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Abstract

Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau
5-folds. We find recursions for meeting numbers of genus 0 curves, and we determine the contri-
butions of moving multiple covers of genus 0 curves to the genus 1 Gromov-Witten invariants.
The resulting invariants, conjectured to be integral, are analogous to the previously defined
BPS counts for Calabi-Yau 3 and 4-folds. We comment on the situation in higher dimensions
where new issues arise.

Two main examples are considered: the local Calabi-Yau P2 with normal bundle ⊕3
i=1O(−1)

and the compact Calabi-Yau hypersurface X7 ⊂ P6. In the former case, a closed form for our
integer invariants has been conjectured by G. Martin. In the latter case, we recover in low
degrees the classical enumeration of elliptic curves by Ellingsrud and Strömme.

Contents

0 Introduction 2
0.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Elliptic invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.4 BPS states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.5 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Genus 0 invariants 6
1.1 Configuration spaces of genus 0 curves . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Genus 0 counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Justification of degree reducing recursions . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Chern classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 The numbers (2A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 The numbers (2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.5 The numbers (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Genus 1 counts 23
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Strata with ghost principal component I . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Strata with ghost principal component II . . . . . . . . . . . . . . . . . . . . . . . . 30

1



2.5 Strata with effective principal component . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Local P2 37
3.1 Gromov-Witten invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Martin’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

0 Introduction

0.1 Overview

Let X be a nonsingular projective variety over C. Let Mg,k(X,β) be the moduli space of genus g,
k pointed stable maps to X representing the class β ∈ H2(X,Z). Let

evi : Mg,k(X,β) −→ X

be the evaluation morphism at the ith marking. The Gromov-Witten theory of primary fields
concerns the invariants

Ng,β(γ1, . . . , γk) =

∫

[Mg,k(X,β)]vir

k∏

i=1

ev∗
i (γi) ∈ Q, (0.1)

where γi ∈ H∗(X,Z). The relationship between the Gromov-Witten invariants and the actual
enumerative geometry of curves in X is subtle. An overview of the subject in low dimensions can
be found in the introduction of [10].

For Calabi-Yau 3-folds, the Aspinwall-Morrison formula [1] is conjectured to produce integer
invariants in genus 0. A full integrality conjecture for the Gromov-Witten theory of Calabi-Yau
3-folds was formulated by Gopakumar and Vafa in [5, 6] in terms of BPS states with geometric
motivation partially provided by [14]. The Aspinwall-Morrison prediction has been extended to all
Calabi-Yau n-folds in [10]: the numbers n0,β(γ1, . . . , γk) defined by

∑

β 6=0

N0,β(γ1, . . . , γk)q
β =

∑

β 6=0

n0,β(γ1, . . . , γk)

∞∑

d=1

1

d3−k
qdβ (0.2)

are conjectured to be integers.
Let X be a Calabi-Yau of dimension n ≥ 4. Since Gromov-Witten invariants of genus g≥2 of

X vanish for dimensional reasons, only integrality predictions for genus 1 invariants of X remain
to be considered. The analogue of the genus 1 Gopakumar-Vafa integrality prediction for Calabi-
Yau 4-folds has been formulated in [10]. Here, we find complete formulas in dimension 5 and
reinterpret the dimension 4 predictions. The geometry becomes significantly more complicated in
each dimension. We discuss new aspects of the higher dimensional cases.

The relationship between Gromov-Witten theory and enumerative geometry in dimensions
greater than 3 is simplest in the Calabi-Yau case. The Fano case, even in dimension 4, involves
complicated higher genus phenomena which have not yet been understood.
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0.2 Elliptic invariants

If X is Calabi-Yau, the virtual moduli cycle for M1(X,β) is of dimension 0. We denote the
associated Gromov-Witten invariant by N1,β,

N1,β =

∫

[M1(X,β)]vir

1 ∈ Q.

Integrality predictions for Calabi-Yau n-folds are obtained by relating curve counts to Gromov-
Witten invariants in an ideal Calabi-Yau X. All genus 1 curves in X are assumed to be nonsingular,
super-rigid1, and disjoint from other curves. Each genus 1 degree β curve then contributes σ(d)/d
to N1,dβ for every d∈Z+ via étale covers, where

σ(d) =
∑

i|d

i.

The genus 1 to genus 1 multiple cover contribution is independent of dimension.
If X is an ideal Calabi-Yau 3-fold, the genus 0 curves in X are also nonsingular, super-rigid,

and disjoint. The contribution of a genus 0 degree β curve to N1,dβ is then the integral of an Euler
class of an obstruction bundle on M1(P

1, d),

∫

[M1(P1,d)]vir

e(Obs) =
1

12d
,

calculated in [14]. Thus, if X is an ideal Calabi-Yau 3-fold,

∑

β 6=0

N1,βq
β =

∑

β 6=0

n1,β

∞∑

d=1

σ(d)

d
qdβ −

1

12

∑

β 6=0

n0,β log(1 − qβ) , (0.3)

where the enumerative invariant n1,β is defined by (0.3) and the genus 0 invariant n0,β is defined
by the Aspinwall-Morrison formula (0.2). The invariants n1,β are then conjectured to be integers
for all Calabi-Yau 3-folds.

If X is an ideal Calabi-Yau 4-fold, embedded genus 0 degree β curves in X form a nonsingular,
compact, 1-dimensional family Mβ. The moving multiple cover calculation of Section 2 of [10]
shows that Mβ contributes χ(Mβ)/24d to N1,dβ for every d∈Z+. The calculation is done in two
steps. First, the moving multiple cover integral is done assuming every genus 0 degree β curve is
nonsingular. Second, the contribution from the nodal curves is determined for a particular, but
sufficiently representative, Calabi-Yau 4-fold X by localization. For an ideal Calabi-Yau 4-fold X,

∑

β 6=0

N1,βq
β =

∑

β 6=0

n1,β

∞∑

d=1

σ(d)

d
qdβ −

1

24

∑

β 6=0

χ(Mβ) log(1 − qβ) . (0.4)

The topological Euler characteristic χ(Mβ) is determined by

χ(Mβ) = −n0,β(c2(X)) +
∑

β1+β2=β

mβ1,β2 ,

1A nonsingular curve E ⊂ X with normal bundle NE is super-rigid if, for every dominant stable map f : C → E,
the vanishing H0(C, f∗NE) = 0 holds.
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where mβ1,β2 is the number of ordered pairs (C1, C2) of rational curves of classes β1 and β2 meeting
at point, see Section 1.2 of [10].

The meeting numbers mβ1,β2 can be expressed in terms of the invariants n0,β(γ) through a
recursion on the total degree β1 +β2 by computing the excess contribution to the topological
Kunneth decomposition of mβ1β2 , see Sections 0.3 and 1.2 of [10]. Along with these recursions,
relations (0.2) and (0.4) effectively determine the numbers n1,β in terms of the genus 0 and genus 1
Gromov-Witten invariants of X. For arbitrary Calabi-Yau 4-folds, equation (0.4) is taken to be
the definition of the numbers n1,β which are conjectured always to be integers.

If X is an ideal Calabi-Yau 5-fold, embedded genus 0 degree β curves in X form a nonsingular,
compact, 2-dimensional family Mβ . However, as the nodal curves are more complicated, the
localization strategy of [10] does not appear possible. By viewing N1,dβ as the number of solutions,
counted with appropriate multiplicities, of a perturbed ∂̄-equation as in [4, 11], we show in Section 2
that Mβ contributes

1

24d

∫

Mβ

(
2c2(Mβ)−c21(Mβ)

)

to N1,dβ for every d∈Z+. Thus, for an ideal Calabi-Yau 5-fold X,

∑

β 6=0

N1,βq
β =

∑

β 6=0

n1,β

∞∑

d=1

σ(d)

d
qdβ −

1

24

∑

β 6=0

∫

Mβ

(
2c2(Mβ)−c21(Mβ)

)
· log(1 − qβ) . (0.5)

The last term in (0.5) may be written in terms of various meeting numbers of total degree β
via a Grothendieck-Riemann-Roch computation applied to the deformation characterization of the
tangent bundle TMβ. We pursue a more efficient strategy in Sections 1 and 2. Degree 1 maps
from genus 0 curves to degree β curves in X are regular. Thus, equation (2.15) in [23] expresses
their contribution to N1,β in terms of counts of m-tuples of 1-marked curves with cotangent ψ-
classes meeting at the marked point. The ψ-classes can be easily eliminated using the topological
recursion relation at the cost of introducing counts of arbitrary meeting configurations of rational
curves in X. The latter can be recursively defined as in the case of mβ1,β2 in dimension 4. Relations
(0.2) and (0.5) then reduce the numbers n1,β to functions of genus 0 and genus 1 Gromov-Witten
invariants.

Let X be an arbitrary Calabi-Yau 5-fold. Equation (0.5) together with the rules provided in
Sections 1 and 2 for the calculation of

∫

Mβ

(
2c2(Mβ)−c21(Mβ)

)

in terms of the Gromov-Witten invariants of X define the invariants n1,β. We view n1,β as virtually
enumerating elliptic curves in X.

Conjecture 1 For all Calabi-Yau 5-folds X and curve classes β 6= 0, the invariants n1,β are
integers.

0.3 Examples

If the Gromov-Witten invariants ofX are known, equation (0.5) provides an effective determination
of the elliptic invariants n1,β. We consider two representative examples.
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d n1,d d n1,d d n1,d d n1,d d n1,d d n1,d

1 0 11 -225 21 3025 31 -14400 41 -44100 51 105625
2 0 12 -19 22 3870 32 0 42 -51590 52 -7119
3 -1 13 -441 23 -4356 33 18496 43 -53361 53 -123201
4 0 14 630 24 0 34 22140 44 -3645 54 0
5 -9 15 784 25 0 35 23409 45 0 55 142884
6 20 16 0 26 7560 36 0 46 74250 56 0
7 -36 17 -1296 27 0 37 -29241 47 -76176 57 164836
8 0 18 0 28 -594 38 34560 48 0 58 187740
9 0 19 -2025 29 -11025 39 36100 49 0 59 -189225

10 162 20 -153 30 -13412 40 0 50 0 60 12628

Table 1: Invariants n1,d for O(−1) ⊕O(−1) ⊕O(−1) −→ P2

The most basic local Calabi-Yau 5-fold is the total space of the bundle

O(−1) ⊕O(−1) ⊕O(−1) −→ P2. (0.6)

The balanced property of the bundle is analogous to the fundamental local Calabi-Yau 3-fold

O(−1) ⊕O(−1) −→ P1.

As in the 3-fold case, we find very simple closed forms in Section 3.1 for the genus 0 and 1 Gromov-
Witten invariants of the local Calabi-Yau 5-fold (0.6).

We have computed the invariants n1,d via equation (0.5) up to degree 200. All are integers.
Even the first 60, shown in Table 1, suggest intriguing patterns. For example, n1,d = 0 for all
multiples of 8. G. Martin has proposed an explicit formula for n1,d which holds for all the numbers
we have computed. We state Martin’s conjecture in Section 3.2.

The Calabi-Yau septic hypersurface X7 ⊂ P6 is a much more complicated example. Using the
closed formulas for the genus 1 and 2-pointed genus 0 Gromov-Witten invariants provided by [23]
and [22] respectively, we have computed n1,d for d≤ 100. All are integers. The values of n1,d for
d ≤ 10 are shown in Table 2.

The invariants n1,d for d ≤ 4 agree with known enumerative results for X7. The invariants n1,1

and n1,2 vanish by geometric considerations. Since every genus 1 curve of degree 3 in P6 is planar,
the number of elliptic cubics on a general X7 can be computed classically via Schubert calculus.
The classical calculation agrees with n1,3. Using the expression of non-planar genus 1 curves of
degree 4 as complete intersections of quadrics, Ellingsrud and Strömme have enumerated elliptic
quartics on X7 in Theorem 1.3 of [3]. The result agrees with n1,4. To our knowledge, the numbers
n1,d are inaccessible by classical techniques for d ≥ 5.

0.4 BPS states

The integer expansion (0.5) can be alternatively written as

∑

β 6=0

N1,βq
β = −

∑

β 6=0

ñ1,β · log(1 − qβ) −
1

24

∑

β 6=0

∫

Mβ

(
2c2(Mβ)−c21(Mβ)

)
· log(1 − qβ) . (0.7)

The integrality condition for the invariants ñ1,β is equivalent to the conjectured integrality for n1,β.
We view the invariants ñ1,β as analogous to the BPS state counts in dimensions 3 and 4.
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d n1,d

1 0
2 0
3 26123172457235
4 81545482364153841075
5 117498479295762788677099464
6 126043741686161819224278666855602
7 117293462422824431122974865933687206294
8 100945295955344375879041227482174735213546636
9 82898589348613625712387472944689576403215969839772

10 66074146583335641807745540088333857250772567526848951526

Table 2: Invariants n1,d for a degree 7 hypersurface in P6

0.5 Higher dimensions

The family Mβ of embedded genus 0 degree β curves in X is nonsingular and compact for ideal
Calabi-Yau n-folds for n=3, 4, 5. The moving multiple cover results for n= 3, 4, 5 can be summa-
rized by the following equation. The contribution of Mβ to the genus 1 degree dβ Gromov-Witten
invariant is

Cβ(dβ) =
1

24d

∫

Mβ

(
2cn−3(Mβ)−c1(Mβ)cn−4(Mβ)

)
. (0.8)

For dimension 6 and higher, the family of embedded genus 0 degree β curves in X is not compact
(multiple covers can occur as limits) even in ideal cases. Nevertheless, we expect a contribution
equation of the form of (0.8) to hold. The result should yield integrality predictions in higher
dimensions.

Since the complexity of the Gromov-Witten approach increases so much in every dimension,
an alternate method for dimensions 6 and higher is preferable. It is hoped a connection to newer
sheaf enumeration and derived category techniques will be made [15, 16].
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1 Genus 0 invariants

1.1 Configuration spaces of genus 0 curves

Let X be a Calabi-Yau 5-fold. We specify here what conditions an ideal X is to satisfy with respect
to genus 0 curves. We denote by

H+(X) ⊂ H2(X,Z) − 0
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the cone of effective curve classes. If β, β ′∈H+(X), we write β ′<β if β−β′ is an element of H+(X).
If J is a finite set and β ∈ H+(X), we denote by M0,J(X,β) the moduli space of genus 0,

J -marked stable maps to X representing the class β. For j∈J , let

Lj −→ M0,J(X,β)

be the universal tangent line bundle at the jth marked point. Denote by

Dj ∈ Γ
(
M0,J(X,β),Hom(Lj , ev

∗
jTX)

)

the bundle section induced by the differential of the stable maps at the j th marked point.
If Σ is a curve, a map u : Σ−→X is called simple if u is injective on the complement of finitely

many points and of the components of Σ on which u is constant. We will call a tuple (u1, . . . , um)
of maps ui : Σ−→X simple if the map

m⊔

i=1

Σi −→ X, z −→ ui(z) if z ∈ Σi,

is simple. If J is a finite set and β∈H+(X), let

M
∗
0,J(X,β) ⊂ M0,J(X,β)

be the open subspace of stable maps [Σ, u] such that Σ is a P1 and u is a simple map.
If J1 and J2 are two finite sets and β1, β2∈H+(X), we denote by

M
∗
0,(J1,J2)

(
X, (β1, β2)

)
⊂

{
(b1, b2)∈M

∗
0,{0}tJ1

(X,β1)×M
∗
{0},0tJ2

(X,β2) : ev0(b1)=ev0(b2)
}

the subset of simple pairs of maps. Similarly, if β1, β2, β3∈H+(X), let

M
∗
0,∅

(
X, (β1, β2, β3)

)
⊂

{
(b1, b2, b3)∈M

∗
0,(∅,{1})(X, (β1, β2))×M

∗
0,{0}(X,β3) : ev1(b2)=ev0(b3)

}

be the subset of simple triples of maps. If X is an ideal Calabi-Yau 5-fold satisfying Conditions 1
and 2 below, there are no other configurations of simple genus 0 curves in X, see Figure 1.

Denote by M
∗
0,J(X,β) ⊂ M0,J(X,β) and

M
∗
0,(J1,J2)

(
X, (β1, β2)

)
⊂ M0,{0}tJ1

(X,β1)×M{0},0tJ2
(X,β2),

the closures of M∗
0,J(X,β) and M∗

0,(J1,J2)

(
X, (β1, β2)

)
. Let

π1, π2 : M
∗
0,(J1,J2)

(
X, (β1, β2)

)
−→ M0,{0}tJ1

(
X,β1

)
,M0,{0}tJ2

(
X,β2

)
, (1.1)

be the component projection maps.

Condition 1 If u : P1−→X is a simple holomorphic map, H1
(
P1, u∗TX) = 0.

By Condition 1, M∗
0,J(X,β) is a nonsingular variety of the expected dimension 2+|J |.
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β

β1

β2

β1

β2

β3

Figure 1: The three possible configurations of rational curves in an ideal Calabi-Yau 5-fold. The
label next to each component indicates the degree.

Condition 2 For all β1, . . . , βk∈H+(X), finite sets J1, . . . , Jk, and a partition of J1t. . .tJk into
nonempty disjoint subsets I1, . . . , Im, the restriction of the total evaluation map2

ev:
k∏

p=1

M
∗
0,Jp

(X,βp) −→
k∏

p=1

XJp , ev
(
(bp)p∈[k]

)
(p,j)

= evj(bp) ∀ p∈ [k], j∈Jp,

to the open subspace of simple tuples is transverse to the diagonal

{
(x(p,j))p∈[k],j∈Jp

: x(p,j) =x(p′,j′) if (p, j), (p′, j′)∈Iq for some q
}
.

By Condition 2, M∗
0,(∅,∅)

(
X, (β1, β2)

)
and M∗

0,∅

(
X, (β1, β2, β3)

)
are nonsingular of dimensions 1

and 0, respectively. Furthermore, all simple genus 0 maps with reducible domains deform to curves
with nonsingular domains. Furthermore, for all β ∈ H+(X), the open subspace of M0,J(X,β)
consisting of simple maps is nonsingular.

Condition 3 For all β∈H+(X), the restriction of the bundle section D1 to M∗
0,1(X,β) is trans-

verse to the zero set. For all β1, β2∈H+(X), the bundle section

π∗1D0 + π∗2D0 ∈ Γ
(
P(π∗1L0⊕π

∗
2L0)

∣∣
M∗

0,(∅,∅)
(X,(β1,β2))

,Hom(γ, ev∗
0TX)

)
,

where γ−→P(π∗1L0⊕π
∗
2L0) is the tautological line bundle, is transverse to the zero set.

By Condition 1 and the first part of Condition 3, every simple holomorphic map u : P1 −→X is
an immersion. By Condition 2, u is injective. Thus, every irreducible genus 0 curve C ⊂ X is
nonsingular. The normal bundle to such a curve must split as

N = O(a1) ⊕O(a2) ⊕O(a3) ⊕O(a4) −→ P1, with ai∈Z,
i=4∑

i=1

ai = −2, ai≥−1,

the last restriction follows from Condition 1. By the first part of Condition 4 below, ai ∈{0,−1}
for all i. The second part of Condition 3 implies that every node of a reducible genus 0 curve in X
is simple.

2By convention, [k] = {1, 2, . . . , k}.
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Condition 4 For all β∈H+(X), the bundle section

dev1 ∈ Γ
(
P(TM

∗
0,1(X,β)),Hom(γ, ev∗

1TX)
)
,

where γ −→ P(TM∗
0,1(X,β)) is the tautological line bundle, is transverse to the zero set. For all

β1, β2∈H+(X), the bundle section

π∗1dev0 + π∗2D0 ∈ Γ
(
P(π∗1TM

∗
0,{0}(X,β1)⊕π

∗
2L0)

∣∣
M∗

0,(∅,∅)
(X,(β1,β2))

,Hom(γ, ev∗
0TX)

)
,

where γ−→P(π∗1TM∗
0,{0}(X,β1)⊕π

∗
2L0) is the tautological line bundle, is transverse to the zero set.

By Condition 4, neither of the two bundle sections vanishes anywhere. In the case of the first
bundle section, the dimension of the base space and the rank of the vector bundle both equal 5.
On the other hand, the vanishing of the bundle section here implies the differential of the evaluation
map

ev1 : M
∗
0,1(X,β) −→ X

is not injective at some simple, degree β, 1-marked map [P1, x1, u]. Hence, the normal bundle must
split as

N ≈ O(1) ⊕O(−1) ⊕O(−1) ⊕O(−1).

Therefore dev1 is not injective at [P1, x, u] for all x∈P1. The zero set of the first bundle section in
Condition 4 must be at least of dimension one. So by transversality, no vanishing is possible.

The non-vanishing of the second bundle section is clear from transversality since the base space
is of dimension 4 and bundle is of rank 5.

Lemma 1.1 Let X be an ideal Calabi-Yau 5-fold. If β ∈H+(X) and J is a finite set, the space
M

∗
0,J(X,β) is nonsingular of dimension 2+ |J | and consists of simple maps. Furthermore, the

evaluation map
ev1 : M

∗
0,1(X,β) −→ X

is an immersion. If β1, β2 ∈H+(X) and J1, J2 are finite sets, M
∗
0,(J1,J2)

(
X, (β1, β2)

)
is smooth of

dimension 1+|J1|+|J2| and consists of simple maps.

Proof. By Condition 4, the restriction of ev1 to the open subset

M
∗
0,J(X,β) ⊂ M

∗
0,J(X,β)

is an immersion for every β∈H+(X). Therefore, by the argument given in Section 2.4, if

u : Σ → X

is not simple, then no deformation of u is simple. Hence, u cannot lie in the closure of M∗
0,J(X,β).

We conclude M
∗
0,J(X,β) consists of simple maps and therefore nonsingular of expected dimension.

The proof of the claim for M
∗
0,(J1,J2)

(
X, (β1, β2)

)
is the same. �

Conditions 1-4 can be extended to define an ideal Calabi-Yau n-fold for any n. However,
Lemma 1.1, which depends on the dimension counting argument in the preceding paragraph, does
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not apply in dimensions 6 and higher. For example, if X8 ⊂ P7 is the degree 8 Calabi-Yau
hypersurface,

M
∗
0,1(X8, 1) = M0,1(X8, 1)

certainly consists of simple maps. However, a computation on G(2, 8) shows the evaluation map ev1

is not an immersion along 133430226944 fibers of the forgetful morphism

M
∗
0,1(X8, 1) −→ M

∗
0,0(X8, 1).

A separate computation in a projective bundle over G(3, 8) shows the space of conics in X8 contains
133430226944 double lines. In both cases the degenerate loci correspond to the 133430226944 lines
in X8 whose normal bundle splits as O(1)⊕O⊕3O(−1), instead of the expected 3O⊕2O(−1). While
the Calabi-Yau 6-fold X8 is not ideal, low-degree curves in projective hypersurfaces do behave as
expected. The appearance multiple covers as limits of simple maps is to be expected in dimensions 6
and higher, making a full enumerative treatment more complicated (and likely drastically so).

1.2 Genus 0 counts

We define here integer forms of the genus 0 Gromov-Witten invariants of Calabi-Yau 5-folds by
considering all possible distributions of constraints and ψ-classes between the marked points. The
13 relevant types of invariants are indicated in Figure 2. We state relations motivated by ideal
geometry which reduce all 13 to genus 0 Gromov-Witten invariants. These relations are taken to
be the definition of 13 invariants for arbitrary Calabi-Yau 5-folds.

If J is a finite set, J ′⊂J , and β∈H+(X), let

fJ,J ′ : M0,J(X,β) −→ M0,J−J ′(X,β)

be the forgetful map dropping the marked points indexed by the set J ′. If j∈J , let

ψ̃j = f∗J,J−jψj ∈ H2
(
M0,J(X,β)

)
,

where ψj is the first chern class of the universal cotangent line bundle for the marked point on
M0,{j}(X,β).

If X is an ideal Calabi-Yau 5-fold and β∈H+(X), the dimension of M
∗
0,0(X,β) is 2. There are

7 invariants of the form

nβ(ψ̃aµ1, µ2, . . . , µk) =

∫

M
∗
0,k(X,β)

ψ̃a
1

k∏

j=1

ev∗jµj, a≥0, µj ∈H
2∗(X),

which we require:

(1A) nβ(µ) where µ∈H6(X) counting curves through µ,

(1B) nβ(µ1, µ2) where µ1, µ2∈H
4(X) counting curves through µ1 and µ2,

(1C) nβ(ψ̃µ) where µ∈H4(X),

(1D) nβ(ψ̃µ1, µ2) where µ1∈H
2(X) and µ2∈H

4(X),

(1E) nβ(ψ̃2µ) where µ∈H2(X),

10



β

µ

(1A): nβ(µ)

β

µ1

µ2

(1B): nβ(µ1, µ2)

β

ψ̃µ

(1C): nβ(ψ̃µ)

β

ψ̃µ1

µ2

(1D): nβ(ψ̃µ1, µ2)

β

ψ̃2µ

(1E): nβ(ψ̃2µ)

β

ψ̃2

µ

(1F): nβ(ψ̃2, µ)

β

ψ̃3

(1G): nβ(ψ̃3)

β2

β1

µ

(2A): nβ1β2(|;µ)

β2

β1

µ

(2B): nβ1β2(µ|; )

β2

β1

ψ̃2

(2C): nβ1β2(ψ̃2|; )

β2

β1

ψ̃µ

(2D): nβ1β2(|; ψ̃µ)

β2

β1

ψ̃2

(2E): nβ1β2(|; ψ̃
2)

β2 β3

β1

(3): mβ1β2β3

Figure 2: Counts for Calabi-Yau 5-folds

(1F) nβ(ψ̃2, µ) where µ∈H4(X),

(1G) nβ(ψ̃3).

Let Mβ denote the unpointed space M
∗
0,0(X,β). We will need the Chern number

(1H) γ1(β) =
∫
Mβ

(
c21(Mβ) − c2(Mβ)

)
.

There are 5 types of relevant counts of connected 2-component curves which we require,

nβ1β2

(
ψ̃a1

1 ψ̃a2
2 µ0|ψ̃

b1µ1,1, µ1,2, . . . , µ1,k1 ; ψ̃
b2µ2,1, µ2,2, . . . , µ2,k2

)

=

∫

M
∗
0,([k1],[k2])(X,(β1,β2))

π∗1

(
ψ̃a1

0 ψ̃b1
1 ev∗0µ0

k1∏

j=1

ev∗jµ1,j

)
π∗2

(
ψ̃a2

0 ψ̃b2
1

k2∏

j=1

ev∗jµ2,j

)
,

where π1, π2 are the component projection maps as in (1.1), ai, bi ≥0, and µ0, µi,j ∈H
2∗(X). The

5 types are represented by the following counts of (β1, β2)-curves:

(2A) nβ1β2(|;µ) where µ∈H4(X),

(2B) nβ1β2(µ|; ) where µ∈H2(X),

(2C) nβ1β2(ψ̃2|; ),

(2D) nβ1β2(|; ψ̃µ) where µ∈H2(X),

(2E) nβ1β2(|; ψ̃
2).
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ψ1 =

β

1

0

2
3

+
∑

β1+β2=β
β1,β2∈H+(X)

β2

1

β1

2
3

ψ̃1 = ψ1−

0

1

β

2

3

−

0

1

β

3

2

−

0

1

β

3
2

Figure 3: Relations for ψ1 and ψ̃1 on M
∗
0,3(X,β). Each curve represents the divisor in M

∗
0,3(X,β)

whose general element has the domain and the degree distribution specified by the curve.

Finally, we denote the cardinality of the compact 0-dimensional space M∗
0,∅(β1, β2, β3) for triples

β1, β2, β3∈H+(X) by mβ1β2β3 :

(3) mβ1β2β3 is the number of connected 3-component curves of tridegree β1, β2, β3.

The numbers (1A) and (1B) are determined from 1- and 2-pointed Gromov-Witten invariants
via (0.2). The tautological recursion relation for ψ1 can be used to express ψ̃1 in terms of boundary
divisors on M

∗
0,3(X,β), see Figure 3. The divisor relation then gives rise to the relations between

the invariants (1C)-(1G) indicated in Figure 4, see also Section 3 in [13]. We now describe these
relations formally. If H is a divisor on X and Hβ =(H,β), then

H2
β nβ(ψ̃µ) = nβ(µ,H2) − 2Hβ nβ(Hµ) +

∑

β1+β2=β

H2
β1
nβ1β2(|;µ),

H2
β nβ(ψ̃µ1, µ2) = (µ1, β)nβ(µ2,H

2) − 2Hβ nβ(Hµ1, µ2)

+
∑

β1+β2=β

(
(µ1, β1)H

2
β2

+(µ1, β2)H
2
β1

)
nβ1β2(|;µ2),

H2
β nβ(ψ̃2µ) = nβ(ψ̃µ,H2) − 2Hβ nβ(ψ̃Hµ) +

∑

β1+β2=β

H2
β1

(
nβ1β2(|; ψ̃µ)+nβ1β2(µ|; )

)
,

nβ(ψ̃2, µ) = −
∑

β1+β2=β

nβ1β2(|;µ),

H2
β nβ(ψ̃3) = nβ(ψ̃2,H2) − 2Hβ nβ(ψ̃2H) +

∑

β1+β2=β

H2
β1

(
nβ1β2(|; ψ̃

2) + nβ1β2(ψ̃2|; )
)
,

(1.2)

the fourth identity above is obtained by applying the relation of Figure 4 twice. We can similarly
remove ψ-classes from 2-component curves:

H2
β2
nβ1β2(ψ̃2|; ) = nβ1β2(|;H

2) − 2Hβ2 nβ1β2(H|; ) +
∑

β+β′=β2

H2
β mβ1β′β,

H2
β2
nβ1β2(|; ψ̃µ) = (µ,H)nβ1β2(|;H

2) − 2Hβ2 nβ1β2(|;Hµ)

+
∑

β+β′=β2

(
(µ, β)H2

β′ +(µ, β′)H2
β

)
mβ1β′β,

nβ1β2(|; ψ̃
2) = −

∑

β+β′=β2

mβ1β′β ,

(1.3)
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H2
β

β

ψ̃cµee

=

β

ψ̃c−1µee

H20 − 2Hβ

β

ψ̃c−1Hµee

+
∑

β1+β2=β
β1,β2∈H+(X)

H2
β1

{
β2

ψ̃c−1µee

β1

+

β2 β1

ψ̃c−2
2 µe

e

}

H ⊂ X divisor, Hβ = H · β, Hβ1
= H · β1

Figure 4: Reducing the power of ψ̃ at marked point e in the absence of ψ-classes at other marked
points.

the last identity above is obtained by applying the relation of Figure 4 twice. On the other hand,
by (1.15) and some manipulation,

γ1(β) =
1

2

(
nβ

(
c3(X)

)
+ nβ

(
ψ̃c2(X)

)
+ nβ

(
ψ̃3

)
+ nβ

(
c2(X), c2(X)

)
+ 4nβ

(
ψ̃2, c2(X)

))

−
∑

β1+β2=β

(
2nβ1β2(|; ψ̃

2) +
5

2
nβ1β2(ψ̃2|; )

)
.

(1.4)

The meeting numbers (2A), (2B), and (3) are computed via degree reducing recursions analo-
gous to Rules (i)-(iv) of Section 0.3 of [10] for the 4-dimensional case. Let

{ω1, . . . , ωN}, {ω#
1 . . . , ω#

N} ⊂ H4(X) ⊕H6(X)

be dual bases normalized so that

PDX2∆X −
N∑

l=1

ωl×ω
#
l ∈

⊕

k=0,1,4,5

H2k(X)⊗H2(5−k)(X) ⊕Hodd(X)⊗Hodd(X),

where ∆X ⊂X2 is the diagonal. Then,

nβ1β2(|;µ) =

N∑

l=1

nβ1(ωl)nβ2(ω
#
l , µ) +





nβ1,β2−β1(|;µ) + nβ2−β1,β1(|;µ), if β2>β1,

nβ1−β2,β2(|;µ), if β2<β1,

nβ1(c2(X), µ) + 2nβ1(ψ̃
2, µ), if β2 =β1.

(1.5)

In light of the fourth identity in (1.2), the relation differs from the 4-dimensional case only by the
expected adjustment for the constraint µ.

The corresponding recursions for the numbers (2B) and (3) are more complicated. For classes
β1, β2∈H+(X), let

γ2(β1, β2) = nβ1β2

(
|; c2(X)

)
+ 2nβ1β2(|; ψ̃

2) + nβ1β2(ψ̃2|; ) + nβ2β1(ψ̃2|; ). (1.6)
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For µ∈H2(X), we define

Cβ1β2(µ) =





nβ2−β1,β1(|; ψ̃µ) + nβ2−β1,β1(µ|; )

+ (µ, β1)
(
γ2(β2−β1, β1) +

1

2

∑

β+β′=β2−β1

mββ1β′

)
, if β2>β1;

Cβ2β1(µ), if β2<β1;

nβ1(c2(X)µ) + nβ1(ψ̃
2µ) + nβ1(c2(X), ψ̃µ) + (µ, β1)γ1(β1)

−
∑

β+β′=β2

(2nββ′(|; ψ̃µ) +
5

2
nββ′(µ|; )

)
,

if β1 =β2.

(1.7)

For β1, β2, β3∈H+(X), let

C
(1)
β1β2β3

=





mβ3−β1,β1,β2 , if β3>β1;

mβ1−β3,β3,β2 , if β3<β1;

γ2(β2, β1), if β3 =β1;

C
(2)
β1β2β3

= −





mβ1,β2,β3−β2 , if β3>β2;

mβ1,β3,β2−β3 +mβ1,β2−β3,β3 , if β3<β2;

nβ1β2

(
|; c2(X)

)
+ 2nβ1β2(|; ψ̃

2), if β3 =β2;

C
(12)
β1β2β3

= −





mβ3−β1−β2,β1,β2 , if β3>β1+β2;

mβ1+β2−β3,β3−β2,β2 , if β2<β3<β1+β2;

γ2(β2, β1), if β3 =β1+β2;

0, otherwise.

(1.8)

Then,

nβ1β2(µ|; ) =

N∑

l=1

nβ1(ωlµ)nβ2(ω
#
l ) −

∑

β<β1,β2

(µ, β)mβ1−β,β,β2−β − Cβ1β2(µ), (1.9)

mβ1β2β3 =

N∑

l=1

nβ1β2(|;ωl)nβ3(ω
#
l ) − C

(1)
β1β2β3

− C
(2)
β1β2β3

− C
(12)
β1β2β3

. (1.10)

A few low degree 2-component meeting numbers for a degree 7 hypersurface in P6 are given in
Table 3. The number n1,1(H|; ) can be confirmed via a Schubert computation similar to Section 3
in [9].

Configurations of rational curves in a Calabi-Yau n-fold for can be studied for any n. If n≥6,
such configurations include curves with non-simple nodes (several components sharing a node).
While describing such curves is just notationally involved, specifying degree reducing recursions
for them (following the approach of Section 1.3 below) presents new difficulties. In particular,
curves with unbalanced splittings of the normal bundle will effect excess contributions via the loci
of non-simple tuples of maps in the closures of simple tuples of maps, see the end of Section 1.1.
Thus, separate counts must be set up for such curves, and their multiple-cover contributions to
the appropriate topological intersection numbers (represented by the first terms on the right-hand
side of (1.5), (1.9), and (1.10)) must be determined.
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nd1d2(H|; ) d2 = 1 d2 = 2

d1 = 1 145366465734 17628837973096812
2 17628837973096812 2134616449608028257452
3 4403307962301366086458 533112594803936499402982169

Table 3: Meeting invariants nd1d2(H|; ) for a degree 7 hypersurface in P6 counting the virtual
number of (d1, d2)-curves with node on a fixed hyperplane.

1.3 Justification of degree reducing recursions

1.3.1 Overview

Each curve C of type (2A), (2B), and (3) determines a pair (C̄, C∗) of curves, where C∗ is the last
component of C and C̄ consists of the remaining component(s) of C. The curve C̄ has 1 component
in the first two cases and 2 components in the last case. The curves C̄ and C∗ carry marking xe∈C̄
and ye∈C∗ satisfying xe =ye. We denote by M and M∗ the corresponding compactified spaces of
curves/maps:

M M∗

Case (2A): M
∗
0,{e}(X,β1)

{
φ∈M

∗
0,{e}(X,β2) : (Imφ)∩µ 6=∅

}
,

Case (2B):
{
φ∈M

∗
0,{e}(X,β1) : eve(φ)∈µ

}
M

∗
0,{e}(X,β2),

Case (3): M
∗
0,(∅,{e})(X, (β1, β2)) M

∗
0,{e}(X,β3),

where µ above denotes a generic representative for the Poincare dual of µ∈H ∗(X). The evaluation
map

eve,e : M×M∗ −→ X×X,
(
(C̄, xe), (C

∗, ye)
)
−→ (xe, ye),

is then a cycle of (complex) dimension 5. The relevant meeting number is the cardinality of the
subset of

Z = ev−1
e,e(∆X) =

{(
(C̄, xe), (C

∗, ye)
)
∈M×M∗ : xe =ye

}

consisting of simple pairs of maps.
The homological intersection number of the cycle eve,e with the class of the diagonal ∆X ⊂X2

in X2 is given by the diagonal-splitting term on the right-hand side of (1.5), (1.9), and (1.10).
The homological intersection is the number of points, counted with sign, in the preimage of ∆X

under a small deformation of the map eve,e. All such points must lie near Z. The points of Z
at which eve,e is transverse to ∆X contribute 1 each to the homology intersection. These points
include all tuples as above such that the curves C̄ and C∗ do not have any components in common.
Thus, the relevant meeting number is the diagonal-splitting term in (1.5), (1.9), and (1.10) minus
the contribution to the homology intersection number of eve,e with ∆X from the subset Z ′ of Z
consisting of tuples as above such that C̄ and C∗ have at least one component in common. In the
rest of this subsection, we determine these tuples and their excess contributions.3

If X is an ideal Calabi-Yau 5-fold and β∈H+(X), the space

Mβ,1 = M
∗
0,1(X,β)

3As in the 4-dimensional case considered in [10], all contributions in case (2A) are degenerate contributions
arising from loci of dimensions 1 and 2. However, in cases (2B) and (3), Z ′ includes regular points with respect to
the evaluation condition which are isolated and nondegenerate.
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of simple maps to X of degree β with 1 marking is nonsingular of dimension 3, and the evaluation
map

ev: Mβ,1 −→ X

is an immersion, see Lemma 1.1. We denote by Tβ the tangent bundle of Mβ,1 and by Nβ the
normal bundle to the immersion ev. Let N∆−→∆ be the normal bundle to the diagonal in X2. If
C⊂X is a curve, let |C| denote the number of irreducible components of C.

1.3.2 Chern classes

Let X be an ideal Calabi-Yau 5-fold, and let β ∈H+(X). We relate here the Chern classes of the
normal bundle Nβ to the immersion

ev1 : Mβ,1 −→ X

to meeting numbers. Denote by
f : Mβ,1 −→ Mβ (1.11)

the forgetful map to the nonsingular 2-dimensional moduli space Mβ =M
∗
0,0(X,β).

Using the bundle homomorphism df : TMβ,1−→f∗TMβ over Mβ,1, we obtain

c1(Tβ) = −ψ + f ∗c1
(
Mβ

)
,

c2(Tβ) = ∆ − ψ f ∗c1
(
Mβ

)
+ f∗c2

(
Mβ

)
,

(1.12)

where ψ is the first chern class of the cotangent line bundle on Mβ,1 viewed as a 1-pointed moduli
space and ∆⊂Mβ,1 is the locus of singular points of f (points at which df is not surjective). On
the other hand, since c1(X)=0,

c1
(
Nβ

)
= −c1

(
Tβ

)
,

c2
(
Nβ

)
= ev∗c2(X) + c21

(
Tβ

)
− c2

(
Tβ

)
.

(1.13)

Combining (1.12) and (1.13), we find

c1(Nβ) = ψ − f∗c1
(
Mβ

)
,

c2(Nβ) = ev∗c2(X) + ψ2 − ∆ − ψ f∗c1
(
Mβ

)
+ f∗

(
c21(Mβ) − c2(Mβ)

)
.

(1.14)

If β1+β2 = β and β1 6= β2, let Dβ1,β2 ⊂Mβ be the closure of the locus consisting of β-curves
split into a β1-curve and a β2-curve. If 2β1 =β, let Dβ1β1 ⊂Mβ be twice the closure of the locus
of consisting of β-curves split into two β1-curves. In particular,

f∗∆ =
1

2

∑

β1+β2=β
β1,β2∈H+(X)

Dβ1,β2 .

Denote by (ψ1+ψ2)Dβ1,β2 ∈ H4(Mβ) the class obtained by capping ∆ with the first chern class
of the cotangent line bundle at the chosen node for each of the two curves. From a Grothendieck-
Riemann-Roch computation applied to the deformation characterization of TMβ, we find

c1(Mβ) = −f∗ev
∗c2(X) +

∑

β1+β2=β
β1,β2∈H+(X)

Dβ1,β2 ,

2c2(Mβ) − c21(Mβ) = −f∗
(
ev∗c3(X) + ψ ev∗2c2(X) + ψ3

)
+

1

2

∑

β1+β2=β
β1,β2∈H+(X)

(ψ1+ψ2)Dβ1,β2 .
(1.15)
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The 4-dimensional case of the first equation above appears in Section 1.2.4 of [10] and is also an
immediate consequence of the n=4 analogue of (2.5) below. The second identity in (1.15) is (2.5)
itself.

1.3.3 The numbers (2A)

Suppose
(
(C̄, xe), (C

∗, xe)
)

is an element of Z ′. Since the curve C̄∪C∗ passes through µ, C̄∪C∗ has
at most two components. We have three possibilities for Z ′.

Case 0 (C̄=C∗): Here β1 =β2 and

Z ′ =
{(

(C∗, xe), (C
∗, xe)

)
: (C∗, xe)∈M∗

}
.

The normal bundle of Z ′ in M×M∗ is isomorphic to Tβ1 −→M∗ and the differential

deve,e = deve : N −→ ev∗
e,eN∆

is injective over M∗. Thus, the contribution of Z ′ to the homology intersection number is given by
〈
e(N∆/N ),Z ′

〉
=

〈
c2(Nβ1),M

∗
〉
.

Using the second equation in (1.14), the first equation in (1.15), and the fourth equation in (1.2),
we obtain the β1 =β2 case of (1.5).

Case 1A (C̄(C∗): Here β1<β2 and

Z ′ =
{(

(C̄, xe), (C̄∨C
′, xe)

)
: (C̄, xe)∈M, (C̄∨C′, xe)∈Z∗

}
,

where Z∗ ⊂ M∗ is the locus consisting of 2-component curves with the marked point on the
first component. Thus, Z ′ is the union of the first components of the finitely many (β1, β2−β1)-
curves passing through the constraint µ. The normal bundle N of Z ′ in M×M∗ contains the
subbundle π∗1Tβ1 and N/π∗1Tβ1 is isomorphic to the normal bundle NZ∗ of Z∗ in M∗. Since the
differential

deve,e : N −→ ev∗
e,eN∆

is injective over Z ′, the contribution of Z ′ to the homology intersection number is given by
〈
e(N∆/N ),Z ′

〉
=

〈
c1(Nβ1) − c1(NZ∗),Z∗

〉
.

Since the degrees of the restrictions of Nβ1 and NZ∗ to each curve C̄ are −2 and −1, respectively,
we obtain the β1<β2 case of (1.5).

Case 1B (C̄)C∗): Here β1>β2 and

Z ′ =
{(

(C′ ∨ C∗, xe), (C
∗, xe)

)
: (C′∨C∗, xe)∈M, (C∗, xe)∈Z∗},

where Z∗⊂M∗ is the locus of curves meeting a (β1−β2)-curve. Thus, Z ′ is the union of the second
components of the finitely many (β1−β2, β2)-curves whose second component passes through the
constraint µ. The normal bundle N of Z ′ in M×M∗ contains the subbundle π∗

1Tβ1 and N/π∗1Tβ1

is isomorphic to the normal bundle NZ∗ of Z∗ in M∗. The latter is trivial. Since the differential

deve,e : N −→ ev∗
e,eN∆
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is injective over Z ′, the contribution of Z ′ to the homology intersection number is given by

〈
e(N∆/N ),Z ′

〉
=

〈
c1(Nβ1) − c1(NZ∗),Z∗

〉
.

The β1>β2 case of (1.5) now follows from the first equation in (1.14).

1.3.4 The numbers (2B)

Suppose
(
(C̄, xe), (C

∗, xe)
)

is an element of Z ′. The curve C̄∪C∗ then has one, two, or three com-
ponents and carries a marked point e lying on the divisor µ. The 6 possibilities for the connected
components of Z ′ are indicated in Figure 5.

Case 0 (C̄=C∗): Here β1 =β2 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C̄, xe), (C̄, xe)
)
: (C̄, xe)∈M

}
⊂ Z ′.

The normal bundle of S in M×M∗ is isomorphic to Tβ2 −→M, and the contribution of S to the
homology intersection number is given by

〈
e(N∆/N ),S

〉
=

〈
c2(Nβ2),M

〉
.

Using the second equation in (1.14) and the first equation in (1.15), we obtain the β1 =β2 case of
the last term in (1.9).

Case 1A (|C∗|=2, C̄(C∗): Here β1<β2 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C̄, xe), (C̄∨C
′, xe)

)
: (C̄, xe)∈Z , (C̄∨C′, xe)∈M∗

}
⊂ Z ′,

where Z⊂M is the locus consisting of curves meeting a (β2−β1)-curve. The normal bundle N of
S in M×M∗ contains the subbundle π∗

2Tβ2 and N/π∗2Tβ2 is isomorphic to the normal bundle NZ
of Z in M. Since the differential

deve,e : N −→ ev∗
e,eN∆

is injective over S, the contribution of S to the homology intersection number is given by

〈
e(N∆/N ),S

〉
=

〈
c1(Nβ2) −

(
c1(Nβ2−β1)+ψ̃1

)
,Z

〉
,

where ψ̃1 is the untwisted ψ-class at the node of the (β2−β1)-component of a curve in Z.
Using the first equations in (1.14) and in (1.15) and the fourth equation in (1.2), we obtain the

β1<β2 case of the last term in (1.9) minus the last term in (1.7). The latter arises from Case 2A
below.

Case 1B (|C̄|=2, C̄)C∗): Here β1>β2 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C′ ∨ C∗, xe), (C
∗, xe)

)
: (C′ ∨ C∗, xe)∈Z, (C∗, xe)∈M∗

}
⊂ Z ′,

where Z⊂M is the locus of (β2, β1−β2)-curves with the marked point e lying on the first component.
The normal bundle N of S in M×M∗ contains the subbundle π∗

2Tβ2 , N/π∗2Tβ2 is isomorphic to the
normal bundle NZ of Z in M, and the contribution of Z ′ to the homology intersection number is
given by 〈

e(N∆/N ),S
〉

=
〈
c1(Nβ2) +

(
ψ1+ψ2

)
,Z

〉
,
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β2−β1

β2>β1: Contr. 1A

e

β1−β2

β2

β2<β1: Contr. 1B

β1

e

β

β′

β+β′=β2−β1

β2>β1: Contr. 2A

β

e
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Contr. 2B

β2

e

β

β′

β+β′=β1−β2

β2<β1: Contr. 2C

Figure 5: Excess contributions for the meeting number nβ1β2(µ|; ). The labels refer to the cases
described in Section 1.3.4. The marked point e corresponds to the (former) node and lies on the
divisor µ. The thicker lines indicate the multiple component. The space of curves in the first
diagram in the top row is 2-dimensional. The other two spaces in the first row are 1-dimensional.
All spaces in the bottom row are 0-dimensional.

where ψ1 and ψ2 are the ψ-classes of the first and second components at the node of a curve in Z.
We obtain the β1>β2 analogue of the Case 1A contribution in (1.9).

Case 2A (|C∗|= 3, C̄ ( C∗): Here β1 <β2. If |C̄|= 2,
(
(C̄, xe), (C

∗, xe)
)

is an element of the space
S̄ in Case 1A above. This is also the case if |C̄| = 1 and the curve C∗−C̄ is connected. In the
remaining case, C̄ is the middle component of the 3-component curve C∗ and carries the marked
point e, which lies on the divisor µ. Each such pair

(
(C̄, xe), (C∗, xe)

)
is a regular element of Z and

therefore contributes 1 to the homology intersection. The contribution of such pairs is accounted
for by the last term in (1.7).

Case 2B (|C̄| = |C∗| = 2, C̄ 6= C∗): Here the curve C̄ ∪ C∗ consists of three components, with the
middle component meeting the hyperplane µ at the marked point e. Such pairs

(
(C̄, xe), (C

∗, xe)
)

are regular elements of Z, and their contribution is accounted for by the middle term on the right
side of (1.9).

Case 2C (|C∗|=3, C̄)C∗): The analysis is the same as Case 2A with β1 and β2 interchanged.

1.3.5 The numbers (3)

If
(
(C̄, xe), (C

∗, xe)
)

is an element of Z ′, C̄ consists of two sets of components, C̄1 and C̄2, with the
second component carrying the marked point e. Either C̄1 or C̄2 may consist of two components,
while the other curve must consist of one component. The total number of components in C̄ ∪ C∗

is either two or three. The 12 possibilities for the connected components of Z ′ are indicated in
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Figure 6.

Case 0 (|C̄∪C∗|=2, C̄2⊂C∗): If C∗= C̄2, then β2 =β3 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C̄1 ∨ C∗, xe), (C
∗, xe)

)
: (C̄1 ∨ C∗, xe)∈M

}
⊂ Z ′.

Similarly to Case 0 in Sections 1.3.3 and 1.3.4, the normal bundle of S in M×M∗ is isomorphic
to Tβ2 −→M, and the contribution of S to the homological intersection number is given by

〈
e(N∆/N ),S

〉
=

〈
c2(Nβ2),M

〉
.

Using the second equation in (1.14), the first equation in (1.15), and the fourth equation in (1.2),

we obtain the β3 =β2 case of the term C
(2)
β1β2β3

in (1.10).

If C∗= C̄1 ∪ C̄2, then β1+ β2 =β3 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C∗, xe), (C
∗, xe)

)
: (C∗, xe)∈M

}
⊂ Z ′.

The normal bundle of S in M×M∗ is isomorphic to Tβ1+β2 −→M, and the contribution of S to
the homological intersection number is given by

〈
e(N∆/N ),S

〉
=

〈
c2(Nβ1+β2),M

〉
.

Using the second equation in (1.14), the first equation in (1.15), and the fourth equation in (1.2),

we obtain the β3 =β1+ β2 case of the term C
(12)
β1β2β3

in (1.10).

Case 0′ (|C̄∪C∗|=2, C̄2 6⊂C∗): Here β1 =β3 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C∗ ∨ C̄2, xe), (C̄, xe)
)
: (C∗ ∨ C̄2, xe)∈Z

}
⊂ Z ′,

where Z ⊂M consists of the pairs of 1-marked curves with the marked point at the node of the
two curves. The normal bundle N of S in M×M∗ contains Tβ1 as a subbundle, and N/Tβ1 is
isomorphic to the normal bundle of Z in M. The latter is the universal tangent line bundle at the
marked point. Since the homomorphism

deve,e : N −→ ev∗
e,eN∆

is injective over Z ′, the contribution of Z ′ to the homological intersection number is given by

〈
e(N∆/N ),S

〉
=

〈
c1(Nβ2) + ψ2,Z

〉
.

Using the first equations in (1.14) and (1.15) and the fourth equation in (1.2), we obtain the β3 =β1

case of the term C
(1)
β1β2β3

in (1.10).

Case 1A (|C̄ ∪ C∗| = 3, C∗ 6⊂ C̄, C̄2 ⊂ C∗): If C̄1 6⊂ C∗, then β2 < β3 and
(
(C̄, xe), (C

∗, xe)
)

is an
element of

S =
{(

(C̄1 ∨ C̄2, xe), (C̄2 ∨ C′, xe)
)
: (C̄1 ∨ C̄2, xe)∈Z

}
⊂ Z ′,

where Z ⊂ M consists of the pairs of (β1, β2)-curves such that the second component meets a
(β3−β2)-curve. We see S is the union of the middle components of (β1, β2, β3−β2)-curves in X,
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Figure 6: Excess contributions for the meeting number mβ1β2β3 . The labels refer to the cases
described in Section 1.3.5. The marked point e corresponds to the (former) node joining the β2 and
β3 curves. For the curves of types 1A and 1B, e′ indicates the new node on the (leftover) (β1, β2)-
curve. The thicker lines represent the multiple component(s). The excess loci corresponding to
Contr. 0 are 2-dimensional. The loci corresponding to Contr. 1A′ and 1B′ are 0-dimensional. The
remaining loci are 1-dimensional.
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with each curve contributing −1 to the homological intersection number. The contribution ac-

counts for the β3>β2 case of the term C
(2)
β1β2β3

in (1.10).

If C̄1⊂C∗, then β1+β2<β3 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C̄1 ∨ C̄2, xe), (C̄1 ∨ C̄2 ∨ C′, xe)
)
: (C̄1 ∨ C̄2, xe)∈Z

}
⊂ Z ′,

where Z ⊂ M consists of the pairs (β1, β2)-curves meeting a (β3 −β1 −β2)-curve with the β2-
component carrying the marked point e. Here, S̄ is the union of the last components of the
(β3−β1−β2, β1, β2)-curves and the middle components of (β1, β2, β3−β1−β2)-curves. By reason-
ing analogous to Case 1A in Section 1.3.4, each of the former contributes −1 to the homological
intersection number, while each of the latter contributes 0. We obtain the β3>β1+β2 case of the

term C
(12)
β1β2β3

in (1.10).

Case 1A′ (|C̄ ∪C∗| = 3, C∗ 6⊂ C̄, C̄2 6⊂ C∗): Here β3 > β1 and (C̄ ∪ C∗, xe) is a (β3 −β1, β1, β2)-
curve with the marked point lying on the node joining the last two components. Each such pair(
(C̄, xe), (C

∗, xe)
)

is a regular element of Z, contributing 1 to the homology intersection number.

We obtain the β3>β1 case of the term C
(1)
β1β2β3

in (1.10).

Case 1B (|C̄∪C∗|=3, C∗⊂C̄, C∗ 6⊂ C̄1): If C∗ = C̄2 or C∗ = C̄,
(
(C̄, xe), (C

∗, xe)
)

is an element of one
of the spaces S̄ defined in Case 0 above. Hence, we can assume that C∗ 6= C̄2, C̄. If C∗ ⊂ C̄2, then
β2>β3 and

(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C̄1 ∨ C∗ ∨ C′, xe), (C
∗, xe)

)
: (C̄1 ∨ C∗ ∨ C′, xe)∈Z

}
⊂ Z ′,

where Z⊂M is the locus of the pairs (β1, β2)-curves with the second component broken into two.
As in Case 1B of Section 1.3.4, S is the union of the middle components of (β1, β3, β2−β3)-curves
and the last components of (β1, β2−β3, β3), with each curve contributing −1 to the homological

intersection number. The contribution accounts for the β3<β2 case of the term C
(2)
β1β2β3

in (1.10).

If C∗ 6⊂ C̄2, then β1+β2>β3 and
(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C̄1 ∨ C̄2 ∨ C′, xe), (C̄1 ∨ C̄2, xe)
)
: (C̄1 ∨ C̄2 ∨ C′, xe)∈Z

}
⊂ Z ′,

where Z⊂M is the locus of the pairs (β1, β2)-curves with one of the components broken into two.
Here, S is the union of the middle components of (β1, β3−β1, β1+β2−β3)-curves, if β3>β1, and the
last components of (β1+β2−β3, β3−β2, β2)-curves, if β3>β2. Each of the latter curves contributes
−1 to the homological intersection number, while each of the former contributes 0. We obtain the

β3<β2 case of the term C
(12)
β1β2β3

in (1.10).

Case 1B′ (|C̄ ∪C∗| = 3, C∗ ⊂ C̄1): If C∗ = C̄1, then
(
(C̄, xe), (C

∗, xe)
)

is an element of the space S̄
defined in Case 0′ above. Hence, we can assume that C∗ 6= C̄1. Then, β1>β3 and

(
(C̄, xe), (C

∗, xe)
)

is an element of

S =
{(

(C′ ∨ C∗ ∨ C̄2, xe), (C
∗, xe)

)
: (C′ ∨ C∗ ∨ C̄2, xe)∈Z

}
⊂ Z ′,

where Z⊂M is the locus of the pairs of 1-marked (β1, β2)-curves represented by a (β1−β3, β3, β2)-
curve in X with the marked point on the node of the last two components. Each such pair(
(C̄, xe), (C

∗, xe)
)

is a regular element of Z, contributing 1 to the homological intersection number

and accounting for the β3<β1 case of the term C
(1)
β1β2β3

in (1.10).
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2 Genus 1 counts

2.1 Overview

For each β∈H+(X), N1,β is the number of automorphism-weighted stable C∞-maps

u : Σ−→X

from prestable curve of genus 1 to X of degree β solving a perturbed Cauchy-Riemann equation,

∂̄u+ ν(u) = 0, (2.1)

for a small generic multi-valued perturbation ν, see Section 1.3 of [21] for more details. If X is
an ideal Calabi-Yau n-fold, M1(X,β) decomposes into strata ZT which each have well-defined
contribution to N1,β in following sense:

For every stratum ZT , there exist CT (β) ∈ Q, εν ∈ R+, and a compact subset Kν

of ZT with the following property. For every compact subset K of ZT and an open
neighborhood U of K in the space of stable C∞-maps, there exist an open neighborhood
Uν(K) of K and εν(U)∈(0, εν), respectively,4 such that

±
∣∣{∂̄+tν}−1(0)∩U

∣∣ = CT (β) if t∈(0, εν(U)), Kν ⊂K⊂U⊂Uν(K).

While there are many different strata, it turns out that CT (β) 6= 0 only for strata of the three
simplest types.

If X is an ideal Calabi-Yau n-fold, there are finitely many genus 1 curves in each homology
class of X. Furthermore, every genus 1 curve C in X is embedded and super-rigid: if N is the
normal bundle of C and

u : Σ−→C

is an unramified cover, then H0(Σ, u∗N )=0. Hence, H1(Σ, u∗N )=0 and for every d∈Z+

Z(1,β/d) =
⋃

[C]=β/d

M1(C, d)

is a finite set of isolated regular points of M1(X,β). Each such point u contributes |1/Aut(u)| to
N1,β. If n1,β is the number of genus 1 curves in the homology class β, then

C(1,β/d)(β) =
σ(d)

d
n1,β/d, (2.2)

where σ(d) is the number of degree d unbranched covers of a genus 1 curve by connected genus 1
curves. The integral number n1,β/d is zero unless d|β, or equivalently, β/d is an integral homology
class.

The remaining elements u : Σ−→X of M1(X,β) are maps to genus 0 curves in X. They split
into strata ZT indexed by combinatorial data described in Section 2.2. We will call a stratum ZT

basic if either of the following conditions holds:

(B1) the domain Σ of every element [Σ, u] of ZT is a nonsingular genus 1 curve, or

4Uν(K) depends on K, while εν(U) depends on U .
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(B2) the domain Σ of every element [Σ, u] of ZT is a union of a nonsingular genus 1 curve ΣP and
a P1 and u is constant on ΣP .

In both cases, the restriction of u to the non-contracted component must be a d : 1 cover of a
curve in the homology class β/d, for some d∈Z+. We will write Teff(β/d, d) and Tgh(β/d, d) for
the corresponding types of strata (B1) and (B2), with eff and gh standing for effective and ghost
(principal component).

Theorem 2.1 Suppose X is an ideal Calabi-Yau 5-fold.

(i) If ZT is a stratum of M1(X,β) consisting of maps to rational curves in X and is not basic,
CT (β)=0.

(ii) For β∈H+(X) and d∈Z+,

CTeff(β,d)(dβ) =
d− 1

d2
CTgh(β,1)(β), CTgh(β,d)(dβ) =

1

d2
CTgh(β,1)(β). (2.3)

In Section 2.3, we will prove

CTgh(β,1)(β) =
1

24

∫

Mβ

(
2c2(Mβ) − c21(Mβ)

)
. (2.4)

On the other hand, the space Mβ = M
∗
0(X,β) consists of regular maps toX. Thus, the contribution

to N1,β is given by the right side of equation (2.15) in [23]:

CTgh(β,1)(β) =
1

24

(
− nβ

( c(X)

1 − ψ

)
+

1

2

∑

β1+β2=β
β1,β2∈H+(X)

nβ1β2

(
ψ1+ψ2|; )

)
.

Comparing the above identity with (2.4), we find that

∫

Mβ

(
2c2(Mβ) − c21(Mβ)

)
= −nβ

( c(X)

1 − ψ

)
+

1

2

∑

β1+β2=β
β1,β2∈H+(X)

nβ1β2(ψ1+ψ2|; ). (2.5)

We calculate the left side in terms of the Gromov-Witten invariants of X by expanding the right
side via the equations of Section 1.

Our proof of Theorem 2.1 applies also in dimensions 3 and 4. In particular, the result provides
a direct explanation of the 1/d-scaling in the latter case discovered by other means in Section 2
of [10]. Many aspects of the proof are applicable in dimensions 6 and higher as well.

2.2 Preliminaries

Let X be an ideal Calabi-Yau 5-fold. The strata of M1(X,β) consisting of maps to rational curves
can be described by decorated graphs

T =
(
Ver,Edg, d, β, κ, i∗

)
,

where
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(D1) Γ = (Ver,Edg) is a connected graph containing either exactly one loop or a distinguished
vertex, but not both,

(D2) β=(βi)i∈[m] is an m-tuple of elements of H+(X), with m∈{1, 2, 3},

(D3) d : Ver−→Z≥0 is a map, κ : d−1(Z+)−→ [m] is a surjective map,

(D4) i∗∈{?} ∪ [m].

The irreducible components and the nodes of the domain Σ of every element [Σ, u] of ZT correspond
to the sets Ver and Edg respectively. If v∈Ver is not the distinguished vertex of Γ, the corresponding
component Σv of Σ is a P1. Otherwise, Σv is nonsingular of genus 1. If v∈Ver, the restriction of
u to Σv is constant if d(v)= 0. If d(v) 6=0, u|Σv is a d(v) : 1 cover of the component Cκ(v) of C. If
d does not vanish identically of the loop in the graph (Ver,Edg) or on the distinguished vertex, i∗

is set to ?. If d vanishes identically on the loop or on the distinguished vertex, the corresponding
components of Σ are mapped by u to a point on the i∗-component of C. Since u is continuous,
ZT =∅ unless κ satisfies certain combinatorial conditions.5

Given a generic deformation of ν of the ∂̄-operator as in (2.1) and sufficiently small t∈R+, we
will determine the number of solutions [Σ, u] of

∂̄u+ tν(u) = 0, (2.6)

with u close to the stratum ZT . The assumption that ν is generic implies that all solutions of
(2.6) are maps from nonsingular genus 1 curves. The arguments follow [19, 20]. In particular, the
gluing construction for ZT will be performed on a family of representatives (Σ, u) for the elements
[Σ, u] in ZT , see Section 2.2 of [20]. Our treatment here is less explicit in order to streamline the
discussion.

For the rest of Section 2, we fix a decorated graph T as above. We define

|β| =

m∑

i=1

βi ∈ H+(X).

With notation as in Section 1.1, let

Mβ = M
∗
0,∅(X,β) and Mβ = M

∗
0,∅(X,β).

We denote by Mβ,1 and Mβ,1 the spaces of pairs (C, x) such that C∈Mβ and x∈C is a nonsingular

point of C in the first case and C∈Mβ and x∈C is any point of C in the second case.
Let S−→Mβ be a family of deformations in X of curves in Mβ. In other words, the fiber SC

of S over C∈Mβ contains C and

dimSC = dimM|β|,1 − dimMβ = m.

There is a fibration
πC : SC −→ ∆⊂Cm−1 (2.7)

5The strata ZT as defined above intersect if m ≥ 2 and d vanishes on the loop or the distinguished vertex of
(Ver, Edg). The issue can be easily addressed by allowing i∗ to take values in {?} ∪ [m]∪{(1, 2), (2, 3)}. However,
equation (2.6) will be shown to have no solutions near ZT for a good choice of ν if m≥2, so further discussion is not
needed.
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giving the universal family of deformations of C. If m=1, then S =M|β|,1. If m=3, S is a small

neighborhood of Mβ,1 in M|β|,1.
If ev : Mβ,1−→X is the evaluation map at the marked point, the bundle

Q = ev∗TX
/
TS −→ Mβ,1 (2.8)

extends naturally over Mβ,1 so that there is an exact sequence

0 −→ f∗TMβ −→ Q −→ N|β| −→ 0, (2.9)

where f : Mβ,1−→ Mβ is the forgetful map and N|β| is the normal bundle to the family of simple

curves of class |β|.
Similarly to Section 3.3 in [12], we choose a family of “exponential” maps

expC : TX −→ X such that expC
x(v) ∈ SC if x ∈ C, v ∈ TxSC , |v| < δ(C), (2.10)

for some δ∈C∞(MΓ̄; R+). Below we will place additional assumptions on expC as needed.

For an ideal Calabi-Yau n-fold with n≥ 6, the above stratification would need to be refined
further based on the deviation of the normal bundles of curves in Mβ,1 from balanced splitting.
The arguments in Sections 2.3-2.5 below apply to the strata with balanced splitting with minor
changes. The main change here is that the map ev is no longer an immersion, and one would
need to pass to a blowup of Mβ,1 to obtain analogues of the vector bundle Q and the short exact
sequence (2.10). The strata with unbalanced splittings need to be treated separately, with the
conclusion that they do not contribute to the genus 1 Gromov-Witten invariants under certain
assumptions on X.

2.3 Strata with ghost principal component I

Here we describe the contribution to N1,∗ from a stratum ZT consisting of maps u : Σ −→ X
that are constant on the principal, genus-carrying, component(s) ΣP of Σ. We show ZT does not
contribute to N1,∗ unless ZT is of type (B2).

For each m ∈ Z+, let M1,m be the moduli space of stable curves of genus 1 with m marked
points. Let E−→M1,m be the Hodge line bundle of holomorphic differentials. For each i∈ [m],
denote by Li−→M1,m the universal tangent line bundle at the ith marked point. Let

si ∈ Γ
(
M1,m,Hom(Li,E

∗)
)

be the homomorphism induced by the natural pairing of tangent and cotangent vectors at the ith
marked point. Denote by

M1,m,M
eff
1,m ⊂ M1,m

the subspaces consisting of nonsingular curves and of curves C with no bubble components (C is
either a nonsingular genus 1 curve or is a circle of rational curves).

Let L1−→M0,1(X,β) be the universal tangent line bundle at the marked point. Denote by

D1 ∈ Γ
(
M0,1(X,β),Hom(L1, ev

∗
1TX)

)
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the natural homomorphism induced by the derivative of the map at the marked point. For m∈Z+,
let

M(0,m)(X,β) =
{
(bi)i∈[m]∈

m∏

i=1

M0,{0}(X,βi) : βi∈H+(X),

m∑

i=1

βi =β,

ev0(bi)=ev0(bi′)∀i, i
′∈ [m]

}
.

There is a well-defined evaluation map

ev0 : M(0,m)(X,β) −→ X, (bi)i∈[m] −→ ev0(bi),

which is independent of the choice of i. Let

πi : M(0,m)(X,β) −→
⊔

βi∈H+(X)

M0,{0}(X,βi)

be the projection onto the ith component. Denote by

M
eff
(0,m)(X,β) ⊂ M(0,m)(X,β)

the subset consisting of the tuples (ui)i∈[m] such that for each i∈ [m] the restriction of ui to the
domain component carrying the marked point 0 is not constant.

The stratum ZT admits a decomposition

ZT =
(
ZT ,P ×ZT ,PB ×ZT ,B

)/
SmB

, (2.11)

where ZT ,P is a stratum of Meff
1,mP

for some mP ∈ Z+, ZT ,B is a stratum of Meff
(0,mB)(X,β) for

some mB ∈Z+, and ZT ,PB is a product of moduli spaces of irreducible stable genus 0 curves. The
stratum ZT ,P consists of curves of a fixed topological type, while the elements of ZT ,B are tuples
of stable maps from domains of fixed topological types so that the image of the restriction of the
map to each component is of a specified homology class and multiplicity. The requirement that

ZT ,P ⊂ Meff
1,mP

and ZT ,B ⊂ M
eff
(0,mB)(X,β)

implies that the decomposition (2.11) is well-defined. Let

πP , πB : ZT ,P ×ZT ,PB ×ZT ,B −→ ZT ,P ,ZT ,B

denote the projection maps. The quotient is by the automorphism groups SmB
of the data.

If X is an ideal CY 5-fold, ZT ,B is smooth. The cokernels of the linearizations Db of the
∂̄-operator along ZT form the obstruction bundle

O = OPB ⊕ π∗BOB = π∗P E∗⊗π∗Bev∗0TX ⊕ π∗BOB, (2.12)

where OB −→ZT ,B is the obstruction bundle associated with the moduli space M(0,m)(X,β). Let
ν̄∈Γ(ZT ,O) be the section induced by ν: ν̄(b) is the projection of ν(b) to the cokernel of Db. We
write

ν̄PB, ν̄B ∈ Γ
(
ZT ,OPB

)
,Γ

(
ZT ,OB

)

for the two components of ν̄.
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There is a natural projection map

π̄ : ZT ,B −→ Mβ,1,

sending πB([Σ, u]) to (u(Σ), u(ΣP )). Denote by

ν̄⊥PB ∈ Γ
(
ZT , π

∗
P E∗⊗π∗Bπ̄

∗Q
)

the image of ν̄PB under the natural projection map. Let

f : M1,mP
−→ M1,1

be the forgetful map, dropping all but the first marked point. The restriction of the bundle

π∗1E∗ ⊗ π∗2Q −→ M1,1 ×Mβ,1 (2.13)

to any boundary stratum ZΓ contains a subbundle OΓ such that

rkOΓ − dimZΓ > rk
(
π∗1E∗⊗π∗2Q

)
− dim

(
M1,1×Mβ,1

)
= 0 (2.14)

and
{
(f ◦πP ) × (π̄◦πB)

}∗
OΓ is a quotient of the cokernel bundle over a boundary stratum of Z T .

Thus, we can choose a section ν̄β of (2.13) with all zeros transverse and contained in M1,1×Mβ,1

and such that there exists ν as above satisfying

ν̄⊥PB =
{
(f ◦πP ) × (π̄◦πB)

}∗
ν̄β .

It is shown in the next section that the contribution of ZT to N1,∗ comes from ν̄⊥−1
PB (0). Thus,

if ZT ,P 6⊂M1,mP
, then ν̄⊥−1

PB (0) is empty for a good choice of ν by (2.14) and the stratum ZT does

not contribute to N1,∗. Otherwise, ν̄⊥−1
PB (0) is the preimage of a finite subset in M1,1×Mβ,1. It

decomposes into connected components

ν̄⊥−1
PB (0) =

⊔

(C,x)∈π2(ν̄
−1
β

(0))

ZC,x, (2.15)

where C is a β-curve and x is a nonsingular point of C. Then, CT (β) is the number of zeros of a
map ϕtν from the vector bundle F of gluing parameters to O over each of the components ZC,x.
The projection of ϕtν in the decomposition (2.12) onto π∗

P E⊗TxSC/TxC is essentially the same as
the projection of tν, which we denote by tν̃. Since ν̃ is a section of a trivial bundle over ZC,x, it
can be chosen not to vanish if m> 1. Thus, CT (β) = 0 if m> 1. On the other hand, the second
component of ϕtν with respect to the decomposition (2.12) is essentially tν̄B . It does not vanish
on ν̄⊥−1

PB (0) for dimensional reasons if m=1, but |Ver|>2. Thus, CT (β)=0 if T is not basic.
Finally, if T is basic, the principal component of every element of ZC,x is a fixed nonsingular

genus 1 curve ΣP with one special point z1 and

ZC,x ≈ M0,1(P
1
p, d),

where M0,1(P
1
p, d) ⊂ M0,1(P

1, d) is the subspace of elements [Σ, u] such that Σ is nonsingular and
ev1([Σ, u])=p for a fixed p∈P1. Let

D ∈ Γ
(
M1,1×M0,1(P

1, d),Hom(π∗1L1⊗π
∗
2L1, π

∗
1E∗⊗π∗2ev

∗
1TP1)

)
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be given by
D(v⊗w) = s1(v) ⊗D1(w) . (2.16)

The first component of ϕtν with respect to the decomposition (2.12) is essentially

F = π∗1L1|z1⊗π
∗
2L1 −→ OPB = E∗

ΣP
⊗TxC, υ −→ D(υ) + tν̄PB. (2.17)

Let U be the universal curve over M0,1(P
1, d), with structure map π and evaluation map ev:

U

π
��

ev
// P1

M0,1(P
1, d).

(2.18)

The restriction of ν̄B to ν̄⊥−1
PB (0) is a section of

OB = R1π∗ev∗
(
O(−1) ⊕O(−1)

)
−→ M0,1(P

1
p, d).

Thus, by the Aspinwall-Morrison and divisor formulas, as in Section 1.1 in [10],

±
∣∣ν̄−1

B (0)
∣∣ =

1

d2
. (2.19)

On the other hand, ν̄⊥PB is a section of

π∗1E∗ ⊗ π∗2
(
f∗TMβ ⊕Nβ

)
−→ M1,1 ×Mβ,1,

see (2.8). Therefore,

±
∣∣ν̄⊥−1

PB (0)
∣∣ = −

1

24

∫

Mβ,1

(
f∗c2(Mβ)ev∗

1c1(Nβ) + f∗c1(Mβ) c2(Nβ)
)
. (2.20)

Since (2.17) has a unique zero in every fiber of F over ν̄⊥−1
PB (0)∩ν̄−1

B (0) and the restriction of Nβ

to a fiber of f is of degree −2, equations (2.19) and (2.20) imply

CTgh(β,d)(dβ) =
1

24d2

(∫

Mβ

2c2(Mβ) −

∫

Mβ,1

f∗c1(Mβ)c2(Nβ)

)
. (2.21)

We have proved the second scaling identity in (2.3). The equation

CTgh(β,1)(β) =
1

24

∫

Mβ

2c2(Mβ) − c21(Mβ) (2.22)

is obtained from (2.21) from relations (1.14) and (1.15).
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2.4 Strata with ghost principal component II

We continue with the setup of Section 2.3. For each [Σu, u]∈ZT , denote by Σ0
u ⊂Σu the largest

union of irreducible components of Σu that contains the principal component(s) of Σu and on
which u is constant. The topological types of Σu and Σ0

u are independent of the choice of [Σu, u]∈
ZT .

The bundle of gluing parameters (or smoothing of the nodes) over F −→ZT is a direct sum of
line bundles (up to a quotient by a finite group). Let F ∅⊂F be the subspace of smoothings with
all components nonzero, smoothings that do not leave any nodes. If υ ∈ F ∅

u is sufficiently small,
there is a C∞-map

qυ : Συ −→ Σu,

where Σu is the domain of u and Συ is a genus 1 Riemann surface with thin necks replacing the
nodes of Σu, see Section 2.2 of [18]. This map determines Riemannian metrics and weights on
Συ which induce the Lp

1- and Lp Sobolev norms, ‖ · · · ‖υ,p,1 and ‖ · · · ‖υ,p, with p > 2, appearing
below, see Section 3.3 in [18]. These norms are equivalent to the ones used in Section 3 of [11]. Let
Σ0

υ =q−1
υ (Σ0

u).
We take the approximately holomorphic map corresponding to υ∈Fu to be

uυ =u◦qυ : Συ −→ X.

The map satisfies ∥∥∂̄uυ

∥∥
υ,p

≤ C(u)|υ|1/p. (2.23)

Let
Dυ : Γ(υ)=Γ(Συ , u

∗
υTX) −→ Γ0,1(υ)=Γ(Συ, T

∗Σ0,1
υ ⊗u∗υTX)

be the linearization of the ∂̄-operator at uυ defined using the Levi-Civita connection of a Kahler
metric gX,u on X. As in Sections 2 and 4.1 in [20], we can construct splittings

Γ(υ) = Γ−(υ) ⊕ Γ+(υ) and Γ0,1(υ) = Γ0,1
−;PB(υ) ⊕ Γ0,1

−;B(υ) ⊕ Γ0,1
+ (υ), (2.24)

and isomorphisms
Rυ : OPB ⊕ π∗BOB −→ Γ0,1

−;PB(υ) ⊕ Γ0,1
−;B(υ) (2.25)

with the following properties:

(G1) Dυ : Γ+(υ) −→ Γ0,1
+ (υ) is an isomorphism with the norm of the inverse bounded independently

of υ∈F ∅
u (but depending on [Σ, u]),

(G2) the elements of Γ0,1
−;PB(υ) are supported on a small neighborhood of Σ0

υ,

(G3) if π0,1
−;PB : Γ0,1(υ) −→ Γ0,1

−;PB(υ) is the projection in the second decomposition (2.24),

∥∥π0,1
−;PBDυξ

∥∥
υ,2

≤ C(u)|υ|‖ξ‖υ,p,1 ∀ ξ ∈ Γ(υ), (2.26)

(G4) if |Ver|=2 (and thus ZT is basic),

π0,1
−;PB∂̄uυ = RυDυ, (2.27)

with D as in (2.16),
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(G5) every map ũ : Σ−→X, where Σ is a smooth genus-one Riemann surface, that lies in a small
neighborhood of ZT can be written uniquely as ũ=expuυ

ξ for small υ∈F ∅ and ξ∈Γ+(υ).

Let
π0,1

+ : Γ0,1(υ) −→ Γ0,1
+ (υ) and π0,1

−;B : Γ0,1(υ) −→ Γ0,1
−;B(υ)

be the component projections in the second decomposition (2.24).
The relation (2.6) for ũ=expuυ

ξ is equivalent to

∂̄uυ +Dυξ + tνυ +Nυ(ξ) + tNν,υ(ξ) = 0, (2.28)

with Nυ and Nν,υ satisfying

∥∥Nυ(ξ) −Nυ(ξ′)
∥∥

υ,p
≤ C(u)

(
‖ξ‖υ,p,1+‖ξ′‖υ,p,1

)∥∥ξ−ξ′
∥∥

υ,p,1
,

∥∥Nν,υ(ξ) −Nν,υ(ξ′)
∥∥

υ,p
≤ C(u)

∥∥ξ−ξ′
∥∥

υ,p,1
,

(2.29)

if υ∈F ∅
u . For a good choice of identifications,

π0,1
−;PBNυξ = 0 ∀ξ ∈ Γ(υ). (2.30)

By the Contraction Principle and (G1), the equation

π0,1
+

(
∂̄uυ +Dυξ + tνυ +Nυ(ξ) + tNν,υ(ξ)

)
= 0

has a unique small solution ξtν(υ)∈Γ+(υ). By (2.23), it satisfies

∥∥ξtν(υ)
∥∥

υ,p,1
≤ C(u)

(
|υ|1/p+t

)
. (2.31)

Thus, the number of solutions of (2.6) near ZT is the number of solutions of the equation

∂̄uυ +Dυξtν(υ) + tνυ +Nυ

(
ξtν(υ)

)
+ tNν,υ

(
ξtν(υ)

)
= 0 ∈ Γ0,1

−;PB(υ) ⊕ Γ0,1
−;B(υ). (2.32)

This is an equation on υ∈F ∅
u with |υ|<δ(u) for some δ∈C∞(ZT ; R+).

For each [Σ, u]∈ZT , let Cu=u(Σ) and Su =SCu , see the end of Section 2.2. The pregluing map
uυ satisfies

uυ(Συ) ⊂ Cu ⊂ Su.

We can choose the splittings (2.24) so that they restrict to splittings for vector fields and (0, 1)-
forms along uυ with values in TSu and (G1) holds when restricted to TSu. If expuυ

ξ is defined
using the “exponential” expCu , the operators Dυ and Nυ in (2.28) preserve TSu as well. Therefore,

ξ0(υ) ∈ Γ(Συ, u
∗
υTSu), Dυξ0(υ), Nυ

(
ξ0(υ)

)
∈ Γ

(
Συ, T

∗Σ0,1
υ ⊗u∗υTSu

)
. (2.33)

On the other hand, by (G1) and (2.29),

∥∥ξtν(υ) − ξ0(υ)
∥∥

υ,p,1
≤ C(u)t, (2.34)

if υ ∈Fu is sufficiently small. Taking the projection π⊥
−;PB of (2.32) to π∗PE∗⊗ π̄∗Q, we thus find

that any solution υ∈Fu of (2.32) satisfies

∥∥ν̄⊥PB(u)
∥∥ ≤ ε(t, υ)
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for some function ε : R×F ∅−→R+ approaching 0 as (t, υ) approaches 0. Therefore, all solutions
of (2.6) lie in a small neighborhood of ν̄⊥−1

PB (0)⊂ZT , as claimed in Section 2.3.
If m=1, for a good choice of Rυ on π∗BOB

〈〈
η, η−

〉〉
υ,2

= 0 ∀ η∈Γ
(
Συ, T

∗Σ0,1
υ ⊗u∗υTSu

)
, η−∈Γ0,1

−;B(υ). 6 (2.35)

Taking the projection of (2.32) onto Γ0,1
−;B(υ) and using (2.29), (2.33), (2.34), and (2.35), we obtain

tν̄B(u) + tη(t, υ) = 0, (2.36)

for some η(t, υ) approaching 0 as (t, υ) approaches 0. Since u is d :1 cover of the smooth curve Cu,
the dimension of the projection of ν̄⊥−1

PB (0) onto the third component in the decomposition (2.11)
is of dimension at most 2d−2mB .7 Since the rank of OB is 2d−2, (2.36) has no solutions for a
generic choice of ν unless ZT is described by (B2) of Section 2.1. If ZT is of type (B2), the number
of solutions of (2.32) is the same as the number of small solutions of

Dυ + tν̄PB(u) + η(t, υ) = 0 ∈ E∗⊗Tu(ΣP )Cu (2.37)

υ ∈ π∗1L1⊗π
∗
2L1|u, u ∈ ν̄⊥−1

PB (0)∩ν̄−1
B (0) ⊂ M1,1×M0,1(P

1; d),

with the error term η(t, υ) satisfying
∥∥η(t, υ)

∥∥
υ,2

≤ ε(t, υ)
(
t+|υ|);

see (2.26), (2.27), (2.29), and (2.31). If ν is generic, D1 and thus D are nowhere zero on the finite
set ν̄⊥−1

PB (0)∩ν̄−1
B (0). By the same rescaling and cobordism argument as in Section 3.1 of [19], the

number of small solutions of (2.37) is the same as the number of solutions of

Dυ + ν̄PB(u) = 0, υ ∈ π∗1L1⊗π
∗
2L1

∣∣
ν̄⊥−1

PB
(0)∩ν̄−1

B
(0)
.

There is one solution for each of the elements of ν̄⊥−1
PB (0)∩ ν̄−1

B (0). This concludes the consideration
of the m=1 case.

We will next show that (2.32) has no solution if m> 1. Let ZC,x be as in (2.15). Since x is a
nonsingular point of C, on a neighborhood U of x in C there is an orthogonal decomposition

TSC |U = TC|U ⊕NC|U . (2.38)

We can assume that the “exponential” map expC satisfies

πC
(
expC

y v
)

= dπC |xv ∀ y ∈ U, v ∈ TySC , |v| < δ, (2.39)

with πC as in (2.7). For any [Σ, u]∈ZT in a small neighborhood of ZC,x, let Wu = u−1(U) be an

open neighborhood of Σ0
u in Σ0. We can assume that every element η of Γ0,1

−;PB(υ) is supported in

Wυ = q−1
υ (Wu), whenever υ∈F ∅

u is sufficiently small. With D∗
υ denoting the formal adjoint of Dυ

with respect to the inner-product 〈〈·, ·〉〉υ,2, let

Γ+−(υ) =
{
ξ∈Γ+(υ) :

〈〈
ξ,D∗

υRυη
〉〉

=0 ∀ η∈E∗
ΣP

⊗Nu(ΣP )Cu

}
⊂ Γ(υ),

Γ++(υ) =
{
D∗

υRυη : η∈E∗
ΣP

⊗Nu(ΣP )Cu

}
⊂ D∗

υΓ0,1
−;PB(υ) ⊂ Γ(υ).

(2.40)

6In this case, OB is isomorphic to the cokernel of a ∂̄-operator on N|β|.
7This is the dimension of the space of degree-d covers of P1 by mB copies of P1. The dimension is less than

2d−2mB unless ZT ,B is the main stratum of M(0,mB)(X, β).
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An explicit expression for D∗
υRυη is given in the proof of Lemma 2.2 in [19]. Section 2.3 of [19]

implies that we can take
Γ+(υ) = Γ++(υ) ⊕ Γ+−(υ). (2.41)

In particular, the proof of Lemma 2.6 shows that the limits of the spaces Γ++(υ) as υ −→ 0 are
orthogonal to the limits of the spaces Γ−(υ). The decomposition (2.41) is L2-orthogonal by (2.40)
and

‖ξ‖υ,p,1 ≤ C(u)‖ξ‖υ,2 ∀ξ ∈ Γ++(υ), (2.42)

see the proof of Lemma 2.2 in [19].
Let ξ+

tν(υ) and ξ−tν(υ) be the components of ξtν(υ) with respect to the decomposition (2.41).
Denote by ν̃(u)∈E∗

ΣP
⊗Nu(ΣP )Cu the projection of ν(u) to E∗

ΣP
⊗Nu(ΣP )Cu. Since ν̃ is a section of

a trivial bundle near ZC,x, we can assume that it has no zeros on ZC,x. In the next paragraph we
will show ∥∥ξ+tν(υ)

∥∥
υ,p,1

≤ C(u)t. (2.43)

Assuming this is the case, we project both sides of (2.32) onto

Rυ

(
E∗

ΣP
⊗Nu(ΣP )Cu

)
⊂ Γ0,1

−;PB(υ)

and take the preimage under Rυ. Since the projections of ∂̄uυ and Nυ(ξtν(υ)) vanish, using the
first equation in (2.40), (2.43), (2.27), and (2.29), we obtain

tν̃(u) + η(t, υ) = 0

with η(t, υ) satisfying ∥∥η(t, υ)
∥∥

υ,2
≤ ε(t, u)t.

However, this is impossible if t and υ are sufficiently small (“small” depending continuously on u),
since ν̃ has no zeros over ZC,x.

We now verify (2.43). Let

ξ̃tν(υ)=πCu ◦expuυ
ξtν(υ) : Συ −→ Cm−1, ξ̃±tν(υ) = dπCu ◦ ξ±tν(υ).

Since ξ+
tν(υ) is supported on Wu, by (2.39)

〈
ξ̃+tν(υ), ξ̃±tν(υ)

〉
z

=
〈
ξ+tν(υ), ξ

±
tν(υ)

〉
z

∀ z∈Συ . (2.44)

By (2.39), we also have
ξ̃υ|Wυ = ξ̃+υ |Wυ + ξ̃−υ |Wυ . (2.45)

Since (2.32) is equivalent to (2.6) for ũ=expuυ
ξtν(υ),

∥∥∂̄ξ̃tν(υ)
∥∥

υ,p
≤ C(u)t. (2.46)

Since the operator

Lp
1

(
Συ,C

m−1
)
−→ Lp

(
Συ, T

∗Σ0,1
υ Cm−1

)
⊕ Cm−1, ξ̃ −→

(
∂̄ξ̃,

∫

Συ

ξ̃ dvolΣυ

)
,

is an isomorphism with the norm of the inverse bounded independently of υ (but depending on u),
(2.46) implies that ∥∥ξ̃tν(υ) −Atν(υ)

∥∥
υ,p,1

≤ C(u)t (2.47)
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for some Atν(υ)∈Cm−1. Since ξ+
tν(υ) is supported on Wu, by (2.39) and (2.40),

〈〈
ξ̃+tν(υ), Atν (υ)

〉〉
υ,2

= 0.

Thus, by (2.44), (2.45), and (2.47),

∥∥ξ+tν(υ)
∥∥

υ,2
=

∥∥ξ̃+tν(υ)|Wυ

∥∥
υ,2

≤
∥∥(ξ̃tν(υ)−Atν(υ))|Wυ

∥∥
υ,2

≤
∥∥ξ̃tν(υ) −Atν(υ)

∥∥
υ,p,1

≤ C ′(u)t.

The estimate (2.43) now follows from (2.42).
Finally, we comment on the choices made in (2.24) and (2.25). Choosing the splittings (2.24)

so that (G1) and (G5) hold is essentially equivalent to choosing approximate kernel and cokernel
for Dυ that vary smoothly with υ. This is easily accomplished in many possible ways, including
via the construction in Section 3 of [11]. In order to ensure that (G2)-(G4) hold, Rυ on OPB is
constructed by pushing harmonic forms on ΣP over a small neighborhood of Σ0

υ, see Section 2.2
of [19]. Finally, in order to obtain (2.30), define expuυ

and parallel transport using a Kahler metric
which is flat near u(ΣP ), as in Section 2.1 of [19].

2.5 Strata with effective principal component

We determine here the contribution to N1,∗ from a stratum ZT consisting of maps u : Σ −→X
that are not constant on the principal, genus-carrying, component(s) ΣP of Σ. We show that ZT

does not contribute to N1,∗ unless ZT is of type (B1).
Let O−→ZT and F −→ZT be the obstruction bundle and the bundle of gluing parameters as

before. The projection map ev∗TX−→Q induces a surjective homomorphism

π⊥ : O −→ O
⊥, (2.48)

where O⊥|[Σ,u] is the cokernel of the ∂̄-operator on Q induced by the ∂̄-operator Db on TX. By
a gluing and obstruction bundle analysis similar to Section 2.4, CT (∗) is the number of zeros of a
bundle map

ϕtν : F −→ O

over ZT for t sufficiently small. As in the previous case, all zeros of ϕtν arise from the zeros of

ν̄⊥ = π⊥ ◦ ν̄,

where ν̄∈Γ(ZT ;O) is the section induced by ν. The homomorphism (2.48) extends to a surjective
homomorphism from the cokernel bundles over Z̄T . In the next two paragraphs, we show that
O⊥−→Z̄T contains a trivial C∞-subbundle unless |Ver|=1. Therefore, CT (∗)=0 if ZT is not of
type (B1).

Suppose first that (Ver,Edg) contains a loop L⊂Ver and κ is not constant on L. Then, the
image of the principal components ΣP of any element [Σ, u] of ZT contains at least two curves
in X. Then, O⊥ contains a pull-back of the bundle

E∗ ⊗ f∗TMβ ⊕ s∗N|β| −→ M1,1 ×Mβ ,

where s : Mβ −→Mβ,1 is the bundle section taking each curve C to one of the nodes. The bundle
contains a trivial C∞-subbundle for dimensional reasons.
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We next consider the remaining cases. Let P ∈ [m] be the component of the curves in Mβ

containing the image of the principal component ΣP of any element [Σ, u] of ZT . Denote by

M
P
β,1⊂Mβ,1 the component consisting of the curves CP , with C∈Mβ. If X is an ideal Calabi-Yau

5-fold and m> 1 (implying C 6= CP ), the restriction of N|β| to CP ≈ P1 splits as either O⊕O or

O⊕O(−1). If m=1, the splitting is O(−1)⊕O(−1).

Case 1: m> 1 and the restriction of N|β| to CP splits as O⊕O. Here, Q|
M

P
β,1

= f∗Q̄ for a bundle

Q̄−→Mβ. Since the restriction of f ∗Q̄ to u(ΣP ) is trivial, O⊥ contains the subbundle

E∗⊗f∗Q̄, where E−→M1(X,β) is the Hodge line bundle. The subbundle is a pull-back
of the bundle

E∗ ⊗ Q̄ −→ M1,1 ×Mβ,

which contains a trivial C∞-subbundle for dimensional reasons by (2.8).

Case 2: m > 1 and the restriction of N|β| to CP splits as O⊕O(−1). Here, Q|
M

P
β,1

contains a

subbundle f ∗Q̄′ of co-rank 1 for a bundle Q̄′ −→ Mβ. Since the restriction of f ∗Q̄′ to

u(ΣP ) is trivial, O⊥ contains the subbundle E∗⊗f∗Q̄′, which is a pull-back of the bundle

E∗ ⊗ Q̄′ −→ M1,1 ×Mβ.

Thus, the subbundle admits a section s such that s−1(0) is contained in the union of
the spaces M1(Ci, Ai) taken over finitely many β-curves Ci. Since the restriction of N|β|

to CP contains O(−1), O⊥ also contains a line subbundle is isomorphic to ev∗
z1
L, where

evz1 : Z̄T −→X is the evaluation map sending [Σ, u] to the value of u at a node of Σ taken
to a node of CP . The restriction of this subbundle to s−1(0) is trivial.

Case 3: m= 1. Here, O⊥ = O is a bundle of the same rank as the dimension of M1(Mβ,1, d) for
some d∈Z+. Thus, if ZT is not the main stratum of M1(Mβ,1, d), the restriction of O⊥

to Z̄T contains a trivial C∞-subbundle.

It remains to consider the case ZT =ZTeff(β,d) with |Ver|=1. Then, ϕtν is a generic section of

O = O
⊥ = E∗ ⊗ f∗TMβ ⊕R1π∗ev

∗Nβ −→ M
0
1(Mβ,1, d),

where M
0
1(Mβ,1, d)⊂M1(Mβ,1, d) is the closure of the space of maps with smooth domains, π is

the structure map for the universal curve over M1(Mβ,1, d), and ev is the corresponding evaluation
map, see (2.18). Thus,

CTeff(β,d)(dβ) =
〈
e
(
E∗ ⊗ f∗TMβ

)
e
(
R1π∗ev

∗Nβ

)
,M

0
1(Mβ,1, d)

〉

=
〈
c2

(
Mβ

)
,Mβ

〉 ∫

M
0
1(P

1,d)
e
(
R1π∗ev

∗
(
O(−1)⊕O(−1)

))

−
〈
λ f∗c1

(
Mβ

)
e
(
R1π∗ev

∗Nβ

)
,M

0
1(Mβ,1, d)

〉
,

(2.49)

where λ= c1(E). Using the Atiyah-Bott Localization Theorem of [2] as in Section 27.5 of [8], we
find ∫

M
0
1(P1,d)

e
(
R1π∗ev

∗
(
O(−1)⊕O(−1)

))
=
d− 1

12d2
.8 (2.50)

35



In the next paragraph, we will obtain

〈
λ f∗c1

(
Mβ

)
e
(
R1π∗ev

∗N
)
,M

0
1(Mβ,1, d)

〉

=
d− 1

24d2

∫

Mβ,1

c2(Nβ) f∗c1(Mβ).
(2.51)

Along with (2.49), (2.50), and (2.21), we conclude the first identity in (2.3).
With M0,2(Mβ,1, d)⊂M0,2(Mβ,1, d) denoting the locus of maps with nonsingular domains, let

M0,1=2(Mβ,1, d) =
{
b∈M0,2(Mβ,1, d) : ev1(b)=ev2(b)

}
.

Denote by M
0
0,1=2(Mβ,1, d) the closure of M0

0,1=2(Mβ,1, d) in M0,2(Mβ,1, d). Let

∆
0
1(Mβ,1, d) ⊂ M

0
1(Mβ,1, d)

be the subspace consisting of the stable maps [Σ, u] such that the principal component ΣP of Σ is
singular. There is a natural node-identifying immersion

ι : M
0
0,1=2(Mβ,1, d)

/
S2 −→ ∆

0
1(Mβ,1, d),

which is an embedding outside of a divisor. Note

ι∗e
(
R1π∗ev

∗Nβ

)
= c2(Nβ) e

(
R1π∗ev

∗Nβ

)
.

If ∆1⊂M1,1 is the locus of the nodal elliptic curve,

λ =
1

12
∆1 ∈ H2

(
M1,1

)
.

Therefore,

〈
λ f∗c1

(
Mβ

)
e
(
R1π∗ev

∗Nβ

)
,M

0
1(Mβ,1, d)

〉

=
1

24

〈
f∗c1

(
Mβ

)
c2(Nβ)e

(
R1π∗ev

∗Nβ

)
,M

0
0,1=2(Mβ,1, d)

〉

=
1

24

〈
c2(Nβ)f∗c1

(
Mβ

)
,Mβ,1

〉

×

∫

M
0
0,1=2(P1

p,d)
e
(
R1π∗ev

∗
(
O(−1)⊕O(−1)

))
.

(2.52)

Using the localization as in Section 27.5 of [8] once again, we find
∫

M
0
0,1=2(P1

p,d)
e
(
R1π∗ev

∗
(
O(−1)⊕O(−1)

))
=
d− 1

d2
.9

Along with (2.52), this identity implies (2.51).

8The space M
0
1(P

1, d) is singular, and thus [2] is not generally applicable. However, with the setup of Section 27.5
in [8], the restrictions of e

(
R1π∗ev

∗
(
O(−1)⊕O(−1)

))
to all fixed loci, with the exception of the simplest 1-edged

ones, vanish. Furthermore, M
0
1(P

1, d) is smooth along the 1-edged fixed loci. Therefore, the usual Atiyah-Bott
localization formula applies. The normal bundles to the only contributing loci are the same as the normal bundles

in the desingularization M̃
0
1(P

1, d) of M
0
1(P

1, d) constructed in [17] and described in Section 1.4 in [17].
9Similarly to the situation discussed for (2.50), M

0
0,1=2(P

1
p, d) has singularities but is nonsingular along the only

fixed locus to which e
(
R1π∗ev

∗
(
O(−1)⊕O(−1)

))
restricts non-trivially.
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3 Local P2

3.1 Gromov-Witten invariants

We consider here the local Calabi-Yau 5-fold given by the total space

X = O(−1) ⊕O(−1) ⊕O(−1) −→ P2 . (3.1)

There are only two primary Gromov-Witten invariants in each degree d:

N0,d = N0,d(H
2,H2) and N1,d,

where H is the hyperplane class in H2(X,Z) = H2(P2,Z). We compute both Gromov-Witten
invariants by localization10 and then state a conjectural formula found by Martin for the integer
counts n1,d.

Lemma 3.1 For d∈Z+,

N0,d =
(−1)d−1

d
and N1,d =

(−1)d

8d
.

Proof. Let (a, b, c) be the weights of the torus action on the vector space C3. The weights of the
torus action on TP2 at the fixed points are then

P1 =[1, 0, 0] : b−a, c−a,

P2 =[0, 1, 0] : a−b, c−b,

P3 =[0, 0, 1] : a−c, b−c.

We choose linearizations on the 3 bundles O(−1) with the following weights at the fixed points:

O(−1) O(−1) O(−1)
P1 : 0 a−b a−c
P2 : b−a 0 b−c
P3 : c−a c−b 0

In order to compute the numbers N0,d, we choose the points P1 and P2 for the insertions and
integrate over

M =
{
b∈M0,2(P

2, d) : ev1(b)=P1, ev2(b)=P2

}
.

By the choice of the weights and the points, there is a unique fixed locus with non-zero contribution,
see Section 27.5 in [8] for a similar situation. The locus consists of the d-fold cover u of the line

P1
12 =P1P2

branched over only P1 and P2 and with the marked points 1 and 2 mapped to P1 and P2, respec-
tively. The weights of the fibers of the relevant bundles at the fixed locus are given by

H1(u∗O(−1)) : (−1)d−1(d−1)!
dd−1 (a− b)d−1

H1(u∗O(−1)) : (−1)d−1(d−1)!
dd−1 (b− a)d−1

H1(u∗O(−1)) : (−1)d−1
∏d−1

r=1

(
c− (d−r)a+rb

d

)

TM : (−1)d−1(d−1)!2

d2(d−1) (a−b)2(d−1)
∏d−1

r=1

(
c− (d−r)a+rb

d

)
,

10In the genus 0 case, the moduli space M0,2(P
2, d) is a nonsingular stack and the usual Atiyah-Bott localization

formula applies. In the genus 1 case, the virtual localization formula of [7] is used.
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see Section 27.2 in [8]. The number N0,d is the ratio of the product of the first three expressions
and the last expression, divided by d for the stack automorphism factor.

We next compute the number N1,d. There are now 6 fixed loci with nonzero contribution: the
three d-fold Galois covers of the three lines together with a choice of vertex for the contracted
elliptic component. By symmetry, the contribution of the d-fold cover of P1

12 with the contracted
component at P1 determines the other cases. The weights of the fibers of the relevant bundles at
the d-fold cover of P1

12 are given by

H1(u∗O(−1)) : (−1)d−1(d−1)!
dd−1 (a− b)d−1(−λ)

H1(u∗O(−1)) : (−1)d−1(d−1)!
dd−1 (b− a)d−1(a− b− λ)

H1(u∗O(−1)) : (−1)d−1
∏d−1

r=1

(
c− (d−r)a+rb

d

)
(a− c− λ)

Obs(P2) : (b− a− λ)(c − a− λ)

TM1(P
2, d) : (−1)dd!2

d2d−1 (a−b)2d−1
∏r=d

r=0

(
c− (d−r)a+rb

d

) (
b−a
d − ψ

)
,

where λ is the first chern class of the Hodge line bundle E−→M1,1. The contribution of the locus
to N1,d is the ratio of the product of the first four expressions and the last expression, divided by
the stack factor d, and integrated over M1,1,

Cont(a, b) =
(−1)d

24d

c− a

c− b
.

Symmetrizing over a, b, and c, we obtain N1,d.�

By Lemma 3.1 and the n=2 case of (0.2), the genus 0 counts for X are given by

n0,d = n0,d(H
2,H2) =





1, if d=1;

−1, if d=2;

0, if d≥3.

Using the algorithm of Section 1.2, we have computed the genus 1 count n1,d for X for d≤200. All
are integers.

3.2 Martin’s conjecture

Recall the definition of the Möbius µ-function,

µ : Z+ −→ {0,±1}, µ(d) =

{
(−1)r, if d is the product of r distinct primes,

0, otherwise.

Define a sign function S(d) and an absolute value function V (d) as follows:

S(d) =

{
µ(d), if d 6∼= 4 (mod 8),

µ(d/4), if d ∼= 4 (mod 8),
V (d) =

k2−1

8
×





k2−1
8 , if d=k, 2 6 |k,

17k2+7
8 , if d=2k, 2 6 |k,

2k2+1, if d=4k, 2 6 |k.
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Conjecture 2 (G. Martin) For every d∈Z+, the genus 1 degree d count for the local Calabi-Yau
5-fold P2 is given by

n1,d = S(d)V (d). (3.2)

If 8|d, then S(d) vanishes and a definition of V (d) is not required for (3.2). As our method for
computing the numbers n1,d from n0,d and N1,d is completely explicit and the starting data is fairly
simple, a verification of Conjecture 2 by elementary identities may be possible. Unfortunately, the
algorithm involves a significant number of simultaneous recursions.11

Geometric consequences are easily obtained from the conjecture. For example, since n1,d is
predicted to vanish whenever 8|d, we expect Calabi-Yau 5-folds obtained from suitably generic
deformations of the local P2 geometry to contain no embedded elliptic curves of degrees divisible
by 8. Is there a simple symplectic reason for this?
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