Normal Crossings Degenerations of Symplectic Manifolds

Mohammad F. Tehrani and Aleksey Zinger*

July 1,

2017

Abstract

We use local Hamiltonian torus actions to degenerate a symplectic manifold to a normal cross-
ings symplectic variety in a smooth one-parameter family. This construction, motivated in part
by the Gross-Siebert and B. Parker’s programs, contains a multifold version of the usual (two-
fold) symplectic cut construction and in particular splits a symplectic manifold into several
symplectic manifolds containing normal crossings symplectic divisors with shared irreducible

components in one step.
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1 Introduction

Flat one-parameter families of degenerations are an important tool in algebraic geometry and raise
considerable interest in related areas of symplectic topology. The Gross-Siebert program [9] for
a direct proof of mirror symmetry has highlighted in particular the significance of log smooth
degenerations to log smooth algebraic varieties. A central part of this program is the study of
Gromov-Witten invariants (which are fundamentally symplectic topology invariants) under such
degenerations. It is undertaken from an algebro-geometric perspective in [1, 4, 10]. The almost
complex analogue of the log smooth category provided by the exploded manifold category of [16] un-
derlines a similar study of Gromov-Witten invariants in [17]. Log smooth varieties include varieties
with normal crossings (or NC) singularities, i.e. singularities of the form z;...zy =0 in complex coor-
dinates. Purely symplectic topology notions of NC symplectic variety and of smooth one-parameter
family of degenerations to such a variety are introduced in [5, 6]. The main construction of this
paper uses a collection of compatible Hamiltonian torus actions, i.e. an N-fold cutting configuration
in the sense of Definition 1.2, to degenerate a symplectic manifold to an NC symplectic variety in
a smooth one-parameter family.

The now classical symplectic cut construction of [11] decomposes a symplectic manifold (X,w)
into two symplectic manifolds, (X_,w_) and (X, ,w, ), using an S'-action with a Hamiltonian h
on an open subset W of X. This construction cuts X into closed subsets US and U along a
separating real hypersurface V= h~'(a) and collapses their boundary V to a smooth symplectic
divisor V=V /S inside (X_,w_) and (X4, w,). The associated “wedge”

Xg= X_uvXs

is an SC symplectic variety associated with a 2-fold simple crossings (or SC) symplectic configuration
in the sense of Definition 2.5.

The main construction of this paper, described in Section 4, contains a multifold version of the
construction of [11]. We use an N-fold cutting configuration % in particular to decompose a
symplectic manifold (X, w) into N symplectic manifolds (X;,w;) at once. This construction cuts X
into closed subsets Uf along separating real hypersurfaces U; = hi_jl(O) for Hamiltonians h;;
generating S'-actions on open subsets W;; of X. These subsets Uf have boundary and corners

Ur Us cUS, {ifcI<{1,...,N}.

jel—i

We collapse these U f to symplectic submanifolds X; < X; with I 3% which form an SC symplectic
divisor in X; in the sense of Definition 2.1. The entire collection {X;} determines an SC symplectic
variety Xp. This output of our main construction corresponds to the two middle statements in



Theorem 1 in Section 3.3. The output described by the remainder of Theorem 1 and by Theorem 2
endows the basic output of Theorem 1 with a rich geometric structure desirable for a range of
applications; this structure is summarized below.

The normal bundles of the symplectic divisor V' in the symplectic manifolds (X_,w_) and (X4, w4 )
arising from a symplectic cut construction of [11] are canonically dual. The symplectic sum con-
struction of [8] thus determines a deformation equivalence class of nearly regular symplectic fibrations

(Z,wz,m: Z—C) st. 7 H0)=Xyc Z; (1.1)

see Definition 2.6. If V is compact, the symplectic deformation equivalence class of a fiber
Zy=7"1(\) of 7 is independent of the choice of A € C* sufficiently small. It is then called a
symplectic sum X_#y X, of X_ and X, and is symplectically deformation equivalent to (X,w).
The constructions of [11] and [8] together thus provide a symplectic topology analogue of the
algebro-geometric notion of smooth one-parameter family of degenerations of a smooth algebraic
variety to two smooth algebraic varieties joined along a smooth algebraic divisor.

The main construction of this paper uses an N-fold cutting configuration ¢ for (X,w) to produce
a symplectic manifold (Z,wz) which contains the tuple (X;,w;)¥; of the symplectic manifolds
cut out from X by %€ as an SC symplectic divisor. The cutting configuration € also determines
an N-fold Hamiltonian configuration for (£, wz) in the sense of Definition 1.1 and a deformation
equivalence class of maps as in (1.1) that restrict to nearly regular symplectic fibrations on suffi-
ciently small neighborhoods Z’ of Xj. One implication for the well-known N =2 case is that the
domain of the map 7 in (1.1) can be taken inside of a symplectic manifold completely determined
by the data (W, ¢, h,a) of the symplectic cut construction of [11]. If X is compact, then the fiber
of 7|z over every sufficiently small value A€ R is canonically isomorphic to the original symplectic
manifold (X, w) with the cutting configuration &’; see Theorem 2. The full output of the construc-
tions of Sections 4 and 5, described in Theorems 1 and 2, thus provides a symplectic topology
analogue of the algebro-geometric notion of smooth one-parameter family of degenerations of a
smooth algebraic variety to an NC algebraic variety.

By [6, Proposition 5.1], a fibration 7: Z’'— C as above determines a homotopy class of trivializa-
tions of the normal bundle Ox,(Xp) of the singular locus X, of Xj. We show in [7] that the multi-
fold symplectic sum/smoothing construction of [6] and the multifold symplectic cut/degeneration
construction of Sections 4 and 5 are mutual inverses as operations between the deformation equiv-
alences classes of compact SC symplectic varieties with trivializations of the normal bundle of the
singular locus and of compact symplectic manifolds with cutting configurations. This can be seen
explicitly in the basic local setting of Section 6.2.

For NeZ", we define

[N] = {1,....N}, P*(N)={Ic[N]: I#0}, (S = {(ewi)ie[N]e(Sl)N: Hewi:1}.
1€[N]

The Lie algebra of the codimension 1 subtorus (S1)Y < (S1)" and its dual are given by

tne = {(ri)ie[N]G]RN: ZrizO} and ty., = ]RN/{(CL, ..,a)eRY: acR}, (1.2)
i€[N]



respectively. For I [N], we identify (S')! with the subgroup
{(%);epvye(SHN €% =1 Vie[N]-T}
of (SN in the natural way and let
(SHe=(SHT (s

Denote by tr.. < ty.e the Lie algebra of (S')! and by t7., its dual. For i, je<[N], the homomor-
phism
tf..=R'/{(a,...,a)eR": aeR} — R, n=[(ar)ker| — nij=a;—ai,

is well-defined. We write (n); <(n); (resp. (7);i<(n);, (n)i=(n);) if 0<n;; (resp. 0<n;j, 0=1n; ).

Definition 1.1. Let NeZ" and (X,w) be a symplectic manifold. An N-fold Hamiltonian configu-
ration for (X,w) is a tuple
€ = (Ul,gzs[,m)lep*(m, (1.3)

where (Uy) rep*(N) is an open cover of X and ¢y is a Hamiltonian (S DI action on Ur with moment
map g, such that

(a) UynUjy=0 unless IcJ or JcI;
(b) pr(x)|, =pr(x) for all xteUrnUy and < J < [N];
(e) (ps(x))i<(ps(x)); for all xteUrnUy, ieIcJ<[N], and jeJ—1.

Definition 1.2. An N-fold cutting configuration for (X, w) is an N-fold Hamiltonian configuration
as in (1.3) such that the restriction of the (S')I-action ¢; to (S')I0 is free on the preimage of
0€tj ., under the moment map

,u[D;[: {:IZEU[Z (uf(a;))i< (,uj(m))j ViEIQ, jGI—I()} —> tio;" MIO;I(x):MI('r)‘fIO;. s (1.4)

for all Ipc I<[N] with Iy #0.

We specify our conventions concerning moment maps for Hamiltonian actions on symplectic man-
ifolds and identifications of Lie algebras in Section 3.1. An N-fold Hamiltonian configuration is
determined by the 2V —N—1 actions ¢; by the non-trivial subtori (S'){ < (S')" and their moment
maps py on open subsets Ur of X. As described in Section 3.2, such a collection can alternatively
be specified by (gf ) Hamiltonian S'-actions ¢i; and their Hamiltonians h;; on (generally) larger
open subsets of X. The usual symplectic cut construction of [11] is the N =2 case of this alterna-
tive description, which identifies (S')2 with S! by projection to one of the components of (S')2.
Simple examples of N-fold Hamiltonian and cutting configurations are described in Section 6.2.
The output of the constructions of Sections 4 and 5 for the cutting configurations of Section 6.2

can be readily identified; see Proposition 6.4.

If the domain Uy of the action ¢y by the largest subtorus (S DN < (SHY is the entire manifold X,
the remaining actions ¢; and moment maps py are the restrictions of ¢jn) and ppyy, respectively,
to Ur. As described in Section 6.1, the symplectic manifolds (Z,wz) and (X;,w;) are then obtained
through a single application of the symplectic reduction of [13, 12]. There is also a natural nearly



regular fibration 7 as in (1.1) defined on the entire manifold Z. If in addition X is compact,
(Z,wz, ) can be replaced by a compact symplectic manifold (Z,, Wé;a) for each aeR™ sufficiently
large and an S'-equivariant nearly regular symplectic fibration

7 Z,— P st 77N0) = Xg < 2y (1.5)

see Section 6.3. In Sections 6.4 and 6.5, we relate on the setup for and the output of the main
constructions of this paper to the moment polytopes arising from the Atiyah-Guillemin-Sternberg
Convexity Theorem; see Theorem 3 and Proposition 6.10.

The notions of normal crossings symplectic singularities and of smoothings of such singularities
introduced in [5] and [6], respectively, are recalled in Section 2. Section 3.3 contains the main
statements of this paper, Theorems 1 and 2; they describe the output of our multifold symplectic
cut/degeneration construction. The SC symplectic configuration determined by a cutting configu-
ration and the symplectic manifold containing the associated SC symplectic variety are constructed
in Section 4; this establishes Theorem 1. Section 5 endows a neighborhood of this symplectic va-
riety with the structure of a one-parameter family of smoothings and establishes Theorem 2.

We would like to thank A. Cannas da Silva, M. McLean, B. Parker, and A. Pires for related
discussions and E. Lerman for pointing out related literature.

2 Notation and terminology

For I c[N], define
Pi(N) = {JeP*(N): I J}.

For ie[N], we write Py (V) as P;(N). For i,je[N] distinct, we write Py; ;3 (N) as Pi;(N).

2.1 Normal crossings symplectic varieties

We now recall the notions of simple crossings (or SC) symplectic divisor and variety introduced,
described in more detail, and illustrated with examples in [5, Section 2.1].

Let X be a (smooth) manifold. For any submanifold V < X, let

TXly
TV

denote the normal bundle of V' in X. For a collection {V;};cs of submanifolds of X and IS, let

NxV = —V

wzﬂwcx.

el

Such a collection is called transverse if any subcollection {V;};c; of these submanifolds intersects
transversely, i.e. the homomorphism

L,X®PILV, — PT.X, (v, (vi)ier) — (v+vi)ier » (2.1)

el iel



is surjective for every xe V. Each subspace V;c X is then a submanifold of X.

If X is an oriented manifold, a transverse collection {V;};es of oriented submanifolds of X of even
codimensions induces an orientation on each submanifold V; < X with |I| > 2, which we call the
intersection orientation of V;. If V; is zero-dimensional, it is a discrete collection of points in X
and the homomorphism (2.1) is an isomorphism at each point x € V7; the intersection orientation
of Vi at € V7 then corresponds to a plus or minus sign, depending on whether this isomorphism is
orientation-preserving or orientation-reversing. For convenience, we call the original orientations
of X =Vj and V; =V}, the intersection orientations of these submanifolds V; of X with |I|<2.

Suppose (X, w) is a symplectic manifold and {V;};cs is a transverse collection of submanifolds of X
such that each V7 is a symplectic submanifold of (X, w). Each V; then carries an orientation induced
by w|y,, which we call the w-orientation. If V7 is zero-dimensional, it is automatically a symplectic
submanifold of (X,w); the w-orientation of V; at each point x € V7 corresponds to the plus sign
by definition. By the previous paragraph, the w-orientations of X and V; with ¢ € I also induce
intersection orientations on all V7. By definition, the intersection and symplectic orientations of V7
agree if |I]|<2.

Definition 2.1. Let (X,w) be a symplectic manifold. An SC symplectic divisor in (X,w) is a
finite transverse collection {V;};cs of closed submanifolds of X of codimension 2 such that V7 is a
symplectic submanifold of (X,w) for every I < S and the intersection and w-orientations of V agree.

Definition 2.2. Let X be a manifold and {V;},cs be a finite transverse collection of closed sub-
manifolds of X of codimension 2. A symplectic structure on {V;};cs in X is a symplectic form w
on X such that V7 is a symplectic submanifold of (X,w) for all I<S.

For X and {V;}iecs as in Definition 2.2, we denote by Symp™ (X, {V;}ics) the space of all symplectic
structures w on {V;};cs in X such that {V;};cs is an SC symplectic divisor in (X, w).

Definition 2.3. Let NeZ*. An N-fold transverse configuration is a tuple { X1} ;ep+ () of manifolds
such that {X;;}c[n1— is a transverse collection of submanifolds of X; for each ie[N] and

k
Xigtpign} = ﬂXz‘jm = Xiji.je Vi, 0k € [N]—i.
m=1
Definition 2.4. Let NeZ™" and X= {X1}1ep+(v) be an N-fold transverse configuration such that
Xij is a closed submanifold of X; of codimension 2 for all 4, je[N] distinct. A symplectic structure

on X is a tuple
N

(wi)ierny € [ [ Symp(Xi, {Xij} jern—i)
=1

such that w;, |x =z,ul-2|Xm.2 for all i1,i9€[N].

KD

For X ={X[}ep(n) as in Definition 2.3, define

N
X@:(uXi>/~, Xisdx~zveX; Vee X Xy, X, 1 #7, (22)
i=1
Xo= (JXreXp. (2.3)
Ic[N]
1]=2



For X as in Definition 2.4, denote by Symp™ (X) the space of all symplectic structures (w;);e[n] on
X such that {Xj;}e[n)— is an SC symplectic divisor in (X;,w;) for each i€ [N].

Definition 2.5. Let NeZ™. An N-fold simple crossings (or SC) symplectic configuration is a tuple

X = ((X1)1ep# (v (Wi)ie[n]) (2.4)

such that {X;}reps(ny is an N-fold transverse configuration, X;; is a closed submanifold of X;
of codimension 2 for all ¢,j € [N] distinct, and (w;)e(n) € Symp™ (X). The SC symplectic variety
associated to such a tuple X is the pair (Xg, (wi)ie[n])-

The basic local example of an SC symplectic variety is the union of the N coordinate hyperplanes
in CV with the restrictions of the standard symplectic form on C¥, i.e. the A = 0 case of the
hypersurface X in (6.26). This is the SC symplectic variety associated to the SC symplectic
configuration (6.23) and is central fiber of the one-parameter family (6.24) of degenerations of the
smooth symplectic manifolds X in (6.26) with A # 0 and arises from the basic local symplectic
cutting configuration of Section 6.2.

2.2 Divisors, line bundles, and smoothability

Suppose (X, w) is a symplectic manifold and V < X is a smooth symplectic divisor, i.e. [S|=1 in
the notation of Definition 2.1. The normal bundle of V' in X,

TX|y
TV

NxV = ~TVY = {veT, X: zeV, w(v,w)=0VweT,V} —V, (2.5)
then inherits a fiberwise symplectic form w|p,y from w. The space of complex structures on
the fibers of (2.5) compatible with (resp. tamed by) w|a,v is non-empty and contractible; we
call such complex structures w-compatible (resp. w-tame). Fix an identification ¥ of a tubular
neighborhood D5V of V in NxV with a tubular neighborhood of V in X (i.e. a regularization of V
in X in the sense of [5, Definition 2.8]) and an w-tame complex structure i on NxV. Let

Ox(V) = (\If—l*prVNXV\\p(DE(V) U (X=V)xC)/~, (2.6)
\I’_I*WX/'X‘/NXVLIJ(D%V) 5 (¥(v),v,cv) ~ (¥(v),c) € (X—V)xC.

This is a complex line bundle over X. The space of pairs (¥, 1) involved in explicitly constructing
this line bundle is contractible.

Suppose X is an SC symplectic configuration as in (2.4). If 7, j, ke [N] are distinct, the inclusion
(XK, Xijr) — (X}, X;;) induces an isomorphism

TXjk|Xijk . TXj|Xijk = Ny X;
TX;j T X5 x g

ijk

Nx, Xigr = j’Xijk
of rank 2 oriented real vector bundles over Xj;i; see the last third of [6, Section 2.1]. In particular,

the rank 2 oriented real vector bundles N- Xinj] x... and N X Xk X, are canonically identified
with NXijijk- We can thus choose a collection

ijk

Vijiy: Nijy — Xj, 1 je[N]i#],



of identifications of tubular neighborhoods of X;; in N x;Xij and in X; and a collection of w;-tame
complex structures i;;,; on the vector bundles N;j.; so that

\Ijiﬁj |j\/i,j;ijXijijk = \Ijik;kb\/{k;kﬁ/\/xﬂxijk and Yigsj |NXijijk = 1ik§k|NXijijk (27)
for all i, j, ke[ N] with k, j #i.

For 4, j€[N] distinct, let O, (X;;) be the complex line bundle over X; constructed as in (2.6) using
the identification W;;.; and the complex structure i;;.;. By (2.7), there are canonical identifications

Ox;,(Xij)|,, = Ox,; (Xij) = Ox, (Xin) |,
for all i, j, ke[ N] with j, k+#i. For each ie[N],
Oxe(X;) = < |_|0Xj(XZ-j)>/~_> Xi= X< Xy, (2.8)
€[N]-{i} el

e[N]-{i}
OXj(Xij)’Xjk 2UuU~UE OXk(Xik)‘Xjk Vi,j,kE[N], j,]ﬁ??ﬁi,

is thus a well-defined complex line bundle. Let Ox,(X;)=Ox¢(X;)|x,. We call the complex line
bundle
N
Ox,(Xp) = Q) Ox,(X;) (2.9)
i=1

the normal bundle of the singular locus X, in Xy. The space of the collections of pairs (¥;;.;, iij:5)
involved in explicitly constructing this line bundle is contractible.

The notions of smooth families of varieties and of smoothings of singular varieties play important
roles in algebraic geometry. Analogues of these notions in the category of SC symplectic varieties
are introduced in [6].

Definition 2.6 ([6, Definition 2.6]). If (Z,wz) is a symplectic manifold and A < C is a disk
centered at the origin, a smooth surjective map 7w: Z—— A is a nearly regular symplectic fibration if

o Zy=m1(0) = X1U...uXy for some SC symplectic divisor {X;}ie[n] in (Z,wz),
e 7 is a submersion outside of the submanifolds X; with |I|>2,

e for every A\e A—{0}, the restriction wy of wz to Zy = 7 !()\) is nondegenerate.

We call a nearly regular symplectic fibration as in Definition 2.6 a one-parameter family of smoothings
of the SC variety (Xp, (wi)ie[n]) associated to the SC symplectic configuration (2.4) with

X;=()XicZc2 VIeP*N).
el

By [6, Theorem 2.7], some SC symplectic variety (X, (w;)ie[n]) deformation equivalent to
(Xg, (wi)ie[n]) admits a one-parameter family of smoothings if and only if the line bundle (2.9)
admits a trivialization (or equivalently its Chern class vanishes). Furthermore, the germ of the



deformation equivalence class of such a smoothing is determined by a homotopy class of trivializa-
tions of (2.9).

If the SC symplectic variety X associated with an SC symplectic configuration X is compact, we
call the fiber of a one-parameter family of smoothings of Xy over a point in a small punctured
disk A* around the origin a symplectic sum for X. Each such fiber comes with a natural cutting
configuration. The concern of Corollary 3.2 with the trivializations of the line bundle (2.9) is
in preparation for showing in [7] that the symplectic cut/degeneration construction of this paper
and the symplectic sum/smoothing construction of [6] are mutual inverses as morphisms between
appropriate categories.

2.3 Families of symplectic varieties

We also need family versions of Definitions 2.4 and 2.6, especially over the interval I=[0, 1].

Definition 2.7. Let B be a manifold, possibly with boundary.

(1) A smooth map 7z : X — B is a family of manifolds over B if 0X = 7' (0B) and 7x is a
submersion.

(2) A family of symplectic manifolds over B is a tuple (X,wx, 7x), where mx: X — B is a family of
manifolds over B and wx is a 2-form on X such that

(X, w) = (W;l(t),w’xt)
is a symplectic manifold for every te B.
Definition 2.8. Let NeZ* and B be a manifold, possibly with boundary.

(1) A family of N-fold transverse configurations over B is a tuple {m; : X; — B}ep+(n), where
{X1}repx(ny 1s an N-fold transverse configuration and 7;: X; — B is a family of manifolds
over B for each IeP*(N) such that m; =m;|x, for all ie I <[N].

(2) A family of N-fold SC symplectic configurations over B is a tuple
((m1: X1 — B) repr (), (Wi)ie[n])

where {m;: X1 —> B} ep(n) is a family of N-fold transverse configurations over B and w; is a
2-form on X; for each i€ [N] such that

((Xe1) repx(vys Wei)iepny) = (77 (1) 1epx(vys (Wi)ieny)
is an N-fold SC symplectic configuration for every te B.

We call a family (w)iep of 2-forms on a manifold X smooth if the induced 2-form on Bx X given by

(v, ) wi|z(v,w), if v,weT,X;
wiz(v,w) =
b 0, if veT}B;

is smooth. Let X ={X}ep+(n) be an N-fold transverse configuration,

(i) ey € Symp™ (X) YV teB,

9



and w; be the 2-form on B x X; induced by the family (wt;i) B If the family (wy;i)iep of 2-forms
on X; is smooth for every i€ [N] and 7y : B x X; — X7 is the component projection map, then
the tuple

((m1: Xr=Bx X[ — B)ep+(n), (Wi)ie[n])

is a family of N-fold SC symplectic configurations over B.

Suppose the fibers of the submersions 77 in Definition 2.8(1) are compact. These projections are
then locally trivial, i.e. for every tg€ B there exist a neighborhood U of ¢y in B and a diffeomorphism

=5 %[|UE7T;1(U) — UX?T?l(to)
such that 7|, =7y oZ, where
Ty Uxnpti(t)) — U

is the component projection map. By the same reasoning as in the proof of [5, Proposition 4.2],
the diffeomorphisms =; can be chosen so that

EI:Ei’Trfl(U) VZGIC[N]

This implies that any family of compact N-fold transverse configurations is locally trivial. Thus, we
can identify a family of N-fold SC symplectic configurations over I with a smooth path (wt;i)ie[ N
in Symp™ (X) for some N-fold transverse configuration X.

Given a family {m;: X; — B} ep#(n) of transverse configurations, we define fiber bundles
mp: X9 — B and mo: Xog — B

similarly to (2.2) and (2.3). For each te B, let
Xip = Wal(t) and Xpo =75 (1).

The precise definition of the total space of the complex line bundle Ox,(Xy) in (2.9) depends on
the choices of identifications W;;.; of neighborhoods of X;; in X; and in X; and of the w;-tame
complex structures i;;,; on (the fibers of) Nx, X;; that satisfy (2.7), respectively. For a family of
SC symplectic configurations as in Definition 2.8(2), such choices can be made continuously with
respect to te B. We then obtain a complex line bundle

Ox,(Xp) — X5 sit. (9356(360)|3Et;a = Ox,,(Xyy) VieB. (2.10)

We call a family (%t)wep of homotopy classes of trivializations of Ox, ,(Xy) continuous if for each
to € B there exist a neighborhood U of ¢y in B and a trivialization ® of Oy, (%@)|ﬂ:1(U) such that

P|x,, €M for every teU.
Suppose X is an N-fold transverse configuration as in Definition 2.4,

(wO?i)ie[N]’ (wl?i)ie[N] € Symp™ (X)

10



lie in the same topological component of Symp™ (X), and the associated line bundle (2.9) admits
a trivialization. Let hg and iy be homotopy classes of trivializations of the line bundles Ox,(Xp)
corresponding to the SC symplectic configurations determined by (wo;i)ie[N] and (wl;i)ie[N], respec-
tively. We define fip = iy if there exist a smooth path (w;i)ie[n in Symp*(X) and a continuous
family ()i of homotopy classes of trivializations of the corresponding line bundles Oz, ,(Xyp).

Definition 2.9. Let B be a manifold, possibly with boundary.

(1) A family of nearly regular symplectic fibrations over B is a tuple (Z,wy,m, m), where
(Z,wy,me) is a family of symplectic manifolds over B and 7: 2 — C is a smooth map
such that

(%,Wg;t,ﬂ't) = (F%,l(t),wpof‘%,ﬁ’g;) (2.11)

is a nearly regular symplectic fibration for every te B.

(2) Let (X,9)tep be the family of SC symplectic varieties associated with a family of N-fold SC
symplectic configurations over B as in Definition 2.8(2). A family of one-parameter families
of smoothings of (X;.¢)iwcp is a family (2, ws,m, my) of nearly regular symplectic fibrations
over B such that (2.11) is a one-parameter family of smoothings of X, for every te B.

Suppose (Z,wy, ) is a family of symplectic manifolds over B, (X;,p)«p is as in Definition 2.9(2),
and X,y < Z; is an SC symplectic divisor for every te B. We call a family (b;)cp of germs of
homotopy classes of one-parameter families (27, w | P2 m;) of smoothings of X,y with 2 c 2 con-
tinuous if for each ¢y € B there exist a neighborhood U of ¢y in B and a family (27, wy| g, 7, 7| %)
of one-parameter families of smoothings of (X,g)rev With 27 < 2 such that (2, we|z;, m)€h; for
every te B.

3 Main setup and output

We review basic notions from Hamiltonian symplectic geometry, specifying our conventions, in
Section 3.1. In Section 3.2, we study the notions of Hamiltonian and cutting configurations of
Definitions 1.1 and 1.2. Simple local examples of such configurations are described in Section 6.2.
Section 6.4 provides a plethora of Hamiltonian and cutting configurations for symplectic manifolds
with Hamiltonian torus actions. Theorems 1 and 2, stated in Section 3.3 and proved in Sections 4
and 5, describe the output determined by a cutting configuration via the multifold symplectic
cut/degeneration construction of this paper.

3.1 Torus actions and moment maps
The characteristic vector field of a (smooth) S'-action

p: S'xX — X
on a manifold X is the vector field (4 on X given by

d .
Col@) = 45 (%2)] eT,X VazeX.
6=0

11



If (X,w) is a symplectic manifold, a Hamiltonian for an S'-action ¢ on X as above is a smooth map
h: X — R such that
—dh = ,w =w((p );

such a function h is S'-invariant. For example, a Hamiltonian for the S'-action
$: S'xcV — v, qb(ew; 21, .. 7ZN) = (zl, e Zie1, €92, zik, . ,zN),
on CV with the standard symplectic form
weny =driady + ... +dey Adyn

is given by
1
h:CY — R, h(zl,...,zN)=§|zi|2.

An St-action ¢ on (X, w) is called Hamiltonian if a Hamiltonian h for ¢ exists. In such a case, h is
well-defined up to a constant (on each connected component of X).

For a k-torus T~ (S')*, we denote by t its Lie algebra and by t* the dual of t. A smooth map
Pp:TxX — X (3.1)
and an element {€t determine a vector field {4 on X by
§o(w) = d(ia,2)#(§,0) € T X VzelX.

If (X,w) is a symplectic manifold, a moment map for a T-action ¢ on X as in (3.1) is a T-invariant
smooth map

p: X — t* s.t. fd<,u(-),§>=L§¢w VEet.

An T-action ¢ on (X,w) is called Hamiltonian if a moment map u for ¢ exists. In such a case,
p is well-defined up to a constant (on each connected component of X). A Hamiltonian T-pair
for a symplectic manifold (X,w) is a pair (¢, ) consisting of a Hamiltonian action ¢ of a torus T
on (X,w) and a moment map p for this action.

We identify the Lie algebra t; of S! and its dual t{ with R by the dual homomorphisms
R—t;, r—&=—("")] eTuS', ¢ -—R n—{& ek (3.2)

In particular, (4 = (£1)¢. The composition of the second homomorphism above with a moment
map p for an S'-action ¢ on (X,w) is a Hamiltonian for this action. An isomorphism T ~ (S')¥
and the identifications (3.2) determine identifications

t ~ RF and t* ~ RF.

A T-action ¢ on X then corresponds to a tuple (¢;)[y) of commuting Sl-actions on X. A mo-
ment map 4 for a T-action ¢ on (X,w) corresponds to a tuple (h;);c[y) of Hamiltonians for the
Sl-actions ¢; preserved by all S'-actions, i.e.

hi(qﬁj(ew;x)) = h;(x) V(e 2) e S'x X, i, je[k].

12



3.2 Hamiltonian and cutting configurations

A Hamiltonian configuration (1.3) can alternatively be described in terms of compatible S'-actions
as follows. For i, jeZ, define

1, ifi>y;
5;5 =140, if i=yj;
-1, ifi<y.
For ie I < [N], the homomorphism
' . [Te %, if k=4,
ori: (SH)'7 — (S, (Ql;i((eﬁj )jelfi))k = { el (3.3)

el9ikOn if ke I—i;
is an isomorphism onto (S')I. The induced homomorphism on the duals of the Lie algebras,
{didQI;i}*: R! — Rl_iv (aj)jEI - (574 (aj_ai))jep (34)

descends to an isomorphism from tj, to R/~%. Via the isomorphisms (3.3) and (3.4), the tuple
(¢r1, p1) rep+ () in (1.3) corresponds to smooth maps

¢ij:¢ji:slx UU[—> UU] and hij:hji: UU]—>R (3.5)
IE'Pij(N) IePij(N) IE'Pij(N)

with 4, j € [N] distinct so that ¢;; are commuting S'-actions with Hamiltonians h;; preserved by
all these actions and satisfying

sijhijluy + sjrhikluy = sikhiklo;
for all i, j, ke [ c[N].
Since (S')! is a torus of dimension |I|—1, the “actions” ¢;; with i€[N] in (1.3) are trivial. In the

N =1 case of Definition 1.2, the open cover consists of the single set U; = X. There are no torus
actions then; the output of Sections 4 and 5 is then simply

(Xlawl) = (X7w)7 (Za(-‘jZ) = (XX(Caﬂ-Tw_'_ﬂ-;w(C)a m=me: Z—> C.

The N =2 case corresponds to the setting in the symplectic cut construction of [11] with a separating

hypersurface N
V = Uiz = i35 (0) < Uns.

In this case, Ujz2 is an open neighborhood of V with an action of (S1)2 ~ S'. The open subsets
U1,Usc X can be taken to be the unions of the topological components of X —V so that

(/,612(1’))1<(/.L12(13))2 VJTEUlﬁUlQ and (/,612(1’))2<(,U12(13))1 V$EU2ﬁU12;

see Definition 1.1(c). This implies that V is closed in X (and not just in Uys).

Let ¢ be an N-fold Hamiltonian configuration for (X,w) as in (1.3). We call a subset ¥ < X
¢-invariant if
or((SHIx (Y nUp) =Y U, ¥V IEP*(N).
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For such a subset, let

%’Y = (YﬂUI7 ¢I|(Sl)£X(YﬁU[)7 'LLI|YmUI)I€'P*(N)

If in addition Y is a symplectic submanifold of (X,w), then €|y is an N-fold Hamiltonian configu-
ration for (Y, w|y); we call it the restriction of ¥ to Y. If € is a cutting configuration, then so is €|y .

If (Ur) 1ep*(n) is a collection of subsets of X, another collection (U7)epx(ny of subsets of X refines
(UD1eps(wy if Up < Uy for all T e P*(N). We call such a refinement proper if Ul < Uy for all
IeP*(N). If € is an N-fold Hamiltonian configuration for (X,w) as in (1.3), we call a collection
(Up)1ep=(nv) of subsets of X refining (Ur) jep+(n) €-invariant if

or((SHYIxUy) =U; ¥V IeP*(N).
If in addition each Uj is open and the union of these subsets is X' < X, then
¢ = (U}’¢I|(Sl)£><U}vHI|U})[€7)*(N) (36)

is an N-fold Hamiltonian configuration for (X', w|x); we call it the restriction of " to (Uy) repx(n)-
If € is a cutting configuration, then so is ¢”. Restricting to an open refinement covering X has
no effect on the cut symplectic manifolds (X;,w;), their submanifolds (X, wr), the symplectic
manifold (Z,wz), or the deformation equivalence class of the fibration 7: Z’— C constructed in
Sections 4 and 5, but refines the open cover { X7 }ep,(n) of each X; and the open cover {27} rep+ ()
of Z determined by %.

According to Definition 1.1(c),
(ng(x))s<(ps(x)); VaeUnUy, ielcJc[N], jeJ—1I.
We call an N-fold Hamiltonian configuration as in (1.3) maximal if
{zeUs: (us(2))i<(ps(x)); Viel, jeJ—1} < Up (3.7)

whenever I,.J € P*(N) and I < J. The condition (3.7) is automatically satisfied if I = .J. The
N =1,2 configurations described above and the configuration (6.4) with a Hamiltonian (S)%-
action on the entire symplectic manifold (X,w) are maximal. Special cases of the latter include
the basic local N-fold configuration (6.27) and the configuration (6.63) for a symplectic manifold
with a Hamiltonian action of an abstract torus. For a maximal Hamiltonian configuration, the
set of conditions of Definition 1.2 indexed by the pairs Iy c I reduces to its subset with Iy = I.
In light of the second statement in Lemma 4.1, maximal cutting configurations give rise to open
covers { X7} 1ep;(n) of the cut symplectic manifolds X; in the spirit of toric and tropical geometries
(i.e. similar to Zariski open sets in algebraic geometry). For such configurations, each X7 contains
the submanifold X7 outside of the submanifolds X ; with J 21 (the real codimension of X in X
is 2(|.7|—|1])).

A maximal N-fold Hamiltonian configuration can be obtained from any given N-fold Hamiltonian

configuration (1.3) by taking

Up=Urv | J{zeUs: (ni(@)i<(us(x); Viel, jeJ—I},
JeP;(N)

S1lgiw) = ¢s(gim),  pi(x) = i@, Vge(SHi, 2eUinly, JeP(N).
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By (a) and (b) in Definition 1.1, ¢/(g;x) and p}(x) are independent of the possible choices of J.
Since the moment map p; is (S!)I-invariant whenever J € P;(N), the image of ¢/ is contained
in Uj. Thus, ¢} is an (S')I-action on U} with moment map p}. It is immediate that the new
collection

¢ = (U}7 ¢II7 NII)[EP*(N)

satisfies Definition 1.1(b); verifying (a) and (¢) in Definition 1.1 and (3.7) is a bit tedious, but
straightforward. If € is a cutting configuration, then so is ¢”. Thus, every Hamiltonian (resp. cut-
ting) configuration is a restriction of a maximal Hamiltonian (resp. cutting) configuration. We also
note that if all torus actions ¢; are free, then so are the torus actions ¢/.

The open sets Ur in a maximal cutting configuration ¥ can be inductively shrunk so that the
restricted actions in (3.6) are free. Suppose I* € P*(N), the actions ¢; are free for all I 2 I'*,
and (3.7) holds for all 1< I*. Since the ¢r«-action on uy i (0) = g4 (0) is free, it is also free on a

¢r+-invariant neighborhood Uf, of uyi(0) in Upx. By the inductive assumption regarding (3.7),

U —Upec | JUr.
P#ICT*

Thus, replacing Ur+ with U}, accomplishes the inductive step. Proceeding in this way, we obtain
a ¢-invariant open cover (Uy) repx(ny of X refining (Ur) rep+ () so that the actions ¢ are free on U},

In summary, any N-fold cutting configuration % for (X,w) can replaced by a maximal N-fold
cutting configuration ¢’ with free torus actions without any effect on the output of the symplectic
cut construction: the symplectic manifolds (X;,w;) with i€[NN], their submanifolds (X7, wy) with
I € P;(N), the symplectic manifold (Z,wz), or the deformation equivalence class of the fibration
w: Z2'—C.

3.3 Induced degenerations

Suppose 7y : X — B is a family of manifolds as in Definition 2.7(1), U; < X; is an open subset for
each te B, and Y is a smooth manifold. We call a family (¢;: Uy—> Y )iep smooth if

U —Y.  (ta) — o),
teB

is a smooth map from an open subspace of X.

Definition 3.1. Let NeZ™, B be a manifold, possibly with boundary, and (X, wy, 7x) be a family
of symplectic manifolds over B as in Definition 2.7(2). A family of N-fold Hamiltonian (resp. cutting)
configurations for (X, wx, mx) is a tuple

(Cgt)teB = (Ut;b ¢t;]a Mtﬂ)[ep*(N),teB (38)
such that %; is an N-fold Hamiltonian (resp. cutting) configuration for (X;,w;) for each t€ B and
the families of maps

<¢t;13 (Sl>£ X Ut;[ - %> and (;U/t;lz Ut;[ - fi.)

teB teB

are smooth for all 7e P*(N).
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As described in Section 2.3, a smooth path (w;)ep of symplectic forms on a manifold X determines
a family (X,wx,7x) of symplectic manifolds over B. We call a family of N-fold Hamiltonian
(resp. cutting) configurations for such a tuple (X, wx,7x) an (w;)ep-family of N-fold Hamiltonian
(resp. cutting) configurations for X. We call N-fold Hamiltonian (resp. cutting) configurations %
for (X,wp) and 7 for (X,w;) deformation equivalent if there are a path (w¢)er of symplectic forms
on X and an (wy)er-family (%;)ter of N-fold Hamiltonian (resp. cutting) configurations for X. For
example, the restriction ¢” of a Hamiltonian or cutting configuration ¢ as in (1.3) to a ¢-invariant
open cover (Up)eps(n) of X refining (Us) reps () is deformation equivalent to 4. In this case, we
can define U,y < {t} x X by

UUW =[0,1/2)x U u [0,1]xU; < IxU;

tel

and take ¢;.r and p.; to be the restrictions of ¢; and juy, respectively.

Let € be an N-fold cutting configuration for (X,w) as in (1.3). For ie I c[N], we define
Uy = {aeUr: (ur(2)i<(ur(x)); Viel}; (3.9)

in particular, Ufl =U;. Since the ¢r-action is Hamiltonian, the subset Uflc Uy is ¢r-invariant. Let

US = UU;, (3.10)
IG'Pi(N)

OUS = {xeUs: (ur(x))i=(ur(z)); for some I€P;(N), jel—i s.t. :peUfI}.

By Lemmas 4.2 and 4.3, the subsets Uf, 8Uf c X are closed. Since the sets Ufl with i€l cover Uy
and the sets Uy with e P*(N) cover X, the collection (US);en] covers X.

7
In the N =2 case of [11, Section 1.1], a cutting configuration for a symplectic manifold (X,w)
produces two symplectic manifolds, (X7,w;) and (X3, ws), with a common symplectic divisor Xis.
They are obtained by cutting X into the closed subsets Uf and Uf along the zero set of the only
(non-trivial) moment map pi2 and collapsing their boundary

OUS = U5 = Urgaz

by the single S'-action ¢j2. We show in Section 4 that this construction extends to an arbi-
trary N-fold cutting configuration in the sense of Definition 1.2 and produces N symplectic mani-
folds (X;,w;) with common symplectic divisors X;; which together form an SC symplectic divisor
inside of another symplectic manifold (Z,wz). The symplectic manifolds (X;,w;) are obtained by
cutting X into the closed subspaces Uf along the zero sets of the moment maps p; and collapsing
their boundaries and corners oU;S by the (S1)!-actions ¢;.

Theorem 1. Suppose NeZ*, B is a manifold, possibly with boundary, and (X,wx,7x) is a family
of symplectic manifolds over B as in Definition 2.7(2). A family (6i)wep of (fiberwise) N-fold
cutting configurations for (X,wx,7x) as in (3.8) determines

(1) a family (Z,w, %) of symplectic manifolds over B,
(2) a family (m1: X1 — B,wr)epx(ny of N-fold SC symplectic configurations over B as in Defi-
nition 2.8 such that Xo<= 2 and Xy9< 25 is an SC symplectic divisor for every te B,
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(3) a continuous map qy: X —> Xy such that q@(aUti-) =XuinXo and
ap: (Utfi_aUti"wﬂUé—ani) - (%tﬂ_%t§a’wf|xt;i_xt;{))

is a symplectomorphism for every te B and i€[N],

(4) a family

(Cg.@‘);t)teB = (UZ;t;17 qu;t;Ia Mz§t§I)IeP*(N),t€B

of (fiberwise) N-fold Hamiltonian configurations for (Z,we,ms) which restricts to a family
of cutting configurations over Z —Xg,.

If X4 is compact, then so is Xy for every Ie P*(N).

Theorem 2. Let N, B, (X,wx,7x), (61)teB, (Xip)ten, (£ ,wz,my), and (Cry)wep be as in
Theorem 1. The family (6;)iep determines a continuous family (b)wep of (fiberwise) germs of
deformation equivalence classes of one-parameter families (ﬁ@’,wg|3§r,ﬂt) of smoothings of X
with 2 < ;. For every such germ by, there are a representative m : 2/ — C and a Cx-
invariant open cover (U}X;t;l)[ep*(]\/’) of 2 refining (Uz..1)1epx(n) such that for every Ae C the
restriction %,if;t of €xy4 to (U:@o;t;l)lep*(]v) restricts to a Hamiltonian configuration CK,’@";J%A for

(%;Aan;t;A) = (W;I()‘)’wfhr;l()\));

this restriction is a cutting configuration if X # 0. If X; is compact, such a germ can be chosen
so that for every NeR™ sufficiently small %:%‘;J%;x is canonically isomorphic to the restriction
of the original cutting configuration 6; for (X¢,wi) to an open cover (Uff;l)[ep*(N) of X; refining
(U1) 1ep=(n) -

By the first statement in Theorem 2 and the family analogue of [6, Proposition 5.1], a family (%} )n
of N-fold cutting configurations determines a homotopy class of trivializations of the complex line
bundle (2.10) and thus a continuous family (A:)«cp of homotopy classes of trivializations of the
normal bundles Oy, ,(X;) of the singular locus X;,5 of X;.yp. Given a single cutting configuration ¢’
(i.e. B is a point in Theorems 1 and 2), we denote by X (%) the associated N-fold SC symplectic
configuration and by h(%) the corresponding homotopy class of trivializations of the line bundle
OX@ (X 0)-

Corollary 3.2. Let NeZ", €y be an N-fold cutting configuration for (X,wo), and € be an N-
fold cutting configuration for (X,w1). If €y and €1 are deformation equivalent, then the N-fold
SC symplectic configurations X(%y) and X(%1) lie in the same path component of Symp™ (X) for
some N -fold transverse configuration X and h(%6o) =h(61).

This corollary follows immediately from Theorems 1 and 2, the family analogue of [6, Proposi-
tion 5.1], and the triviality of families of SC symplectic configurations over I (see Section 2.3).
Corollary 3.2 implies that a deformation equivalence class of cutting configurations determines a
deformation equivalence class of SC symplectic varieties Xy with a homotopy class of trivializations
of the normal bundle Ox,(Xjy) in (2.9) of the singular locus X< Xj.

17



4 Proof of Theorem 1

Let € be an N-fold cutting configuration on (X,w) as in Definition 1.2. Section 4.1 provides basic
topological characterizations of natural spaces determined by % that appear throughout the rest
of this paper. In Section 4.2, we use the symplectic reduction technique of [13, 12] to construct
symplectic manifolds (Z7, @) out of the open subsets Ur of X so that

dimp Z}) =dimg X + 2. (4.1)

We glue these global quotients in Section 4.3 into a single symplectic manifold (£, wz). As shown in
Section 4.4, (Z,wz) contains closed symplectic submanifolds (X;= Z7,wy) with e P*(N) so that

X(€) = ((X1) 1ep*(n), (Wi)ie[n])

is an N-fold SC symplectic configuration in the sense of Definition 2.5 and the corresponding SC
symplectic variety Xy is embedded into (Z,wz) as an SC symplectic divisor. A natural N-fold
Hamiltonian configuration ¢’z for (Z,wz), which restricts to a cutting configuration on the com-
plement of the singular locus X of Xj, is constructed in Section 4.5.

As the constructions of Sections 4.2-4.5 involve no choices, they produce a family

((m1: X1—> B) 1epx(n), (Wi)ie[n])
of N-fold SC symplectic configurations over B and a family (€z.)cp of N-fold Hamiltonian
configurations for a family (2,ws, %) of symplectic manifolds over B when applied to a family
of N-fold cutting configurations. This establishes Theorem 1.

4.1 Topological preliminaries

The topological observations of Lemmas 4.1-4.5 below concern subspaces of X, including Ufl
and U defined in (3.9) and (3.10), respectively, as well as subspaces of X xC. For Ipe P*(N) and
IEP[O(N), let

Uyt = 11 (0) = {zeUr: (ur(2))i= (u1()); Vi, je Io,
(11 (@) < (ua (@)); YieTo, jeI-To}.
For ie [ < [N], let

1 .
Uy = {(z,2)eUrxC: (Ml(x))i—§|z|2 <(ur(z)); Vjel}. (4.2)
While the components (u7(2));€R of pr(x)€t], are not well-defined, the numbers
(MI (.’L’))U = (,UJ(iL‘))] - (MI (.CC))z eR (43)
are well-defined; thus, so is the condition in (4.2). For i€ [N], let

Z/lf = UL{; c XxC.
IeP;(N)

The proofs of Lemmas 4.1-4.5 make no use of the properties of Definition 1.2 and thus apply to
any Hamiltonian configuration 6" of Definition 1.1.
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Lemma 4.1. The collection {Ufl}ielc[N] covers X. If € is a maximal cutting configuration, then
the collection {Uf} repx(ny covers X.

Proof. Let x € X and I €P*(N) be such that x € Ur. The condition (ur(z)); < (ur(x)); defines a
reflexive transitive relation < on I such that either i <j or j>1i for all 4, je I. Thus, there exists
i€l such that (ur(z)); < (ur(x)); for all jel and so zeU.S. Let

Iy = {ioel: (ur(z))i= (pr(x))i} 2.
By the choice of i€ I, (ur(x)); < (nr(x)); for all jeI—1Iy and so
ze{a'eUs: (ur(x))iy < (p1(2)); Vioelo, jeI—1Io}.
If ¢ is maximal, (3.7) with (I, J) replaced by (lo,I) then implies that ze U 1 . O

Lemma 4.2. For every i€[N], the subspace US < X is closed.

Proof. Let (x1)7_, be a sequence in Uf converging to some z € X. Since X is first countable, it
is sufficient to show that z€US. By Definition 1.1(a), for each k€Z" there is a unique maximal
I € P;(N) such that zj € Uflk. Passing to a subsequence, we can assume that I, =1 for all ke Z*

1

and for some fixed I€P;(NV). Thus,
(m(xk))ij >0 VkeZ", jel. (4.4)

Let J be the maximal element of P*(N) such that x € U;. Since Uy is open, z; € UrnU; for all
keZ" sufficiently large. By Definition 1.1(a), either IS J or Jc< 1.

Suppose first 1< J. By (b) and (c¢) in Definition 1.1 and (4.4),

for all ke Z* sufficiently large. Thus, z; € Uf ; this contradicts the maximality assumption on [
above.

Suppose Jc I instead. If i¢ J, then ie I —J and

(nr(zn)); < (pi(zr)),  VijeJ

for all k sufficiently large by Definition 1.1(c¢) with the roles of (i,1) and (7, J) interchanged; this
contradicts (4.4). By Definition 1.1(b) and (4.4),

(,uj(xk))z.j = (Ml(xk))ij >0 VareUrnUy, jed.
By the continuity of the functions (s7(-))ij, this implies that
(s (@)),;; = Jm (ns(zp))y; =0V jed

We conclude that z€ UfJ c Uf. O
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For IpeP*(N) and I€Py,(N), define
Ufo;l = {xEUIZ (u](.%’))i<(u[(l‘))j Viely, jEI}. (4.6)

By (3.9),
Up.p = {2eU: (ur(@))i=(ur(@)); ¥ je Io}

for any i€ Iy.

Lemma 4.3. For every [y P*(N), the subspace

Uy = UUfmI cX
IEP[O(N)

is closed in X. For all Iy, Joe P*(N), UmeUfO =UI<0UJO.
Proof. Let i€ly. Since
Ui = Llflo N (X x{0}) and US =US n (X x{0}),

the first claim follows from Lemmas 4.2 and 4.5.
It is immediate that Ufo, UJSO DUfOUJO' Suppose z€ Ufo.ImeO,J. Thus, Ipc 1, Jyc J,

(uf(x))ié (/L[(:L’))j Viely, jEI, (MJ(JZ))Z.< (MJ(:L’))J. VieJy, jEJ, (47)

and either I < J or I o J by Definition 1.1(a). We can assume that I < J. By (b) and (c) in
Definition 1.1 and the first statement in (4.7),

(ns(z)), < (MJ(x))j Viely, jeJ.
Combining this with the second statement in (4.7), we obtain
(,U/J(SU))i< (,uj(m))j VielgulJy, jeJ.
Thus, ZL'EUEUJO;JC UFOUJO. O
Lemma 4.4. For all ie I c[N], the subspace lefICL{f is open in US and
US o (U< C) = U5
Proof. The first claim follows from the second. Suppose
(z,2) €Uy n (UrxC)
for some JeP;(N) and thus
(/,LJ(l'))ij + %\2\2 >0 Vjed (4.8)

By Definition 1.1(a), either I J or J< I. If I = J, Definition 1.1(b) implies that (4.8) holds with J
replaced by I and so (z, z) eZ/lZ.fI. If Jc I, (b) and (¢) in Definition 1.1 imply that (4.5) holds for
J=1Ip and z ==z. From this, we again conclude that (4.8) holds with I and by J interchanged and
so (z, z)el/lfl. This establishes the second claim of the lemma. O
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For all ieI < [N] and Iy, define

1 )
Ui ro;1 = {(x,2)€UrxC: (Hl(x))i—§|2\2= (pr();¥ielo}, U =UirrnlUsy. — (49)
Lemma 4.5. For all ie[N] and Ioc[N], the subspace

— < <
ido — U Uy ©U;
]E'Pi(N)ﬁP[O (N)

1s closed.

Proof. Let (xy, z1)7., be a sequence in Z/lflo converging to some (z,z) U=, Similarly to the proof
of Lemma 4.2, we can assume (Zj, 2x)7-, EZ/lfIO_] for all ke Z™ and for some fixed I € P;(N)"Py,(N).
Thus,

1 ) 1 .
(wr(e))y; + Slanl> 20 Vel (uio), + 5lanl® =0 ¥jek. (4.10)

We also assume that IeP;(N)nPr, (N) is the maximal element with this property.

Let J be the maximal element of P;(/N) such that zeU;. By the same reasoning as in the second
paragraph of the proof of Lemma 4.2, JcI. Thus, teJc 1 and x,€ Uy for all k sufficiently large.
By Definition 1.1(b) and the first statement in (4.10),

1 1 .
(s (zk)),; + 5\%’2 = (pur(zp)),; + §|Zk\2 >0 VkelZ', jed
By the continuity of the functions (u(-))i;, this statement implies that (x, z) eZ/{fJ. If Iyd J, then

(pr(zr))i < (pr(zg))i,  Vioely—J < I—J

for all k sufficiently large by Definition 1.1(c); this contradicts the second statement in (4.10).
Thus, IpcJ and

1 1 .
(/’LJ(xk))Z] + §|zk|2 = (MI(‘T]C))Z] + §’Zk|2 =0 VkEZJrv Jj€lp.

By the continuity of the functions (.7(-))sj, this statement implies that (z, z)eUro, JCUS O

i,1o"

4.2 Symplectic reduction
For [ycIc|[N] and F=R,C, we identify

Fp ={(2i)iev € FN: 2=0Viely} and Ff = {(z)iereF': ;=0 Viely}
with FINI=lo and FI=To_ respectively. For ie I c[N], let
N N I T
We denote by wer and wer the standard symplectic forms on C! and (CIO, respectively. Thus,
0

U)CIflo = (.U(CI|(C§O = CU(CN|(C[_[O
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under the above identifications.

The standard (S')V-action on CV and a moment map for this action are given by
et (SHVXCY — €V, den (@ )ierng; (2)ierv)) = (€920) iy
Hen - cV — RN7 HeN ((Zi>ie[N]) = %(’Zi’2)z‘e[N] :
For IeP*(N), let
dere: (S)exCh— €' and  per.: €T — 4,
be the restriction of this action and the induced moment map, respectively.

With notation as in (1.3), let
T, T2 U]X(CI I U],CI

be the projection maps and
Wy = Tjw + Tywer

be the product symplectic form. We lift (¢, 1) to a Hamiltonian (S')I-pair for (U; xC!,&r) by

ér: (SN x (UrxCh) — UrxCl, dr(gix,2) = (¢1(g;2), dera(9 ™5 2)), (4.12)
fir: UrxCh — ., fir(@,2) = pr(z)—pcr(2)- (4.13)

The action &5 1 then preserves the symplectic submanifolds U x Cfo cUxC! with Iy 1. Let

37 = 7 (0) = { (@, (2ier) €U x € (ur ()i — | = (ua(a))y— g |5 Vi jel}). (414)

Similarly to the situation at the beginning of Section 4.1, the condition on the elements of U x C!
above is independent of the choice of representative for () in R? and is thus well-defined.

Lemma 4.6. Let € be a cutting configuration as in (1.3). For all € P*(N) and Iy=1, O€t], is a
reqular value of the restriction of [iy to U[x(CfO. For all I€eP*(N), the restriction of the gj—action

to Z7 is free.

Proof. Since (51, fir) restricts to a Hamiltonian pair on Uy x CIO, the first claim is implied by the
second; see [3, Section 23.2.1]. Let = (z, (2;)ics) be an element of U; x C! such that z; =0 if and
only if 1€ Iy. If

r((e™iers z, (z2)ier) = (. (z0)ier)

then €% =1 for every ie I—1I,. Thus,
(™) ey € (SN or((€")iersz) = = (4.15)

If |Ip| <1, €% =1 for all ie[N] by the first statement in (4.15). If In# @, then JUEMI_J[(O) by (4.14)
and (1.4). By (4.15) and the assumption of Definition 1.2, this implies that e'% =1 for all i€ [N]
and establishes the second claim. O
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For IeP*(N), define
2y =27 /(SYL. (4.16)
For example, Z{OZ.} =Uy xC. Let
qz.1: 2}) — Z7
be the projection map. By Lemma 4.6 and the Symplectic Reduction Theorem [3, Theorem 23.1],
Z7 is a smooth submanifold of Us xCI, Z7 is a smooth manifold, and there is a unique symplectic
form w; on Z; such that

qz. @1 = &r - (4.17)
Thus, (Z7,wr) is a symplectic manifold satisfying (4.1).
For IeP*(N) and Ipc I, the subspace
ZNfO;I =Z7n (UIX(Cfo) c Urxct
is preserved by the gj—action. Let
200 = Zh.a/(SYE = aza(251) < 25, Gzl =4zl 3 20— 2 (4.18)

By Lemma 4.6 and the Symplectic Reduction Theorem, 2?0, ; is a smooth submanifold of Uy ><(Cf0,
Z} .1 is a smooth manifold, and there is a unique symplectic form wy,.; on Zp,.; such that

0Z:10: 0T losl = @r1|z0 - (4.19)
Ig;I
Thus, (27 .1, @1y;1) is a symplectic manifold of real dimension dimgX +2—2|Io|.
For IeP*(N) and I\ cIy <1, let
~o0 A 7O o I ~o
7TIO;I(’);I: Io;Io I = ZIO;I X(Cjz - ZIQ;I’ (420)
7 1\ > 1
7‘-;0;[6;]: I?O;I[’);I = IOO;IG;]/(S )0 - ZIO();I/(S )o = ZIOO;Iv (421)

with the quotients taken by the restriction of the (S')I-action 51 to

Zfo.lx(C?) c UrxCl.
) 0

Since the ¢r-action on 2}30; ; is free, (4.21) is a complex vector bundle.

Lemma 4.7. Suppose € is a cutting configuration as in (1.3) and I€ P*(N). For all Ijc Iy,
(Z1,.1 @10:1) is a symplectic submanifold of (Z}’,_I,wjé.l) with the oriented normal bundle canoni-
) 0’ ’

cally isomorphic to (4.21).
Proof. By (4.17)-(4.19),

-
Z?o;[

%100 (@ilz;, ) = (a2.11) 3, = UZII Tl - (4.22)

By the uniqueness part of [3, Theorem 23.1] and (4.22), wy,,; = w1|g?0‘1. Thus, (27 7, @1e1)
is a symplectic submanifold of (Z7,wy). Since 250 < Z}’(,), ; whenever Iy D Ij, it follows that

23



(Z7,.1: @I:1) is a symplectic submanifold of (27, ., @y 1)
) 0’ !

For all IjcIycl, ZN’;’, ;<Urx (C?. The projection CI, —>(C§9 induces a vector bundle homomor-
0 0 0 0

phism

Ny B e P s on g (4.23)

~ = — N T X ;= T .

Zha To;I TZ; TosI = =18 losIos!
By Lemma 4.6, the homomorphism (4.23) is surjective and thus an isomorphism for dimensional
reasons. Since it is ¢j-equivariant, it descends to a vector bundle isomorphism

Nago 20 T2z, e 4.4
= —2r 2" .
Z;(’);I Io;1 TZ})O.I 10;16;1 ( )

over Zj ;. The fiberwise symplectic form on the left-hand side of (4.24) corresponds to the sym-

Ip.
1)

the latter is compatible with the complex orientation of C?). Thus, the isomorphism (4.24) is
0

plectic form on the right-hand side of (4.24) induced by the standard symplectic form on C

orientation-preserving. O

4.3 The ambient space

We will glue the symplectic manifolds (27, ) with I € P*(N) into a single symplectic mani-
fold (£,wz). For iel, Jc[N], define

e“’i]_[ewk, if l=1;

o (S1)e — (SN, (0ir((¢%)ker)), = eiglef_J ifleT AT —i: (4.25)
1, ifleJ—1.
For I, JeP*(N), let
ZNf’ngfm((UImUJ)x(C[). (4.26)
By Definition 1.1(a), Z,N’}’sz unless I < J or I ©J. By Definition 1.1(c¢) and (4.14),
(uJ(a:))ijE (,uj(x))j— (,uJ(m))Z >0 V (2, (2k)ker) eZN}”J, ielcJ, jeJ—1I; (4.27)
z; #0 v (x,(zk)kd)eg})J,@#Jc[,jeI—J. (4.28)

If ie Jc I < [N], define
[T &, ifi=i;

" ENK
So NI el=J
o1t 215 — (), (@I,J;z’ (l”a (Zk)kel))l =11, ifle J—1;
2, iflel—J.
If JcIc[N] and i, jeJ are distinct, define
IT E—’“‘, if [=1;
R kel—J' "
o1 20 — (SO (errij (@, (ze)ker)), = 3 11 o i l=y;
kel—J
1, if le.J— {4, j}.
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By (4.28), both maps are well-defined (21, #0 for all ke I—J). We take ¢y, i ; to be the map taking
ZI ; to the identity in (S1)/.

For iel, Jc[N], we define

Ot 21— 251,
(':Ua (Zk)keh (\/2(MJ(x))ik+‘Zi‘2)kej_])> lf[CJ7 (429)
o1 (pr,gii(z, (zr)ker) i 5 (2 ke ) if I>.J.

01,1 (%, (21 )rer) = {

By (4.14) and (4.27), this map is well-defined in either case. It is (¢, ¢1)-equivariant with respect
to the homomorphism (4.25) and

X i N
R Zo = Zo 4.
CHE z“) Wiz (4.30)
Furthermore,
if IcJ;
01,7:(0s1(x, 2)) ~ ‘
<z> i, 2)im,2), 15, (4.31)
@KIZ Zo mzo GK O@J],z mg}),}( VZGICJCKC[N]
For i,5€l,J,
~ O..1; if T J;
O pa(e, 2) = | Q@2 nee (4.32)
bg(p1,.0:5(2,2); O 1,52, 2)), f IDT;
the claim in the first case above follows from (4.14).
For I, JeP*(N), let N
2l =azua(21 ) < 21, (4.33)

By the ($J, (ZI)—equivariance of the smooth map (:)J,I;i with i€, J, it descends to a smooth map

By (4.32), © 1 is independent of the choice of i€, J. By (4.31),

Okilz; nz;, = OKI0Outlz; zp (4.35)
whenever I Jc K or some permutation of this relation holds.
We define
( |_|ZI>/ 27,50 ~0,(x) e 25, VI, JePHN). (4.36)
IeP*(N
For ie[N], let
( |_|ZI>/ . 29 3w~0u) e 25, VI, JEPi(N). (4.37)
IeP;(N)
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Lemma 4.8. The quotient projection map

gz: | |27 — 2 (4.38)
IeP*(N)

is open and its restriction to each subspace Z7 is injective. For each i€[N], ZF is an open subspace
of Z.

Proof. By (4.35), the relations ~ in (4.36) and (4.37) are equivalence relations and thus each Z*
is a subspace of Z. Since O is the identity on Z} ; = Z7, (4.36) implies that the map (4.38) is
injective on each subspace Z7.

Since the maps (4.34) are homeomorphisms between open subsets of the domain of (4.38), the
latter map is open. Since the preimage of Z* under the restriction of (4.38) to each Z7 is the union
of the open subsets 27 ;< Z7 with JEP;(N)nPr(N), Z; < Z is open. O

For I, JeP*(N) and Ip= 1, J, the overlap map (4.34) takes Z} 02} ; to 27 ;nZ5,. Let
2, = < || =, )/ . ZpanZi sw~0u()e 25 025 (4.39)
IeP*(N)APr, (N)
For ie[N], let
= (U Ze) [~ Zhanzisse~ Ol e Zun i,
[P, (N) APy (N)

Since the relations ~ in (4.36) and (4.37) are equivalence relations, Zj, is a subspace of Z and 2|
is a subspace of Z". Furthermore,

Zy=Z2, Zy=27 Yie[N], 2, =202 <Z Vie[N], [hc[N]. (4.40)

For ie[N] and IpeP*(N), let
X; = Z{Z}, Xfo = Z[O . (4.41)

By (4.39) and (4.37), X;< Z7. If ie Iy, then X, = X;.

For i€ I < [N], let Us; < Ur x C be as in (4.2) and define

if j=1;
wriUS — C b sI\T5 2)), = - : ’
9i;1 - Uy g vy (gi( ))j {\/Q(MI(x))ij—|—|z|2, if jel—i.
Thus, the map
U — Z/ = {(z, (3 geI)EZI zjeR>0 Viel—i}, (z,2) — (z,9i1(x,2)), (4.42)

is a homeomorphism. If ie Iy I, the restriction
. I-1I,

9101+ Upyp = {(@,0) €Uy (ur(@))i = (ur(2)); ¥jelo} — (RZ) = Cl,

giost (@) = (/201 () )

of g;;r is independent of the choice of i€ Iy.

jel—1Io '
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Lemma 4.9. For every ie[N], the map
g US — ZF, (z,2) — qz(qz1 (2, 911 (2,2))) ¥ (a:,z)eblfl, IeP;(N), (4.43)

is well-defined, continuous, surjective, and closed. For Iy € P;(N), it restricts to the surjective
closed map

qIy - UFO — X]O, r— QZ(QZ;I();I (.TU, g]o;](x))) v erfo;I’ IEPIO (N)v (4'44)
which does not depend on the choice of i€ ly.

Proof. If (z,2) €Uy NUS,, then either I« J or J <1 by Definition 1.1(a). In either case,

O©1 (QZ;I (967 gz’;I(HZ Z))) =4qz;J (90, gi;J(xa Z))

by (4.37) and (4.29). Thus, the map (4.43) is well-defined. By Lemma 4.4, U5 U is open. The
map (4.43) is continuous because its restriction to each of these open subspaces is continuous.

For every ye Z}, there are I P;(NN) and

F=(z,(2)e1) € 27 st y=qz(qz1(8).

Thus,
(,uj(x))ij + |z = 2)%)2 =0 vV jel (4.45)

and so (7, z;)€Us. For each jeI—i, let €% e S be such that e iz;e R>" and

etfi — He*ieﬂ' eSt.

jel—i

Then, (¢'%);es is an element of (S')L. Since the ¢ -action is Hamiltonian and (z, ;) ely,

(@, 2) = (¢r((€)jersz), e z) e Uy and  or((€%)jers @) = (2!, gir(a',2").

Thus,
y =qz(qz1(®) = az(¢z:1(61((e9)jers 7)) = gz (az;1 (2, gi1 (2, 7)) -
This establishes the surjectivity of the map (4.43).

For IpeP;(N), the restriction of the map (4.43) to the subspace

< < — < _ 7S
ui,fo - U ui,[g;[ - U UIO;I - UIO
IGPIO(N) IEP[O (N)

is the map (4.44). Since the map gj,.; does not depend on the choice of i€ Iy, neither does the
map (4.44). If I o1y and y € Xy, are as in the previous paragraph, then z; =0 for every j € I.
By (4.45), this implies that Ze U} and thus

/

r = (b[((eiej )jEI; l’) € Ujgo and Yy = QZ(QZ;IO;I (x/7gfo;l(x/)))-
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This establishes the surjectivity of the map (4.44).

For ieIc[N] and Wc X xC, let
Wi = {51(9;37791';1(982)) :ge(SHL, (CUaz)eui;SI“W} - ZN;
By the second statement of Lemma 4.4,
Uf N (U1><(C) N W =Ll§1 NW.

Thus, the preimage of ¢; (Z/{f NW) in ’2}’ under gzogz.; is Wj,r. Since the map (4.42) is a homeo-
morphism and the group (S*)! is compact, W is closed in

~

or((SYIxZ27,) = 27

if W is closed in X x C. Thus, the map (4.43) is closed. Since ¢; '(X},) = Ufo for Ipe P;(N), the
map (4.44) is closed as well. O

Corollary 4.10. The topological spaces Z} with i € [N] and Z are Hausdorff. They inherit
symplectic forms w; and wz from the symplectic manifolds (27, w) with ieI < [N].

Proof. By Lemma 4.9, (4.43) is a closed quotient map. Since its domain is metrizable (being a
subspace of a manifold), it is normal. By [15, Lemma 73.3], Z* is thus a normal (and in particular
Hausdorff) topological space.

Suppose z, y€ Z are two distinct points. Let I, Je P*(N), € Z7, and ye Z5 be such that x = ¢z (T)
and y=qz(y). f I¢J and I DJ, then

az(27) naz(25) =0

by (4.36) and Definition 1.1(a). By Lemma 4.8, ¢z(Z7) and ¢z(Z9) are open in Z. If ieIcJ,
then x,ye Z7. Since Z7 is Hausdorff, there exist disjoint open neighborhoods U, of x and U, of y
in Z7. By Lemma 4.8, U, and Uy are open in Z. Thus, Z is Hausdorff.

Since the identification maps ©; ; are diffeomorphisms between open subspaces of manifolds and
the restriction of (4.38) to each Z7 is a homeomorphism onto its image, the smooth structure on
the domain of (4.38) descends to a smooth structure on Z. By (4.17) and (4.30),

QZ’;I@j] (wJ|Zj,) = @3,IQZ’;J(WJ|23J) = @?},1 (&J|§3[) = Wy Zo = q;;f (wI|Zf7J) . (4.46)
By the uniqueness part of [3, Theorem 23.1], (4.46) implies that
0% (wlz3,) = il ;.
Thus, ¢z induces a symplectic structure on Z. ]
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4.4 The SC symplectic divisor

By Lemmas 4.8 and 4.9 and Corollary 4.10, (£, wz) is a symplectic manifold obtained by collapsing
the boundary and corners of the subspaces Uf c X xC to form open symplectic manifolds Z; with
i€ [N] and gluing the latter together along the common open subspaces Z; with I € P;(N). We
next describe the image of the boundary and corners of L{f under the collapsing map as an SC
symplectic divisor in (Z,wz) in the sense of Definition 2.1.

Lemma 4.11. Let Iy [N]. The topological spaces ZZIo with i€ [N] and Zj, are closed symplectic
submanifolds of (Z},w;) and of (Z,wz), respectively, of codimension 2|Iy|. If Iy # 0 and X is
compact, then X, = Zj, is compact.

Proof. By (4.18) and the surjectivity of the map (4.43), 2}, <27 is the image of the restriction
of this map to flo. By Lemma 4.5, Llflo CZ/{f is a closed subspace. Since (4.43) is a closed map,
2}, < 2] is thus a closed subspace. By the third identity in (4.40), the intersection of Zj, with
each Z; is thus closed in Z7. By Lemma 4.8, {Z}};[y] is an open cover of Z. Therefore, Zj, is

closed in Z. Since Z} and Z are Hausdorff by Corollary 4.10, so are Z7; < Z/ and Zj, < Z.

By Lemma 4.7, (£} ;,@r,;1) is a symplectic submanifold of (27, ) for every I e Py, (N). Since
the symplectic form wz on Z is induced by the symplectic forms @ on Z7, the symplectic form wy,
on X, = Zj, induced by the symplectic forms wy,,; on Z}’O; ; is the restriction of wz.

Suppose Iy # () and X is compact. By Lemma 4.3, Ufo c X is then also compact. Since the
map (4.44) is continuous and surjective, it follows that X, = Zj, is compact as well. O

As in the proof of Lemma 4.11, we denote by wy, the symplectic form on Zj, induced by the
symplectic forms wy,;; on Zj ;. In particular,

(Xiywi) = (2 i) = (2 wzlzg)
is a symplectic manifold for each i€ [N].
Let ie I c[N] and Ijc Iy < I. With notation as in (4.20) and (4.26), we define

~ o~
SEAEE NIO;I(’);I

~
- N , | N N

o o . . o o
251025, loslo; J123 ;025

by the formula in (4.29) with |z|? replaced by 0 if i€ Iy—I§. This diffeomorphism is still (¢, ¢7)-
equivariant with respect to the homomorphism (4.25), satisfies the analogues of (4.30)-(4.32) and

— ~ ~ —
(@] - = . O ~ ~
Trfo;l(/);J @J,I,Z @J,I,z W[O;I(I);I’Z})O;IHZ?,J )
and is complex linear on the fibers of %;’O, I Thus, it descends to a diffeomorphism
0o

. (o)
@J}[ NI();I/'I

O
— N7 |
o o . . o o
0 ZIO;IQZI,J To;14;J ZIO;JHZJ,I

which is independent of i€ I, satisfies the analogue of (4.35) and

o o o
Ty, © ©u1 =10 7T10;I(');I|Z}°O:Im2}’ L (4.47)
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and is complex linear on the fibers of W;O, I Define
oo

J— o ~
N10;16—< |_| 10%16;I>/’ where

[P, (N)

21102, > [57 Z] - 6‘]’[([‘%’ Z]) € NICE);I{);J‘Z}’O;JHZ&I'

(e}
Io;Ig;1

By (4.47), the projections 71';0, 1 induce a complex vector bundle

I
7'['[0;[(/): IOJ(/) I ZIO . (448)

Lemma 4.12. For all I[jclyclI, (Z1,,wr,) is a symplectic submanifold of (Zp,wr) with the
oriented normal bundle canonically isomorphic to (4.48).

Proof. By Lemma 4.11, (Zj,,wy,) and (Zp;,wp;) are symplectic submanifolds of (Z,wz). Since
Zi,<Zp, (Z1,,wr,) is a symplectic submanifold of (Zlé,wlé).

Since the collection of all isomorphisms (4.24) respects the patching maps © j ; for the manifold Z A
and for the bundle (4.48), the isomorphisms (4.24) induce a vector bundle isomorphism

TZI(/) |Zfo

Zr =
Nz 21 TZ,

— Ny

of oriented vector bundles over Z7,. This isomorphism is orientation-preserving because the iso-
morphisms (4.24) and the identifications © s are. O

Corollary 4.13. The collection { X }ie[ny is an SC symplectic divisor in (Z,wz) with the associated
N-fold symplectic configuration X = ((X1)ep*(n), (Wi)ie[n]). Furthermore, the map

@: X — Xpc 2, qr) =qux) YreUs,ie[N], (4.49)

with qgy as in (4.44), is well-defined, continuous, and surjective. For each i€ [N], it takes U
onto X;nXp and restricts to a symplectomorphism

(Uf_anvw|Uf—an) — (Xi—Xa, Wi|Xi—Xa)- (450)

Proof. By Lemma 4.11, (X;,w;) is a closed symplectic submanifold of (£, wz) for every ie[N]. By
construction,
X;=2=(|X;c2 VYIC[N]
el

By Lemma 4.12, the real codimension of X; in Z is 2 for every i€[N] and the homomorphism

TZ|x TZ|x
X = LI L = X; 4.51
NzX; TX; @TXi‘X[ G_)NZ ”X[ ( )

el el

induced by the natural inclusions is an orientation-preserving isomorphism for all 7 < [N]. Thus,
{Xi}ie[n] is a transverse (in fact orthogonal) collection of closed symplectic submanifolds of Z so
that the symplectic orientation of each X; (which orients the left-hand side of (4.51)) agrees with
its intersection orientation (which is determined by the orientation of the right-hand side of (4.51)).
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Therefore, { X }e[n] is an SC symplectic divisor in (Z,wz).

By Lemmas 4.1 and 4.2, the closed subsets Uf < X cover X. By Lemmas 4.9 and 4.3, q(; is
continuous on USS and (i) =45} on Ufr\Uf = UE Thus, (4.49) is a well-defined continuous map.
By Lemma 4.9, it takes U~ onto X; for every i€ [N] and Ufo onto Xy, for every [e P*(N). Thus,
gp restricts to surjective continuous maps

g:oUS= |JUs— |JXn=XinXs, q:US—0US — Xi—Xo.
IoEPi(N) IQGPi(N)
[10|>2 [To|=>2

The latter map is described by its restrictions to the open subsets U7 with I€P;(N):

qp: Uig={xeUr: (ur(z))i<(ur(x)); Viel—i}, qp(z) = qz(qz01(z, gir(2))),

where gi;I(fU):( 2(#1(48))@)@46(RJF)H-

Since the restriction of (4.42) to U is a homeomorphism onto
> _ 5 5> 5 5 5> -1 (-1 I—i
X;I = Z{Oz'};ImZ;i o UZ;o;I - Z?i};lmzzi ~ 9z (qZ (Xa)) < Ui%<1 x (R+> '

elpcl
[To[>2

and )N(ff is a slice for the ¢;-action on wai},l—qg_li.l(qgl(Xa)), the restriction of gy to U is injective.
Since U is ¢r-invariant, (4.39) then implies that the map (4.50) is injective. Since restriction of gy
to U7 is a composition of smooth maps, the map (4.50) is smooth. Since the argument of every

component of the map

. J7< I—i
9is1 - Vix C

is fixed, (4.19) implies that
{%!U;I}*wz‘ = {idxgi;f}*q;;i;fwi;l = {idx gi;r} miw + {id x gi;r } TS wer—
= wlug, + girwer-i = wlug, -

Thus, the map (4.50) is a symplectomorphism. O

4.5 The Hamiltonian configuration
We next describe an N-fold Hamiltonian configuration
Cz = (UZ;I7¢Z;I>MZ;I)IE73*(N) (452)

for (Z,wz). For each 1€ P*(N), let Uz,; =qz(Z}). By Lemma 4.8, Uz is open in Z. By (4.36),
(Uz:1)1ep*(ny is a cover of Z. Since UrnUy =0 unless I<J or I < J, (4.36) implies that the same
is the case for Uz,; and Uz, ;.

For Ie P*(N), we define a Hamiltonian (S')I- pair for (U; xC[,cT)[) by
bz (SHIx (UrxCl) — U xCl, ¢z1(g;2,2) = (61(g; %), 2); (4.53)

fiz;r: UrxCh—s 7, fiz(z,z) = pr(z). (4.54)
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By (b) and (c¢) in Definition 1.1,

fiz,y(2,2)|y. = 31(93 2) V (z,2)e(UrnUs)xC!, IcJc[N],

(fiz.s(x)), < (Bzs ) V(x,2)e(UrnUs)xCL ieIcJc[N], jeJ—I, (4.55)
respectively.
Since the ¢;-action is Hamiltonian, (4.53) restricts to an (S')I-action
bz (SVIxZp — 2. (4.56)

Since the ¢r-action commutes with this action and preserves the moment map i z.1, (4.56) and (4.54)
determine a Hamiltonian pair

0 (SVIxZE— 2 and  pdy Z— g (457)
for (27, wr). Since the restriction of (4.38) to Z7 is a symplectomorphism onto Uz;r, ¢%.; and puz,;
induce smooth maps

bz (SHixUz — Uz, pzr: Uz — th.,, (4.58)
so that ¢z,7 is a Hamiltonian (Sl)f—action with moment map piz.s.
Lemma 4.14. The tuple (4.52) described above is an N -fold Hamiltonian configuration for (Z,wz).

Proof. As explained above, (Uz;1) rep+ () is an open cover of Z satisfying Definition 1.1(a). By (4.55),
the moment maps pz.; satisfy (b) and (c) in Definition 1.1. O

For IeP*(N), we define
2oy = UZ?o;I c ZP cUrxCl,
IoCI
[o|=2

If in addition Igc 1, let

/jg;[o;[: {%GZN?: (ﬁz;](%))z.< (/ng(%)) Vielg, jEI—I()} I f?o;.,

N N (4.59)
z1051(T) =Pz (T |t, .
The commuting torus actions (4.12) and (4.53) induce an (S1)%0 x (S1)I-action on Uy x C:
(90, 9) - T = dz.1(g0; b1(9; 7))- (4.60)

Since the ¢r-action is Hamiltonian, the action (4.60) preserves Za ;and fiz Io ;(0).

Lemma 4.15. For all Iy € P*(N) and I € P(N), the restriction of the torus action (4.60) to
F‘zllo (0)—Z3,; is free.

Proof. Let T = (x,(2j)jer) be an element of ﬁzf;IIO;I(O)fZNg;I. If the action (4.60) by some (go, )
fixes Z, then g=id because z; =0 for at most one element jel. By (4.59), (4.54), and (1.4),

fiz, 1o 1 (%) = HKIo;1 ().
Thus, go=1id by Definition 1.2. This establishes the second claim. O
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Corollary 4.16. The restriction of the N-fold Hamiltonian configuration (4.52) to Z— Xz is an
N-fold cutting configuration.

Proof. In light of Lemma 4.14, it remains to show that the restriction satisfies the conditions of
Definition 1.2. Fix Ine P*(N) and I€Pr,(N). We denote by pz.7,.; the analogue of the map (1.4)
for the Hamiltonian configuration (4.52) and by ¢z.1,.; the restriction of the (S')I-action ¢z
to (SN[, Let

ZS;I =4z (ZS;I) < Zj, ¢OZ;10;I :¢%;I‘(51)£0 x 29 : (Sl)fo xZ] — Zj,
IUOZ;IO;I: {JJEZ}): (:u'%;[(x))i < (MOZ;I(x))j ViEIO7 jEI_IO} - t?o;n M%;IO;I('CU) = MOZ;I(x)’tIO;.'

Thus,
9z00%,1,1 = dzipro{idxqz}  and  pGgr = pzigogz
Since
gz : Dom(u%,1,1) — 25, — Dom (uz;1;r) — Xo
is a diffeomorphism, it is sufficient to show that the restriction of the ¢% ; .;-action to uoz.}ol, ;(0) is

free. Since Z7 is the quotient of ZNf by the 5 r-action and
1200zi1|(gyio 30 = Pzipro{idx gz},

this follows from Lemma 4.15. O

5 Proof of Theorem 2

By Corollary 4.10, an N-fold cutting configuration % determines an SC symplectic configura-
tion X (%) and a symplectic manifold (Z,wz) containing the SC symplectic variety X associated
with X(%) as an SC symplectic divisor. We show in Section 5.2 that ¢ also gives rise to a
one-parameter family 7: Z’'— C of smoothings of X so that Z’ is a neighborhood of Xy in Z.
This family of smoothings satisfies the last two claims of Theorem 2. Unlike the constructions
of Sections 4.2-4.5, the construction of Sections 5.2 involves choices. However, these choices are
deformation equivalent and the resulting one-parameter family of smoothings is well-defined up to
deformations. For a family of N-fold cutting configurations, the choices involved in the construc-
tion of Sections 5.2 can be made systemically on sufficiently small neighborhoods of all cutting
configurations and thus result in a continuously varying family of deformation equivalence classes
of one-parameter families of smoothings. This establishes Theorem 2.

5.1 Geometric preliminaries

We begin with a lemma which enables us to refine open covers as in Definition 1.1. We then
establish several local statements that are patched together in Section 5.2 to construct a one-
parameter family of smoothings of Xj.

Lemma 5.1. Let € be an N-fold Hamiltonian configuration for (X,w) as in (1.3). There exists
a € -invariant open cover (Up)reps(ny of X properly refining (Ur)ep=(n). For every open cover
(Up)1ep=(ny of X properly refining (Ur) rep=(n), there exists a € -invariant open cover (Uy) rep+ ()
of X properly refining (Ur) rep(ny and properly refined by (U) repx(n)-

33



Proof. We modify Step 1 in the proof of [15, Theorem 36.1] to take into account the torus ac-
tions using the following observation. Suppose [ € P*(N), W < Uy is an open subset such that
d1((SHIxW)=W, and Ac X is a closed subset such that Ac . Since X is normal, there exists
an open subset W’ < X such that Ac W’ and the closure W’ of W' in X is contained in W. Since
the ¢r-action is continuous, the subspace

W” = ¢ ((SHIxW') < Uy
is open in Ur and thus in X. Since the group (S1)! is compact and ¢7((SH)IxW)=W,
W7 =¢r((SHix W) c W,
where the closure is taken in X. Thus, W” c X is an open subset such that
AcWw” —~ W/cW, and ¢;((SHIxW") =W". (5.1)
For the remainder of this proof, we fix a total order < on the subsets I < [N] so that [ < I*

whenever |I]> |T*|.

Suppose [* € P*(N) and (U}) jep# () is a €-invariant open cover of X refining (Ur) rep+ (v such that
UcU,  VI<I* (5.2)
Since (Uy)rep+ () is an open cover of X, the closed subset

A=X — U U;
IeP*(N)
I#T*
is contained in Ujx < Urx. By the previous paragraph with I = I and W = U+, there exists
an open subset W” < X satisfying (5.1). Replacing the open subset U, with W”, we obtain a
¢-invariant open cover (U})rep+(ny of X refining (Ur) rep+ () such that the inclusion in (5.2) holds
for all I <I*. Continuing in this way, we obtain a ¢-invariant open cover (Uy) rep+(ny of X properly

refining (Ur) rep* (-

We next establish the second claim. Suppose I* € P*(N) and (U7 ) epx(n) is a €-invariant open
cover of X refining (Ur) jepx(ny and properly refined by (U7)epx(ny such that

Uycu, VI<I* (5.3)

By the observation in the first paragraph applied with I =1T%, AzUij*, and W =Upx, there exists
an open subset W” < X satisfying (5.1). Replacing the open subset Ui with W”, we obtain a
@ -invariant open cover (U7) jep#(ny of X refining (Ur) jepx(ny and properly refined by (U7) repx(n)
such that the inclusion in (5.3) holds for all / <I*. Continuing in this way, we obtain a ¢-invariant
open cover (U7 ) rep# () of X properly refining (Ur) jep#(ny and properly refined by (U7) reps(n). O

For a ¢-invariant open cover (U})eps(n) of X properly refining (Ur)epx(n), we denote by
Zp=Zyn (UpxCl), 2Fcz;, g}OJ c Q}OmZN}”J c 29, Zr,c ZrnZi;c 27,

the spaces as in (4.14), (4.16), (4.26), and (4.33) corresponding to the restriction ¢’ of € to
(UDrep+(ny defined by (3.6). For each I € P*(N), the torus action ¢%.; in (4.57) preserves the
subspaces Z7” and Z7°; of Z7.
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Lemma 5.2. Let (Uj)reps(n) be a €-invariant open cover of X properly refining (Ur)rep+(n)-
There exists a tuple (fr: ZF —>R+)]e'p*(N) of smooth functions such that each fr is ¢%.;-invariant,

Fi(lw: (z))jer]) = 1(851 ([, (Zj)jel]))n\/Q(uJ(w))ij+\Zz'|2
jeJ—I (5.4)

V[, (2))jer| € 215, ieI < J[N],

with (py(x))i; as in (4.3).
Proof. Choose a total order < on the subsets I < [IN] so that I <I* whenever |I|>|I*|. Suppose
I'*€ P*(N) and we have constructed

e a ¢-invariant open cover (U7 ) jepx(ny of X refining (Ur) jep+(ny and properly refined by the open
cover (U}) rep*(n),

e smooth functions fr: Z7°—R™ for all I <I* such that each fris ¢z -invariant and the equality
n (5.4) holds for all [z, (2;)jer]€ 277 and i€l = J with I <I*.

By Lemma 5.1, there exists a @-invariant open cover (U}") jep# () of X properly refining (U7 ) jep+ ()
and properly refined by (Ug)epx(n)- Let

w" = U Z}’:’J7 w" = U Z}/;O’J.
1*<Jc[N] 1*cJc[N]
We define f: W” — R™ by choosing i€ I'* and setting
P (2 G)jers]) = F(@e (12, (23)jers1)) T Ty 200 ()i +2af?
jeJ 1% (5.5)
V2, (2))jer | € Z1% 5, I* < J[N].

By (4.14) and Definition 1.1(c), f is well-defined on each Z73 ; and is independent of the choice of
ieI*. By (a) and (b) in Definition 1.1, (4.35), and the last inductive assumption, f is well-defined
on the overlaps. Since each map ©jx+ is (¢%; 7> %1% )-equivariant with respect to the homomor-
phism (4.25) with [ =1* and each map f; is gbOZ;J—iﬁvariant, the map f is ¢Z, j«-invariant.

Since UY cUY for all I€P*(N), the closure of ZN}’;OJ in ZN}’E is contained in 2}’5 ; for all JePr«(N).

Thus, the closure W” of W"” in Z73 is contained in W”. Therefore, there exists a smooth function
fre: 2l —RT st fre|pn = (5.6)

Since the group (S 1)5* is compact, we can make fr+ ¢%.  «-invariant by averaging it over the group
action. Since f is ¢%  4-invariant, this does not change fr+ over W” and so (5.6) still holds.
By (5.6) and (5.5), the equality in (5.4) with I =1I* holds for all [, (z;)jer]€ Z]% ; and J€Pr«(N).

The open cover (U7") reps(ny of X and the tuple (fr)r<r+ of smooth functions satisfy the inductive
assumptions of the bullet points with U} replaced by U}’ for all I <I*. Continuing in this way,
we obtain a @-invariant open cover (U7)jepx(ny of X refining (Ur)epx(n) and properly refined
by (Up)rep#(n) and a tuple (fr: Z7° —> R¥)jepsx () of smooth functions so that each f; is ¢% ;-
invariant and the equality in (5.4) holds for all [z, (2;)jer] € 277 and i€ I = J = [N]. Restricting
each fr to Z°, we obtain a desired tuple of functions. O
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For IeP*(N), we define

38;1 = UZ?O;I c 2, Zg;[ = UZ;O;I - ZS;I'
O#Igcl Iocl
[To|=2
Lemma 5.3. Suppose e P*(N), ]?1: Z~}°—>R+ i a smooth function, and

%g;]t Z~; —> (C, %g;[(x, (Z’j)je[) = f'[(.%', (Z’j)je[) sz . (5.7)
jel

Then there exists an open subset chg}’ containing ZNS.I such that the homomorphism
dzTz,1: ker dﬂ?m|T52~;’ — C, (5.8)

where w1 : Uy x C — Uy is the projection, is surjective for all T WI—ZNS;I.

Proof. Choose i€l and define

hir: €T — R i ((z)ger) = 5 (127 = 12i1)e -

N =

Thus,

kerdu%”l’pgo =kerd;h;;s ClceT,X®T.C = T%(U]XCI) V%E(x,z)egf. (5.9)
327

Let ¥ = (z,z) be an element of ZfoZNé’I and z = (zj)jer. Since T ¢ Z~§,I, zj =0 for at most one
element jel.

Suppose zj+ =0 for some j*€ 1. By (5.9), ker dzm; \Tiz? then contains the component C*} = C! and
dafz = (ﬁ(f)]‘[zj) Id:cV™ —c.
jel—j*
This homomorphism is surjective if z; #0 for all jeI—j*.
From now on, we assume that z; #0 for all jeI. Denote by
Rl cClc Tg(U[X(CI)
the radial tangent directions. Let

z

RI = (kerd;m’%go) N RI
T

and V3 ngj’ be the span of Ré and of the angular tangent space in the i-th C-factor C{# < C.
We will show that the homomorphism

dg%z;]: V= —C
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is an isomorphism if Z lies in a sufficiently small neighborhood WN/ICZNIO of Z~8 I

Define
mer: CI— C, mg“,-cf—wza Hi;:CT — RI=RI™ xR,
7T<Cf (25) JGI sz 77((:1 (25) 361 H’Z]’ Hi(z) = (hi;[(z),mﬂg(z)).
Jel gel

The determinant of the restriction of d,H;,; to the radial tangent directions RIicT,C!is given by

det (d.H;;r: RT —RT) Z H|Zk|2
jel kel—j

This implies that there exists a universal constant d; (dependent only on |I|) such that

|dz7T(él§1 : Ré—ﬂm = 512 H|Zk|

jel kel—j

with respect to the standard norms on Ré c C! and Rc C. Since the differential of the angular
component of wer along the angular direction in V; satisfies the same bound, it follows that the
homomorphism

dzmer+D: Vz — C

is an isomorphism whenever D: Vz — C is a homomorphism such that

IDI <61 ] l=l:

jel kel—j

By the definition of 7z.7,

A7z = f1(F) domer + <sz>

kel
Thus, the restriction of dz7z,; to V3 is an isomorphism if
|dzf1: Va—C]
f1(Z)

!zj| <01 for some jel.

This specifies an open subset W[ c 2}3 containing ZN’& ; so that the homomorphism (5.8) is surjective
on WN/I—ZNS; I O
For IeP*(N), we define

27, =

32

{(z, (Zj)je[)eg}): % €C*, zjeRYVjel—i} UrxCl. (5.10)

By (4.12), §I>Z is a slice for the gj—action on ZN})—ZN&I. By Lemma 4.6, ZNI>Z is a smooth submanifold
of Uy xCl of dimg X +2.
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Lemma 5.4. Let I, ]?1, and Tz,r be as in Lemma 5.3. Then there exists an open subset WICZN})
containing Zg; such that for every i€l the restriction of the smooth map

7T1X7~Tg;[:21>ﬂ-—>U]X(C (5.11)
to zfzmwj is a diffeomorphism onto the intersection of UrxC* with an open neighborhood of Urx0
m U[ x C.

Proof. Let W] c E:’}’ be an open subspace provided by Lemma 5.3. By Lemma 5.3 and its proof,
the homomorphisms

dg%g;]i ker dygﬂ'l‘Tig? —C and d;cﬂ'l: TgZN}) —_— Tﬂ.l(%)X

are surjective for all e W[—ZNE; ;- For dimensional reasons, this implies that the differential of (5.11)
is an isomorphism for all € ZNflmWI From the Inverse Function Theorem [19, Theorem 1.30],

we then conclude that (5.11) is a local diffeomorphism from Z~flmV[~/1 onto an open subset of UrxC*.

We next show that (5.11) is injective on Z?Z mWI, after possibly shrinking the neighborhood Wi
of ZNS;I. For each xeUy, let

ori(z) = max{—2(us(x))i;: jel} € R,
with (ur(x))s; given by (4.3). For AeC* and jelI, define

AV if i=j;

Ix Izt (2, 0)€UrxR: o> ori(x — C*, 9z ILisi\ Ty 0) =
It;9 {( ) z( )} Izy( ) Q(Ml(x))ij‘i‘g, iijI—i.

By (4.14), (5.10), and (5.7), every preimage T = (z, (2j)jer) of (z,A\)eUrxC* under (5.11) is of
the form
(@, (2))jer) = (=, (g>\;1§i§j(m?g))jel)

with o= p;(\, x) being a solution of the equation

¥ 2
Jr(, (grrizs (e, Q))je[) QHQA;I;i;j(% 0’ =A% o€ (ori(x), ). (5.12)

jel—i

At p=pr.i(x), the first non-vanishing derivative of the left-hand side of (5.12) is strictly positive.
Thus, there exist continuous functions

Sriseri: Ur — R

such that the left-hand side of (5.12) as a function of p is injective on [ori(x), ori(x)+3dr,i(x)] and
the image of this interval contains the interval [0,er.;(x)].

By the previous paragraph, the map (5.11) is injective on the intersection of §I>z with

~

L= {(x, (2))jer) e Wr: Igei}l!Zj|2<5l;i($)}
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and the image of this intersection under (5.11) contains
{(z,2)eUrxC*: |z|<ep(z)} <« UrxC.
Since I/IN/I’Z c WI is an open neighborhood of ZN(‘)’ 7, the proof is completed by taking I/IN/I in the

statement of Lemma 5.4 to be the intersection of the sets V[N/I’z over 1€1. O

Corollary 5.5. Let I, fj, and Tz.r be as in Lemma 5.53. Then there exists an open subset WICZN}’
containing Zj.; such that

a’ﬂn(%g;l](,\)) #0 v 557@;1[()\), AeC*, where  2n=dimg X.

Proof. Let AeC*, chf}? be an open subspace provided by Lemma 5.4, i€ I, and
2 = T2y 2L
In particular, 2; rilsa smooth submanifold of U; x C! and the map
1 ZN)?;M — Uy

is a diffeomorphism onto an open subset Uy,r,;. Thus, there exists a smooth function

A . .
gxri: Unri — {(zj)je]E(CI: zieWR+, zj€R+V]eI—z}

8.t g,\>;1;z‘ = {(x79>\;1;i(x>)1 erA;I;i}-
Since the argument of every component of gy.z.;: U)\;M—NCI is fixed,
{idng;[;i}*@I = {idxg,\;]ﬂ-}*ﬂ'i"w + {idxg,\;[;i}*ﬂgwcf = w|uyp; + Griwer = Wluy, (5:13)
This implies that

{idXQM;i}* ((’T)?|T5 %E}I(A))) = {idXQA;I;i}* (‘7’?}5) = ‘*’n|m(5) #0 v %EZN;;M’

since w is a symplectic form. Since the QNSI—action consists of a family of symplectomorphisms on
Ur xC!, this establishes the claim. O

5.2 One-parameter family of smoothings

By Lemma 5.1, there exists a @-invariant open cover (U}) ep+(n) of X properly refining (Ur) reps (-
By Lemma 5.2, there exists a tuple (f7: 27 —R™) ep# () of smooth functions such that each f;
is ¢%.;-invariant and (5.4) holds. Define

m: Z— C by W([[x, (Zi)ig[]]) = f]([l', (Zi)iej])HZi N [x, (ZZ‘)Z'GI] e Zy, IeP*(N).
el
By (4.12), 7 is independent of the choice of representative for an element of Z}° for I P*(V) fixed.
By (4.36) and (5.4), 7 is also independent of the choice of I€P*(N) and so is well-defined. Since
all f; take values in R*,

Zy=m10) = Zimyu.uZn = X1, UXy = Xp;
the second equality above holds by (4.41).
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Lemma 5.6. There exists a neighborhood Z' of Zy= Xy in Z such that (Z',wz|z/,m|z) is a one-
parameter family of smoothings of the SC symplectic variety Xy associated with the SC symplectic
configuration X (%) of Corollary 4.185.

Proof. For each IeP*(N), define

fr: Z2r — R, Fr(z, (z)ier) = fr([z, (zi)ier]), (5.14)
¥z 2P — C, Tz (2, (2i)ier) = 7([[2, (21)ier]])-

Let W; < ZN}O be an open subset as in Lemmas 5.3 and 5.4 with (Ur) jep+ () replaced by (U7) repx(n)-
By Lemma 4.8, the image Wy Z of WN/I under the quotient map

qzoqz.y: 290 —Z (5.15)

is an open subset. The union Z’ of the open subsets W; taken over all I € P*(N) is an open
neighborhood of Zyp=Xp in Z.

Since 7z,; factors through m, the surjectivity of the homomorphism (5.8) implies that 7 is a
submersion on W outside of
Xo= (J2Zrcz2.
Ic[N]
[1]=2

For any A e C*, the pullback of wz|,-1(y) by (5.15) is ‘7’1|T(% By Corollary 5.5, w% | —1(x)

—1 .
2. (N)
thus does not vanish over W; and so the restriction of wz to 77_1()\) N W; is nondegenerate.
Thus, (Z',wz|z,m|z/) is a nearly regular symplectic fibration in the sense of Definition 2.6 with
{7]2/}71(0) = Xp. O
For each Ie P*(N), the subspace 26‘;1 c ZN}O is preserved by the gg;l—action in (4.53). By replacing
WI in the proof of Lemma 5.6 with

6z ({9} xWi) < UpxC!,
ge(sh)l

we can thus assume that f/IV/I is 5 z,7-invariant. This implies that the subspace W< Uz, is preserved
by the ¢z.j-action in (4.58). The collection (Wr)ep=(ny is then a €z-invariant open cover of the
subspace Z’ of Z (corresponding to (Uly..;)rep+ () in Theorem 2). We denote by

cgé = (Wb d)/Z;Ia MIZJ)IEP*(N)
the restriction of ¢z to (Wr)rep+(n)-

Lemma 5.7. For every X € C, the restriction €%|zi~r-1(x) of €% to Z'an1(\) is an N-fold
Hamiltonian configuration for (Z/mﬂ'_l()\),wzlzlmﬂ-—l()\)). It is a cutting configuration if \e C*.

Proof. By Lemma 5.6, wz|z/~r-1(y) is a symplectic form on Z'~am~Y(N). Since the function f is
¢%.-invariant for each IeP*(N), the restriction of 7 to W is ¢; ;-invariant. Thus, Z'nm~1()\) is
¢ %-invariant. This establishes the first claim. If Ae C*, then

7N cZ2-Xyc Z2-X,
and 50 €| z/~r-1( ») Is a restriction of the cutting configuration of Corollary 4.16. This establishes

the second claim. O
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Lemma 5.8. Suppose X is compact, (U}’)Iep*(N) is a € -invariant open cover properly refining
(UD) 1epx(n), €" is the restriction of € to (U7 ) jepx(ny, and € is the analogue of the N-fold Hamil-
tonian configuration €z in (4.52) for €. Then, there exist neighborhoods Z' < Z of Xy and AcC
of 0 such that the symplectic manifold (7'('_1()\),&}2|7r—1()\)) with the cutting configuration €% | -1y
is canonically isomorphic to the symplectic manifold (X,w) with the cutting configuration €" for
every A\e AnR™.

Proof. For ie[c[N] and AeR™, let
eri: Uy — RY and riTsi: U/'\;I;Z» — (R*)I
be as in the proofs of Lemma 5.4 and Corollary 5.5, respectively, with (Ur)ep+(ny replaced by

(Up)1ep#(nv)- Since the subsets UV c U} are compact,

= i g(x): U eRT.
€ ie?g%}\f]{g[’ (z): zeUl} €

Let A = C be the disk of radius € around the origin and Z’ = 771(A). Since each function f; is
gboz; ;-invariant, Z’'c Z is a €’z-invariant subspace. By the proofs of Corollary 5.5 and Lemma 5.6,
it satisfies the condition of the latter.

By (5.14) and (5.4),

J?I(ﬂfa (zj)jer) = 1 ((:)J,I (z, (Zj)jel))H\/z(ﬂJ(x))ij+ | ;]2

jeJ—1I
Y (z,(2)jer) €25, ieIcJ<[N].

By the uniqueness of gy.;.r, this implies that

(:)JJ(x,g,\;I;i(:r)) = (.ZU,g)\;J;i(.'L')) N erﬁ\;I;imU/'\;J;i, iel, Jc[N]. (5.16)

Furthermore,
g)\;I;i(Jj) :g)\;l;j(l‘) v ‘TEU;\;I;imU;\;I;jv lv]EIC[N] (5]‘7)
In contrast to (5.16), (5.17) does not hold for A\e C*—R™" (even after passing to the quotient Z7°).

By the definition of ¢, U} ;,=Uy for all \e A—0 and i€ [N]. Define
X —rtNcz, fa(z) = qz(az;0(z, gar(2))) YV zeUf, ieI<[N].
By (5.16) and (4.36), f\ is independent of the choice of I€P;(N) for ie [N] fixed. By (5.17), fy is
also independent of the choice of ie[N] and so is well-defined.
Since the graph of gyz;i|yy is a slice for the dr-action on %E}I(A)HZN}’Q,
AU7) =77\ nU%; ¥V IEP*(N).

Since the sets U‘%J:qz(qz;](ZN}’O)) cover Z, the map f) is thus surjective. By (4.36) and (5.16), it
is injective. Since the restriction of f) to each U7 is a composition of smooth maps, f) is a smooth
map. By (4.17) and (5.13),

* . * * . * g
Hwz vy = {1d><g>\;l;i} qz.19zWzZ vy = {ldxgx;l;i} dz.1WI Uy

. *~
= {lng)\;[;i} wr Uy =w U
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Thus, f is a symplectomorphism from (X, w) to (77 1(A),wz[,—1(y))-
By the construction of p1z.; in Section 4.5,

MZ;IOf)\ VIEP*(N)

v = fzro{idx gxr;} vr = Mg

Since f[ is a 53; [-invariant map, the uniqueness of gy.r,; implies that g). I;z‘|U;' is a ¢r-invariant
map. Thus, the maps {idXQA;I;iHU;/ and f,\|U;/ are (QNSZ;], ¢r1)-equivariant and (¢ z.s, ¢1)-equivariant,

respectively. We conclude that f) is an isomorphism from the cutting configuration ¢” for (X, w)
to the cutting configuration €%|,-1(y) for (71 (A), wz|—1(n)- O

The projection 7 : Z — A depends on the choice of the functions f;. By the same inductive
reasoning as in the proof of Lemma 5.2, any two such collections of functions are homotopic after
shrinking their domains. The latter does not effect the space Z. If Upy;= X, there is a natural
choice of 7 given by f{y]=1; see the proof of Proposition 6.2.

6 NC degenerations of Hamiltonian manifolds

The tori (S)! whose actions ¢; appear in a Hamiltonian configuration (1.3) are subtori of

(SHY = (SHM = ptid),  where poz (SHY — S, pa((€®)iepny) = [ %, (6.1)
i€[N]

If the domain Uy of the ¢[yy-action is the entire manifold X, the constructions of Sections 4 and 5
greatly simplify and result in a richer structure. By Proposition 6.2, there is then a one-parameter
family 7 of smoothings of the associated SC symplectic variety X defined over the entire sym-
plectic manifold (Z,wz). Furthermore, a Hamiltonian pair (¢r,pr) for (X,w) compatible with
((Z)[N], M[N]) induces a Hamiltonian T-action on (Z,wz) preserving the associated cut symplectic
manifolds (X;,w;) and the projection 7. We illustrate this situation on the simple local example
of Section 6.2 when all relevant objects can be readily described explicitly.

If the ¢|nj-action is in addition the restriction of a Hamiltonian action of the entire torus (S HN
on (X,w), then there is a natural Hamiltonian S'-pair (¢z.g1,p1z.61) for (£,wz) so that the
projection 7 is S'-equivariant; see Lemma 6.5. If X is also compact, then 7 can be “cut” to a
one-parameter family

7:Z, —> P! (6.2)

of smoothings of Xy with all smooth fibers (i.e. those not over [1,0]) canonically isomorphic
to (X, w); see Corollary 6.6.

As shown in Section 6.4, a Hamiltonian action of an abstract torus T on (X,w) gives rise to a
plethora of Hamiltonian (S')N-pairs (¢, ) for (X,w) and often to cutting configurations. The-
orem 3 describes the effect of the constructions of Sections 4 and 5 with cutting configurations
arising in this way on the moment polytope of the original torus action. Proposition 6.10 provides
a combinatorial criterion for a Hamiltonian configuration obtained as in Section 6.4 to be a cutting
configuration; it is especially effective in the case of toric symplectic manifolds.
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Let T~ (S')* be a k-torus. A Hamiltonian T-manifold (Hamiltonian T-space of [3, Definition 22.1])
is a tuple (X,w, ¢, 1) such that (X,w) is a symplectic manifold and (¢, i) is a Hamiltonian T-pair
for (X,w). We call such a Hamiltonian T-manifold compact (resp. connected) if X is compact
(resp. connected). We call Hamiltonian T-pair (¢, 1) and T'-pair (¢, u’) for (X,w) compatible if
the actions of ¢ and ¢’ commute, i is ¢-invariant, and p is ¢’-invariant. This means that the
two actions and the two moment maps form a Hamiltonian (T x T')-pair for (X,w). If (¢, p) is
a Hamiltonian T-pair for (X,w), then the pair obtained by restricting the action ¢ to a subtorus
T'c T and composing p with the restriction t* — t* is compatible with (¢, ). Compatible pairs
of a different kind play an important role in Theorem 3.

Suppose X and X’ are topological spaces with T-actions ¢ and ¢, respectively, and p and p’ are
t*-valued maps on X and X', respectively. A map f: X — X' intertwines (¢, ) and (¢, i) if

flo(g;2)) = ¢ (g; f(x)) and p(x) =4/ (f(z))  VgeT, zeX.

In such a case, we call
f: (X7 d)alu) - (X,a ¢,7 ,LL/)

a morphism.

6.1 Basic setup and output
Let NeZ* and (X,w, ¢, 1) be a Hamiltonian (S')Y-manifold. For each IeP*(N), define

U = {zeX: (u(x))i < (u(x)); Viel, je[N]-T},

(6.3)
d1=0|(s1y1xr,: (SIXUr —Ur,  pr=rroply,: Uy — .,

where ry: t3,., — 1}, is the restriction homomorphism. We call (X, w, ¢, i) regular if the ¢-action
of (S1)! on ,u,I_l(O) is free for every I€P*(N).

Lemma 6.1. Let NeZ* and (X,w, ¢, it) be a Hamiltonian (S*)Y-manifold. The tuple
Cg(b,u = (UI7 ¢I> 'UI)IEP*(N) (64)

defined by (6.3) is a mazimal N -fold Hamiltonian configuration. It is a cutting configuration if and
only if (X,w, ¢, ) is regular.

Proof. Since Upy) = X and p is continuous, {Ur}ep+(n) is an open cover of X. Since u is ¢-
invariant, each U7 is preserved by the ¢-action and thus by its restriction to (S')I. It follows
that ¢; is a Hamiltonian (S')I-action on U; with moment map p;. It is immediate from (6.3)
that the tuple (6.4) satisfies (a)-(c) in Definition 1.1 and (3.7). This establishes the first claim.
The regularity conditions on (X,w, ¢, u) are the Iy = I cases of the conditions of Definition 1.2
for a Hamiltonian configuration to be a cutting configuration. On the other hand, (6.4) is a
maximal Hamiltonian configuration and so the domain of s,.7 in (1.4) is an open subspace of Uy, .
Furthermore, py,.1, = pr,- By (6.3), pr,.r and the restriction of the ¢s-action to (S1)lo are the
restrictions of py, and the ¢, -action to Dom(sy,,r). This establishes the second claim. O
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Proposition 6.2. Suppose NeZ*, (X,w, ¢, p) is a reqgular Hamiltonian (S*)Y -manifold, (Z,wz)

is the symplectic manifold determined by (6.4) via the construction of Section 4, and qp: X — X
18 the corresponding surjection. There are then natural continuous maps

:Z2—C and F:RPOx(SHVxX — 2z (6.5)

so that m is a one-parameter family of smoothings of Xy representing the germ of deformation
equivalence classes of Theorem 2 determined by (6.4), F is smooth outside of F~1(Xj),

F(O,ld,l‘) = qw(ﬂ«") VzelX, W(F(Tagax)) = Tp'(g) v (’I”,g,.%) € RZOX(Sl)NXXv (66)
with pe given by (6.1), and
Fr,g: (Xaw) - (7T_1 (TPO(Q))vwz’ﬂﬁl(rp.(g)))u r— F(T7gax)7 (67)

is a symplectomorphism for every (r,g)eR* x(SHYN . Bvery Hamiltonian T-pair (¢r, pt) for (X,w)
compatible with (¢, 1) determines a Hamiltonian T-pair (¢z.t, pz.r) for (Z,wz) so that (¢z.T, pz.T)
is compatible with the Hamiltonian (SV)N -pair (¢z, pz) for (Z,wz) determined by (¢, i) and inter-
twined with (¢r, pr) by F. The Hamiltonian configuration (4.52) for (Z,wz) determined by (6.4)
is Cg¢z,#2'

Proof. Since Upyy=X in this case,

(Z,wz) = (Civpo), (Kowi) = (2l @) VielN,

(6.8)
(X1,wr) = (Zrnp @ryny)  VIEP*(N);
see (4.36), (4.41), and (4.39). The I =[N] cases of (4.12) and (4.14) become
=y 1 (SHY < (X xCY) — XxCN, d(g;2,2) = ((g:7), dev(9752)),  (6.9)
Z=Zpy) = {(z. (z7)jein) e X xCV: <u<m>>i—§rzi12=<u<x>>j—§rzj12 vije[N]}.  (6.10)
By (6.8), (4.16), and (4.17), the symplectic manifold (Z,wz) of Corollary 4.10 is given by
2=2/$, qwz=(rfwtriwey)|s, (6.11)

where ¢: Z —> Z is the quotient map. The manifolds (X;,w;) and their submanifolds (X7, w;) are
the symplectic submanifolds of Z with z; =0 and z; =0 for all j € I, respectively. They are the
images under g of the subspaces )NQ and X 7 of Z described in the same way. The map ¢y in (4.49)
is now given by

qp: US ={ze X (u(x)); < (p());

; Vie[N]} — X; < Xy,
a0(2) = g, (/20125 )

(6.12)

9

je[N])

for each i€ [N], with (u(z))i; as in (4.3).
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A smooth map 7 : Z — C as in Section 5.2 is determined by a tuple (fr)sep#(n) of smooth
functions as in Lemma 5.2. Since Ug,[y]=Z in this case, such a tuple can be constructed without
shrinking the original cover. For e P*(N), iel, and [z, (2;)jer|€ Z}, define

fl([ Zj jEI H z]+|ZZ|2>O
JE[N]-I

the inequality holds by (6.3). By (6.10), the function f; does not depend on i€ . The associated
projection map is then given by

7T([x: (Zi)ie[N]]) = f[N]( (2i) ie[N sz sz . (6.13)
[V]

The proofs of Lemmas 5.3 and 5.4 with J =[N] and f =1 show that W[ N = NE’N] satisfies the

conditions stated in these lemmas. Thus, W[ N]= ZFN] also satisfies the condition of Corollary 5.5.
In the proof of Lemma 5.6, Wy) then becomes QZ(Z[N])- From (6.8), we conclude that

2= qz(Zy) = 2,

i.e. (6.13) defines a one-parameter family m of smoothings of Xy = 771(0) without shrinking Z.
This conclusion also follows from (6.6) and (6.7).

Fix i€[N] and define
0i: X — R>Y 0i(x) = max{—2(u(z))i;: j€[N]}. (6.14)
By the same reasoning as in the proof of Lemma 5.4, the equation

[ [@(u@))ij+e) =r* (6.15)

je[N]

has a unique solution o= g;(r,x) in [g;(x), ) for each reR=’. For reR™*, it lies in (g;(x),0) and
depends smoothly on (r,x). For € X such that the maximum in (6.14) is achieved at a unique
value je[N], the function

(r,2") — 7/20(2"))is + 01(r. )
is smooth around (z,0). Define F' in (6.5) by

F(r, (eiaj)jE[N]7x _ ( 19 \/2 x))ij+oi(r x))je[N]>. (6.16)

This function is independent of the choice of i € [N]. It is continuous everywhere and smooth
outside of the points (0, g, z) such that

{Ge[N]: 0i(@) = —2(u(@))is }] = 2

i.e. on the complement of F~!(X,). It restricts to (6.12) over {(0,id)} x X. By (6.13), (6.1), and
(6.15), F' satisfies the second property in (6.6) as well. By the same reasoning as in the proof of
Corollary 4.13, each map (6.7) is a symplectomorphism.
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Let (¢, pr) be a Hamiltonian T-pair for (X,w) compatible with (¢, ). We define a Hamiltonian
T-pair for (X x CN, nfw+miwen) by

gZ;T: T x (XX(CN) - XXCNa 52;']1‘(9;1.72) = (¢T(97 $)7Z)7 (617)
fizir: X xCN — ¥, fiz;r(z,2) = pr(z). (6.18)

Since the ¢r-action preserves p and commutes with the ¢-action, the action (6.17) restricts to an
action on (6.10) and descends to a T-action

gf)z;']y TxZ — Z
on Z. Since the moment map pr is ¢-invariant, (6.18) descends to a smooth map
pzr: 2 — .

By (6.11), (¢z.1, tz;T) is a Hamiltonian T-pair for (Z,wz). Since the actions of ¢ and ¢ commute,
pr is ¢-invariant, and p is ¢p-invariant, (6.17) and (6.18) imply that (¢z.T, pz,r) is compatible
(62, pz). By (6.16), (6.17), and (6.18),

(bZ;T(g/;F(ragax)) = F(Tag7 ¢T<gl;x))7 ///Z;T(F(T7gaw)) = MT(Z)v (619)
i.e. F'intertwines (¢, pur) and (¢z.T, pz.1).
It remains to establish the last claim. Since Uz.; = qz(gz.1(Z3)), (6.8) and (4.36) give
Uz = q(Ziny1) = a(20(UrxCV)).
Combining this with the first equation in (6.3) and (6.18) for pr =, we obtain

Uz = {[z,z]€Z: (u(x)); < (u(z)); Viel, je[N]-1I}
= {[z,2]e Z: (,ug([ac,z]))z.<(ug([m,z]))j Viel, je[N]-I}.

By (4.53), the second equation in (6.3), and (6.17) for ¢ =g,
(bZ;I = ¢Z’(Sl)£XUZ;I' (621)

By (4.54), the third equation in (6.3), and (6.18) for ur = u,

(6.20)

pwzr = rIoMZyUZJ. (6.22)
By (6.20)-(6.22), €z =%, 1. 0
By (6.6) and the first property in (6.19),
¢pzm(TxX;) = X; Vie[N], wn(ozr(g9:) = 7(y).
By (6.7) and (6.19), the restriction (6.7) of F' induces an isomorphism
Frg: (X,w, 01, 0m) — (771 (A),wzlr-100), @27 lmsn—1(0)s BET T xn-1 ()

whenever A=rp,(g) # 0. Since €z =€y, ., the (¢1, ur) = (¢, 1) case of this statement implies
that F 4 identifies the cutting configuration (6.4) for (X,w) with the restriction of the induced
Hamiltonian configuration €z to m— ().
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6.2 A local example

For NeZ™*, let
Co=[Jc¥ amd Y= []JCf

i€[N] IeP*(N)
[]=2

be the union of the coordinate hyperplanes and the union of the codimension 2 coordinate sub-
spaces, respectively. Thus, (Cév and (Cév are the SC symplectic variety and its singular locus asso-
ciated to the SC symplectic configuration

Xev = ((CF) repxv)s (Wenlen iern)) (6.23)
as in (2.2) and (2.3). Let
men: CVN — C, men(z1, ..., TN) = X1, .. aN - (6.24)

The tuple (CV,wen, Ten) is then a one-parameter family of smoothings of the SC symplectic va-
riety (Cév in the sense of the sentence after Definition 2.6.

Under the identifications (1.2), the restriction homomorphism
7".:{7\,—>t}kv;,=RN/{(a,...,a)€RN: acR}, N — Nlty.es

is the quotient map. Let (¢cn,ucy) be the standard Hamiltonian pair for (CV,wen) given
by (4.11). The maximal N-fold Hamiltonian configuration

Cen = %¢CN|(51)£\,X€N,7~.O%N = (UCN;L¢<CN;I7M<CN;1)I€7;*(N) (6.25)
determined by this pair via (6.3) is given by
Uen,g = {(ml,...,xN)e(CN: || <|a;| Viel, je[N]-1I},
PeNrt (8hexUr — Ur, pen 1 ((z)ieny) = %[(|IZ|2)161] €t

The associated (S')-actions and Hamiltonians in (3.5) are

e*5ijiexk, if k=i;

TR StxcN — (¢CN;,L']'(€10; Ti,... ,xN))k =%l if k=j;
T, otherwise;
Py
henij: CV — R, hew (w1, aN) = %(!%\2—\1‘42)-

The Hamiltonian configuration (6.25) is not a cutting configuration, as it does not satisfy the ad-
ditional conditions of Definition 1.2 if N >2. On the other hand, the restriction of ¢~ to CV—CY
satisfies these conditions and thus is an N-fold cutting configuration.

Fix AeC*. Let

(SHY ="M, X ={(z1,...,an)eCN: 2 an =)}, w=uwen]y. (6.26)
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Since X is preserved by the restriction of the ¢cn-action to (S,
% = %CN }X = (gd)(cN'(Sl){\fxva'o.u(cN'X = (UI7 ¢I7 HI)IEP*(N) (627)

is an N-fold Hamiltonian configuration. Since the full ¢-n-action does not preserve X, the present
situation is a special case of the setting of Lemma 6.1 and not of Lemma 6.5.

Lemma 6.3. The tuple € in (6.27) is a maximal N-fold cutting configuration for (X,w).

Proof. By the first statement of Lemma 6.1, (6.27) is a maximal N-fold Hamiltonian configuration
for (X,w). Since the ¢cn-action is free on CV —C}, the ¢-action is free on X for each IeP*(N).
By the second statement of Lemma 6.1, (6.27) is thus a cutting configuration. O

Proposition 6.4. Suppose (Z,wz) is the symplectic manifold determined by (6.27) via the con-
struction of Section 4 and w, F, ¢z, and puz are the associated maps provided by Proposition 6.2.
There is a natural smooth map

F: (SHYxCN — z (6.28)

such that

~

ﬁg: (CN wen) — (2,wz), r — F(g,), (6.29)

is a symplectomorphism for every ge (S1)Y,

F((SHY xCN) = X; Vie[N], n(F(g.2)) = men(2), Zjﬂ|(sl)1AVxx = Flyagxsyyxx,  (6:30)
6z(9':F(9,2) = Flg,0cn(952)),  nz(F(g:2)) = re(uev(2)). (6.31)
Proof. The action (6.9) in this case reduces to
51 (Sl)iv X (XXCN) —>XX(CN> 5(9@72) = (QSCN(g;x)’QSCN(g_l;Z))' (632)
The symplectic manifold (Z,wz) of Corollary 4.10 is described by (6.10) and (6.11), which become
Z = {((=)jerny: (2)jerny) €CN xCN: [ Tai= A, [ail® = |z =|a; P |2]* Vi, i€ [N},
1€[N]

Z=2Z/, ¢*wz = (rfwen +TwenN) (6.33)

Pz

where ¢: Z—> Z is the quotient map. The manifolds (X;,w;) and their submanifolds (X7, w;) are
again the symplectic submanifolds of Z with 2z; =0 and z; =0 for all je I, respectively. They are
the images under ¢ of the subspaces X; and X of Z described in the same way.

Fix i€[N] and define

0i: CY — R, 0i(2) = max{—2(uc~ (2)),;: j€[N]},

J
1
where (,U,((:N(Z))ij = 5(\,2]'\2—\%\2) V 2=(2j)je[n] € c.

For each zeCY, let o).;(2)€(0i(2),0) be the unique solution of the equation

H(2(H(CN(Z))1'J'+Q) = AP (6.34)

je[N]
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in p; this is a special case of the equation (6.15). Define Fin (6.28) by

i((eiej )je[N], (Zj)je[N]) - q((ei9j\/|zj|2_ ’ZiP"‘Q)\;i((Zk)ke[N]))j [N]’ (Zj)je[N])- (6.35)
This function is independent of the choice of i€ [N].

By the reasoning in the proof of Corollary 4.13 with the x and z components of Z interchanged,
each map (6.29) is a symplectomorphism. Since X; =q()~(i), F satisfies the first property in (6.30).
By (6.13) and (6.24), it also satisfies the second property in (6.30). By (6.18) for ur=reopucn,
(6.35), and (4.11),

nz (F((@%)jenys (23)jerv))) = {T-OMCN}((ewj\/|zj|2_|Z@"2+9A%i((2k)k€[N]))je[N])
- %7“. <(’Zj’2_‘Zi|2+Q>\;i((zk)ke[N]))jE[N]> - %T'((’zj’2)je[N]) = re(mex () jem))

This establishes the second claim in (6.31). Since each map (6.29) is a symplectomorphism, the
second claim in (6.31) implies the first one.

Suppose (e'% )je[N]e(Sl)iV and (27)je(v)€X. Let
i’ —i6; N
(61 J)je[N] = (6 ' ]ZJ/|Z]|)je[N] € (Sl)o .
By the uniqueness of the solution of (6.34),
|2 = |23l + oxi((25) jepny) = |25 Vie[N]. (6.36)
Combining this with (6.35), (6.33), and (6.32), we obtain

—if",

F((e" )jelv)s (25)jen]) = q((eieé'ei@j‘zg-\)je[zv]’ (e ]zj)je[N]> = q((zj)je[Nb C

12 )
The last property in (6.30) now follows from (6.36) and (6.16). O

By Proposition 6.4, the restriction (6.29) of F induces an isomorphism
Fg: ((CN, WeN, X((g), X@, TCN, qb(CN |(Sl)£VX(CN,T.OM(CN) I (Z, wz, X(CN, (C(])v, ™, qbz, ,ug),

where X (%) is the SC symplectic configuration determined by (6.27) and X is the associated
SC symplectic divisor. By (6.25) and the last statement of Proposition 6.2, this implies that
f’g identifies the Hamiltonian configuration (6.25) for (CV,we~) and the induced Hamiltonian
configuration ¢’z for (Z,wz).

6.3 Further refinements

For a Hamiltonian (S1)"-manifold (X, w, @, 1), the global quotient description of the main construc-
tions of this paper provided by the proof of Proposition 6.2 gives rise to a Hamiltonian S'-action
on (Z,wz) which is free on the complement of the SC symplectic divisor Xy < Z; see Lemma 6.5.
If in addition X is compact, this action can be used to “cut” off a precompact neighborhood of X
in Z to form a one-parameter family of smoothings of X with compact total space (ZAa, wé;a) and
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projection map (6.2) which is equivariant with respect to the induced S'-action on é\a and the
standard S'-action on P! given by

dpi: STxPL — Pl ¢pm (ew; [w, 2]) = [w,ei(77 ]- (6.37)
For the purposes of Corollary 6.6 below, let
B = ([0.1)x 8 0 (P —{[1,01}) [~ (0,1)x8" 5 (r,e?) ~ [Lre?] e P'—{[1,0]};  (6.38)
this is the disk obtained from P! by replacing [1,0] with S'. Let
qp1 - I@(1) — P!
be the natural projection map restricting to the inclusion of P*—{[1,0]}.

Lemma 6.5. Suppose NeZ*, (X,w, ¢, i) is a reqular Hamiltonian (S*)N -manifold, (Z,wz) is the
symplectic manifold determined by (6.4) via the construction of Section 4, and 7 is the associated
map provided by Proposition 6.2. There is then a natural Hamiltonian S'-pair (¢z.51, uz.51) for
(Z,wz) such that

$z,51(S'x X;) = X; Vie[N],  w(dz5(e’y)) = e“n(y). (6.39)

If (¢, pr) is a Hamiltonian T-pair for (X,w) compatible with (¢, 1), then the associated Hamilto-
nian T-pair (¢z1, pz;) for (Z,wz) provided by Proposition 6.2 is compatible with (¢z.s1, piz.51).

Proof. We continue with the notation and setup of Proposition 6.2. In this case, the components
(u(x));eR of p(z)et* are well-defined. For ie[N], let

vis St — (SHY
be the inclusion as the i-th component. Define a Hamiltonian S'-pair for (X xCV, r¥w+miwen) by
Gz514 STx (X xCV) — XxCV, dzg1,(e?2,2) = (6(i(e™);2), pen (1i(e¥);2)),  (6.40)
iz XxCV — R, Pzistale,2) = —(uw), + 5=l (6.41)
By the same reasoning as below (6.18), this pair descends to a Hamiltonian S!-pair
$z:S'xZ — Z, pzs: 2 — R, (6.42)

for (£,wz). By (6.10), the restriction of (6.41) to Z is independent of the choice of i€ [N]. Thus,
so is the pair (6.42). Since (6.40) preserves the subspace )Z'Z of Z , ¢z.s1 preserves the subspace X;
of Z. By (6.13) and (6.40), (6.42) satisfies the second property in (6.39) as well. If (¢, pr) is a
Hamiltonian T-pair for (X, w) compatible with (¢, 1), then the actions of 53;51;1» and 53;']1‘ commute,

fiz.T is ¢z g1 -invariant, and fiz.g1.; is ¢r,z-invariant. This implies the last claim. O

In the setting of Proposition 6.2, an extra Hamiltonian S'-action on (Z,wz) can be obtained via
the diagonal action of S* on the C-component in (6.10). However, the action of (SY)N+! on Z
obtained by combining this action with ¢z is not effective even if the (S')N-action ¢ is effective.
In contrast, the action of (S*)¥*+! on Z obtained by combining the S'-action of Lemma 6.5 with
with ¢z is effective if the ¢-action is effective; see Theorem 3.
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Corollary 6.6. Suppose N e Z", (X,w, ¢, 1) is a compact regular Hamiltonian (S*)N -manifold,
and (Z,wz), Xg, qp, and (¢z.51,11z.51) are as in Proposition 6.2 and Lemma 6.5. For every

a € R sufficiently large, there exist a natural compact symplectic manifold (é\a,wé_a), an open
neighborhood Z!, of Xy in Z, continuous surjections

71 Z,— P fai 20— 2, and Fy:PixX — Z,, (6.43)

and a Hamiltonian S*-pair (Pz.61.0015.61.,) for (é\a,wé,a) so that T is a one-parameter family of
smoothings of the SC symplectic variety ZAa;OE?r_l([l,O]), F, is smooth outside of F=1(f(X2)),

ﬁa(07 1,1’) = fa(Q(Z)(x))v %(ﬁa(w7x)) = qp (w)v %(¢§;Sl;a<ei9;y)) = eiG%(y), (6'44)

and the maps

fa: (Z(;uw27X@7¢Z;Slauz;Sl) - (é\a_%_lﬂioa 1])’('02;0,7é\a?o’¢ZA;Sl;a’/’L§;Sl;a)’ (645)
ﬁa;w: (X,w) — (%fl(w),wzda 7?,1(10)), x— ﬁa(w,a:), VweP!'—{[1,0]}, (6.46)

are isomorphisms. Every Hamiltonian T-pair (¢, pr) for (X,w) compatible with (¢, 1) determines
a Hamiltonian T-pair (¢ 5., pz.p) for (Za,wz.,) so that (¢4, pz.p) is compatible with the pair

(02.61.4015.51.,) and with the Hamiltonian (SN -pair (¢ 5, uz) for (Z/,’\a, ws.,) determined by (¢, 1)
and is intertwined with (¢, ur) by E, and with the pair (¢pz.1, pz;) of Proposition 6.2 by fq.
Proof. We split (Z,wz) into a compact piece (ZA ,wz) containing a neighborhood Z; of Xj and

the “infinite remainder”. We use the symplectic cut construction of [11] with the Sl-action ¢ 2,515
moment map g z.g1, and its value

(6.47)

a>— ZIEIE\I}] min (u(x))l .

This corresponds to the construction of Proposition 6.2 with N =2,

¢:¢Sl;o : (Sl>% XZ —> Z7 (bsl;o((eieae_ie);y) = ¢Z;Sl (eie;y)a
U= g4 zZ— t;;u MSl;o(y) =Te (IU'Z;Sl (y)aa)'

By (6.39), the restriction of the ¢g1.,-action to Z—Xj is free. By (6.41) and (6.47), ,ugll;.(O) is dis-
joint from Xy and so the restriction of the ¢g1 ,-action to ugll;.(O) is free. Thus, (Z,w, ¢g1.4, ths1.e)
is a regular Hamiltonian (S!)2-manifold. By Lemma 6.1 and Corollary 4.13, (Z,w, 0810, l51;0)
thus determines symplectic manifolds (’21, wé;l) and (22, sz;Q) with a common smooth symplectic

divisor 212. We denote (Z:A’l,wé,l) and 212 by (éaawé-a) and ZAa;oo, respectively.

By the proof of Proposition 6.2,

Zy=Za/~, Zaww = Zaww/~ € Z4,  where

1 ~ N~
Z, ={(y,w)eZxC: ,uz;s1(y)=a—§|w|2}, Zao = Zan (Zx{0}), (6.48)

(y,w) ~ (¢z.51 (€% y), e%w) .
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Let q: Zva — é\a be the quotient map. The map f, in (6.43) is the restriction of the collapsing
map qg for this symplectic cut to the preimage of Z,,

for Zo={yeZ: pzs (W) <a} — 2o, faly) = §<y, \/2(a—pzs (y)))- (6.49)
By Corollary 4.13, its restriction
fa: Z(’lz{yeZ: fhz.s1 (y)<a} — ZAa—éa;oo
is a symplectomorphism with respect to the symplectic forms wz and w £
Let m: Z—— C be as in Proposition 6.2 and define
712, — P, 7y, w) = [w,(y)]. (6.50)

Since éa;oo is disjoint from f,(Xy)= f.(7~1(0)), this map is well-defined. Furthermore,

~

Zao =7 1([1,0]) = fo(771(0)) = fa(Xp). (6.51)

Thus, f, identifies X with ZAa;o. The facts that 7 is a submersion outside of ZAa;o and w Zﬁa|;,_1( )

is a symplectic form whenever A\#[1, 0] follow from the first statement in (6.44) and (6.46).
With the notation as in the proof of Lemma 6.5, define an (S!)V-action on X x CN*! by
gN-‘rl : (SI)N X (X X (CN+1) — XX CN+17 $N+1 (Li(ew); T, 2, ’LU) = (%Z;Sl;i(ew; z, Z)a ei9 )

By (6.9), (6.10), and (6.48),

é\a = §N+1;a/$N+17 where
5 1 1 ) (6.52)
ZN+la = {(337 (20)iefn), w) € X x CVHL —(u(x))i+§|zi|2 = a—§|w|2 VZE[N]}-
The symplectic form wz —on ZAa is determined by the condition
(/]\;\}Jrl;awé;a = (WTWX +W§wCN+1)‘Z~N+1;a ) (6.53)
where gn41.q° Z~N+1;a—>£’a is the quotient map. By (6.51),
2@;0 = §N+1;a;0/$N+1a where ‘%N-&-l;a;[) = U{(m, (zj)je[N],w) GEN_H;@: Zi :0}.
1€[N]
In particular, R N
23410 = ZNt1a 0 (XX (RT)VXC)
is a slice for the ggNH—action on ZNNH;Q—ZNNH;G;O identified by gn41,q With ZAa—ZA’a;o.
For each xeCx X, let
o(z) = 2min{a+(u(z));: ie[N]} e RT; (6.54)
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see (6.47). For each (w,x)eCx X, let o(w,z)€[0, o(x)] be the unique solution of the equation

wl T J(2(a+ (u(x))i) —e) = o (6.55)

i€[N]

in 0. As p increases from 0 to p(x), the left-hand side of (6.55) decreases from a positive value to 0
if ws0. Thus, o(w, z) is well-defined, depends smoothly on (w,z), and

o(w, z) = w|g(w, x) (6.56)
for some smooth R*-valued function g on Cx X. Define F, in (6.43) by

~

Fu([w, 1],1:) = qN+1a (x, (\/Q(a—#(u(w))i) —.Q(w,x))ie[N], wg(w,x)). (6.57)

By (6.50), (6.55), and (6.56), F, satisfies the second property in (6.44). By the same reasoning as
in the proof of Corollary 4.13 and (6.53), each map (6.46) is a symplectomorphism.

Under the identification in (6.38), (6.57) becomes

~

Falr,6,2) = fvena (2, (/2(a+ (u(2)s) —p(r,2)) gy () ), (6.58)
where p=p(r, ) is the unique solution of

[ [(a+(u(x))i) —p) = rp

1€[N]

in [0, o(z)]. It extends continuously over r=0 as p(0,z) =p(x). Thus, (6.58) extends continuously
over {0} x S'x X. By (6.12) and (6.49), this extension satisfies the first property in (6.44). By the
continuity of both sides, it also satisfies the second property in (6.44). The functions

(r.x) — \/2(a+ (u(@):) —plr.x),  ie[N],

are smooth at (0,z) if the minimum in (6.54) is reached at a unique i € [N]. Thus, the func-
tion (6.58) is smooth outside of the preimage of f,(Xp).

By Proposition 6.2, the Hamiltonian S'-pair (¢z.1, 11z.51) for (Z,wz) determines a Hamiltonian
S1-pair (¢2~Sl~a7“§-sl~a) for (Za,wé,a) such that

$2.510(€%5 fa®) = fa(02:1 (€% ), Bzg10(fav) = pzsi(y)  VeleSh, yezy;

this establishes (6.45). By (6.50), the second property in (6.39), and (6.37), ¢ 5 1, also satisfies
the third property in (6.44).

Let (¢1, ur) be a Hamiltonian T-pair for (X,w) compatible with (¢, u). By Proposition 6.2 ap-
plied to (¢z.1, nz.T), (¢1, 1) determines a Hamiltonian pair (¢§;T’M§;T) for (meg;a). By this
proposition and Lemma 6.5, (qbéﬂr, “é;T) is compatible with (¢2;Sl;a’ “é;sl;a) and (¢, pz) and is
intertwined with (¢2;T7“§;T) by fa. Since (¢, pr) is compatible with (¢, i), the solution o(w, z)
of (6.55) is ¢p-invariant. By (6.57) and the construction of the induced Hamiltonian pair,

650 (0: Fa(w,2)) = Fy(w,é1(g;2),  pzq(Falw, ) = pr(z), (6.59)
i.e. F, thus intertwines (ér, ) and (@ 5.1, H5.7)- O

93



By the second property in (6.44) and the first property in (6.59),
T (b2.0(9:9) = 7(y)-

An analogue ¢’; of the cutting configuration (4.52) for the symplectic manifold (ZAa, ws.,) of Corol-
lary 6.6 can be constructed from the initial cutting configuration (6.4) via (6.48) as in Section 4.5.
By the same reasoning as in the proof of Proposition 6.2, ¢’z is then the cutting configuration deter-

mined by the Hamiltonian pair (¢ z, j15) for (Z,, ws.,)- By (6.46) and (6.59), the restriction (6.46)
of ﬁa induces an isomorphism
Fo: (X,0,¢m, pm) — (71 (A, w05,l5-100» S 2.0lmx3-1 00 3,031 00))

whenever A=gp1(w)#[1,0]. Since 65 =%_ ., the (¢r, 1) = (¢, 1) case of this statement implies
that ﬁ’a;w identifies the cutting configuration (6.4) for (X,w) with the restriction of €5 to 771(X).

6.4 Degenerations and moment polytopes

Suppose T~ (S l)k is a k-torus and (X,w, ¢r, ur) is a compact connected Hamiltonian T-manifold.
By the Atiyah-Guillemin-Sternberg Convexity Theorem [3, Theorem 27.1],

A= pp(X) <t

is then a convex polytope. The Hamiltonian T-pair (¢, pur) for (X,w) gives rise to Hamilto-
nian (S!)N-pairs for (X,w); the latter in turn determine Hamiltonian configurations for (X,w)
as in (6.3). In this section, we describe the effect of the constructions of this paper with cutting
configurations arising in this way on the moment polytope A.

For £et, define

A vector £ et is called integral if its time 27-flow in T generates a circle subgroup S€1 cT. An integral
vector & determines a homomorphism and an S!-action,

0c: S — S and ¢ STxX — X,

respectively; the latter is the composition of the T-action ¢ with the former. The action ¢¢ com-
mutes with the T-action and has Hamiltonian he. We denote by A¢c t the lattice of integral vectors
and by Af ct* the dual lattice. An integral vector et is called primitive if £/m is not integral for
any integer m>1. The homomorphism g¢ is injective if and only if £ is primitive.

Suppose {€ A is primitive, e€R is a regular value of h¢, and the Sgl—action on the hypersurface

V.= {reX: he(x)=€¢} c X

is free. By [11, Remark 1.5], the 2-fold symplectic cut construction with the Sgl—action and Hamil-

tonian h¢ —e then cuts X along V. into two symplectic manifolds, (X_,w-) and (X4,wy), with
Hamiltonian T-actions and moment polytopes

A ={77€A¢L§(77)<6} and A+={77€A:L5(77)>e}7
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respectively.

Our N-fold symplectic cut construction produces more complicated subdivisions of the moment
polytope A. Fix a tuple (&, €;);e[n] in (A¢xR)V. For ie[N] and a€R, define
Li=Lg—e: " — R, Ay =0((,¢)jen) = {ned: Li(n)<Lj(n) Vje[N]},

Ay =A,((&,€) )jervy) = {(n,u)e AxR: — m[}\rfl]Ll(n) <u<a}.
€

(6.60)

For IeP*(N), let

Ar=Ar((&,€)ieny) = {n€A: Li(n)<Lj(n) Viel, je[N]}.

For our purposes, a pair (&;, ¢;) such that the polytope A; is empty can be dropped from the con-
sideration (thus reducing the value of N).

The polytopes A; with i€[N] subdivide A; the first diagram in Figure 2 shows such a subdivision
for the data of Example 6.9. For generic choices of ¢;€R, the intersection of each Ay with a facet
of A is a polytope of codimension |I|—1 in the facet. By Proposition 6.10 in the next section,
this property needs to hold for the N-fold Hamiltonian configuration (6.63) for (X,w) determined
by the tuple (&, €;)ie[n] to be a cutting configuration. By Theorem 3 below, the polytopes A; are
then the moment polytopes of the Hamiltonian T-manifolds (Xj,w;, ¢T., 1) determined by the
construction of Section 4. If

a > — min min L;(n) , (6.61)

i€[N] neA

then Aa is the polytope rising from the graph of the function

A — R, — — min (L; ,
1 iem( i(n)
to the “horizontal” hyperplane t* x {a} in t* x R. This graph consists of N polytopes A/ with
mex (AL) = A;, where
et OR — t*
is the projection map. The second diagram in Figure 2 shows such a polytope A for the data of

Example 6.9. If (6.63) is a cutting configuration and (6.61) holds, then A, is the moment polytope
of the symplectic manifold (Za, ws.,) of Corollary 6.6 with the Hamiltonian (T x S*)-pair obtained

by combing the pairs (qﬁZT,,uZ '[[‘) and (63 Stas M350 ).

With (&;, Gi)ie[N] as above and ¢; as in the proof of Lemma 6.5, we define a Hamiltonian (S*)V-pair
for (X,w) by

o: (SI)NXX — X, qb(Li(ew);x) = qbgi(ew;x),
N (6.62)
p: X — RY, pu(x) = (Li(pr ()
Let
Cgﬁb,# = (gfbﬂra#ﬂ‘ ((52’ 6i)ie[N]) = (Ub o1, MI)IE'P*(N) (6.63)

be the associated maximal N-fold Hamiltonian configuration for (X,w) as in (6.4). In particular,

Us ={zeX: Li(pr(z)) < Lj(pr(z)) Viel, je[N]} = up' (Ar) YIeP*(N). (6.64)
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For an arbitrary Hamiltonian (S1)V-pair for (X,w), the configuration (6.4) is the case of (6.63)
with (¢1, pr) = (0, 1), &€ZYN being the standard i-th coordinate vector, and €; = 0.

We call a tuple (&;, €;);c[n] as above regular if the associated (S1)N-Hamiltonian manifold (X,w, ¢, i)
is regular as defined above Lemma 6.1. Proposition 6.10 in Section 6.5 provides a geometric
interpretation of this criterion in terms of the Delzant condition of [3, Definition 28.1].

Theorem 3. Suppose T is a k-torus, (X,w, ¢T, ur) is a compact connected Hamiltonian T-space,

and (&, €:)ie[N] 15 a Teqular tuple in (A¢xR)N. The tuple (6.63) is then a maximal N-fold cutting

configuration for (X,w). For every a€R sufficiently large, this tuple determines

(1) a compact symplectic manifold (Z,A’a, wz.,) containing the tuple (X;,w;);e[n of the cut symplectic
manifolds of Corollary 4.13 as an SC symplectic divisor Xy and

(2) a Hamiltonian (T x S*)-pair (¢5.,,15.,) such that

$5,(TxS'xX;) = X; Vie[N],  pz,(Z.) = A, (6.65)

For all ie I c [N], the preimage of A; under o,ué;ab(i is the symplectic submanifold (Xr,wr)
of (Xi,w;) determined by (6.63). If the ¢r-action is effective, then so is the qbz;;a-action. The
deformation equivalence class of smoothings of Xy determined by (6.63) is represented by a nearly
reqular symplectic fibration 7 : ZAa—ﬁP’l equivariant with respect to the projection T x St — ST,

Proof. Since the tuple (&,ei)ie[N] is regular, (6.63) is a maximal N-fold cutting configuration
for (X,w) by Lemma 6.1. By Theorem 1, it thus determines a symplectic manifold (Z,wz) and
a tuple (Xj,w;)ien) of symplectic manifolds contained in (Z,wz) as an SC symplectic divisor Xj.
For a€eR sufficiently large, let (ZAa,wZA;a),

7.2, —P,  f.:2 — 2,

(02.61.0015.61.,), and (¢ 5.1, f15.1) be the associated objects provided by Corollary 6.6. In partic-
ular, f, embeds Xy as an SC symplectic divisor into the compact symplectic manifold (2(1, ws.,)-
The required condition (6.47) on a€R in this case becomes (6.61).

Since the Hamiltonian T-pair (¢2;T7 “é;T) and the Hamiltonian S'-pair (92.51.00 “é;sl;a) are com-

)

patible, they determine a Hamiltonian (T x S')-pair (5., H35.,) With

'UZA;(L: (“2;11‘7/"2;51;(1) : 2‘1 - t*G_)R

Since 7 is S'-equivariant, it is equivariant with respect to the projection TxS'— 8!, Since
the ¢z - and ¢z o -actions preserve X; c Z,, so does the ¢z -action. By Corollary 6.6 and
Proposition 6.2,

pzw = pzpofa  and  pr = pzroqy, (6.66)
respectively. Combining these statements with (6.64) and Corollary 4.13, we obtain
-1 _ _ _
{meonz,} (A1) 0 Xo = pz (A1) 0 fa(Xp) = fa(uzin(Ar) 0 Xy) = fa(pzz(AD) nae(X))
= fa(qq)(ﬂ%l(AI))) = fa(Q(B(Ujé)) = fa(XI) = X;
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for every IeP*(N).

With the notation as in (6.52), define

aé;a: szl X§N+1;a - Z~N+1;a7 aé;a(g7ei0;mazaw) = (¢T(gﬂ ':U)?Z:e_iew)v (667)

~

N . 1
Mé;a: ZN+1;a - f*@R, Mé;a(xazaw) = (,U/IF(;U)?G_§|w’2)' (668)

By construction, the pair (qzé,a,ﬁzﬁa) descends to the pair (¢, 5 ) on the quotient in (6.52).

By (6.68) and (6.66), mex (“é;a(za)) =A. Since (u(x))i=Li(ur(x)), (6.52) and (6.68) give
{ueR: (n,u)epz,,(Za)} = {ueR: —Li(n) <u<a Vie[N]} VneA.
This establishes the second statement in (6.65).
Suppose the (bZA;a—action of (g,6?)eT xS on éa is trivial. Let
2= (2i)ie[N] € cV, U= (w,z,w) € ZN’NH;a, and (eiei)iE[N] € (SI)N
be such that
zi #0 Yie[N], w#0, gé;a(g,eie;:):,z,w) = (ENH((ew")ie[N];m,z,w). (6.69)

By (6.67) and the first and last assumptions in (6.69), ¢ =1 for every i€ [N]. By the second
assumption in (6.69), this in turn implies that €' =1. Since the projection

Znsta 0 (X x(CVH-CY*) — X

is surjective, it follows that the ¢r-action of g on X is trivial. If the ¢r-action is effective, the
¢ z.,-action is thus effective as well. O

The compatible Hamiltonian pairs (¢z.r, piz;1) and (¢z,61, uz.s1) for (Z,wz) provided by Propo-
sition 6.2 and Lemma 6.5 give rise to a Hamiltonian (T x S')-pair (¢z.0, ptz.50) for the symplectic
manifold (Z,wz) determined by (6.63) if the tuple (&;, €;);e[n7 is regular. The corresponding mo-
ment “polytope” is
pHz.0(Z) = sz{(n,u)eAxR: - IEIE\ITI] Li(n) < u}.
7

The moment polytope of (ZAQ, W35 P51 135.,) is obtained by cutting off this infinite “polytope” at
the level ©=a of the moment map for the S'-action ¢z.s51, as expected from the proof of Corol-
lary 6.6 and [11, Remark 1.5].

By Corollary 6.6, the fibers (ZAa;,\,wéla,)\) of the map 7 in Theorem 3 over P! —{[1,0]} with the
Hamiltonian T-pair (¢ 5., 5.0) are canonically isomorphic to (X,w) with the pair (¢, ur). The
fibers over [1,0] and [0, 1] are preserved by the full T x S'-action ¢ on Z,. The restriction of

the S'-action to the latter is in fact trivial; this is reflected in the “top” face of the polytope ﬁa
in (6.60) being “horizontal”. The fibers over C* = P! are not preserved by the S'-action. Their
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images ﬂé.a(é\a;/\)CAa do not depend the angular component of A\. The restriction of mx to

t5.,(Za;0) is surjective onto A and has one-dimensional fibers.

A compact connected Hamiltonian T-manifold (X,w, ¢, pr) is a symplectic toric manifold if the
T-action ¢ is effective and dimg X =2 dimgT. By Theorem 3, (é\a, W34 ¢2;a7 “z?;a) is a symplectic
toric manifold if (X, w, ¢, ur) is. The projection t®&R — R then induces a projection from the
toric fan of Z, to the toric fan of PL. The projection 7 in Theorem 3 is the projective morphism
induced by 7g; see [2, Proposition VII.1.16]. We can think of 7 as a one-parameter family of Kahler
manifolds smoothing 2@;0 = X into éa;oo ~ X. The vertical edges of the polytope A, in (6.60)
correspond to holomorphic sections of 7.

The configuration (6.63), which determines the output of Theorems 1 and 2, depends only on the
restriction of the Hamiltonian (S*)™-pair (¢, 1) defined by (6.62) to the subtorus (S1)Y < (S1)V.
The latter is determined by a tuple (&5, €i5); je[n] I (AxR)N*N satisfying the one-cocycle condition

(&Gijr€i) + (& €k) = (Eikr €k Vi, j,ke[N].
A tuple (&, €;)ie[n] in (A¢xR)N cobounding (&ij» €ij)ije[n], 1-e-
(&ijr€i5) = (&,65) — (&) Vi, je[N], (6.70)

determines an extension of the Hamiltonian (S1)Y-pair determined by (&;;, €ij)ije[n] to an (S DN _pair.
If (&, €;)ie[n] 1s another tuple satisfying (6.70), then there exists (£, ¢) in A¢xR such that

(&.€) = (&,e) + (&) Vie[N].
Along with (6.40) and (6.41), this implies that

P51 (?y) = bz (pe(e™); 6251 (%)), 1z.51(y) = pzs (y)—Le (nzr(y)) +e.

~

As indicated by Example 6.7, the deformation equivalence class of the symplectic manifold (Z,, w é‘.a)
of Theorem 3 in general depends on the choice of such a coboundary.

Example 6.7. Let wp1 denote the doubled Fubini-Study symplectic form on P!, i.e.

QW(C 1
Wp1|zzm V zeCcP.

We take (X,w)= (P! wp1), T=S', ¢1=¢p1 as in (6.37),

Eis

- L N=1, §=meZ=A, =0
|UJ‘2+|Z|2 ) ) §1 m ty €1

HT = ppr - P! — R, pp ([w7 Z])
Thus, Z=P!'xC, ﬁa is the polytope in the first diagram of Figure 1, and
#: Z4=Fp — P!
is the m-th Hirzebruch surface with the canonical projection; see [3, Homework 22.3]. We conclude

that (ZAQ, ws.,) depends on the parity of m in this case.
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(1,—m) (1,—m)

Figure 1: The polytope Aa for the one-parameter “degeneration” of symplectic manifolds for the
data of Example 6.7, the subdivision of A into two polytopes for the data of Example 6.8, and the
polytope Aa for the associated one-parameter family of symplectic manifolds degenerating X = P!
into Xp=P!vPL

Example 6.8. With (X, w, ¢r, ur) as in Example 6.7 and meZ, we now take
1
27
The tuple (&, ¢€;)ie[2] is then regular. The polytopes A for (¢r,pur), A; for the cut symplectic

N=2 & =m+1l, &SE=m, € = es = 0.

manifolds (X;,w;) with ¢ =1,2, and ﬁa for the symplectic manifold (éa,wé;a) containing X7 u
X5 as an SC symplectic divisor are shown in the second and third diagrams of Figure 1. By
[3, Homework 22.2], (ZAa,wé;a,gZ)é;a,ué;a) is a symplectic manifold that can be constructed as
either a toric blowup of F,, or a toric blowup of Fy,+1. By Delzant’s Classification Theorem [3,
Theorem 28.2], this quadruple depends on the choice of m. However, the deformation equivalence
class of the symplectic manifold (ZAQ, Wé;a) is independent of this choice.

Example 6.9. With the notation as in Example 6.7, we now take
X =P'xP!,  w=3rfup+2miwp,  T=(SY)?
dr=dpr X pp1: Tx X — X, pr = (3upiom —2, 2uprome—1): X — R?,
51 = (070)7 52 = (170)7 53 = (07 1)7 61762763:0~

The associated subdivision of A =[—2,1] x[—1,1] is shown in the first diagram of Figure 2. It
corresponds to a 3-fold symplectic cut of P xP! into X; =P!xP!, a one-point blowup X5 of P xP!,
and X3 =IF;. The smooth divisors X9, X13 © X7 are one of the horizontal lines and one of the
vertical lines and thus have normal bundles of degree 0. The smooth divisors Xi2, Xo3 < X9 are
the proper transform of a ruling of P! x P! through the blowup point and the exceptional divisor,
respectively, and thus have normal bundles of degree —1. The smooth divisors X;3, Xo3 < X3 are
the exceptional divisor and a fiber and thus have normal bundles of degrees —1 and 0, respectively.
Since Xi23 is a single point in this case, the restrictions of the line bundle Ox,(Xp) in (2.9)
to X192, X13, Xog are thus of degree 0. Since Xia, X13, Xo3 ~ P! are simply connected, this line
bundle has a unique homotopy class of trivializations. The second diagram in Figure 2 shows the
polytope (6.60) for the associated symplectic toric T x S'-manifold (ZAa,wé;a, ¢2;a’ “é;a)'

6.5 Admissible decompositions of polytopes
>0

Suppose T is a k-torus and A ct* is a convex polytope as before. For each ve A, let 9,(A)eZ
be the dimension of the minimal facet A, of A containing v. If ve A is a vertex, let E,(A) be
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Figure 2: The subdivision of A into three polytopes for the data of Example 6.9 and the polytope Aa
for the associated one-parameter family of symplectic manifolds degenerating X (the top face) into
the SC symplectic variety X7 U XU X3. The numbers next to each edge A;; = A;nA; in the
first diagram are the degrees of the normal bundles of the symplectic submanifold (Xj;,w;;) in the
symplectic manifolds (X;,w;).

the set of edges of A containing v. For each ee E,(A), we denote by e/ve A the vertex of e other
than v. A vertex v of a polytope Act* is called smooth if there exist a Z-basis {ue}ccp,(a) for Af

and a tuple (tey)eep, () in RE»(2) 5o that
e/v = v+teyue € t° VeeE,(A).

The smoothness of a vertex v e A implies that |E,(A)| =k and the slope of each edge e€ E,(A)
is rational with respect to the lattice Af. A polytope A ct* is Delzant if every vertex ve A is smooth.

Let (X, w, ¢, ur) be a compact connected Hamiltonian T-manifold with moment polytope A. For
a tuple (&, €;)ie[n] in (A¢xR)N let A;c A be as in (6.60). For each ve A, define

I, = {ie[N]: ve A;}.

We call (&, €;:)ie[n] @ quasi-regular tuple if every polytope A; c A is Delzant, & —¢; is a primitive
element of A for all ¢, je[N] distinct such that A;; #0, and

L] <0,(A)+1 YV oveA. (6.71)

The last condition is equivalent to the same condition for all vertices v of the polytopes A; with
i € [N]. By dimensional considerations, the inequality in (6.71) for any given vertex v € A; is
equivalent to the equality for the same vertex. An example of a subdivision for a quasi-regular
tuple is shown in the first diagram in Figure 2.

By (6.71), the combinatorics of the subdivision of A determined by a quasi-regular tuple (&;, Ei)z‘e[ N
does not change under sufficiently small changes in the values of ¢;. The next proposition relates
the combinatorial notion of quasi-regularity for (&;, Ei)ie[N] to the geometric notion of regularity
for the induced Hamiltonian configuration (6.63).

Proposition 6.10. Suppose NeZ", (X, w, ¢t, pur) is a compact connected Hamiltonian T-manifold,
and (&, €:)ie[N] 5 a tuple in (A¢xR)N. If this tuple is regular, then it is quasi-regqular. If it satis-
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fies (6.71) and (€;)ie[n] s generic, then the ¢r-action of (SHI on ,ul_l(()) has at most finite stabi-
lizers for every 1€ P*(N). If (X,w, ér, ut) is a toric symplectic manifold and the tuple (&;, €;)ie[n
s quasi-reqular, then it is regular.

For i, je[N], let &; =& —&;. For each vet*, let
ty = {et: Le(n—v)=0 VneA,}

be the annihilator of the vectors contained in A,. By [2, Corollary IV.4.13], t, is the R-span of a
sublattice of Ay and thus generates a subtorus T,, € T. For Ie P*(INV), define

Lyw;p: t° — ], = ]RI/{(a, .. ,a)ERI: aE]R}, L1 (n) = [(Li(n))iel],
Ko, = {net*: Le,(n)=Le,(n) Vi, jel}.
Thus,

Ann(lCt*;[) = {get: Le(n)=0 VneICt*;I} = SpanR{fij: i,je[}, (6.72)
ker(det*;I: Tyf*—>t?;.) = ’Ct*;[ = t* i Q}G’t*.

Since the dimension of the space on the right-hand side of (6.72) is at most |/|—1,
dim (T, Ay " Kex,1,) = 04(A) — dim(Spang{&;j: i, j€L,}) = 0,(A)+1—|I,| Vovet.  (6.73)
For ze X, let
T, = {ge']I‘: or(g; :L')z:n} and t, = Ann(Im(dxmr: T.X — Tvt*)) (6.74)
be the stabilizer of x and the Lie algebra of T, respectively.
Lemma 6.11. Let NeZ*t and (&;,¢€;)jen) € (AxR)N. The conditions (6.71), the homomorphism
doLysr, ToAy — (6.75)
1s surjective for all ve A, and the kernel of the homomorphism

Tox (Y — T, (9,(€%)icr,) — g ] [oe(e®), (6.76)

iel,
1s finite for all ve A are equivalent.
Proof. We show that each of the three conditions of Lemma 6.11 is equivalent to
dim (Spang{&;;: 4,j€1,}) = |I,|—1, t, N Spang{&;:i,jel,} = {0} VoveA. (6.77)

Suppose v e A. The first equality in (6.77) is equivalent to the second inequality in (6.73) being
an equality; the second equality in (6.77) is equivalent to the first inequality in (6.73) being an
equality. Thus, the two equalities in (6.77) for a fixed ve A are equivalent to

dim (T, Ay N Ker,1,) = 0y (A)+1—| 1| (6.78)

and thus to the surjectivity of the homomorphism (6.75).
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The kernel of the homomorphism (6.76) is finite if and only if the homomorphism

t, D tr,e — (&, (ri)ier,) — &+ mez’ ;

i€ly,

is injective. By (1.2), the latter is the case if and only if (6.77) holds.

If v is a vertex of A; for some i€ [N], then
TyAy N K1, = {0} and  9,(A) < |L,|—-1.

The inequality (6.71) for a given vertex v € A; is thus equivalent to (6.78) and so to the two
equalities in (6.77) for v. If veA; is arbitrary and v’ €(4A;), is a vertex of the minimal facet of A;
containing v, then

Ly o I, SpanR{fij: i,jer/} > SpanR{@j: i,je[v}, ty Dt

The two equalities in (6.77) with v replaced by v" thus imply the two equalities in (6.77) themselves.
Since the same is also the case for the inequality in (6.71), we conclude that the conditions (6.71)
and (6.77) are equivalent. O

Lemma 6.12. Let NeZ" and (§j,€j)je[n] € (A¢xR)N. The tuple (&5, €)je[n @8 quasi-regular if
and only if the homomorphism (6.76) is injective for all ve A.

Proof. Let ve A and i€l,. By (1.2), the injectivity of the homomorphism (6.76) is equivalent to

A¢ 0 (t+Spang{&j: jeln}) = A, ® P ZE;. (6.79)

jely,—i

If (6.79) holds, then &€ A; is a primitive element for every je I, —i. If in addition v is a vertex
of A;, then (6.79) implies that it is smooth. Along with Lemma 6.11, this implies that the tuple

(&), €5)je[n] 18 quasi-regular.

Suppose the tuple (&, €;) je[n] is quasi-regular. Let i€ [N] and ve A;. By the proof of Lemma 6.11,
the two equalities in (6.77) hold. Thus, (6.79) holds when tensored with R. Since &;; € A; is
primitive for every je€I,—i and a vertex v’ € (4;), is smooth, (6.79) itself holds as well. O

Lemma 6.13. Suppose NeZ™, (ﬁj,ej)je[N]e(Ath)N satisfies (6.71), ve A, and xe = (v). The
homomorphism
depr,: To X — 47, (6.80)

1s surjective if and only if the kernel of the homomorphism

T, x (S1) — T, (9, (eiei)ielv) —9 Hggi(ewi), (6.81)

€l

is finite.
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Proof. By the definitions of I, and A;, (u(x)); < (u(x)); for all ie I, and je[N] and the equality
holds if and only if j € I,. Thus, z€ U, and the homomorphism (6.80) is well-defined. We show
that each condition of Lemma 6.13 is equivalent to

t, N Spang{&;;: i,j€l,} = {0}. (6.82)

By Lemma 6.11 and its proof, the homomorphism (6.75) is surjective and both equalities in (6.77)
hold in the present case.

Since pig, = L1, o pur,
depr, =dy L. g, odgpr: Tp X — Tyt — t?v;, . (6.83)
By the definition of A,,
Im(dgpr: To X — Tot*) € T,A,. (6.84)

By the surjectivity of the homomorphism (6.75), the surjectivity of the homomorphism (6.80) is
thus equivalent to
T,A, Im(dx,w]r) + K{*;]ﬂ .

By (6.72) and (6.74), this condition is in turn equivalent to
t, Dt N SpanR{&j: i,je[v}.

In light of the second equality in (6.77), the last condition is equivalent to (6.82).

The finiteness of the kernel of (6.81) is equivalent to the injectivity of the homomorphism

t: Dtr, e — (& (ri)ier,) — €+ Eri&-

1€ly
By (1.2) and the first equality in (6.77), the latter is equivalent to (6.82). O

Proof of Proposition 6.10. Let ve A and xepu (v). Thus, z¢€ ul_vl (0) and T, >T,. Further-
more, the projection

Ty x (S1)e — (SN2
restricts to an isomorphism from the kernel of the homomorphism (6.81) to the stabilizer of the

¢r1,-action on z. If this stabilizer is trivial, then the homomorphisms (6.81) and (6.76) are injective.
Since ! (v)#0 for every ve A, Lemma 6.12 thus implies the first claim of Proposition 6.10.

Suppose the tuple (j,¢€;) e[n] satisfies (6.71) and the homomorphism (6.80) is surjective. By
Lemma 6.13, the homomorphism (6.81) then has finite kernel and so the stabilizer of the ¢, -
action on z is finite. The homomorphism (6.80) is surjective if [(e;)icr]€t}., is a regular value of
the smooth map p; on Ur for all e P*(N). By Sard’s Theorem [14, p10]  this is the case if the
tuple (Ei)ie[ ~] is generic. This establishes the second claim of Proposition 6.10.

By (6.83) and Lemma 6.11, the homomorphism (6.80) is surjective if the tuple (&, €;)ie[n] sat-

isfies (6.71) and the inclusion (6.84) is an equality. Suppose (X,w, ¢r,pr) is a toric symplectic
manifold. By [2, Corollary IV.4.14], the inclusion (6.84) is then an equality. Furthermore, T, ="T,.
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Since the inclusion (6.84) is an equality, this statement is equivalent to the connectedness of T,.
The latter is implied by each toric symplectic manifold being the quotient of a subset )w(& of CF
by the restriction of the standard (S')*-action to an action of a (k'—k)-subtorus T’ (S1)*" with
T =(SY)*¥ /T’ and ¢r being the induced action; see [18, Section 2.1] for the relevant details. Thus,
the stabilizer T, of the point x€ X determined by a point %e)?fw is the quotient of the stabilizer
(SHE = (S1)¥ of ¥ by its intersection with T'. Since (S*)¥" is connected, so is Tj.

Suppose (X,w, ¢r, pr) is a toric symplectic manifold and the tuple (&;, €;)ie[n] is quasi-regular. By
the previous paragraph, the homomorphism (6.80) is then surjective. Since T, =T,, the triviality
of the stabilizer of the ¢y, -action on x is equivalent to the injectivity of the homomorphism (6.76).
The latter is the case by Lemma 6.12. This establishes the last claim of Proposition 6.10. O

The example below provides decompositions of moment polytopes for Hamiltonian S'-manifolds
(X, w, ¢r, pr) with effective actions. These decompositions arise from quasi-regular tuples (&;, €;)ie[2)
that are not regular. Example 6.14 illustrates that assuming that the action is Hamiltonian and
the tuple (&;,¢€;)ie[n] is quasi-regular is not sufficient to overcome either of the two deficiencies
of the second statement of Proposition 6.10 as compared to the third. On the other hand, our
degeneration and symplectic cut construction can be applied whenever the ¢r-action on ul_l(O) has
at most finite stabilizers for all 7€ P*(N). It would then produce symplectic orbifolds. Thus, the
combinatorics of polytope decompositions in the context of Theorem 3 fit most naturally with the
category of symplectic orbifolds (rather than just manifolds).

Example 6.14. Let wp1 and (¢p1, up1) be as in Example 6.7. Let
(X,w) = (P xP!, 7fwpr + 15 wp1) and T =S%
Fix m1,mo€Z™ and define

or: S'x X — X, ¢r(e¥21,22) = (61 (€™ 21), P (€725 20)),
pr: X — R, pr (21, 22) = mapp (21) +maoppr (22) -

The tuple (X, w, ¢r, ) is then a Hamiltonian S*-manifold. The associated moment polytope A is
the interval [0, m1+mg]. Two of the four ¢r-fixed points, Pyo and Py, are mapped to the interior
points m; and mgy. A setting for the usual N =2 symplectic cut configuration of [11] in this case
is obtained by taking

§E£2—51=1€Z=AR and 6=61—€2€(0,m1+m2).

The associated decomposition breaks A into the intervals A; =[0, €] and Ay =[e,m;+mg]. In this
case, ¢12 = ¢ under a suitable identification (S1)2=.S'. Since d,u =0 if and only if x is a ¢p-fixed
point, the ¢1-action on uyy (0) = pp'(e) is non-trivial if and only if € # my,mo. This illustrates
the necessity of the “generic” assumption in Proposition 6.10. Since the subgroups Zi,,, Zmy, < S 1
act trivially on P! x {0,00} and {0, 00} x P!, respectively, the ¢2-action on uy, (0) is not free for
any €€ (0, m1+msg) unless mq, mo=1. However, the ¢r-action on X is effective if my and mqy are
relatively prime.
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