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Abstract

The orientability problem in real Gromov-Witten theory is one of the fundamental hurdles
to enumerating real curves. In this paper, we describe topological conditions on the target
manifold which ensure that the uncompactified moduli spaces of real maps are orientable for all
genera of and for all types of involutions on the domain. In contrast to the typical approaches
to this problem, we do not compute the signs of any diffeomorphisms, but instead compare
them. Many projective complete intersections, including the renowned quintic threefold, satisfy
our topological conditions. Our main result yields real Gromov-Witten invariants of arbitrary
genus for real symplectic manifolds that satisfy these conditions and have empty real locus and
illustrates the significance of previously introduced moduli spaces of maps with crosscaps. We
also apply it to study the orientability of the moduli spaces of real Hurwitz covers.
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1 Introduction

The theory of J-holomorphic maps plays a prominent role in symplectic topology, algebraic geom-
etry, and string theory. The foundational work of [14, 28, 18, 23, 7, 16] has established the theory
of (closed) Gromov-Witten invariants, i.e. counts of J-holomorphic maps from closed Riemann sur-
faces to symplectic manifolds. In contrast, the theory of real Gromov-Witten invariants, i.e. counts
of J-holomorphic maps from symmetric Riemann surfaces commuting with the involutions on the
domain and the target, is still in early stages of development, especially in positive genera. The
two main obstacles to defining real Gromov-Witten invariants are the potential non-orientability of
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the moduli space of real J-holomorphic maps and the existence of real codimension-one boundary
strata. In this paper, we address the former, obtaining sufficient topological conditions on the
target manifold for these moduli spaces to be orientable for all genera of and for all types of involu-
tions on the domain; see Definition 1.1 and Theorem 1.2. Theorem 1.2 yields real Gromov-Witten
invariants of arbitrary genus for real symplectic manifolds that satisfy these conditions and have
empty real locus; see Theorem 1.3. Many projective complete intersections, including the quintic
threefold which plays a central role in Gromov-Witten theory, satisfy our topological conditions;
see Corollary 1.4.

The orientability question in real Gromov-Witten theory is studied in [27, 22, 25, 8, 10, 5, 6, 11, 12].
Real maps can be naturally divided into two groups, depending on whether the involution σ on
the domain Σ has separating fixed locus Σσ or not. In the first case, one can use bordered sur-
faces to obtain a good understanding of the orientability of the moduli spaces of such maps; see
[25, 8, 10, 5, 11, 12]. In the second case, however, understanding the orientability in the bordered
case is not sufficient beyond genus 1, due to the presence of real diffeomorphisms of (Σ, σ) not
preserving any half of Σ; see Example 2.4. The subtle effect of such diffeomorphisms on the ori-
entability is hard to determine. In [5], this problem is studied for the diffeomorphisms of (Σ, σ)
preserving some additional structure determined by a distinguished component of Σσ and a polar-
izing divisor on the target manifold X, obtaining orientability results for certain hypersurfaces in
projective spaces. In this paper, we adopt a fundamentally different approach: instead of comput-
ing the signs of the actions induced by such diffeomorphisms, we directly compare the orientation
systems of the moduli spaces with the orientation systems of certain bundles over them naturally
suggested by our previous study [12]; see the end of this section for more details. The orientable
cases we discover include the orientable cases described in [5] and go far beyond them.

An involution on a smooth manifold X is a diffeomorphism φ : X−→X such that φ◦φ=idX . Let

Xφ =
{
x∈X : φ(x)=x

}
denote the fixed locus. An anti-symplectic involution φ on a symplectic manifold (X,ω) is an
involution φ : X−→X such that φ∗ω=−ω. A real symplectic manifold is a triple (X,ω, φ) consisting
of a symplectic manifold (X,ω) and an anti-symplectic involution φ. For example, the maps

τn : Pn−1 −→ Pn−1, [Z1, . . . , Zn] −→ [Z̄1, . . . , Z̄n],

η2m : P2m−1 −→ P2m−1, [Z1, Z2, . . . , Z2m−1, Z2m] −→
[
− Z̄2, Z̄1, . . . ,−Z̄2m, Z̄2m−1

]
,

are anti-symplectic involutions with respect to the standard Fubini-Study symplectic forms ωn
on Pn−1 and ω2m on P2m−1, respectively. If

k≥0, a ≡ (a1, . . . , ak) ∈ (Z+)k ,

and Xn;a⊂Pn−1 is a complete intersection of multi-degree a preserved by τn, τn;a≡ τn|Xn;a is an
anti-symplectic involution on Xn;a with respect to the symplectic form ωn;a =ωn|Xn;a . Similarly,
if X2m;a⊂P2m−1 is preserved by η2m, η2m;a≡η2m|X2m;a is an anti-symplectic involution on X2m;a

with respect to the symplectic form ω2m;a=ω2m|X2m;a .

Let (X,φ) be a manifold with an involution. A conjugation on a complex vector bundle V −→X
lifting an involution φ is a vector bundle homomorphism φ̃ : V −→V covering φ (or equivalently a
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vector bundle homomorphism φ̃ : V −→ φ∗V covering idX) such that the restriction of φ̃ to each
fiber is anti-complex linear and φ̃◦φ̃=idV . A real bundle pair (V, φ̃)−→(X,φ) consists of a complex
vector bundle V −→X and a conjugation φ̃ on V lifting φ. For example,

(TX,dφ) −→ (X,φ) and (X×C, φ×cC) −→ (X,φ),

where cC : C−→C is the standard conjugation on C, are real bundle pairs. For any real bundle
pair (V, φ̃)−→(X,φ), we denote by

Λtop
C (V, φ̃) = (Λtop

C V,Λtop
C φ̃)

the top exterior power of V over C with the induced conjugation. Direct sums, duals, and tensor
products over C of real bundle pairs over (X,φ) are again real bundle pairs over (X,φ).

A symmetric surface (Σ, σ) is a closed connected oriented smooth surface Σ (manifold of real di-
mension 2) with an orientation-reversing involution σ. The fixed locus of σ is a disjoint union of
circles. If in addition (X,φ) is a manifold with an involution, a real map

u : (Σ, σ) −→ (X,φ)

is a smooth map u : Σ−→X such that u◦σ = φ◦u. We denote the space of such maps by Bg(X)φ,σ.

For a symplectic manifold (X,ω), we denote by Jω the space of ω-compatible almost complex
structures on X. If φ is an anti-symplectic involution on (X,ω), let

Jφ =
{
J ∈Jω : φ∗J=−J

}
.

For a genus g symmetric surface (Σ, σ), we similarly denote by Jσ the space of complex structures
on Σ compatible with the orientation such that σ∗j=−j. For J ∈Jφ, j∈Jσ, and u∈Bg(X)φ,σ, let

∂̄J,ju =
1

2

(
du+ J ◦ du◦j

)
.

If l∈Z≥0, J ∈Jφ, and B∈H2(X;Z), let

Mg,l(X,B; J)φ,σ =
{

(u, (z1, σ(z1)), . . . , (zl, σ(zl)), j)∈Bg(X)φ,σ×Σ2l×Jσ :

u∗[Σ]Z=B, ∂̄J,ju=0
}/
∼

be the moduli space of equivalence classes of degreeB real J-holomorphic maps from (Σ, σ) to (X,φ)
with l pairs of non-real conjugate distinct points; two J-holomorphic maps are equivalent in this
space if they differ by an orientation-preserving diffeomorphism of Σ commuting with σ. Let

Mg,l(X,B; J)φ =
⋃
σ

Mg,l(X,B; J)φ,σ

denote the union over all topological types of orientation-reversing involutions on a genus g sur-
face Σ. Using the geometric perturbations of [23] adapted to the real case as in [10, Section 2], we
can perturb ∂̄J,j to achieve transversality; thus, we may assume that Mg,l(X,B; J)φ,σ is an orbifold
if the domain is stable. Under the assumptions of Remark 2.3, Mg,l(X,B; J)φ,σ is a manifold
outside codimension 2 strata and has a first Stiefel-Whitney class.
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Definition 1.1. A real symplectic manifold (X,ω, φ) is real-orientable if there exists a rank 1 real
bundle pair (L, φ̃)−→(X,φ) such that

w2(TXφ) = w1(Lφ̃)2 and Λtop
C (TX,dφ) = (L, φ̃)⊗2 . (1.1)

Theorem 1.2. Let (X,ω, φ) be a real-orientable 2n-manifold, B∈H2(X,Z), J ∈Jφ, l∈Z≥0, and
(Σ, σ) be a symmetric surface of genus g≥2.

(1) If n is odd, then the moduli space Mg,l(X,B; J)φ,σ is orientable.

(2) If g+2l ≥ 4, then
w1(Mg,l(X,B; J)φ,σ) = (n+1) f∗w1(Mσ

g,l),

where f : Mg,l(X,B; J)φ,σ −→Mσ
g,l is the forgetful morphism to the Deligne-Mumford moduli

space of σ-compatible complex structures on Σ.

The genus 0 and 1 analogues of Theorem 1.2 are essentially [11, Theorems 1.1, 1.2], respectively;
less general versions of [11, Theorem 1.1] are contained in [8, Theorem 1.1] and [6, Theorem 1.3].
The second requirement in (1.1) is not necessary for the conclusion of Theorem 1.2 if Σ−Σσ is
disconnected; see [12, Theorem 1.4]. We note that Definition 1.1 forces the fixed locus Xφ to be
orientable; so Theorem 1.2 does not consider any situations with unorientable Lagrangians.

Under the assumptions on (X,ω, φ) in Theorem 1.2(1), an orientation on Mg,l(X,B; J)φ,σ can be
specified as follows. Fix j ∈ Jσ and choose an orientation of the tangent space of the Deligne-
Mumford moduli space Mσ

g,0 at j. Let [Σ, X]φ,σB denote the set of homotopy classes of real maps
from (Σ, σ) to (X,φ) so that u∗[Σ] =B. The group Dσ of orientation-preserving diffeomorphisms

of Σ commuting with σ acts on [Σ, X]φ,σB by composition on the right. For each coset of this
group action, choose a representative ui and an orientation of the index of a linearization of a real
Cauchy-Riemann operator in u∗iTX compatible with j. The latter can be obtained by choosing a
spin structure on the real vector bundle

TXφ ⊕ Lφ̃ ⊕ Lφ̃ −→ Xφ ,

fixing the second identification in (1.1), and choosing a symmetric half-surface Σb, or a surface
with crosscaps, doubling to Σ; see Section 2 and [11, Section 4]. The resulting orientation on
Mg,l(X,B; J)φ,σ does not depend on J . However, if g≥ 2, it does depend on the choice of Σb for
most topological types of orientation-reversing involutions σ on Σ. This dependence is suggested
by Example 2.4 and illustrates the significance of maps with crosscaps in real Gromov-Witten
theory in positive genera; the mathematical construction of moduli spaces of such maps in [11] is
motivated by their role in the description of localization data for real GW-invariants of the quintic
threefold in [26].

Theorem 1.3. Let (X,ω, φ) be a real symplectic 2n-manifold, g, l∈Z≥0, B∈H2(X;Z), and J ∈Jφ.
If n 6∈2Z, Xφ=∅, and

Λtop
C (TX,dφ) = (L, φ̃)⊗2

for some rank 1 real bundle pair (L, φ̃)−→(X,φ), then the moduli space Mg,l(X,B; J)φ,σ carries a
virtual fundamental class and thus gives rise to real genus g Gromov-Witten invariants of (X,ω, φ).
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If Xφ=∅, Mg,l(X,B; J)φ,σ =∅ for every topological type of orientation-reversing involutions σ on
a genus g surface Σ except for the involutions σg with Σσg =∅. Thus,

Mg,l(X,B; J)φ = Mg,l(X,B; J)φ,σg .

By Theorem 1.2 and [11, Theorems 1.1, 1.2], this moduli space is orientable under the assumptions
of Theorem 1.3. The (virtual) codimension-one boundary of Mg,l(X,B; J)φ consists of maps to X
from two-component domains sending the node to Xφ. If Xφ=∅, the boundary is empty and the
moduli space Mg,l(X,B; J)φ with a choice of orientation determines a virtual fundamental class,
obtained by a suitable adaptation of the usual VFC constructions of [7, 16], as in [25, Section 7]
and [10, Remark 3.3].

Corollary 1.4. Let n∈Z+, g, k, l∈Z≥0, a≡(a1, . . . , ak)∈(Z+)k, and (Σ, σ) be a genus g symmetric
surface.

(1) If n−k ∈ 2Z, Xn;a⊂Pn−1 is a complete intersection of multi-degree a preserved by τn,

k∑
i=1

ai ≡ n mod 2, and
k∑
i=1

a2
i ≡

k∑
i=1

ai mod 4,

the moduli space Mg,l(Xn;a, B; J)τn;a,σ is orientable for every B∈H2(Xn;a;Z) and J ∈Jτn;a.

(2) If k∈2Z, X2n;a⊂P2n−1 is a complete intersection of multi-degree a preserved by η2n and

a1+. . .+ak ≡ 2n mod 4,

the moduli space Mg,l(X2n;a, B; J)η2n;a,σ carries a virtual fundamental class for every
B∈H2(X2n;a;Z) and J ∈Jη2n;a and thus gives rise to real genus g Gromov-Witten invariants
of (X2n;a, ω2n;a, η2n;a).

In the genus 0 case, the conclusions of Corollary 1.4 apply without the parity assumptions on k
(which correspond to the dimension of Xn;a being odd).

Let Xn;δ ⊂ Pn−1 denote a hypersurface of degree δ ∈ Z+ preserved by τn. Theorem 1.2 applies
to Xn;δ if

δ = 0, 1 mod 4 and δ ≡ n mod 2.

With the second condition strengthened to δ≡n mod 4, the conclusion of Theorem 1.2 is obtained
in [5, Corollaire 2.4] under the additional assumption that Σσ is a single circle; if Σσ consists of
more than one circle, [5, Corollaire 2.4] shows that the conclusion of Theorem 1.2 holds after pulling
back to a cover of Mg(X,B; J)φ,σ.

By [6, Lemma 2.5], the canonical line bundle KX of a Kahler Calabi-Yau manifold X, i.e. KX

is trivial as a holomorphic line bundle, is trivial as a rank 1 real bundle pair with respect to
any involution φ which is anti-holomorphic with respect to the Kahler complex structure. By [6,
Lemma 2.6], the canonical line bundle KX of a simply connected symplectic Calabi-Yau mani-
fold (X,ω), i.e. c1(X,ω)=0, is trivial with respect to any anti-symplectic involution φ on X. Thus,
Theorems 1.2 and 1.3 also apply to Kahler Calabi-Yau manifolds X with an anti-holomorphic
involution and to simply connected symplectic Calabi-Yau manifolds with any anti-symplectic in-
volution, provided the fixed locus is spin, i.e. w2(Xφ)=0, in the case of Theorem 1.2 and empty in
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the case of Theorem 1.3.

Theorem 1.2 and Corollary 1.4 can be extended to the moduli spaces Mg,k,l(X,B; J)φ,σ of real
maps with k boundary and l interior marked points, as the effect of adding marked points on the
sign of the relevant automorphisms can be easily determined. The moduli spaces Mg,k,l(X,B; J)φ,σ

typically have codimension-one boundary and often of more than one type. The codimension-one
boundary stratum consisting of maps from Σ with a bubble attached at a real point of the domain
can be eliminated by the gluing procedure of [3, 25], which is adapted to maps with decorated
marked points in [10, Section 3]. By [10, Theorems 1.3], the proof of [10, Corollary 6.1], and [12,

Propositions 4.1, 4.2], Theorem 1.2 can be extended to the glued moduli space M̃g,0,l(X,B; J)φ,σ.
The remaining types of codimension-one boundary strata of Mg,0,l(X,B; J)φ,σ correspond to one-
nodal degenerations of Σ passing between involutions on Σ of different topological types, as de-
scribed in detail in [15, Section 4], [24, Section 5], and [17, Sections 3,4]. As suggested in [21,
Section 1.5] and carried out in [6, Section 3] in the case Σ=P1, the moduli spaces Mg,0,l(X,B; J)φ,σ

with different types of involutions σ on Σ should in general be combined to get well-defined invari-
ants by gluing along codimension-one boundaries. We intend to consider this question in a future
paper.

In Section 5, we apply Theorem 1.2 to show that some moduli spaces of real Hurwitz covers are
orientable. We also establish the orientability of such moduli spaces directly in some cases with
the target (X,φ) = (P1, η); Theorem 1.2 does not apply to these cases as the rank 1 real bundle
pair (TP1, dη) does not admit a real square root. This suggests that perhaps the second require-
ment in (1.1) can be replaced by the requirement that the equivariant w2 of Λtop

C (TX,dφ) be a
square class; by [11, Corollary 2.4], the latter is the case if the second condition in (1.1) holds or
if π1(X) = 0 and w2(TX) = 0. By [11, Corollary 1.6], the w2 requirement suffices whenever the
domain of the maps is P1. On the other hand, the orientability problem for the moduli spaces of
real Hurwitz covers appears to be a purely combinatorial question about the topology of various
Hurwitz covers and can perhaps be addressed by more classical methods.

The typical approaches to the orientability problem in real Gromov-Witten theory involve comput-
ing the signs of the actions of appropriate diffeomorphisms on determinant lines of real Cauchy-
Riemann operators over some coverings of Mg(X,B; J)φ,σ, as done in [25, 8, 5, 12]. These ap-
proaches work as long as the relevant diffeomorphisms are homotopically fairly simple and in
particular preserve a bordered surface in Σ that doubles to Σ or map it to its conjugate half;
more general diffeomorphisms are considered in [5]. In contrast to [25, 8], in [12] we allowed the
complex structure on a bordered domain to vary and considered diffeomorphisms that interchange
the boundary components. We discovered that

(1) these diffeomorphisms act with the same signs on a natural cover ofMσ
g and on the determinant

line bundle for the trivial rank 1 real bundle pair over it;

(2) the signs for the square of a rank 1 real bundle pair are often the same as for the rank 1 trivial
real bundle pair;

(3) the signs for a real bundle pair and its top exterior power are often related just by the parity
of the rank of the bundle pair;
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see Corollary 2.2 and Propositions 4.1 and 4.2 in [12]. In this paper, we show that suitable in-
terpretations of these statements apply to arbitrary real diffeomorphisms of the closed surface.
Proposition 4.1, which appears to be of its own interest, establishes (1) in the general case. Propo-
sition 3.3 captures the phenomena (2) and (3) for arbitrary diffeomorphisms and is used in the proof
of Proposition 4.1. In contrast to the typical approaches, we compare the signs directly, instead of
computing each sign separately. In Section 4, we combine Proposition 3.3 and Proposition 4.1 in
order to confirm Theorem 1.2 and then deduce Corollary 1.4.

Remark 1.5. After completing this paper, we discovered that [5, Proposition 1.2] contains what can
be viewed as a more general version of one of the main stepping stones in this paper, Proposition 3.2.
The former applies in broader range of cases; while the conclusion of our Proposition 3.2 need not
hold in some of these cases, the conclusion of [5, Proposition 1.2] suffices for the purposes of [5] and
of this paper. In the appendix, we provide an alternative, less technical, argument for this broader
result and extend our Theorem 1.2 further; unlike the main part of this paper, this argument relies
on an actual sign computation. As explained in the appendix, the benefit of this extension is
unclear to us at this point.

We would like to thank E. Brugellé, R. Cretois, E. Ionel, S. Lisi, M. Liu, J. Solomon, M. Tehrani,
G. Tian, and J. Welschinger for related discussions. The second author is also grateful to the IAS
School of Mathematics for its hospitality during the period when the results in this paper were
obtained.

2 Setup

Let (Σ, σ) be a genus g symmetric surface. We denote by |σ|0 ∈ Z≥0 the number of connected
components of Σσ; each of them is a circle. Let 〈σ〉=0 if the quotient Σ/σ is orientable, i.e. Σ−Σσ

is disconnected, and 〈σ〉=1 otherwise. There are
⌊

3g+4
2

⌋
different topological types of orientation-

reversing involutions σ on Σ classified by the triples (g, |σ|0, 〈σ〉); see [20, Colollary 1.1]. The two
equivalence classes of orientation-reversing involutions on S2 = P1 are described in Example 5.2,
while the three equivalence classes of orientation-reversing involutions on T=S1×S1 are described
in (2) of the proof of Theorem 5.3.

An oriented symmetric half-surface (or simply oriented sh-surface) is a pair (Σb, c) consisting of an
oriented bordered smooth surface Σb and an involution c : ∂Σb−→∂Σb preserving each component
and the orientation of ∂Σb. The restriction of c to a boundary component is either the identity or
the antipodal map

a : S1 −→ S1, z −→ −z, (2.1)

for a suitable identification (∂Σb)i with S1 ⊂ C; the latter type of boundary structure is called
crosscap in the string theory literature. We define

ci = c|(∂Σb)i , |ci| =

{
0, if ci = id;

1, otherwise;
|c|k =

∣∣{(∂Σb)i⊂Σb : |ci|=k}
∣∣ k = 0, 1.

Thus, |c|0 is the number of standard boundary components of (Σb, ∂Σb) and |c|1 is the number of
crosscaps. Up to isomorphism, each oriented sh-surface (Σb, c) is determined by the genus g of Σb,
the number |c|0 of ordinary boundary components, and the number |c|1 of crosscaps. We denote
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by (Σg,m0,m1 , cg,m0,m1) the genus g oriented sh-surface with |cg,m0,m1 |0 =m0 and |cg,m0,m1 |1 =m1.

An oriented sh-surface (Σb, c) of type (g,m0,m1) doubles to a symmetric surface (Σ, σ) of type

(g(Σ), |σ|0, 〈σ〉) =

{
(2g+m0+m1−1,m0, 0), if m1 = 0;

(2g+m0+m1−1,m0, 1), if m1 6= 0;

so that σ restricts to c on the cutting circles (the boundary of Σb); see [11, (1.6)].

Figure 1: Doubling an oriented sh-surface

Since this doubling construction covers all topological types of orientation-reversing involutions σ
on Σ, for every symmetric surface (Σ, σ) there is an oriented sh-surface (Σb, c) which doubles to
(Σ, σ). In general, the topological type of such an sh-surface is not unique. There is a topologically
unique oriented sh-surface (Σb, c) doubling to a symmetric surface (Σ, σ) if 〈σ〉= 0, in which case
(Σb, c) has no crosscaps, or |σ|0≥ g(Σ)−1, in which case (Σb, c) is either of genus at most 1 and
has no crosscaps or of genus 0 and has at most 2 crosscaps.

A real Cauchy-Riemann operator on a real bundle pair (V, σ̃)−→ (Σ, σ), where (Σ, σ) is an oriented
symmetric surface, is a linear map of the form

D = ∂̄+A : Γ(Σ;V )σ̃ ≡
{
ξ∈Γ(Σ;V ) : ξ◦σ= σ̃◦ξ

}
−→ Γ0,1

j (Σ;V )σ̃ ≡
{
ζ∈Γ(Σ; (T ∗Σ, j)0,1⊗CV ) : ζ◦dσ = σ̃◦ζ

}
,

(2.2)

where ∂̄ is the holomorphic ∂̄-operator for some j∈Jσ and a holomorphic structure in V and

A ∈ Γ
(
Σ; HomR(V, (T ∗Σ, j)0,1⊗CV )

)σ̃
is a zeroth-order deformation term. A real Cauchy-Riemann operator on a real bundle pair is
Fredholm in the appropriate completions. A continuous family of such Fredholm operators Dt over
a topological space H determines a line bundle over H, called the determinant line bundle of {Dt}
and denoted detD; see [19, Section A.2] and [29] for a construction. More specifically, if X,Y are
Banach spaces and D : X → Y is a Fredholm operator, the determinant line of D is defined as

det(D) ≡ Λtop
R ker(D)⊗

(
Λtop
R cok(D)

)∗
.
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A short exact sequence of Fredholm operators

0 −−−−→ X ′ −−−−→ X −−−−→ X ′′ −−−−→ 0yD′ yD yD′′
0 −−−−→ Y ′ −−−−→ Y −−−−→ Y ′′ −−−−→ 0

determines a canonical isomorphism

det(D) ∼= det(D′)⊗ det(D′′). (2.3)

For a continuous family of Fredholm operators Dt : Xt → Yt parametrized by a topological space
H, the determinant lines det(Dt) form a line bundle over H. For a short exact sequence of such
families, the isomorphisms (2.3) give rise to a canonical isomorphism between determinant line
bundles.

Remark 2.1. Families of real Cauchy-Riemann operators often arise by pulling back data from a
target manifold by smooth maps as follows. Suppose (X,φ, J) is an almost complex manifold with
an anti-complex involution φ : X −→X and (V, φ̃) −→ (X,φ) is a real bundle pair. Let ∇ be a
connection in V and

A ∈ Γ
(
X; HomR(V, (T ∗X, J)0,1 ⊗CV )

)φ̃
.

For any real map u : (Σ, σ)−→(X,φ) and j∈Jσ, let ∇u denote the induced connection in u∗V and

Aj;u = A ◦ ∂ju ∈ Γ(Σ; HomR(u∗V, (T ∗Σ, j)0,1 ⊗C u
∗V )

)u∗φ̃
.

The homomorphisms

∂̄∇u =
1

2
(∇u + i ◦ ∇u ◦ j), Du ≡ ∂̄∇u +Aj;u : Γ(Σ;u∗V )u

∗φ̃ −→ Γ0,1
j (Σ;u∗V )u

∗φ̃

are real Cauchy-Riemann operators on u∗(V, φ̃) −→ (Σ, σ) that form families of real Cauchy-
Riemann operators over families of maps. We denote the determinant line bundle of such a family
by detD(V,φ̃).

Denote by Dσ the group of orientation preserving diffeomorphisms of Σ commuting with the invo-
lution σ. If (X,φ) is a smooth manifold with an involution, l∈Z≥0, and B ∈ H2(X;Z), let

Bg,l(X,B)φ,σ ⊂ Bg(X)φ,σ × Σ2l

denote the space of real maps u : (Σ, σ)−→(X,φ) with u∗[Σ]Z = B and l pairs of conjugate non-real
marked distinct points. We define

Hg,l(X,B)φ,σ =
(
Bg,l(X,B)φ,σ × Jσ

)
/Dσ.

The action of Dσ on JΣ given by h · j = h∗j preserves Jσ; thus, the above quotient is well-defined.
If J is an almost complex structure on X such that φ∗J =−J , the moduli space of marked real
J-holomorphic maps in the class B ∈ H2(X;Z) is defined to be

Mg,l(X, J,B)φ,σ =
{

[u, (z1, σ(z1)), . . . , (zl, σ(zl)), j]∈Hg,l(X,B)φ,σ : ∂̄J,ju=0
}
,
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where ∂̄J,j is the usual Cauchy-Riemann operator with respect to the complex structures J on X
and j on Σ. If X is a point and B is zero, we denote by

Mσ
g,l ≡Mg,l(pt, 0)id,σ ≡ Hg,l(pt, 0)id,σ

the moduli space of marked symmetric domains. There is a natural forgetful map

f : Hg,l(X,B)φ,σ −→Mσ
g,l.

The determinant line bundle of a family of real Cauchy-Riemann operators D(V,φ̃) on

Bg,l(X,B)φ,σ × Jσ

induced by a real bundle pair (V, φ̃) → (X,φ) as in Remark 2.1 descends to a line bundle over
Hg,l(X,B)φ,σ, which we still denote by detD(V,φ̃).

Example 2.2. If cC denotes the standard conjugation on C and (V, φ̃) = (C, cC) −→ (pt, id), the
induced family of operators ∂̄C ≡ D(C,cC) on Mσ

g,l defines a line bundle

det ∂̄C −→Mσ
g,l.

If (X,φ) is an almost complex manifold with anti-complex involution φ and

(V, φ̃) = (X×C, φ×cC) −→ (X,φ),

then there is a canonical isomorphism

detD(C,cC) ≈ f∗∂̄C

of line bundles over Hg,l(X,B)φ,σ.

Remark 2.3. For simplicity, we will assume that the action of Dσ has no fixed points on the relevant
subspaces of Bg,l(X,B)φ,σ×Jσ. This happens for example if sufficiently many marked points are
added to Σ. In more general cases, this issue can be avoided by working with Prym structures on
Riemann surfaces; see [Loo]. This assumption ensures that Mg,l(X, J,B)φ,σ is a manifold if cut
out transversely and thus has a first Stiefel-Whitney class. Alternatively, if g+2l≥4, the subspace
of Mσ

g,l consisting of (Σ, j) with non-trivial automorphisms is of codimension at least 2, and so

Mg,l(X,J,B)φ,σ is a manifold outside of subspaces of codimension 2 if cut out transversely and
thus again has a first Stiefel-Whitney class.

The following example shows that the orientability of a moduli space of symmetric half-surfaces is
not sufficient for the orientability of the corresponding component of the moduli space of symmetric
doubles.

Example 2.4. The moduli space Mc
Σ of sh-surfaces Σ of genus 2 with one boundary component

and non-trivial involution (Figure 2) is orientable by [11, Lemma 6.1] and [12, Lemma 2.1]. The
natural automorphisms ofMc

Σ associated with real orientation-reversing diffeomorphisms of Σ are
orientation-preserving by [11, Lemma 6.1] and [12, Corollary 2.3]. On the natural double of Σ
(Figure 2), which is a symmetric surface of genus 4 with an involution σ without fixed locus, these
diffeomorphisms correspond to flipping the surface across the crosscap. The real moduli spaceMσ

4 ,
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Figure 2: Orientability of crosscaps vs. real moduli spaces

parameterizing such symmetric surfaces, is not orientable. A particular loop supporting its first
Stiefel-Whitney class can be described as follows. By [20, Theorem 1.2], every representative of a
point in Mσ

4 has 5 invariant circles which separate the surface. There is a real diffeomorphism h
which fixes 3 of these circles and interchanges the other 2. By [12, Corollary 2.2], the mapping
torus of h defines a loop inMσ

4 which pairs non-trivially with the first Stiefel-Whitney class of the
moduli space.

3 Topological preliminaries

In this section, we establish Proposition 3.3, which relates the determinant lines of real Cauchy-
Riemann operators on a real bundle pair and on its top exterior power. This is the key statement
used in the proof of Theorem 1.2.

Lemma 3.1. Let (Σ, σ) be a symmetric surface with fixed components Σσ
1 , . . . ,Σ

σ
m and n∈Z+ with

n≥3. For every a∈π1(O(n)) = Z2×Z2 and i = 1, . . . ,m, there is a map ψi : Σ−→U(n) such that

• ψ(z) = ψ(z),

• ψ is the identity outside of a small neighborhood of Σσ
i , and

• ψ|Σσi = a ∈ π1(O(n)).

Proof. Let S1×(−2, 2) be a σ-equivariant parametrization of a neighborhood U of Σσ
i with S1×0

corresponding to Σσ
i . Since the homomorphism π1(O(n))−→π1(U(n)) induced by the inclusion is

trivial, we can homotope a to the identity-valued constant map through maps ht : S
1−→U(n). We

define ψ on U by

ψ(θ, t) =


ht(θ), if t ∈ [0, 1];

In, if t ∈ [1, 2);

ψ(θ,−t), if t ∈ (−2, 0];

and extend it as the identity-valued constant map over Σ−U .
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If (Σ, σ) is a symmetric surface and G : (Σ, σ)−→ (Σ, σ) is a real diffeomorphism, we define the
mapping cylinder (MG, σG) of G by

MG = I×Σ/∼, (1, z) ∼
(
0, G(z)

)
∀ z∈Σ,

σG : MG −→MG, [s, z] −→
[
s, σ(z)

]
∀ (s, z)∈I×Σ.

Proposition 3.2. Let (Σ, σ) be a symmetric surface, G : (Σ, σ)−→ (Σ, σ) be a real orientation-
preserving diffeomorphism, and (W, φ̃) be a rank n real bundle pair over (MG, σG). If n ≥ 3,

W φ̃−→MσG
G is orientable, w2(W φ̃)=0, and c1(W )|Σs =0 for any s∈I, there is an isomorphism

(W, φ̃) ≈ Λtop
C (W, φ̃)⊕ (n−1)(MG×C, σG×cC)

of real bundle pairs.

Proof. By [2, Propositions 4.1, 4.2], there is an isomorphism of real bundle pairs

(W, φ̃) ≈
(
I×Σ×Cn, idI×σ×cCn

)
/∼g, where (1, z, v) ∼g

(
0, G(z), g(z)v

)
∀ (z, v)∈Σ×Cn,

for some g : Σ−→U(n) such that g(σ(z))=g(z) for all z∈Σ.

We first show that the above isomorphism can be chosen so that

g|Σσi : Σσ
i −→ O(n)

is homotopic to the identity-valued constant map Id on each fixed component Σσ
i for i = 1, . . . ,m.

The map G defines a permutation on {Σσ
i }. Every cycle (i1, . . . , ik) in this permutation defines a

connected component C of MσG
G . Since W φ̃ is spin and rk(W φ̃) ≥ 3, the bundle W φ̃|C is trivial.

Thus,
k∑
l=1

[
g|Σσil

]
= 1 ∈ π1(O(n)). (3.1)

For j = 2, . . . , k, let [
aij
]

=

j−1∑
l=1

[
g|Σσil

]
∈ π1(O(n)) (3.2)

and ψij : Σ−→U(n) be the map constructed in Lemma 3.1 corresponding to (i, [a]) = (ij , [aij ]).
Let

Ψ = ψik · . . . · ψi2 : Σ −→ U(n).

There is a real bundle pair isomorphism over (MG, σG)(
I×Σ×Cn, idI×σ×cCn

)
/∼g−→

(
I×Σ×Cn, idI×σ×cCn

)
/∼g̃, (s, z, v) −→ (s, z,Ψ(z)v),

where g̃(z) = Ψ(G(z))g(z)Ψ−1(z).

Since Ψ|Σσij
= ψij |Σσij

for j = 2, . . . , k and G(Σσ
ij

) = Σσ
ij+1

for j = 1, . . . , k−1,[
g̃|Σσij

]
=
[
aij+1

]
+
[
g|Σσij

]
+
[
aij
]

= 1 ∈ π1(O(n)) ∀ j = 2, . . . , k−1;
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the second equality follows from (3.2). Furthermore, since Ψ|Σσi1
= Id and G(Σσ

ik
) = Σσ

i1
,[

g̃|Σσi1

]
=
[
ai2
]

+
[
g|Σσi1

]
= 1 ∈ π1(O(n)) and

[
g̃|Σσik

]
=
[
g|Σσik

]
+
[
aik
]

= 1 ∈ π1(O(n))

by (3.2) and by (3.1), respectively.

Let e1, . . . , en be the standard coordinate basis for Cn. We define a vector space isomorphism

Ξ: Cn −→ Λtop
C Cn ⊕ Cn−1 by

e1 −→ (e1∧. . .∧en, 0), ei −→ (0, ei−1) ∀ i=2, . . . , n.

In particular, the composition

Λtop
C Cn

Λtop
C Ξ
−→ Λtop

C
(
Λtop
C Cn⊕Cn−1

)
= Λtop

C Cn ⊗ Λtop
C Cn−1 −→ Λtop

C Cn,

where the last map sends w⊗e1∧. . .∧en−1 to w, is the identity. Define

f : Σ −→ U(n) by f(z)Ξ
(
g(z)v

)
=

(
det g(z) 0

0 In−1

)
Ξ(v) ∀ (z, v)∈Σ×Cn.

In particular, f(z) ∈ SU(n) and f(σ(z)) = f(z) for all z ∈ Σ. It is sufficient to show that f is
homotopic to the constant map Id subject to these conditions.

Let (Σb, c) be an oriented sh-surface that doubles to (Σ, σ). Since the map g can be chosen to be
homotopic to Id on each fixed component Σσ

i , the map f : (∂Σb)i−→O(n) is homotopic to Id|(∂Σb)i

on each boundary component (∂Σb)i with |ci| = 0. For each boundary component (∂Σb)i with
|ci|= 1, the map f|(∂Σb)i : (∂Σb)i−→SU(n) is homotopic to Id; see [6, Lemma 2.3]. In both cases,

the homotopies are through maps ft : (∂Σb)i−→SU(n) such that ft(σ(z))=ft(z) for all z∈(∂Σb)i.
They extend over Σb as follows. Let S1×I−→U be a parametrization of a (closed) neighborhood U
of (∂Σb)i⊂Σb with coordinates (θ, s) and define

Gt : Σb −→ SU(n) by Gt(z) =

{
f(1−s)t(θ) · f−1(θ), if z = (θ, s) ∈ U ≈ S1×I;
In, if z ∈ Σb−U.

Since Gt((θ, 1)) = In for all t, this map is continuous. Moreover, G0(z) = In for all z ∈ Σb and

Gt((θ, 0)) = ft(θ) · f−1(θ)

is a homotopy between Id and f−1. Thus, Ht = Gt · f is a homotopy over Σb extending ft.

By the above, we may assume that f is the constant map Id on the boundary of Σb. Choose
arcs in Σb with endpoints on ∂Σb which cut Σb into a disk. Each such arc defines an element of
π1(SU(n), In) = 0. Thus, we can homotope f to Id over the arcs while keeping it fixed at the
endpoints. Similarly to the above, this homotopy extends over Σb. Thus, we may assume that f is
the constant map Id over the boundary of the disk obtained from cutting Σb along the arcs. Since
π2(SU(n), In) = 0,

f : (D2, S1) −→
(
SU(n), In

)
can be homotoped to Id as a relative map. Doubling such a homotopy ft by the requirement that
ft(σ(z))=ft(z) for all z∈Σ, we obtain the desired homotopy from f to Id over all of Σ.

13



c 1 2
3

c 

c 

c 

4

Figure 3: The arcs c1, . . . , c4 cut Σb to a disk.

Proposition 3.3. Let (Σ, σ) be a symmetric surface, G : (Σ, σ)−→ (Σ, σ) be a real orientation-
preserving diffeomorphism, and (W, φ̃) be a rank n real bundle pair over (MG, σG). If n≥ 2 and

w2(W φ̃)=w1(W φ̃)2, then there is an isomorphism

(W, φ̃)⊕
(
Λtop
C (W, φ̃)

)∗ ≈ (n+1)(MG×C, φG×cC)

of real bundle pairs.

Proof. Applying Proposition 3.2, we obtain

(W, φ̃)⊕
(
Λtop
C (W, φ̃)

)∗ ≈ Λtop
C
(
(W, φ̃)⊕

(
Λtop
C (W, φ̃)

)∗)⊕ n(MG×C, φG×cC)

= Λtop
C (W, φ̃)⊗

(
Λtop
C (W, φ̃)

)∗ ⊕ n(MG×C, φG×cC)

= (n+1)(MG×C, φG×cC) .

This establishes the claim.

The importance of these propositions to the orientability problem lies in the implication that they
give rise to isomorphisms of the determinant bundles of ∂̄-operators on the two sides, inducing
equality on their first Stiefel-Whitney classes. This equality may still hold even without the split-
tings of the bundles provided by the above propositions; see the appendix.

4 Proofs of main statements

In this section, we use Proposition 3.3 to show that the first Stiefel-Whitney classes of Mσ
g,l and

of the determinant line bundle for the trivial rank 1 real bundle pair over it are the same; see
Proposition 4.1. This result is also obtained in [5]; see Corollaire 1.2, Corollaire 1.1, Proposition 1.4,
Lemme 1.3, and Lemme 1.4 in [5]. We then use Proposition 4.1 along with Proposition 3.3 to
establish Theorem 1.2. We conclude this section by deducing Corollary 1.4 from Theorem 1.2.

Proposition 4.1. Let g, l ∈ Z≥0 be such that g≥2 and g+2l ≥ 4. If (Σ, σ) is a genus g symmetric
surface,

w1(Mσ
g,l) = w1(det ∂̄C).

14



Proof. Via the Kodaira-Spencer map, T[j]Mσ
g is canonically isomorphic to H1

j (Σ;TΣ)σ; see [17,
Section 3.1.2]. By Serre duality [13, p153], there is a canonical isomorphism

H1
j (Σ;TΣ)σ ≈

(
H0

j (Σ;T ∗Σ⊗2)σ
)∗
.1

Since the genus of Σ is at least 2 under our assumptions,

H0
j (Σ;T ∗Σ⊗2)σ ∼= ker ∂̄(T ∗Σ,dσ∗)⊗2 .

The forgetful map
f :Mσ

g,l −→Mσ
g

with fiber isomorphic to an open subset of Σl, determined by the positions of the first elements in
the l pairs of conjugate points, induces an isomorphism

Λtop
R (TMσ

g,l) ≈ Λtop
R (fVert)⊗ Λtop

R (f∗TMσ
g ).

Since the elements of Dσ preserve the orientation of Σ, the bundle Λtop
R (fVert) is orientable. Thus,

w1(Mσ
g,l) = w1(f∗ ker ∂̄(T ∗Σ,dσ∗)⊗2).

Let γ be a loop inMσ
g,l. Under our assumptions, γ can be taken in the smooth locus and thus lifts

to a mapping torus (MG, σG) for some real diffeomorphism G : (Σ, σ)−→(Σ, σ). Let

(W, φ̃) = I×TΣ
/
∼−→ (MG, σG), (1, v) ∼ (0, dG(v)) ∀ v∈TΣ,

with the complex structure in the fiber of W over s×Σ being js. We note that

w2

(
W φ̃⊕W φ̃

)
= w1

(
W φ̃

)2
= 0;

the second equality holds for the following reason. Every topological component of MσG
G is either

a torus or a Klein bottle. The square of any class on the former is zero. In the second case, the
torsion element of H1 is represented by a fixed component Σσ

i in a fiber of MG−→S1. Since TΣσ

is orientable, the restriction of w1(W φ̃) to this class vanishes, which implies that w1(W φ̃)2 =0; see

[11, Lemma 2.2], for example. Since w1(W φ̃⊕W φ̃) also vanishes, Proposition 3.3 gives

(W, φ̃)⊕ (W, φ̃)⊕ (W, φ̃)∗⊗2 ≈ 3(MG×C, σG×cC).

Since the indices of ∂̄-operators on 2(W, φ̃) and 2(MG×C, σG×cC) are canonically oriented,

w1(det ∂̄(T ∗Σ,σ∗)⊗2) = w1(det ∂̄C),

proving the claim.

Proof of Theorem 1.2. First assume that l is sufficiently large so that Mσ
g,l is a manifold; see

Remark 2.3. If the moduli space Mg,l(X,B)φ,σ is cut transversely, the forgetful map

f : Mg,l(X,B)φ,σ −→Mσ
g,l

1The real part of the Serre duality identifies the spaces of invariant sections on one side with the space of anti-
invariant sections on the other; the latter is isomorphic to the space of invariant sections by multiplication by i.
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induces the equality of first Stiefel-Whitney classes

w1(Mg,l(X,B)φ,σ) = w1(detD(TX,dφ)) + f∗w1(Mσ
g,l).

Thus, it suffices to show that

w1(detD(TX,dφ)) = n f∗w1(Mσ
g,l)

over Hg,l(X,B)φ,σ.

By (2.3), there is a canonical isomorphism

detD(TX⊕2L,dφ⊕2φ̃) ≈ detD(TX,dφ) ⊗ (detD(L,φ̃))
⊗2

and thus
w1(detD(TX⊕2L,dφ⊕2φ̃)) = w1(detD(TX,dφ)).

Let γ be a loop in Mg,l(X,B)φ,σ. Under the assumption of Remark 2.3, the projection

Bg,l(X,B)φ,σ × Jσ −→ Hg,l(X,B)φ,σ

admits local slices. Thus, there exists a path γ̃t = (ut, jt) in Bg(X,B)φ,σ×Jσ lifting γ and a real
diffeomorphism G∈Dσ such that γ̃1 = G · γ̃0. Let (MG, σG) be the corresponding mapping torus.
By Proposition 3.3,

ev∗(TX ⊕ 2L,dφ⊕ 2φ̃)⊕ ev∗(Λtop
C (TX ⊕ 2L,dφ⊕ 2φ̃))∗ ≈ (n+3) (MG×C, σG×cC), (4.1)

where ev: MG−→X is the natural evaluation map determined by γ̃t. Note that

Λtop
C (TX ⊕ 2L,dφ⊕ 2φ̃) ≈

(
(L, φ̃)⊗2

)⊗2

as real bundle pairs over (X,φ). By Proposition 3.3,

2 ev∗(L, φ̃)⊗2 ⊕
(
Λtop
C
(
2 ev∗(L, φ̃)⊗2

))∗ ≈ 3(MG×C, σG×cC).

Since the determinant line bundles of ∂̄-operators on 2 ev∗(L, φ̃)⊗2 and 2(MG×C, σG× cC) are
canonically oriented,

w1

(
det ∂̄(Λtop

C (TX⊕2L,dφ⊕2φ̃))∗

)
= w1

(
det ∂̄((L,φ̃)⊗4)∗

)
= w1(det ∂̄C).

By (4.1),

w1

(
det ∂̄(TX⊕2L,dφ⊕2φ̃)

)
+ w1(det ∂̄Λtop

C (TX⊕2L,dφ⊕2φ̃)) = (n+3)w1(det ∂̄C),

and thus
w1(det ∂̄(TX⊕2L,dφ⊕2φ̃)) = n (w1(det ∂̄C)) = n f∗w1(Mσ

g,l),

where the last equality holds by Proposition 4.1.

As in the proof of Propositions 4.1, the vertical bundle of the map

f : Mg,l(X,B)φ,σ −→Mg,l′(X,B)φ,σ

forgetting the last l− l′ marked points is orientable. Thus, Mg,l′(X,B)φ,σ is as orientable as
Mg,l(X,B)φ,σ. The condition g+2l≥4 in (2) of Theorem 1.2 ensures that w1(Mσ

g,l) is defined.
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Proof of Corollary 1.4. The involutions τn on Pn−1 and η2n on P2n−1 naturally lift to involu-
tions τ̃n on OPn−1(1) and η̃2n on 2OP2n−1(1) so that the usual Euler sequences for Pn−1 and P2n−1

become short exact sequences of real bundle pairs:

0 −→ (Pn−1×C, τn×idC) −→ n
(
OPn−1(1), τ̃n

)
−→ (TPn−1, dτn) −→ 0,

0 −→ (P2n−1×C, η2n×idC) −→ n
(
2OP2n−1(1), η̃2n

)
−→ (TP2n−1, dη2n) −→ 0 .

If Xn;a⊂Pn−1 and X2n;a⊂P2n−1 are complete intersections preserved by the involutions τn and η2n,
respectively, the sequences

0 −→ (TXn;a,dτn;a) −→ (TPn−1,dτn)
∣∣
Xn;a
−→

k⊕
i=1

(
OPn−1(1), τ̃n

)⊗ai∣∣
Xn;a
−→ 0,

0 −→ (TX2n;a,dη2n;a) −→ (TP2n−1,dη2n)
∣∣
X2n;a

−→
⊕
ai∈2Z

(
Λtop
C (OP2n−1(2), η̃2n)

)⊗(ai/2)∣∣
X2n;a

⊕
⊕
a′i 6∈2Z

(2OP2n−1(a′i), η̃2n)
)∣∣
X2n;a

−→ 0

are also short exact sequences of real bundle pairs.2 Thus, under the assumptions of Corollary 1.4,

Λtop
C
(
TXn;a,dτn;a) ≈

((
OPn−1(1), τ̃n

)⊗((n−|a|)/2)∣∣
Xn;a

)⊗2
,

Λtop
C
(
TX2n;a,dη2n;a) ≈

((
Λtop
C (OP2n−1(2), η̃2n)

)⊗((2n−|a|)/4)∣∣
X2n;a

)⊗2
,

where |a|= a1+. . .+ak. We denote the rank 1 real bundle pairs being squared above (before the
square is taken) by (Lτ , φ̃τ ) and (Lη, φ̃η). Since w1(Xτn

n;a) = 0 under the assumptions of Corol-
lary 1.4(1) and Xη2n

2n;a=∅,

w2(Xτn
n;a) =

((
n

2

)
−
∑
i<j

aiaj

)
x2 =

(
n−|a|

2

)2

x2 = w1(Lφ̃ττ )2 , w2(Xη2n
2n;a) = 0 = w1(L

φ̃η
η )2,

where x is the restriction of the generator of H1(RPn−1;Z2) to Xτn
n;a in the first case; the middle

equality in the first case above follows from the numerical assumptions in Corollary 1.4(1). There-
fore, (Xn;a, ωn;a, τn;a) and (X2n;a, ω2n;a, η2n;a) are real-orientable in the sense of Definition 1.1
under the assumptions in (1) and (2), respectively, of Corollary 1.4. The claim thus follows from
Theorem 1.2 if the genus of Σ is at least 2 and from [12, Theorems 1.1, 1.2] otherwise.

5 Examples: real Hurwitz covers

For d∈Z+, a degree d Hurwitz cover of a closed connected Riemann surface (Σ0, j0) is a holomorphic
map u : (Σ, j)−→(Σ0, j0), where (Σ, j) is another connected Riemann surface, such that

u∗[Σ]Z = d[Σ0]Z ∈ H2(Σ0;Z).

By Riemann-Hurwitz [13, p218], such a map u has

2b ≡ 2(d− 1 + g − dg0) , (5.1)

2In the second case, the odd degrees ai come in pairs; the second sum is taken over one a′i=ai for each such pair.
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branched points, counting multiplicity. If σ0 is an anti-holomorphic involution on (Σ0, j0), a real
Hurwitz cover of (Σ0, σ0, j0) is a real holomorphic map

u : (Σ, σ, j) −→ (Σ0, σ0, j0), (5.2)

i.e. u◦σ = σ0 ◦u. In this section, we show that many moduli spaces M(Σ0, d; j0)σ0,σ of Hurwitz
covers, with a fixed complex target and a fixed topological domain, are orientable; see Theorem 5.3.

Example 5.1. Let (Σ0, σ0, j0) be a genus g0 symmetric Riemann surface such that Σσ0
0 = ∅ and

(Σ, σ) be a genus g symmetric surface. If there exists a degree d Hurwitz cover as in (5.2), then

d− 1 + g − dg0 ∈ 2Z.

In particular, if g is even, then g0 is even and d is odd.

Proof. (1) Suppose first that g0 is odd. By [20, Theorem 1.2], there are two disjoint circles
C ′1, C

′
2⊂Σ0 that are preserved by σ0 and split Σ0 into bordered surfaces interchanged by σ0.

Similarly to the case Σ0 =T, these two circles can be replaced by two circles C1, C2⊂Σ0 that are
interchanged by σ0 and still split Σ0 into bordered surfaces Σ+

0 and Σ−0 interchanged by σ0. The
preimages of Σ+

0 and Σ−0 split Σ into bordered surfaces Σ+
1 , . . . ,Σ

+
k and Σ−1 , . . . ,Σ

−
k , which are

interchanged by σ. Let m+
i be the number of boundary components of Σ+

i . The set of boundary
components of all these surfaces can be grouped into quadruples: pairs of them are identified and
mapped to C1 and conjugate pairs of them are mapped to C2 by σ. Thus, the Euler characteristic
of Σ,

χ(Σ) = 2
(
χ(Σ+

1 ) + . . .+ χ(Σ+
k )
)

= 4
(
1−g(Σ+

1 ) + . . .+ 1−g(Σ+
k )
)
− 2
(
m+

1 + . . .+m+
k

)
,

is divisible by 4. This establishes the claim for g0 odd.

(2) Suppose that g0 is even. By [20, Theorem 1.2], there is a circle C⊂Σ0 which is preserved by σ0

and splits Σ0 into bordered surfaces Σ+
0 and Σ−0 interchanged by σ0. The preimages of Σ+

0 and Σ−0
split Σ into bordered surfaces Σ+

1 , . . . ,Σ
+
k and Σ−1 , . . . ,Σ

−
k , which are interchanged by σ. The set

of boundary components of all these bordered surfaces can be grouped into sets of two types:

(−) pairs, in which each element corresponds to a circle in Σ preserved by σ;

(+) quadruples, in which two elements correspond to a circle in Σ not preserved by σ and the
other two elements correspond to its image under σ.

We denote the number of pairs of the first type by m− and the number of quadruples of the second
type by m+. The restriction of u to a boundary in (−) is a map S1 −→ S1 commuting with the
antipodal involution and must be of odd degree. The restrictions of u to boundaries in (+) in the
same quadruple are maps of the same degree. Thus, d≡m− mod 2. Since

χ(Σ) = 2
(
χ(Σ+

1 ) + . . .+ χ(Σ+
k )
)

= 4
(
1−g(Σ+

1 ) + . . .+ 1−g(Σ+
k )
)
− 2m− + 4m+,

the genus of Σ is odd if m− and d are even; the genus of Σ is even if m− and d are odd. This
establishes the claim for g0 odd.
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Example 5.2. We now describe the real Hurwitz double covers of P1. Let

τ≡τ1, η≡η1 : P1 −→ P1, τ(z) = z̄, η(z) = −1/z̄ ,

be the standard representatives of the two equivalence classes of anti-holomorphic involutions on P1.
Denote by D̊2⊂D2 the interior of D2 and by R̄⊂P1 the closure of R⊂C. For each m∈Z≥0, set

Um(η) =
{

(z1, . . . , zm)∈(P1)m : zi 6=zj , η(zj) ∀ i 6=j
}
,

Um =
{

(z1, . . . , zm)∈(D̊2)m : zi 6=zj ∀ i 6=j
}
,

and let
UR
m ⊂

{
(x1, . . . , x2m)∈ R̄2m : xi 6=xj ∀ i 6=j

}
be the subset of 2m-tuples so that x2 follows x1, x3 follows x2, etc., with respect to the positive
direction on R̄. The m-th symmetric group Sm acts freely on Um by interchanging the coordinates.
The m-th cyclic group Zm acts on UR

m by cyclically permuting pairs of consequence coordinates, i.e.

(x1, . . . , x2m) −→ (x3, x4, . . . , x2m−1, x2m, x1, x2).

Let S′m be the group of automorphisms of Um(η) generated by the interchanges of the coordinates
and the maps zi −→ −1/z̄i on each coordinate separately and Um(η) be the orientation double
of Um(η)/S′m. If (Σ, σ) is a genus g symmetric surface,

M(P1, 2; j0)τ,σ ≈


UR

1 ×(Ug/Sg) t Ug+1/Sg+1, if |π0(Σσ)| = 1, g∈2Z
(UR

2 /Z2)×(Ug−1/Sg−1) t Ug+1/Sg+1, if |π0(Σσ)| = 2, g 6∈2Z
(UR

k /Zk)×(Ug+1−k/Sg+1−k), if k ≡ |π0(Σσ)| otherwise;

(5.3)

M(P1, 2; j0)η,σ ≈

{
Ug+1(η), if Σσ=∅, g 6∈2Z,
∅, otherwise.

(5.4)

In particular, all these moduli spaces are orientable.

Proof. By [13, p254], every degree 2 Hurwitz cover Σ −→ P1 not branched over ∞ ∈ P1 can be
written as

u : Σ′ =
{

(z, w)∈C2 : w2 =(z−z1). . .(z−z2g+2)
}
−→ C, (z, w) −→ z,

where z1, . . . , z2g+2 ∈ C are the distinct branched points. This punctured Riemann surface Σ′ is
completed to a closed surface Σ by gluing two small disks

D2
± ≡

{
y±∈C : |y′±|<δ

}
above ∞∈P1 by the biholomorphic maps

D2
±−{0} −→ Σ′, y± −→

(
y−1
± ,±y−(g+1)

±

√
(1−z1y±) . . . (1−z2g+2y±)

)
, (5.5)

with the square root defined near 1 by
√

1=1.
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(1) If u : (Σ, σ, j)−→(P1, τ, j0) is a Hurwitz double cover, the set of branched points z1, . . . , z2g+2∈C
is preserved by the involution τ . Thus, we can assume that

(z1, . . . , z2k) ∈ UR
k and (z2k+1, z2k+3, . . . , z2g+1) ∈ Ug+1−k

for some k=0, 1, . . . , g+1. There are two lifts of τ to an involution on Σ,

τ± : Σ′ −→ Σ′, (z, w) −→ (z̄,±w̄),

with extension over D2
± given by

τ+ : D2
± −→ D2

±, y± −→ ȳ±,

τ− : D2
± −→ D2

∓, y± −→ ȳ±.

The fixed locus of the involution τ± is the set of solutions of

±w2 =
(
z−z1

)
. . .
(
z−z2k

) g+1−k∏
i=1

(
(Im z2k−1+2i)

2 + (z − Re z2k−1+2i)
2
)
, z, w ∈ R̄.

If k∈Z+, the fixed locus of the involution τ+ consists of k circles containing {z2k, z1} and {z2i, z2i+1}
with i = 1, . . . , k−1, while the fixed locus of the involution τ− consists of k circles containing
{z2i−1, z2i+1} with i=1, . . . , k. If k=0, Στ−=∅, while Στ+ consists of circles distinguished by the
sign of w if g+1 is even and one circle if g+1 is odd; see (5.5). This establishes (5.3). Since the
actions of Sm on Um and of Zm on UR

m are free and orientation-preserving, the quotients in (5.3)
are orientable.

(2) If u : (Σ, σ, j)−→(P1, η, j0) is a Hurwitz double cover, the set of branched points z1, . . . , z2g+2∈C
is preserved by the involution τ . Thus, we can assume that

(z1, z2, . . . , zg+1) ∈ Ug+1(η) , zg+1+i = −1/z̄i ∀ i = 1, . . . , g+1 .

There are precisely two lifts of η to an automorphism on Σ:

η± : Σ −→ Σ, (z, w) −→
(
− 1/z̄, (z1 . . . z2g+2)1/2w̄/z̄g+1

)
. (5.6)

These automorphisms are of order 4 if g is even and are involutions if g is odd. This establishes
the second case in (5.4) and shows that M(P1, 2; j0)η,σ is some double cover of Ug+1(η)/S′g+1 in the
first case in (5.4).

The automorphisms of Ug+1(η) interchanging the coordinates are orientation-preserving, while
those conjugating them are orientation-reversing. Thus, w1 of Ug+1(η)/S′g+1 is supported on the
loops generated by paths in Ug+1(η) from zi to −1/z̄i, such as

I −→ Ug+1(η), t −→ (z1, . . . , zi−1, (1−t+ t/|zi|2)eπitzi, zi+1, . . . , zg+1

)
.

The involution (5.6) along this loop is given by

(z, w) −→
(
− 1/z̄, eπit(z1 . . . z2g+2)1/2w̄/z̄g+1

)
, t ∈ I,

i.e. this loop lifts to a non-closed path in M(P1, 2; j0)η,σ. Thus, M(P1, 2; j0)η,σ is orientable, and so
is the orientation double cover of U2g+2/S′2g+2.
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Theorem 5.3. Let (Σ0, σ0) and (Σ, σ) be symmetric surfaces and j0 be a complex structure on Σ0

such that σ∗0j0 =−j0. The moduli space M(Σ0, d; j0)σ0,σ of degree d real Hurwitz covers

(Σ, σ, j) −→ (Σ0, σ0, j0)

is orientable if either (Σ0, σ0)=(P1, τ), or Σ0 =T, or (Σ0, σ0)=(P1, η) and d≤2.

Proof. (1) Suppose (Σ0, σ0)=(P1, τ). The involution τ naturally lifts to an involution τ̃ on OP1(1),
so that the usual Euler sequence for P1 becomes a short exact sequence of real bundle pairs:

0 −→ (P1×C, τ×idC) −→ 2
(
OP1(1), τ̃

)
−→ (TP1,dτ) −→ 0,

where cC is the standard conjugation on C. Thus,

Λtop
C (TP1,dτ) ≈

(
OP1(1), τ̃

)⊗2
.

Since (P1)τ =S1 is one-dimensional, (P1)τ is orientable and

w2(T (P1)τ ) = 0 = w1

(
OP1(1)τ̃

)2 ∈ H2((P1)τ ;Z2) = {0}.
Thus, the conclusion in this case follows from [12, Theorems 1.1, 1.2] and Theorem 1.2.

(2) Suppose Σ0 = T = R2/Z2. Since any complex structure on Σ0 is Kahler, the line bundle
(TT,dσ0) admits a real square root; see [6, Proposition 1.5]. In this case, this can be explicitly
seen as follows. There are three equivalence classes of orientation-reversing involutions on T:

t0, t1, t2 : T −→ T, t0(u, v) = (u,−v), t1(u, v) = (v, u), t2(u, v) = (u+
1

2
,−v);

see [1, Section 9], for example. In all three cases, the tangent bundle is trivial as a real bundle pair:

(TT,dt0) −→ (T×C, t0×cC), (u, v, u′, v′) −→ (u, v, u′ + iv′),

(TT,dt1) −→ (T×C, t1×cC), (u, v, u′, v′) −→ (u, v, (u′+v′) + i(u′−v′)),
(TT,dt2) −→ (T×C, t2×cC), (u, v, u′, v′) −→ (u, v, u′ + iv′).

In particular,
(TT, dtk) ≈ (T×C, tk×cC)⊗2 ∀ k=0, 1, 2.

Since Ttk is one-dimensional (and consists of 2−k circles), Ttk is orientable and

w2(TTtk) = 0 = w1

(
(T×C)tk×cC

)2 ∈ H2(Ttk ;Z2) = {0}.
Thus, the conclusion in this case also follows from [12, Theorems 1.1, 1.2] and Theorem 1.2.

(3) A degree 1 map (Σ, σ, j)−→ (P1, η, j0) is an isomorphism, and so it is sufficient to assume that
(Σ, σ)=(P1, η) in the degree 1 case. By the explicit description in [6, Appendix A.1],

M(P1, 1; j0)η,η ≈ RP3 .

The d=2 case for (Σ0, σ0)=(P1, η) is addressed by Example 5.2.

Remark 5.4. The conclusions of Theorem 5.3 for Σ = P1 and σ0, σ = τ, η, without any degree
restrictions, are implied by [12, Theorem 1.1] and are obtained in [6, Appendix A.1] by explicitly
describing M(P1, d; j0)σ0,σ. At this point, we are unaware of any non-orientable moduli spaces
M(Σ, d; j0)σ0,σ. It would be interesting to know which of the spaces M(Σ, d; j0)σ0,σ are orientable
(if not all of them are) and which of them are empty and to obtain analogues of Theorem 5.3 and
Example 5.1, respectively, in the most general situation. This appears to be a purely combinatorial
problem about Hurwitz covers.
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A Extensions of Theorem 1.2

In this appendix, we describe an extension of Theorem 1.2; see Theorem A.1 below. We make use
of what can be seen as an alternative formulation of [5, Proposition 1.2], which appears to have
broader applications to the orientability problem than Proposition 3.2; see Lemma A.2 below. The
proof of Lemma A.2 consists of two main parts. The first reduces the relevant sign computation
for a vector bundle isomorphism over an arbitrary diffeomorphism of (Σ, σ) to a sign computation
for an isomorphism over the identity on Σ; the idea behind this step comes entirely from [5]. The
second part of the proof is handled in completely different ways in [5] and below: the argument
in [5] relies on a technical computation at the heart of [4], while ours makes use of a more topo-
logical sign computation in [12].

It is not clear to us at this point how useful the extension described in this appendix is. In particular,
it does not enlarge the class of the complete intersections Xn;a⊂Pn to which Corollary 1.4 applies
for all B ∈ H2(X;Z). For the classes of the form B = 2B′, with B′ ∈ H2(X;Z), Theorem A.1
does extend the conclusion of Corollary 1.4(1) to all complete intersections with a1+. . .+ak ≡ n
mod 2. However, [10, Section 2] implies that natural partial compactifications of these spaces are
not generally orientable in the new cases of Corollary 1.4(1) provided by Theorem A.1.

Theorem A.1. Let (X,ω) be a symplectic 2n-manifold with an involution φ and B, J , l, and
(Σ, σ) be as in the statement of Theorem 1.2. If there exist a real bundle pair (E, φ̃E)−→ (X,φ)
such that

w2(TXφ) = w1(Eφ̃E )2 and
1

2
〈c1(TX), B〉+ 〈c1(E), B〉 ∈ 2Z (A.1)

and a rank 1 real bundle pair (L, φ̃L)−→(X,φ) such that

Λtop
C (TX,dφ) = (L, φ̃L)⊗2, (A.2)

then the two conclusions of Theorem 1.2 still hold. Furthermore, (A.1) alone suffices if Σ−Σσ is
disconnected, while (A.2) alone suffices if Σσ=∅.

Lemma A.2 ([5, Proposition 1.2]). Let (Σ, σ) be a symmetric surface, G : (Σ, σ)−→ (Σ, σ) be a
real orientation-preserving diffeomorphism, (W, φ̃) be a rank n real bundle pair over (MG, σG), and
(MσG

G )i, for i=1, . . . ,m, be the fixed components of σG. If c1(W )|Σs =0 for any s∈I and

m∑
i=1

〈
w2(W φ̃), [(MσG

G )i]Z2

〉
= 0, (A.3)

then
w1(det ∂̄(W,φ̃)) = w1(det ∂̄Λtop

C (W,φ̃)) + (n−1)w1(det ∂̄(MG×C,σG×cC)). (A.4)

Proof. By [2, Propositions 4.1, 4.2],

(W, φ̃) =
(
I×Σ×Cn, idI×σ×cCn

)
/∼(G,g), where (1, z, v) ∼(G,g)

(
0, G(z), g(z)v

)
∀ (z, v)∈Σ×Cn,

for some map g : Σ−→U(n) such that g(σ(z))=g(z). Let

G̃ : {1}×Σ×Cn −→ {0}×Σ×Cn, G̃(1, z, v) =
(
0, G(z), g(z)v

)
,

det G̃ : {1}×Σ×C −→ {0}×Σ×C, det G̃(1, z, v) =
(
0, G(z), (det g(z))v

)
.
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Similarly to the proof of [5, Proposition 1.2], we write

G̃ =
{

det G̃⊕G×idCn−1

}
◦
{

det G̃⊕G×idCn−1

}−1 ◦ G̃ .

Choose an orientation on the determinant bundle of ∂̄ on W|I×Σ by a choice of trivializations

as in [12, Section 4.1]. The (exponent of the) sign of the isomorphism induced by G̃ between
the determinant lines of ∂̄(W,φ̃) over s = 1 and s = 0 is the sum of the the signs induced by the
isomorphisms

det G̃⊕G×idCn−1 : {1}×Σ×Cn −→ {0}×Σ×Cn and{
det G̃⊕G×idCn−1

}−1 ◦ G̃ : {1}×Σ×Cn −→ {1}×Σ×Cn.
(A.5)

The latter map covers the identity and can be written as

(1, z, v) −→
(
1, z, h(z)v

)
for some h : Σ−→SU(n) such that h(σ(z))=h(z). By [12, Proposition 4.2] applied with

(X,φ) =
(
S1×Σ, idS1×σ

)
, (V, φ̃) =

(
I×Σ×Cn/∼(idΣ,h), σ×cCn

)
and (A.3), the sign induced by this map equals

m∑
i=1

〈
w2(W φ̃), (MσG

G )i
〉

= 0 ;

the equivariant w2 in [12, Proposition 4.2] vanishes by [6, Lemma 2.3], since h takes values in SU(n).
The sign induced by the first map in (A.5) gives (A.4).

Corollary A.3. Let (Σ, σ) be a symmetric surface, G : (Σ, σ) −→ (Σ, σ) be a real orientation-
preserving diffeomorphism, (W, φ̃) be a real bundle pair over (MG, σG), and (MσG

G )i, for i=1, . . . ,m,
be the fixed components of σG. If

m∑
i=1

〈
w2(W φ̃)+w1(W φ̃)2, [(MσG

G )i]Z2

〉
= 0,

then
w1(det ∂̄(W,φ̃)) + w1(det ∂̄(Λtop

C (W,φ̃))∗) = (n+1)w1(det ∂̄(MG×C,σG×cC)).

Proof. Applying Lemma A.2 with W ⊕
(
Λtop
C (W, φ̃)

)∗
, we obtain the result as in the proof of

Proposition 3.3.

Proof of Theorem A.1. We follow the proof of Theorem 1.2 with the bundle TX ⊕ 2E in place
of TX ⊕ 2L. The only difference in the proof is showing that the first Stiefel-Whitney class of the
determinant bundle of a ∂̄-operator on the pull-back of

Λtop
C (TX ⊕ 2E,dφ⊕ 2φ̃E) = (L⊗ Λtop

C E, φ̃L ⊗ Λtop
C φ̃E)⊗2 ≡ (W, φ̃W )
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equals that on the trivial rank 1 real bundle pair. As shown in the proof of [12, Corollary 4.4],

m∑
i=1

〈
w2(W φ̃W )+w1(W φ̃W )2, [(MσG

G )i]Z2

〉
=

m∑
i=1

〈
w1((L⊗Λtop

C E)φ̃L⊗Λtop
C φ̃E )2, [(MσG

G )i]Z2

〉
=

m′∑
i=1

〈
w1((L⊗ Λtop

C E)φ̃L⊗Λtop
C φ̃E ), [(Σσ)i]Z2

〉
,

where Σσ
i , for i = 1, . . . ,m′, are the components of Σσ. By [2, Propositions 4.1,4.2], the last

expression is 0 if 2|c1(L⊗E). Corollary A.3 now completes the proof.
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