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At a quick glance the classical fields of algebraic geometry and symplectic topology seem far apart.
The category of algebraic (and more generally holomorphic) functions does not contain any (non-
trivial) partitions of unity, which play a fundamental role in topology. It is thus not too surprising
that these fields generally evolved in their own separate ways throughout much of their long history.
This changed dramatically following Gromov’s work [9] on pseudo-holomorphic curves in symplec-
tic topology, which beautifully combined the rigidity of algebraic category with the flexibility of
the smooth category, and Witten’s work [30] on σ-models in physics, which foretold an incredible
algebraic structure for counts of such curves. Since then much of symplectic topology and alge-
braic geometry has thrived on the newly discovered interplay between the two fields and predictions
generated by the blossoming field of string theory. Some of these predictions have been verified
mathematically, providing the only “experimental” evidence for string theory and generating much
excitement in mathematics. Many other predictions of string theory remain unsolved and are now
among the most prominent problems in the two fields.

My research involves the study of pseudo-holomorphic curves in symplectic topology and algebraic
geometry and is often motivated by insights generated by string theory. It has two general directions:

(1) analytic studies of deformation properties of pseudo-holomorphic maps from Riemann surfaces
to (almost) complex manifolds, for an arbitrary complex structure on the target as well as for
a generic one, with an eye toward very different applications in symplectic topology, algebraic
geometry, and string theory;

(2) applications of recently developed machinery for explicit computations of Gromov-Witten in-
variants of complete intersections with the aim of confirming predictions of string theory and
going beyond them.

My recent, current, and future work in these directions is outlined in the next two sections.

1 Analytic Methods

A symplectic form on a 2n-dimensional manifold X is a closed 2-form on X such that ωn is a
volume form on X. A tame almost complex structure on a symplectic manifold (X,ω) is a bundle
endomorphism

J : TX −→ TX s.t. J2 = −Id, ω(v, Jv) > 0 ∀ v∈TxX, x∈X, v 6=0.

If Σ is a (possibly nodal) Riemann surface with complex structure j, a smooth map u : Σ−→X is
called J-holomorphic if it solves the Cauchy-Riemann equation corresponding to (J, j):

∂̄Ju ≡
1

2

(

du+ J ◦ du ◦ j
)

= 0.

The image of such a map in X is called a J-holomorphic curve. Holomorphic curves have played an
essential role in algebraic geometry throughout its existence. Their emergence as a central theme in
symplectic topology has led to interplay between the two subjects, connections with string theory,
and heavy use of analytic techniques. This is reflected in the problems described below.



One of the most fundamental objects in Gromov-Witten theory is the moduli space Mg,k(X,A; J)
of stable genus g J-holomorphic maps with k marked points in the homology class A∈H2(X). This
compact space may be highly singular, but still determines a rational homology class, called virtual

fundamental class (VFC), which is independent of J ; integration of cohomology classes against this
VFC gives rise to Gromov-Witten invariants. While Mg,k(X,A; J) is often called a “compactifica-
tion” of its subspace

M0
g,k(X,A; J) ⊂ Mg,k(X,A; J)

of maps from smooth domains, M0
g,k(X,A; J) usually is not a dense (open) subset of Mg,k(X,A; J).

This brings up the question whether one can do better.

Problem 1A Is there a proper natural closed subset M
0
g,k(X,A; J) of Mg,k(X,A; J) containing

M0
g,k(X,A; J)?

The “natural” requirement includes existence of a VFC for M
0
g,k(X,A; J), which is independent of J

and satisfies other geometric properties. If (X, J) is the standard complex projective space P
n, this

closed subset should simply be the closure of M0
g,k(X,A; J) in Mg,k(X,A; J), but in general such a

collection of compactifications is not natural (in particular, it does not respect embeddings Y −→X).

It is known that the answer to Problem 1A is no if g=0. On the other hand, it has been speculated
since the early days of GW-theory that the answer to Problem 1A is yes if g≥ 1. I confirmed this
for g=1 in [31, 33], constructing reduced genus 1 GW-invariants. The same methods directly carry
over to g>1, but the resulting affirmative answer to Problem 1A is unsatisfactory because it is not
sharp and the resulting reduced GW-invariants include lower-genus contributions.

While Problem 1A concerns a basic issue in GW-theory (and thus is of interest in itself), a satisfac-
tory answer to this problem appears to be key to relating GW-invariants of a compact symplectic
submanifold (Y, ω) of a compact symplectic manifold (X,ω) given as the zero set of a transverse
bundle section to the GW-invariants of the ambient symplectic manifold X. If πL : L −→X is a
holomorphic vector bundle, there is a natural projection map

π̃L : V
A
g,k(L) ≡ Mg,k(L, A; J) −→ Mg,k(X,A; J), [ũ : Σ−→L] −→ [π ◦ ũ : Σ−→X]; (1)

the fiber of π̃L over an element [u : Σ−→X] is H0(Σ;u∗L), the space of holomorphic sections of the
holomorphic bundle u∗L−→Σ. If X and L are sufficiently positive (such as Pn and sum of positive
line bundles) and g=0, π̃L is in fact a vector bundle and

ι∗[M0,k(Y,A; J)]
vir = e

(

VA
0,k(L)

)

∩ [M0,k(X,A; J)]vir. (2)

While π̃L is not even a vector bundle for g≥1 (even for sufficiently positive X and L), it is shown
in [32, 16] that the restriction

π̃L : V
A
1,k(L)

∣

∣

M
0

1,k(X,A;J)
−→ M

0
1,k(X,A; J) (3)

carries a well-defined euler class, which in turn relates the reduced genus 1 GW-invariants of the
submanifold and the ambient manifold:

ι∗[M
0
1,k(Y,A; J)]

vir = PD
[M

0

1,k(X,A;J)]
e
(

VA
1,k(L)

)

. (4)

A satisfactory affirmative answer to Problem 1A for g≥ 2 should lead to an affirmative answer to
the following problem for the same g.
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Problem 1B If (X, J) is a sufficiently regular Kahler manifold and L−→X is sufficiently positive,
is there an analogue of the relation (4) for g≥2?

Affirmative answers to Problems 1A and 1B for any given genus g would provide means for computing
GW-invariants of complete intersections in P

n (and in other smooth toric varieties) using localization
by a group action on the ambient space, since the standard and reduced genus g GW-invariants would
differ only by lower-genus invariants. This computation would be made more efficient if the genus g
analogue of the cone (3) is desingularized in a natural way (turning it into a vector orbi-bundle over
an orbifold), so that Atiyah-Bott’s classical localization theorem [1] could be applied directly.

Problem 1C If (X, J) is (Pn, J0) or another toric variety and L−→X is sufficiently positive, does
the genus g analogue of (3) admit a natural desingularization?

For g = 1, this is accomplished in [27]. Once Problems 1A-1C are completed for any given genus
g ≥ 2, it should be fairly straightforward at this point to obtain a closed formula for a generating
function for the genus g GW-invariants; see Section 2.

While Problems 1A-1C appear rather different, they mostly reduce to the same issue: analyzing
obstructions to smoothing a J-holomorphic map (into Y , X, or L) from a singular domain. Further-
more, the obstruction space in these cases is fairly well-described by the combinatorial data about
the singular map (distribution of the degrees of the map between the irreducible components of the
domain). The main hurdle in each genus g≥2 is thus likely to be Problem 1A.

This past year, I became involved in a joint project that aims to adapt the analytic techniques used
in the proof of the BCOV prediction [2] for the closed genus 1 GW-invariants of a quintic threefold
to the genus 1 real invariants, i.e. counts of maps commuting with involutions. The aim of this
project to define such invariants intrinsically, at least under some topological assumptions on the
target, relate such invariants of complete intersections to the invariants of the ambient projective
space, and reduce them to the graph sums in [29]. The initial steps in the first part of this project
are carried out in [6, 10]. The second and third parts will run [16, 31, 32, 33], with some additional
care, in the presence of an anti-symplectic involution on the target. Since the graph sums in [29] are
shown in [24] to reduce the mirror formula in [29], this project would resolve the following problem.

Problem 2 Complete the proof of the prediction of [29] for the real genus 1 GW-invariants of
Calabi-Yau complete intersection threefolds.

The obstruction space can also be described in terms of the combinatorics of the map for the moduli
space of relative maps: J-holomorphic maps into X that have a specified contact with a divisor Y .
In the case the divisor is smooth, moduli spaces of relative maps

M
ρ
g,k(X,Y,A; J) ⊂ Mg,k(X,A; J)

are typically compactified “outside” of Mg,k(X,A; J) by decorating some of the J-holomorphic maps
with additional “rubber” structure [12, 14, 15]. However, one might expect a natural compactification
of the former space inside of the latter.

Problem 3 Does the moduli space of relative maps M
ρ
g,k(X,Y,A; J) admit a natural compactifica-

tion inside of Mg,k(X,A; J)?
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If g = 0, (X, J) is a smooth projective variety, and Y is a smooth very ample hypersurface, this
compactification must simply be the closure [7], but in general such a collection of compactifications
is not natural (similarly to the situation with Problem 1A). In [36], I give a natural extension of
the compactification of [7] to the case of an arbitrary smooth symplectic hypersurface Y in a sym-
plectic manifold X in genus 0. The original motivation for [36] came from Li-Ruan’s program of
symplectic birational geometry [17], which involves comparing the genus 0 GW-invariants of a sym-
plectic divisor with the genus 0 GW-invariants of the ambient manifold; depending on the resolution
of Problems 4B, this program may shed light on Kollár’s conjecture on rational connectedness in
algebraic geometry (see below). More recently, I came to realize that the approach of [36] should
lead to genus 0 GW-invariants relative to a simple-normal-crossings divisor (this problem has been
studied for over a decade).

Analysis of obstructions to deforming J-holomorphic maps seems to be also essential to two other,
very different, settings: symplectic and algebraic birational geometry and Gopakumar-Vafa integral-
ity predictions for Calabi-Yau manifolds, as described below.

A smooth algebraic manifold X is called uniruled (resp. rationally connected or RC) if there is a ra-
tional curve through every point (resp. every pair of points) in X. According to [13, 25], a uniruled
algebraic variety admits a non-zero genus 0 GW-invariant with a point insertion (i.e. a count of
stable maps in a fixed homology class which pass through a point and some other constraints). This
implies that the uniruled property is invariant under symplectic deformations. The RC property
is known to be invariant under integrable deformations of the complex structure [13, 25]. It is a
conjecture of Kollár that the RC property is invariant under symplectic deformations as well; this
was recently confirmed in dimension 3 by Z. Tian [26], building up on [28]. It is still unknown if
every RC algebraic manifold admits a nonzero genus 0 GW-invariant with two point insertions; this
would immediately imply Kollár’s conjecture.

As GW-invariants are symplectic invariants, it is natural to consider the parallel situation in symplec-
tic topology; this may also provide a different approach to Kollár’s conjecture. Thus, a symplectic
manifold (X,ω) is called uniruled (resp. RC) if for some ω-compatible almost complex structure J

there is a genus 0 connected rational J-holomorphic curve through every point (resp. every pair of
points) in X. This leads to the following two pairs of problems.

Problem 4A Let J be any almost complex structure on a uniruled (resp. RC) compact symplectic
manifold (X,ω). Is there a connected rational J-holomorphic curve through every point (resp. every
pair of points) in X?

Problem 4B Does every uniruled (resp. RC) compact symplectic manifold (X,ω) admit a genus 0
GW-invariant with a point insertion (resp. two point insertions)?

The affirmative answer to Problem 4B would immediately imply the affirmative answer to Prob-
lem 4A. In a way, the affirmative answer to any of the four questions could be viewed as contrary
to the spirit of flexibility in symplectic topology; indeed, the uniruled case of the latter problem is
known only under the rigidity assumptions that X is either Kahler or admits a Hamiltonian S1-
action [20]. However, there are currently no known counter-examples to the speculations made in
these four questions.

If u : P1−→X is a J-holomorphic curve into a Kahler manifold and for some z∈P
1 the evaluation map

H0(P1;u∗TX) −→ Tu(z)X, ξ −→ ξ(z),
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is onto, then H1(P1;u∗TX)=0, i.e. u is unobstructed. This statement is key to the arguments in the
algebraic setting [13, 25], but its natural extension to the non-integrable setting is false, even if the
evaluation is surjective for every z∈P

1. However, its implications may still be true. In particular, for
the interplay between openness and closedness of various properties of complex structures exhibited
in the proof of deformation invariance of the RC property for integrable complex structures in [13]
to extend to the non-integrable complex structure, the vanishing of the obstruction space needs
to hold only generically in a family of J-holomorphic maps covering X. This generic vanishing
still seems to be quite plausible; studying properties of the linearized operators ∂̄-operators will be
key to understanding this issue as well. The resulting investigation should uncover properties of J-
holomorphic maps that may be of importance to future development of the subject of J-holomorphic
curves. It could also be relevant to the following old-standing problem, which is motivated by the
Gopakumar-Vafa conjecture on integrality of certain combinations of GW-invariants.

Problem 5 Is it the case that for a generic almost complex structure J on a Calabi-Yau threefold
(X,ω) all J-holomorphic curves in X are isolated (and smooth)?

A number of claims concerning this problem have been made, but none has worked out. All of the
attempts so far have involved variations on standard transversality arguments in symplectic topol-
ogy, without any attempt to study properties of the linearizations of the ∂̄-operator. My aim is to do
so, beginning with the simplest possible domain, P1, when these operators can be written explicitly.

2 Combinatorial methods

Among the most striking mathematical predictions of string theory are the so-called mirror symme-
try formulas for GW-invariants of Calabi-Yau 3-folds, especially quintic hypersurfaces in P

4; they
relate generating functions for GW-invariants to Kahler properties of moduli spaces of Calabi-Yau
3-folds. The first such prediction [3] expressed the genus 0 GW-invariants of a quintic in terms
of holonomy around a singular fiber in the moduli space of “mirror quintics”, with the holonomy
computed mathematically; this prediction was confirmed in the mid-1990s [8, 18]. The next predic-
tion [2] expressed the genus 1 GW-invariants of a quintic in terms of what is now called the BCOV
torsion, a function on the moduli space of “mirror quintics” involving eigenvalues of a family of
Laplacians. A mathematical computation of the latter was completed in [5], while the prediction
of [2] for GW-invariants was verified in [35]. A mirror formula for the disk invariants of a quintic
threefold is obtained in [21]. In [24], such a formula is obtained for the annulus and Klein bottle
invariants starting from the graph definition of [29].

The main mathematical approach to the string theory predictions for GW-invariants has been to
express the desired GW-invariants of a complete intersection in a toric variety X as an integral
over the moduli space of stable maps to X, as in Problem 1B, and then to localize the integral
to the fixed loci of a torus action on the moduli space. This leads to combinatorial problems
involving summations of rational function in several variables over many different graphs. Many
such problems for genus 0 GW-invariants with 1 marked point were handled in the 1990s. More
recently, I developed methods to use solutions to these problems to explicitly compute generating
functions of genus 0 multi-pointed GW-invariants and genus 1 GW-invariants as transforms of the
genus 0 generating functions. So far, these methods have been applied only to projective complete
intersections [34, 35, 24, 22, 37]. This leads to the following set of problems which should be
approachable by similar means.

Problem 6A Let X be a toric complete intersection. Describe a transformation that determines
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(a) a generating function for genus 0 2-point GW-invariants of X in terms of a generating function
for 1-point GW-invariants;

(b) a generating function for genus 0 n-point GW-invariants of X, with n ≥ 3, in terms of a
generating function for 1-point GW-invariants.

Problem 6B Let X be a toric complete intersection. Describe transformations that determine
generating functions for the closed genus 1, annulus, and Klein bottle n-point GW-invariants of X
in terms of a generating function for genus 0 1-point GW-invariants.

Problem 6C Let X be a toric complete intersection. Describe a transformation that determines a
generating function for genus g GW-invariants of X, with g≥ 2, in terms of a generating function
for genus 0 1-point GW-invariants.

Based on the work so far, these transformations should depend only on the cohomology of X and
the chern class of the vector bundle “dual” to the complete intersection. Part (a) of Problem 6A
is solved in [23]. At this point, there should be no fundamental geometric difficulty in completing
Problem 6A. The reason it is broken into two parts is that generating functions for genus 0 n-
pointed invariants, with n≥3, are obtained as sums over trivalent graphs with n marked points from
the 1- and 2-marked point generating functions. In the case of a projective complete intersection,
the generating functions of Problem 6B can already be obtained by summing over trivalent graphs.
Progress for other complete intersections is contingent extending of the g=1 cases of Problems 1A-
1C and 2 from the projective space to other toric varieties, which seems feasible at least in some
cases. Problem 6C is not approachable at this point, even for projective complete intersections, since
it requires a satisfactory resolution of Problems 1A-1C for g≥2 in the same settings.

The primary motivation behind Problems 6B and 6C is to test mirror-symmetry predictions of string
theory; Problem 6A with n=2 and n≤g+1 is needed as an input. This would be of particular interest
due to recent string theory predictions for genus 1 GW-invariants of certain Grassmannian complete
intersection Calabi-Yau 3-folds. Even of greater mathematical interest would be a confirmation of
mirror symmetry predictions for the GW-invariants of a quintic in genus 2 and higher; string theo-
rists [11] can in principle generate formulas up to genus 51 that relate them to higher-genus BCOV
torsion. As the latter is poorly understood in Kahler geometry, a confirmation of these predictions
may be of interest in this field as well.

Opening a new direction, [4] provides a mirror formula for the genus 0 stable quotients invariants
of Fano and Calabi-Yau complete intersections. These invariants, defined in [19], arise from smaller
moduli spaces than GW-invariants and give a simpler mirror formula. The argument is an intricate
twist on Givental’s proof of mirror symmetry for Gromov-Witten invariants and involves bootstrap-
ping from the Fano to the Calabi-Yau cases and flipping the use of the two variations of Givental’s
approach in the Fano and Calabi-Yau cases. The conclusion of [4] suggests that the stable-quotient
invariants are somehow closer to the B-side of mirror symmetry than the GW-invariants and makes it
possible to compute the genus 1 stable invariants of Fano and Calabi-Yau complete intersections, at
least with some marked points (currently in preparation). There is in fact a sequence of intermediate
invariants between the GW- and SQ-invariants; studying the wall-crossing phenomenon through this
sequence may lead to the proof of the integrality of the mirror transform map predicted by string
theorists.
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