d€Z™.

<

w;Vad—p'+p (Vad)!

Proof. By (1.4), (2.14)-(2.16), and (2.18), it is sufficient to show that there exists C' € R™ such that
oL

< =

~ (vad)!

for all p=0,1,...,n—1 and d € ZT. Both numbers on the left-hand side vanish for p < (unless
d,p=0 in the case of the first number). If [<p<mn,

[t ]

1P, 9)l,.d]

w;Vad+p w;Vad—l+p

T || 11 T 0+ @)
'[[[[F(mq)]]q;dﬂw;yad_wp COE ﬁ(me”
(Al ﬁ(lﬂa!w)('a”dm _ "
— (nd)! (1—w)(n=hd o
- (::;)! H;ﬂ((n—l)iﬂ—l) ((\a\s—l)d> a’ < (Z’Z)!yn—nd+p—l(,a,+1)<a|—l)d_
=
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The first inequality above follows from Stirling’s formula [1, Section 15.22],

d

1< —S _dl<esa VdeZt; (5.4)

V2rd®t:
the following statement uses the Binomial Theorem. The desired bound for Fy(w, q) is obtained
similarly. O

Corollary 5.3. There exists Co €RT such that

‘Hﬂpp’(w’Q)ﬂq;dﬂw;p ! MF <p’>(“”q>]]q;dﬂw;p = (y(:g)!

for all p,p’'=0,1,...,n—1 and d€Z™*.
Proof. If vy >2,
|“[ P (w Q) ‘1§dﬂ w;p [[ P w q)ﬂq;d w;iVad—p'+p

and the claim follows immediately from Lemma 5.2. If va=1, by (1.5)

Mﬁp'(w,q)]]q;dﬂ — Z (—;11!!)‘11 HﬂFp’(w’Q)ﬂq;dzﬂ

wip di+da=d
d1,d2>0

v ]

where Cj is as in Lemma 5.2. Finally, suppose v =0. Define

JeQ-QQ by ¢=Q'@

w;da—p'+p

(al+Cy)?

d! ’

<

w;p

By Lemma 5.2,

n—1 (Q)]]q;d

@lgal -+

@l <t = H[f@]]qd

0@

the last implication follows from the Inverse Function Theorem. Since

. Q)P [[F )]]w ,
[rwo] = 3 p1! L
p1+pa=p—p’ HIT( )

—pi

T

the claim again follows from Lemma 5.2. 0

5.3 Bounds on the structure constants in Theorem A

In this section, we obtain an upper bound for the coefficients cgi’?o)) in Theorem A. This is one of
the two key ingredients in the proof of Theorem 1.

Proposition 5.4. Ifn, N €Z* with N >3 and ac (Z*)! with |a| <n, there exists Co € R such that

y \_b'cf“d vdezt, pe|n|V, be(zH)N
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Lemma 5.5. IfneZ", a€(0,n), and L€1+qQ|[q]] is defined by

L(q)" —qL(q)" = 1, (5.5)

then there exists C,, ERT such that

<C, VkKeZ', k<2n® kK <2n+1,6=0,1.

l ﬁ L(q)l—n-i-k ﬂ
(1=9)° (a+(n—a)L()" ||,

)

Proof. Let v=n—a. We show that (5.5) defines a holomorphic map ¢ — L(q) on a neighborhood
of the closed unit disk D C C such that

L(q),a+vL(q) #0 V geD.

Thus, the radius of convergence of the Cauchy series around ¢=0 for the holomorphic function

L(q)*
(a+vL(g)™)"

is greater than 1. Let
S = {(q, z)eC?: z”—qz“zl}.

Since the differential of the defining equation is surjective for z # 0, S is a smooth curve in C2.
The projection map 71 : S — C to the first coordinate is an n-fold cover branched at the points
(g, z) €S such that

n—1

_ n a
nz —qaza 1 :O e q: —ZV — 2" = ——
14

n a v/n n a/n

Thus, 7 is an unramified cover of an open neighborhood U of D, and its restriction to the com-
ponent of 771(0) containing (0, 1) induces a holomorphic map

U— (Cv q— L(Q)7
solving (5.5). It is immediate from (5.5) that L(g)#0 for all ¢, if a>0. On the other hand,

v n _ a
1+ﬁqL(q)“:O = q:—;L(q) ¢ = L(q)”:—;

<V>a/n (n)u/n
(2) > (2) >,
a 14

as claimed. 0

R |3

Lemma 5.6. Let O, ®1,... € Q[[q]] be as in Proposition 2.1. There exists Co €R' such that

58]

< blCt [[(1—Caq)‘bﬂ Vb, deZ*.

g;d
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Proof. For k=1,2,...,n, define
1
L(q)*~®o(q)(la] +vaL(q)")

with £ and ®g given by (2.7) and (2.11), respectively. These differential operators are of the form
i=k

£:Qllall — Qllg] by £(®) =

Li(Po?),

L= herilg)D'  with hy, € Q[g]]. (5.6)

1=

[e=]

Note that by (2.2)
r L"—1  a*qL(q)®

- = = ) 5.7
L |a|+val™ |a| 4+ val® (5:7)
We now consider three separate cases.
(1) Suppose 0< |a] <n. We show that there exists C; € RT such that
[6)) _
’ |[ b(Q)ﬂ < plct ﬂ(l—aaq)*bﬂ Vb, deZt. (5.8)
(I)O(Q) q;d a;d
By (2.11) and (5.7), for each j€Z™ there exists p; € Q[u] such that
Di®,  (L"—1)p;(L" aqL(q)l2lp;(L"

il (la|4+vaLlm™)? (|la|+val™)?i
By (2.5), for each j€Z™" there exist p, j; € Q[u] such that

(u—1 )pm,j (u)

Hon,j(u) = (ol vaw)¥ 1’

degpm,j < 2j—2,
where H,, ; € Q(u) is the function defined in Section 2.1. Thus, by (2.7) and (5.9), there exist
Pk € Qu] such that

L (a)%okpy(L")

hkﬂ' = kal . (|a|+VaL")2i+l s degﬁk,i S 2Z+1 — 51’,]4-

Let C'>1 be the maximum of the absolute values of the coefficients of the polynomials (2i+1)py;,
with ¢=0,1,...,k and £=2,3,...,n. Thus,

1—a%q) hi,(q < CCly |+ (1—a2q)™® Vk=2,3,...,n, beZ", 5.10)
' gd .

q;d

where C|,) is as in Lemma 5.5. We show that (5.8) holds with
Ca = nQCC"a|aa.
This is indeed the case for b=0. Suppose b* >1 and the bound holds for all b<b*. By (2.10), (5.6),

(5.10), and the inductive assumption,
k=n
Dy (Q))ﬂ [[~ (%*—kﬂ(@)ﬂ
D < | —————

< n2CClay - Ch 0 (a%)? q(1-a%g) ™!

ad

47



Integrating this inequality, we find that (5.8) holds for b=>b* as well.

(2) Suppose next that |a|=n. We show that (5.8) still holds. Since nDL/L= (L™ — 1) in this case,
for each j €Z" there exists p; € Q[u] such that
Did,
®o

= (L"=1)p;(L") =a%qL(q)"p;(L"), degp; <j—1. (5.11)
On the other hand, by (2.5) for each j€Z" there exist p, ; € Q[u] such that
Hum,j(u) = (u=1)pm j(u), degpm; <j—1.
It follows that there exists py, ; € Q[u| such that
hyi = %(QL(Q)n)(si’kﬁk,i(Ln% degpr; <1—0;p - (5.12)
L

Let C'>1 be the maximum of the absolute values of the coefficients of the polynomials (i+1)py ,
with ¢=0,1,...,k and k=2,3,...,n. Thus,

ot hit@)] | <cara-atg ] - vk=23. o bet (5.13)

q;d

see (2.3). The same inductive argument as at the end of (1) now shows that (5.8) holds with
C, = n2Ca?.

(3) Finally, suppose |a|=0, i.e. a=(). We show that there exist Cy, Cj, € Q for b,r €Z™ such that

(n+1)b (n+1)b
=) G, L7, ) |Gy <bicy VbeZ (5.14)
r=0 r=0

This implies the claim, since

260 7Tl < 120>l = | (777)] = (70 7") <2 < 2020

for all »<2nb and beZ™T.

Since nDL/L=(1 — L™") in this case, there exist C’ E(@ such that
P DL = () 1 7""‘”] Rt ot
DL =1L TTZ(HW Z|C’ | <2~ H VreR",icz .
7=0 7=0
On the other hand, by (2.5) for each j €Z™ there exist py, ; €u - Q[u]
Hum,j(uw) = (u=1)pm,;(1/u), degpm; <j.

It follows that there exist py; € Q[u] such that

~ 1 _ DL\ ~ . -
h; = Fpk‘,i(l/ ") <L) , degpr; <i—0ip  Viel". (5.15)
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Thus, there exist C’T(],z €Q such that

k—1 k—1 k—1 .
§ L =L FDLY (rnj+1)CY) L 9 <2 T] Tf@”j (5.16)
=0 =0 j=1

for all r€RT and k€ZT, where C'>1 is the maximum of the absolute values of the coefficients of
the polynomials (k+1)py,; with ¢=0,1,...,k and k=1,2,...,n. We show that (5.14) holds with

2 2\"
C@:4< nt > c.
n

This is indeed the case for b=0. Suppose b*>1 and the claim holds for all b<b*. By (2.10), the
inductive assumption, and (5.16), there exist C}. . € Q such that

k=n (n+1)b*
(I)b*) = ((I)b*—k—i-l) DL —
D =) g =) = == rChe L7, 5.17
(% > u (™ D WIH (5.17)
(n+1)b* n (1) (b*—14k) k—1 '
Z Cpr| <C \ T(?;zHCb*—k-i-l,r‘
r=1 k=2 r=0 §=0
n k—1 * .
k=2 j=1 n
n k—1 k-1 b*
* C
<20C) 'y ((2“1‘”) I 0" —k+1+5)- (b*—k+1)!> < 7%*!.
k=2 j=1

Thus, integrating (5.17) and using ®p- € q - Q[[¢]], we find that (5.14) holds for b=5b" as well. [

Remark 5.7. In the above argument, we use that all coefficients of (1—¢)~® are nonnegative
(actually positive) if a >0, non-decreasing with «, non-decreasing with d if « >1, and at least as
large in the absolute values as the coefficients of (1+¢)“.

Corollary 5.8. Let .4, Prc(q) €Q[g]] be as in (2.21) and (2.80). There exists Ca €RT such that
' [[q)p;b(q)ﬂ
(I)O(q) q;d

' [®me(@)],

< bICY H(l—Caq)’b’lﬂq.d Vb, deZt, pelln];

< <m+lcl>!(\cl> ﬁ (1)“Cacn [0-Cay W71 m,deZt, ce(@h)™.

Ic|! c r+1 q.d
r=1

Proof. 1t is sufficient to obtain the first bound for the power series ®,, € Q[[q]], —I<p<n—1-I,
defined in (2.22). If 0 < |a| <n, it follows by induction on b€ Z* and p (from 0 up to n—1—1 and
down to —[) from Lemma 5.6, the j =1 case of (5.9), and Lemma 5.5. For |a] =n, Lemma 5.2
implies that there exists C' € RT such that

[o(@) L (g) .. Inci(@)fn—]ga] < O VYAEZT, ko ku,. .. kny €{0, £1}. (5.18)

By induction on b and |p| (with the base case being Lemma 5.6) along with (2.3) and the j =1
case of (5.11), this implies that

(i)l-l—p;b(Q)
Pole) |

)

< b ! . )" b=lpl/n 7+
<Clb [[(1 Captl) Ld Vb, deZ*,
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for some Chp,, € RT. The same estimate holds if |a| =0, by Lemma 5.6 and (2.3). The second
bound follows directly from Lemma 5.6 and (2.11), along with Lemma 5.5 if 0<|a|<n and (5.18)
if |a|=n. O

Proof of Proposition 5.4. By Corollary 5.8, the absolute value of each nonzero factor [-] in (2.47)
is bounded above by

(e +|co)! [ |co]\ T (b +14+0)! (bF, =Bl Ao N
‘Cv“ Co H T+1 H bl H bo! ’ bérv' Ca H(l—CaQ) H

sen~1(v) " e€E; (F)
where A, (b') = 4m, — bl + ‘b/’E;(F) — ¥

€y °

q;dy

Thus, by (2.45), the absolute value of each nonzero summand (product of factors over v € Ver) in
(2.47) is bounded above by

CIN[(1=Cag) V], 0 (mo+co))! []co] ﬁ 1\ H(b;+1+b’e)!(bj—b’e)!
b! |cyl! Cy ) - ai\r+1 be b ! '

vEVer r=1 ecEdg
Note that
(b +1+b0)!(bF —0.)! (bg +14+05)! 4 b, +bF
2 wmn = 2 e O 2 Uy
be +bd =bZE be +bd =bZ be +bF =bZ

= (bE+1)2% < 4%

Since each tuple b” is a partition of N —3—|Edg|—|b~|—|b*|—||c|| into N ordered parts, where

lell = > lleull,

vEVer

the number of such tuples with [b~|+|b™| and ||c|| fixed is at most

—_Iht
(N—3—|Edg|—|bN!—|1b |—llell + N—1> < 92(N=2)~b~|~Ib*|~le]

Thus, the absolute value of the sum in (2.47) with T, (p’, b’ t), and c fixed is bounded above by

CBN [[ (1-Caq) SN]] my+cD! (e Trf/ 1 \©"
%d o—|lc]| v 1% v =
b! 2 H ( ’Cv|‘ (Cv> H(r+l> )

veVer r=1

Since [1-21n2| < 1, by the Binomial Theorem

2 2"°'H< He)! <|cv\>ﬁ< ))

(€)vever €((Z1)o0)Ver vEVer
_ —(N-2)
_ <2 n ln(lw)>

o0

S -xs)

vEVer

— (2(1-1n2))"?

w=1/2

w

w=1/2

Since b, <b for e € Edg and nonzero summands in (2.47), |b’| < N—3—|Edg|. The number of such

tuples is
(N—3—|Edg\ + |Edg|> < oN-3
[Edg] -
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(d,0)

Thus, the absolute value of the contribution of each trivalent N-marked tree I' to Cpb is bounded
above by

CN (—8N\ 4 CN (SN+d—1\ 4 O;V SNd
b!( p )C’a~ Hmy!:b!( p )ca- Hmv!g —2o8NHdod . TTma!.
vEVer vEVer vEVer

Combining this with Lemma 5.10 below, we obtain the claimed bound for c(dk? ), O

Remark 5.9. In the |a|=0 case (projective space), a bound of the form (N!/b!)CN=3=[Pl can be
obtained using the last description of cl(odf ) in Section 2.4 and (5.14).

Lemma 5.10. There exist C € R such that
aN,lzz Hmv!SC'NN! VN >3,
I' veVer

where the sum s taken over all trivalent N-marked trees.

Proof. Let a1 =1 and

o0

@)= Fpa" € Qllal
N=1

Considering the vertex of an (N+1)-marked tree I' to which the last marked point is attached, we
observe that

k‘:Nl N
k=2 (N1,...,;NE)EPK(N)
A T | an,  an
— NI R Lo =E
(k:—l k:) Z Nt N!
k=2 (N1,...,Ng)EPR(N)

This recursion is equivalent to the condition that
fq
@) =a+f(a) Z = (1-f@)n(1-fa)=-a (5.19)
By the Inverse Function Theorem, f(g) is an analytic function on a neighborhood of ¢=0 and so

an/N! < C¥ for some C €R*. O

Remark 5.11. As noticed by the author for small values of N and confirmed in general by
P. Johnson on Math Overflow, ay_1=(N—2)N=2. By (5.19),

flgg=1-¢e", (5.20)

where W € Q|[[¢]] is the Lambert W function, i.e. the analytic function on a neighborhood of 0€C
defined by
W(q)e" W =q,  W(0)=0.

As can be seen from the Lagrange inversion formula,

= (N—1)N-1
SUCISTPS o 1\2| (—q)V . (5.21)
N=2 )

Along with (5.20), this implies the claim.
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A Existence of Asymptotic Expansions

In this appendix, we show that power series

. i ak](i[_l(akx +rh)
o(h,x,q) =Y gt =L — € Qu(x,h)[[q]] (A.1)
d=0 H < (x—ag+rh) — H(x—ak)>
k=1 k=1

admits an expansion of the form (4.15) and then prove Proposition 2.1. The arguments here are
motivated by [29, Section 2].

Lemma A.1. The power series Yo(h,x,q) admits an expansion of the form

yO(h7 X, Q) = eE(XVq)/h Z q)();b(X) Q)hb (AQ)
b=0

with &, 0,1, Pos2, - - - € ¢Qa(x)[[q]] and Po,0 € 1 + ¢Qu(x)][[g]]-

Proof. Since Yy €1+ qQq(h,x)[[q]], there is an expansion

In Yo (h, %, q) Z Z Cap(x)hiq" (A.3)

d=1 b=bpin(d)

around h=0, with Cyp(x) € Qa(x); we can assume that Cyy . (@) 70 if bmin(d) <0. The claim of
Lemma A.1 is equivalent to the statement byi,(d) >—1 for all d€Z™; in such a case

= Z Ca,—1(x)q*
d=1

Suppose instead byin(d) < —1 for some deZ*. Let
d* =min{d€Z": byin(d)<—1} >1,  b* = byin(d*) < 2. (A.4)
The power series ) satisfies the differential equation
k=n I=1 aj—1 k=n
{ H (x—ay + hD) — g H H (axx-+aghD+rh) }yo(h,x, q) = H(x—ak) - Yo(h,x,q), (A.5)
k=1 k=1 r=0 k=1

where D:qdiq. By (A.3), (A.4), and induction on the number of derivatives taken,

{kﬁn (x—ay + kD) } Yo(h, %, q)

k:L:n =1+ Z dxcda: hb*H G + A(h,x,q),
T (x-cu) - (.0 =
I=1 ax—1 - (A.6)
{ H H (akx—i—ath—i—rh)} yo(h,x, q)
q== llrlak 1 = B(h,x,9),

k]_[l H (agx+rh) - Vo(h,x,q)
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for some
A, B e QQa(h’ X)O [ [QH + qd* hb*+2@a(hv X)O [ [QH + qd*—HQa(hv X) HQH )

where Qq (R, x)o C Qu(h,x) is the subring of rational functions in «, h, and x that are regular at
h=0. Combining (A.5) and (A.6), we conclude that Cg« p- =0, contrary to the assumption. O

Corollary A.2. The power series Fy€Q(w)|[q]] defined by (2.15) admits an asymptotic expansion
of the form (2.9).
Proof. The existence of an asymptotic expansion (2.9) is equivalent to the existence of an expansion
of the form (4.15) for

Fo(h™,q) = Wo(h1,9)] ,_, -
Thus, Corollary A.2 follows from Lemma A.1. O

Remark A.3. It is possible to give a somewhat different proof of Corollary A.2, without using
Lemma A.1, which is more in line with [29]. By [29, Lemma 1.3], an element H € P admits an
asymptotic expansion (2.9) if M*H = H for some k€ Z*. By [26, Lemma 4.1}, M"F =F if |a|=

In the v4 > 0 case, the coefficients 6](902 in (2.18) with d > 1 and vad < p—s are determined by
the requirement that the resulting function Fj,(w, ¢) is holomorphic at w=0 with value 1€ Q[[q]];

see (2.17). On the other hand, F,,=Fj if these coefficients are given by

ZES,HS“’ = ﬁ ﬁ (apw—+r), (N:,(ff()S:O Vd>2.

Since Fj is holomorphic at w=0 with value 1€ Q[[q]], it follows that indeed F;,=Fp. The proof of
[29, Lemma 1.3] can be adjusted to show that this in turn implies that F admits an asymptotic
expansion of the form (2.9).

In the remainder of this appendix, we prove Proposition 2.1. Since F = D!'Fy and Fj admits an
asymptotic expansion of the form (2.9), so does F. The function F(w,q) defined by (1.4) satisfies

the ODE
k=l rT=ag
{D’ZL} —w" _qua H H (aka+r)}F: 0’
k=1 r=1

where Dw:w—i—qd%. Thus, the power series &, &g, @1, ... introduced in Proposition 2.1 satisfy

k=l r=ay, 00
{f)g —w" — quw" H H (arDy + 7‘)} Z dy(q)w™’ =0, (A.7)
b=0

k=1 r=1

where Dy, = (1+¢' (q))w+qd%. The resulting equation for the coefficient of w™ gives

{(1+€(q))" — 1 — a?q(1+€'(9)) 2} Do (q) = 0. (A.8)

Since ®((0) =1, combining (A.8) with the condition &’'(0)=0 and comparing with (2.2), we obtain
the first equation in (2.10).

By the above, D, = L(q)w+qd%. Proceeding as in [29, Section 2.4], but using (5.7), we find that

k=s i=k

(Yot

k=0 =0
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where H,, ; are the rational functions defined by (2.5). Thus,

k=l r=ay, n

L(q)”{Dg —w" — quw" H H (akbw + T)} = Z(Lw)"_kﬁk,

k=1 r=1 k=1

where £ is the differential operator of order k given by (2.7). It follows that the second equation
in (2.10) is the coefficient of (Lw)" '~ in (A.7) multiplied by L(g)".

B Some Combinatorics

Lemma B.1. The following identities hold:

= b byt ..+ b _
3 H(b(>:<1+ b/* > YV meZr, by,... by, b €LT

b/ Py (b) i=1 N
00 t=B B
Z(—l)b@) H (t+b) = (—1)Ps!< ) V B,p,s€Z",
b=0 t=B—s+1 5P
> m+p 1 o
Z(—l)p< )‘IlpzmH v meZt.
= p (1+W)

The first two statements of this lemma are proved in [30, Appendix A]. The last statement is a
special case of the Binomial Theorem; here is a direct argument:

()=l e S ) e

p p=0 p=0

C(=pmfda™ 1 1
om! AV 14T (14 0)mtL

Lemma B.2. If (, Uy, ¥y,...€QQ4(h)[[Q]] and

1+ 2*(h,Q) = e<<Q>/h<1 +§:\Pb(Q)hb>, (B.1)
b=0
then
= (! +m) (’“Z’”’ (D" g [tz )
—r *Z*(h, Q)
m’z m’! bEPm/(rnZ—B+m’) P} bk' h:O{ } (B 2)
_ _qylel+lel (@ tlel ( B ) Tl < v,(Q) )
ce%%m(( Ve D S ten) L e G m@)
for allm,BeZ™.
Proof. If c€(Z1)>®, let
Ue = H v w(c) = H (r+1)H.
r=1 r=1
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We show that each Wi W¢, with ¢o €Z™, enters with the same coefficient on the two sides of (B.2).
For ¢y €Z* and c€(ZT)>, let
S(co,¢) = {(r,j) €L xZ": (r,j)e{r} x[c;] VreZ"}.

This is a finite set of cardinality co+|c|. By (B.1), for all be ZT

b (%) ¢(Q), i b=0;
m{n bz (h,Q)} = z(; » (r+1—b)!‘p’"(Q)+ {0’ .

Thus, for each be (Z+)%(€0¢) and every choice of disjoint subsets Sy, Sy, ... of [m/], where
m' =B —m+ |b|,

of cardinalities co, ¢y, ..., the term W’W® appears in the m/-th summand on the left-hand side
of (B.2) with the coefficient

(m/+m)!cm’—co—|c| 11 <(—1)b”. gt >

m'! br,j! (r+1_br,j)!

(r,j)€S(co,c)

¢B—mtllel (m/+m)! r+1
Sttt (57

w(c) m/'! b

(B.3)

(r,j)€S(co,c)

Since the number of above choices is

m’ m’!
(co,c, m’—co—\c|> = cole!(m/ —co—c|)!”

it follows that the coefficient of Wi"W¥® on the left-hand side of (B.2) is

) ((_1)|b tl_[B(t+|b|) 11 <7"“>). (B.4)

be(Z+)5(c0-0) t=B—m—co—|c|+1 (rj)eS(co.c) 7

CB*m+”CH

w(c)eple!

If (co,c)=(0,0) and thus (ZT)5(€0:°) = {0}, this expression reduces to m!(ﬁ)(B_m. Otherwise,
(B.4) becomes

Bomtel] & c t=B
Cc lelw(c) > <(_1)b< o+\cll+||c||> 11 (Hb))
0% b=0 t=B—m—cp—|c|+1

B
(_1)CQ+C|+HC(m—|—co—|—|c|)!< > )
m—||c|

CB—m-l—HcH

"~ colclw(c)

by the first two statements of Lemma B.1. Lemma B.2 now follows from the last statement of
Lemma B.1. O

16The factors in the m’-fold product in (B.2) that contribute ¥, are indexed by the elements of S,; the j-th such
factor arises from hgﬁo{h*br,jz*(h, @)} with r > b, ;—1. This leaves m’ —co —|c| factors that contribute ((Q) from

797{0{2*()‘1, Q)}. The first expression in (B.3) is defined to be 0 if b, ; >7+1 for some (r, j) € S(co, c).
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For any d€Z" and t€Z, let

(2) —= (B.5)

For r€Z* and p€(Z*)", define w, € Q[a] and C,., €Q by
wy = Za;’ = Z Crpoitot? ... 60,
=1 pe ZJr
If 1,72 € [n] with 71 #7r9 and by, by €Z7T, let

bi, if =T

p = (p17 e 7pn)7 pT‘ = { ngl;lq:;m) = Cb1r1+b2r2;p . (BG)

0, otherwise;

Thus, Cﬁlfl;?) is the coefficient of Ublgb? in the expansion of W,y +byr, in terms of products of the

modified (by sign) elementary symmetric polynomials 6,. If by <0 or by <0, set C’,SII’,I,ZSQ) =0.

Lemma B.3. If r1,7 € [n] with r1#ry and by, by €ZT with by +by #0,

bi+by—1 bi+by—1
(b1,b2) _ 1 2 1 2
cityy = (") (LY,

Proof. If by €Z™ and a4, ..., q, are the n roots of the polynomial o —a™ " = o "1 (0/’1 —1),

71,72

i=n
Clig) = Za?m =717+ (n—ry) - 0P =y
i—1

thus, the claim holds when either by =0 or by =0. If by, by €Z™T,

biri+bara—1

wb1r1+b2r2 = E a—rwb1r1+b2r27r + (b1T1+b2T2)a—blrl+b2r2
r=1

by Newton’s identity [2, p577]. This gives
Ol = OOt ol Wby ezt

Along with the by =0 or by =0 case, this implies the claim by induction. O

Lemma B.4. The power series L€ 1+qQ[[q]] defined by (2.2) satisfies
L(g)ad+nt d+t—1
|:|: n (CJ) :|:| _ (aa)d< + ) (B?)
|a| + VaL(Q)n q;d d

for all deZ* and t€Z.
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Proof. In the two extremal cases, by (2.3)

nL(g)="" [+, if a|=0;
la| + vaL(q)” | (1—a?q)t, if |aj=n.

Thus, the claim in these two cases follows from the binomial theorem; so, we can assume that
0 < |a] < n. Replacing a®q by ¢ in (2.2), we observe that it is sufficient to prove (B.7) with L
defined by (2.2) with a? replaced by 1 and |a| by some a € Z" with a <n; thus, va=v=n—a.

With these reductions, for each n-th root of unity { €C let

L¢(q) = CL(¢“q) € Q[[q]]-

Then,
1 L¢(q)
Le(q)" —qLe(g)* =1 =
<ta) <ta) a+vLe(q)"  qle(q)*!
vtnt (raNd_ d nL(g)" ™ L¢(g) i+
¢t ()t = ¢t = [[ - SV DAEE
(") a+vL(@)"] .4 42;1 a+vLc(q)" ad

where / denotes qdiq as before. Combining these two conclusions, we find that

nL(q)ud+ntﬂ ﬁ d41 t—1 Ll((‘])
e _ Lc(CI)V( +1)+n(t—1) Z¢ M/ . (B.8)
[[a +VL(@)" ] 4a anzjl L@ ]

If v(d+1)+n(t—1)=0, this gives

nL(q)yd+nt _ .
HHVL(W}] q;d_(d%—l)g:l [ Le(9)] gy = (d+1) ln<<l_[1Lc(Q)> "

= (d+1) [In(-1)"""] ., =0,

since {L¢}¢en—1 is the set of the roots of /" — ¢f* —1 = 0. Since v <n, our assumption on (d,t)
implies that 0 <d+t—1<d, and so the right-hand side of (B.7) also vanishes. If v(d+1)+n(t—1) >0,
(B.8) and Lemma B.3 give

nL(g)" 4t d+1 (d+1)+n(t—1)
— L v n
Ha +vL(Q)" ]| 4 v(d+1)+n(t-1) Z H <(a) :|:|q;d—‘,—]_

(=1
_ d+1 oldire-1) _ (A=l
A1) £ n(i—1) v i )

as claimed (the last equality holds even if ¢ <0). If v(d+1)+n(t—1) <0, (B.8) and Lemma B.3 give

nL(q)ud—l—nt B d+1 L a(d+1)—n(d+t)
o)~ s e 2 |’<L<<q>)

d+1 (d+1,—(d+1)) (_1)d+1 af—t
= ’ —1 = —]_
V(d+1) + n(e—1) on DT =0, )

q;d+1
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since {1/L¢}¢n—1 is the set of the roots of £" + ¢f¥ — 1 = 0; the last equality holds even if d+¢>0.

Since p .
—t -
—1)¢ —
() -(")
(B.7) holds in this last case as well. O
Corollary B.5. The power series L €1+qQ[[q]] defined by (2.2) satisfies

[ ] =S (TS e

i

) =

for all deZ* and k,t€Z.

Proof. For d=0, both sides of (B.9) vanish. By (5.7), the k=0 case of (B.9) reduces to Lemma B.4.
For k#0, by (5.7) and the Binomial Theorem

H nL(q)uad+nt -L,(Q)H e nL(q)ya(d—1)+n(t+1). 1
(|a|+I/aL(Q)n)k L(q) g:d a ’a|+VaL(Q)n (n_i_yaaaqL(q)la‘)k s

i dz nL(q)Va(d—l—r)+n(t+l+r) éaa r
P 2+ 7l (q)" W)
qg;d—1—r

The claim now follows from Lemma B.4. O

For p,d€Z, let [pla, [Pla, 7a(p), ta(p) € Z be as in (2.41). In particular,

(Td—l(p)_Td(p)a td(p)) € {(07 0)7 (17 0)’ (Oa 1)}7 (B.lO)

1, ift =0 and 19(p)=71(p);
L —t1(p) — 7o(p) + 11(p) = 1(p>, o(p)=7(p) (B.11)
0, otherwise.
Let A=a? for the remainder this section.
Lemma B.6. For all dEZ“‘, pEZ, and f:7?> — R,
gld2)
Z [[p]]dz [Play —vad: [[p]]d27[[pﬂd2_yad2f(7'd2 (), ta, (p))
di+da=
d1,d2>0
f(o(p) to(p)), if d=0; (B.12)
=4 —Al- To( )+71(p) —t1(p) f(11(p), t1(d)), if d=1;
0, if d>2.

Proof. The d=0 case of (B.12) is immediate from 6,(3(2 =0ps. If 70(p) =74(p) and t4(p) =0, (B.12)
reduces to [27, (2.9)]. In general, let df, ..., d; €Z" be such that

70(p) = Taz-1(p) > 743 (p) = Taz—1(p) > a3 (p) = Taz-1(p) ... > Td;(p) = 74(p);
if 7o(p) =74(p), k=0. Let dg=0 and d} , ; =d+1. If 1 <i<k, then [p]s:—1 <Va, [pla: <l+Va, and so

(d dz)

di_; <dp<d; — [Pla, — va(d—d2) <0 = Clplay [play —va(d—dz) = 0;
. . R o)
di <do<d;,, = [Pla, — Vada <1 = [[pﬁdz,[[p]dQ vady = U
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Thus, all summands on the left-hand side of (B.12) vanish if k0. Finally, if d>0 and k=0, but
ta(p)=1, then [p]q, [pla <!, and so

~(d) _ N =(d—d2) _ _
C[[ﬁ]]d,[[ﬁ]]d—llad = 0; [[p]]dQ — Va(d—dg) <l = C[[p]]d2,[[p]]d2—l/a(d—d2) =0 Vde=0,1,...,d—1.

Thus, all summands on the left-hand side of (B.12) vanish in this case as well. In light of (B.11),
this confirms (B.12). O

Lemma B.7. For alldeZ* and peZ,

Z é(dl) 6(d2)
[play+ds > Play+dg —vadi “[Blay+ds [Py +dg —vad2

dePy(d)
Ada <d3 +Td2+d3 (p) - td2+d3 (p)) nL(Q)Vad4_an2+d3 ®) = 5d 0-
ds PEDATE I

(B.13)

Proof. The d=0 case is clear; so we assume d>0. Using Lemma B.6 to sum over d;+ds=d’' with
d' fixed, we find that the left-hand side of (B.7) equals

nL(q)uad—nTo (p)
al+val(g)™ |
q;d

3 (T 0) b)) i) 0= 1)) |lnL<q>”ad4—Ws<p>ﬂ
d

dyda=d d3—1 ds la|+val(e)™ |
1<d3<d
By (B.10),
d3— 1474, (p) —ta; () ds7as—1(p) +(d3—1)(tas (P) —7as (P)) _ (d3—1+7a,-1(p)
d3—1 d3 d3 .
It follows that the left-hand side of (B.13) equals
d—l—To(p) d d3—1+7‘d 71(])) d4—1—7’d (p)
Ad A 3 3 .
() s (M ) ey
ds+ds=d
1<ds<d
see also Lemma B.4. By induction on s=0,1,...,d—1,
Z d3—1+7'd3,1(p) d4—1—7’d3(p) _ (_1)5 d—1 d—1—s +Td,175(p)
d3 d4 S d .
ds+ds=d
d—s<d3<d
Setting s=d—1 in the last identity, we conclude that the sum in (B.14) vanishes. O

Corollary B.8. For all deZ*, p,t€Z, and f €R][[q]],

Z é(dl) 6(d2) (aa)dg d3+Td2+d3 (p)_tderds (p)—t
[Play+dg>[Plag+dg —vadi ~[Blay+ds [Play+dg —vad2 ds

dePy(d)
§ ﬂnL(q)uadz;ﬂm(tTd2+d3(P))f(q)m } _ |:|:nL(Q)Vadf(Q):H |
q;da a:d

|a|+VaL(Q)n |a|+VaL(Q)n
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Proof. Replacing p with p—nt, we can assume that t=0. The d=0 case is clear; so we assume that
d>1 and that the above identity holds with d replaced by any nonnegative integer d’ < d. The
left-hand side of this identity is given by

where

LHSd = Z Cd/7d// [[f(q)]]q;d// y

d'+d"=d
d,7d,/20

() <d3 +Tdy+ds (CZZ —tdy+ds (p)>

nL(q) a4 i ()
X .
|la+vaL(q)" d
4

)

_ =(d1) =(d2)
Carar = Z( ){C[[p]]d2+d3,[[P]]d2+d3—l’adlc[[ﬁﬂd2+d37[[ﬁﬂd2+d3—l/ad2
dePy(d

So, it is sufficient to show that

nL(g)"?
Cd’7d” = I Y]
lal+val(q)" ] .0
for d =0,1,...,d. For d’ <d, this is the case by the inductive assumption applied with f:Ll’ad".
For d'=d, this is the case by Lemmas B.7 and B.4. O

C Summary of important notation

a (at,...,ap)

lal, (a), etc. ar+...+ap, ay...ap: p2

cg'fi;) main non-equivariant structure coefficients: (2.33), (2.35), (2.47)

CS])D main equivariant structure coefficients: (3.6), (4.32), (4.35)

Ap normalized products of F),: (2.20)

F hypergeometric series (1.4)

F, linear combinations of derivatives of F: (2.16), (2.18)

I.(q) w=0 reduction of derivatives of F: (1.5)

J(q) mirror map power series: (1.5)

[m], [lm], lm]|; {1,2,...,m}, {0,1,...,m—1}, {l,1+1,...,m—1}

L(q), L(x,q) power series in ¢ related to F' and its equivariant version: (2.2), (4.36)
Mo, NP1 d) moduli space of stable N-marked genus 0 degree d morphisms to CP"~!
Pn(d) set of ordered partitions of d€Z™ into nonnegative integers: (1.11)

P (IN]) set of partitions of [IV] into m nonempty subsets: p10

]mel C]mel

P4(q), (I)p;b(Q)a
CI)m,c

Ui(q), Yp(q)
\I/m,c

Z(-,- )

coefficients of expansion of F(w,q), F,(w,q) around w=o0: (2.9), (2.21)
product of ®;’s: (2.30)

equivariant versions of ®;(q), ®p.p(q): (4.11), (4.12)

equivariant version of ®,, ¢: (4.19)

generating functions for genus 0 invariants: (2.1)

Z(--,) equivariant version of Z(-,-,-): (3.3)
Zy(-,°) a coefficient of N =2 case of Z(-,-,-): (3.4)
Z, equivariant geometric version of Ap: (3.5)
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