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Abstract

We construct positive-genus analogues of Welschinger’s invariants for many real symplectic
manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold.
In some cases, our invariants provide lower bounds for counts of real positive-genus curves in real
algebraic varieties. Our approach to the orientability problem is based entirely on the topology
of real bundle pairs over symmetric surfaces; the previous attempts involved direct computations
for the determinant lines of Fredholm operators over bordered surfaces. We use the notion of real
orientation introduced in this paper to obtain isomorphisms of real bundle pairs over families
of symmetric surfaces and then apply the determinant functor to these isomorphisms. This
allows us to endow the uncompactified moduli spaces of real maps from symmetric surfaces
of all topological types with natural orientations and to verify that they extend across the
codimension-one boundaries of these spaces, thus implementing a far-reaching proposal from
C.-C. Liu’s thesis for a fully fledged real Gromov-Witten theory. The second and third parts of
this work concern applications: they describe important properties of our orientations on the
moduli spaces, establish some connections with real enumerative geometry, provide the relevant
equivariant localization data for projective spaces, and obtain vanishing results in the spirit of
Walcher’s predictions.
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1 Introduction

The theory of J-holomorphic maps plays prominent roles in symplectic topology, algebraic geom-
etry, and string theory. The foundational work of [23, 29, 35, 27, 9] has established the theory of
(closed) Gromov-Witten invariants, i.e. counts of J-holomorphic maps from closed Riemann sur-
faces to symplectic manifolds. In contrast, the theory of real Gromov-Witten invariants, i.e. counts
of J-holomorphic maps from symmetric Riemann surfaces commuting with the involutions on the
domain and the target, is still in early stages of development, especially in positive genera. The
two main obstacles to defining real Gromov-Witten invariants are the potential non-orientability of
the moduli space of real J-holomorphic maps and the existence of real codimension-one boundary
strata.

In this paper, we introduce the notion of real orientation on a real symplectic 2n-manifold (X, w, ¢);
see Definitions 1.1 and 1.2. We overcome the first obstacle by showing that a real orientation induces
orientations on the uncompactified moduli spaces of real maps for all genera of and for all types of
involutions o on the domain if n is odd; see Theorem 1.3. We then show that these orientations
do not change across the codimension-one boundary strata after they are reversed for half of the
involution types in each genus. This allows us to overcome the second obstacle by gluing the moduli
spaces for different types of involutions along their common boundaries; this realizes an aspiration
going back to [28]. We thus obtain real Gromov-Witten invariants of arbitrary genus for many real
symplectic manifolds; see Theorems 1.4 and 1.5. Many projective complete intersections, including
the quintic threefold which plays a central role in Gromov-Witten theory and string theory, are
among these manifolds; see Proposition 2.1. These invariants can be used to obtain lower bounds
for counts of real positive-genus curves in real algebraic varieties; see Proposition 2.5. For example,
we find that there are at least 4 real genus 1 degree 6 irreducible curves passing through a generic
collection of 6 pairs of conjugate points in P3.



1.1 Terminology and setup

An involution on a smooth manifold X is a diffeomorphism ¢: X — X such that ¢o¢=idx. Let
X? ={reX: ¢(z)=x}

denote the fixed locus. An anti-symplectic involution ¢ on a symplectic manifold (X,w) is an
involution ¢: X — X such that ¢*w=—w. For example, the maps

Tp PP — PP [Z1,.... Z0] — [Z1,..., 20,
2m: ]P)2m71 - ]P>2m717 [Zl7 227 N '7Z2m—17 ZQm] - [_ 72571) tey _72m772m—1]5

are anti-symplectic involutions with respect to the standard Fubini-Study symplectic forms w,
on P! and wo,, on P?"~ 1 respectively. If

k>07 aE(a/17"7ak)e(Z+)k7

and Xn;ac]P’”_1 is a complete intersection of multi-degree a preserved by 7, then 7.4 =1, Xpia 18
an anti-symplectic involution on X, with respect to the symplectic form wy;a =wy|x,,.,. Similarly,
if Xom.a C P?m=1 ig preserved by 79,,, then Nomsa = 12m| Xom:a 18 an anti-symplectic involution on
Xom:a With respect to the symplectic form w2m;a=w2m|x2m;a. A real symplectic manifold is a triple
(X,w, ¢) consisting of a symplectic manifold (X,w) and an anti-symplectic involution ¢.

Let (X, ¢) be a manifold with an involution. A conjugation on a complex vector bundle V — X
lifting an involution ¢ is a vector bundle homomorphism ¢: V' —V covering ¢ (or equivalently a
vector bundle homomorphism ¢: V — ¢*V covering idy) such that the restriction of ¢ to each
fiber is anti-complex linear and wop=idy . A real bundle pair (V, ¢) — (X, ¢) consists of a complex
vector bundle V— X and a conjugation ¢ on V lifting ¢. For example,

(TX,d¢) — (X,¢) and  (XxC",¢xc) — (X,9),

where ¢: C" — C" is the standard conjugation on C", are real bundle pairs. For any real bundle
pair (V, ) — (X, ¢), we denote by

AP (V, ) = (ALPV, AZPy)

the top exterior power of V' over C with the induced conjugation. Direct sums, duals, and tensor
products over C of real bundle pairs over (X, ¢) are again real bundle pairs over (X, ¢).

A symmetric surface (X,0) is a closed connected oriented smooth surface ¥ (manifold of real di-
mension 2) with an orientation-reversing involution o. The fixed locus of o is a disjoint union of
circles. If in addition (X, ¢) is a manifold with an involution, a real map

u: (X,0) — (X, 9)

is a smooth map u: ¥ — X such that uooc = ¢ou. We denote the space of such maps by %g(X)¢’”,
with ¢g denoting the genus of the domain ¥ of o.



For a symplectic manifold (X,w), we denote by J, the space of w-compatible almost complex
structures on X. If ¢ is an anti-symplectic involution on (X,w), let

TS ={Jeds: ¢*T=—J}. (1.1)

For a genus g symmetric surface (X, o), we similarly denote by JZ the space of complex structures j
on X compatible with the orientation such that ¢*j=—j. For Je jf, jeJs, and ue%g(X)¢’U, let

aLjU = (du +Jo duoj)

N

be the 0;-operator on B (X )%

Let g,1€Z7°, (X, 0) be a genus g symmetric surface, Be Hy(X;Z)—0, and JeJl. Let A2cx?
be the big diagonal, i.e. the subset of 2/-tuples with at least two coordinates equal. Denote by

M1 (X, By )7 = {(u, (21,21 )s- -5 (27,27 ),1) €Bg(X)?7 x (B2 =AY x T2 :
z; =o(z) Vi=1,...,l, ux[S]z=B, EJJU:O}/'\’

the (uncompactified) moduli space of equivalence classes of degree B real J-holomorphic maps from
(3,0) to (X, ¢) with [ conjugate pairs of marked points. Two marked J-holomorphic (¢, o)-real
maps determine the same element of this moduli space if they differ by an orientation-preserving
diffeomorphism of ¥ commuting with ¢. We denote by

M, (X, B; )P > My (X, B; J)*° (1.2)

Gromov’s convergence compactification of M, (X, B; J Y%7 obtained by including stable real maps
from nodal symmetric surfaces. The (virtually) codimension-one boundary strata of

M, (X, B; )P — M, (X, B; J)?° < My (X, B; J)*°

consist of real J-holomorphic maps from one-nodal symmetric surfaces to (X,¢). Each stra-
tum is either a (virtual) hypersurface in M, (X, B; J)* or a (virtual) boundary of the spaces
smg (X, B; J)®° for precisely two topological types of orientation-reversing involutions ¢ on .
Let

M, (X, B; J)? |_|zmgl (X,B; )7 and M, (X, B;J)? Uzmgl (X,B;J)%° (1.3)

denote the (disjoint) union of the uncompactified real moduli spaces and the union of the com-
pactified real moduli spaces, respectively, taken over all topological types of orientation-reversing
involutions ¢ on X.

Similarly to Example 4.3, we denote by
det 0¢ — ﬁg,l(X, B; J)‘]5

the determinant line bundle of the standard real Cauchy-Riemann operator with values in (C,¢).
This real line bundle is not orientable if X is a point and g=>1. It is not needed to formulate the
main immediately applicable results of this paper, Theorems 1.4 and 1.5 below, but is used in the
overarching statement of Theorem 1.3.



1.2 Real orientations and real GW-invariants

We now introduce the notion of real orientation on a real symplectic manifold and state the main
theorems of this paper.

Definition 1.1.~A real symplectic manifold (X, w, ¢) is real-orientable if there exists a rank 1 real
bundle pair (L, ¢) over (X, ¢) such that

wo(TX?) = wi(L9)?  and  AXP(TX,d¢) ~ (L,)®2. (1.4)

Definition 1.2. A real orientation on a real-orientable symplectic manifold (X,w, ¢) consists of

~

(RO1) a rank 1 real bundle pair (L, ¢) over (X, ¢) satisfying (1.4),

(RO2) a homotopy class [t¢] of isomorphisms of real bundle pairs in (1.4), and

(RO3) a spin structure s on the real vector bundle T'X ¢@2(L*)$* over X? compatible with the
orientation induced by (RO2).

Theorem 1.3. Let (X,w, ¢) be a real-orientable 2n-manifold, g,1€ Z7°, Be Hy(X;Z), and JeJe.
Then a real orientation on (X,w, @) determines an orientation on the real line bundle

o ey A n+1 ey
ARP (TR, (X, B; J)?) @ (det 8c)®" Y — 0, (X, B; J)?. (1.5)
In particular, the real moduli space ﬁgJ(X,B; J)? is orientable if n is odd.

A homotopy class of isomorphisms as in (1.4) determines an orientation on TX¢ and thus on
TX ¢@2(L*)‘$*; see the paragraph after Definition 5.1. In particular, Theorem 1.3 does not ap-
ply to any real symplectic manifold (X,w,¢) with unorientable Lagrangian X?. By the first
assumption in (1.4), the real vector bundle T'X ‘z’@Z(L*)‘Z* over X? admits a spin structure. Since

2(L*)‘g* ~ L*| ys, a real orientation on (X, w, ¢) includes a relative spin structure on X?< X in the
sense of [10, Definition 8.1.2].

The moduli space MM, ,;(X, B;J)? is not smooth in general. Its tangent bundle in (1.5) should
be viewed in the usual moduli-theoretic (or virtual) sense, i.e. as the index of suitably defined
linearization of the @j-operator (which includes deformations of the complex structure j on X).
The first statement of Theorem 1.3 and its proof also apply to Kuranishi charts for ﬁgJ(X ,B;J)?
and the tangent spaces of the moduli spaces of real (J,v)-maps for generic local ¢-invariant de-
formations v of [36]. A Kuranishi structure for ﬁg,l(X ,B;J)? is obtained by carrying out the
constructions of [27, 9] in a ¢-invariant manner; see [37, Section 7] and [11, Appendix]. Since the
(virtual) boundary of Mg ;(X, B; J)? is empty, Theorem 1.3 implies that this moduli space carries
a virtual fundamental class in some cases and thus gives rise to real GW-invariants in arbitrary
genus.

Theorem 1.4. Let (X,w,$) be a compact real-orientable 2n-manifold with n ¢ 27, g,1 € Z>Y,
BeHy(X;Z), and J € JS. Then a real orientation on (X,w,d) endows the moduli space
ﬁgJ(X, B; J)? with a virtual fundamental class and thus gives rise to genus g real GW-invariants
of (X,w, @) that are independent of the choice of Je€ Je.



The resulting real GW-invariants of (X,w, ¢) in general depend on the choice of real orientation.
This situation is analogous to the dependence on the choice of relative spin structure often seen in
open GW-theory.

A notion of semi-positive for a real symplectic manifold (X, w, ¢) is introduced in [50, Definition 1.2].
Monotone symplectic manifolds with an anti-symplectic involution, including all projective spaces
with the standard involutions and real Fano hypersurfaces of dimension at least 3, are semi-positive.
By [50, Theorem 3.3], the semi-positive property of [50, Definition 1.2] plays the same role in real
GW-theory as the semi-positive property of [30, Definition 6.4.1] plays in “classical” GW-theory. In
particular, the real analogues of the geometric perturbations of [36] introduced in [50, Section 3.1]
suffice to define the invariants of Theorem 1.4 with constraints pulled back from the target and the
Deligne-Mumford moduli space of real curves for a semi-positive real symplectic manifold (X, w, ¢)
endowed with a real orientation. In these cases, the virtual tangent space of ﬁgvl(X ,B;J)? ap-
pearing in (1.5) can be replaced by the actual tangent space of the moduli space of simple real
(J, v)-holomorphic maps from smooth and one-nodal symmetric surfaces of genus g. The invariance
of the resulting counts of such maps can then be established by following along a path of auxiliary
data; it can pass only through one-nodal degenerations.

Theorem 1.4 yields counts of real curves with conjugate pairs of insertions only. By the last
statement of [13, Theorem 6.5], the orientability of the Deligne-Mumford moduli space Rﬂg,l;k
of real genus g curves with [ conjugate pairs of marked points and k real marked points does not
capture the orientability of the analogous moduli space ﬁg,l;k(X ,B;.J)? of real maps whenever
k>0. Theorem 1.3 remains valid for such moduli spaces outside of certain “bad” codimension-one
strata. However, these strata are avoided by generic one-parameter families of real maps in certain
cases; Theorem 1.3 then yields counts of real curves with conjugate pairs of insertions and real
point insertions.

Theorem 1.5. Let (X,w, ¢) be a compact real-orientable 6-manifold such that {ci(X), Bye4Z for
all Be Hy(X;Z) with ¢.B=—B. For all

Be Hy(X;7), pi,...,meHS(X;QUH*(X:Q), and keZ>°,

a real orientation on (X,w, ¢) determines a signed count
@
(s )T p e Q

of real J-holomorphic genus 1 degree B curves which is independent of the choice of J ejf.

The n =0 case of Theorem 1.3 is essentially Proposition 6.1 which describes the orientability of
the Deligne-Mumford moduli space ng,l of genus g symmetric surfaces with I conjugate pairs of
marked points. If n€2Z and g+ > 2, Theorem 1.3 implies that a real orientation on (X, w, ¢)
induces an orientation on the real line bundle

ARP (T, (X, B; J)?) @ F* (AgP (TRM 1)) —> My (X, B; J)?, (1.6)

where f is the forgetful morphism (3.2). This orientation can be used to construct GW-invariants
of (X,w,¢) with classes twisted by the orientation system of RM,;, as done in [13] in the g =0
case.



1.3 Previous results and acknowledgments

Invariant signed counts of real genus 0 curves with point constraints in real symplectic 4-manifolds
and in many real symplectic 6-manifolds are defined in [39, 40]. An approach to interpreting these
counts in the style of Gromov-Witten theory, i.e. as counts of parametrizations of such curves, is
presented in [4, 37]. Signed counts of real genus 0 curves with conjugate pairs of arbitrary (not
necessarily point) constraints in arbitrary dimensions are defined in [13]. All of these invariants
involve morphisms from P! with the standard involution 7=m only and are constructed under the
assumption that the fixed circle cannot shrink in a limit; thus, only the degenerations of type (H3)
in Section 3.2 are relevant in this case. This assumption is dropped in [7] by combining counts
of (P!, 7)-morphisms with counts of (P!, 7)-morphisms for the fixed-point-free involution 7 = 1y
on P! and thus also considering the degenerations of type (E). As the degenerations of types (H1)
and (H2) do not appear in genus 0, [7] thus implements the genus 0 case of an aspiration raised
in [28] and elucidated in [34, Section 1.5]. The target manifolds considered in [7] are real-orientable
in the sense of Definition 1.1 and have spin fixed locus.

We would like to thank E. Brugallé, R. Crétois, E. Ionel, S. Lisi, C.-C. Liu, J. Solomon, J. Starr,
M. Tehrani, G. Tian, and J. Welschinger for related discussions. We would also like to thank a
referee for very thorough comments on a previous version of this paper which led to corrections
of a number of misstatements and to other improvements in the exposition. The second author is
very grateful to the IAS School of Mathematics for its hospitality during the initial stages of our
project on real GW-theory.

2 Examples, properties, and applications

We begin this section with examples of distinct collections of real-orientable symplectic manifolds.
We then describe a number of properties of the real GW-invariants of Theorems 1.4 and 1.5,
including connections with real enumerative geometry and compatibility with key morphisms of
GW-theory. With the exception of Proposition 2.3 and Corollaries 2.6 and 2.7, the claims below
are established in [17, 18].

Proposition 2.1. Let m,neZ*, keZ*°, and a=(ay,...,a;)e(Z1)".
(1) If XmaCIP’”_1 is a complete intersection of multi-degree a preserved by T,,
k k k
Zaizn mod 2, and 2@?52% mod 4,
i=1 i=1 i=1
then (Xn.a, Wnas Tnia) 45 @ Teal-orientable symplectic manifold.
(2) If Xgm;aCP2m_1 is a complete intersection of multi-degree a preserved by noy, and
a1+...+ap =2m mod 4,
then (Xom:a, Wamsa, N2m:a) @S a real-orientable symplectic manifold.
Proposition 2.2. Let (X,w,®) be a real symplectic manifold with wo(X?)=0. If

(1) H1(X;Q)=0 and c1(X)=2(u—o¢*n) for some pe H*(X;Z) or



(2) X is compact Kahler, ¢ is anti-holomorphic, and Kx = 2([D]+ [¢+D]) for some divisor D
on X,

then (X,w, @) is a real-orientable symplectic manifold.

Both of these propositions are established in [18]. The first one is obtained by explicitly construct-
ing suitable rank 1 real bundle pairs (L, ¢), while the second follows easily from the proof of |7,
Proposition 1.5].

We recall that GW-invariants involving insertions only from the target X are called primitive. Such
GW-invariants are related to counts of J-holomorphic curvesin X passing through a corresponding
collection of constraints (i.e. of representatives for the Poincare duals of the insertions used). In
contrast, GW-invariants also involving -classes, i.e. the Chern classes of the universal tangent
line bundles at the marked points, are called descendant. The next vanishing result extends [16,
Theorem 2.5]. Since the proof of the latter applies, we refer the reader to [16].

Proposition 2.3. Let (X,w, ) be a compact real-orientable 2n-manifold with n¢ 27 and ge Z>°.
The primary genus g real GW-invariants of (X,w, ¢) with conjugate pairs of constraints that include
an insertion pe H*(X;Q) such that ¢*pu=p vanish.

The genus g real GW-invariants of P?"~! with conjugate pairs of constraints can be computed
using the virtual equivariant localization theorem of [21]. In the g=1 case, all torus fixed loci are
contained in the smooth locus of the moduli space and the classical equivariant localization theorem
of [2] suffices. The relevant fixed loci data, which we describe in [18] based on the properties of the
orientations of Theorem 1.3 obtained in [17], is consistent with [38, (3.22)]. We also obtain the two
types of cancellations of contributions from some fixed loci predicted in [38, Sections 3.2,3.3]. We
use this data to obtain the following qualitative observations in [18]; they extend [7, Theorem 1.10]
from the g=0 case and [8, Theorem 7.2] from the g=1 case (the latter assuming that genus 1 real
GW-invariants can be defined).

]P>2n71 ]P>4n71

Proposition 2.4. The genus g degree d real GW-invariants of ( yWan, Tan) and ( s Win, Nn)
with only conjugate pairs of insertions vanish if d—qg e 27Z. The genus g real GW-invariants of
(P41 Wy, Tan) and (PY"71 wyp, nun) with only conjugate pairs of insertions differ by the factor

of (—1)971,

The primary genus g real GW-invariants arising from Theorem 1.4 are in general combinations
of counts of real curves of genus g and counts of real curves of lower genera and/or of lower
degree (lower symplectic energy). In light of [44, Theorems 1A,1B] and [48, Theorem 1.5], it seems
plausible that the former can be extracted from these GW-invariants to directly provide lower
bounds for enumerative counts of real curves in good situations. This would typically involve
delicate obstruction analysis. However, the situation is fairly simple if g=1 and n=3.

Proposition 2.5. Let (X,w, ) be a compact real-orientable 6-manifold and JeJS be an almost
complex structure which is genus 1 regular in the sense of [45, Definition 1.4]. The primary
genus 1 real GW-invariants of (X,w, ) are then equal to the corresponding signed counts of real
J-holomorphic curves and thus provide lower bounds for the number of real genus 1 irreducible
curves in (X, J, ¢).

Since the standard complex structure Jy on P? is genus 1 regular, the genus 1 real GW-invariants of
(P3, w4, 74) and (P3, wy, ny4) are lower bounds for the enumerative counts of such curves in (P3, Jo, 74)



and (P3, Jo,n4), respectively. The claim of Proposition 2.5 is particularly evident in the case of real
invariants of (P3, Jy,74) and (P3, Jo,n4). The only lower-genus contributions for the genus 1 GW-
invariants of 6-dimensional symplectic manifolds can come from the genus 0 curves. If J is genus 1
regular, such contributions arise from the stratum of the moduli space consisting of morphisms
with contracted genus 1 domain and a single effective bubble. In the case of real morphisms, the
node of the domain of such a map would have to be real. There are no such morphisms in the case
of (P3, Jg,n4) because the real locus of (P3,7,) is empty. In the case of (P3,.Jy, 74), the genus 0
contribution to the genus 1 real GW-invariant is a multiple of the genus 0 real GW-invariant with
the same insertions. The genus 0 real GW-invariants of (P3,.Jy, 74) are known to vanish in the even
degrees; see [40, Remark 2.4(2)] and [7, Theorem 1.10]. However, the substance of Proposition 2.5
is that the genus 0 real enumerative counts do not contribute to the genus 1 real GW-invariants in
all of the cases under consideration; this is shown in [18]. The situation in higher genus is described
in [32].

From the equivariant localization data in [18], we find that the genus 1 degree d real GW-invariant
of P? with d pairs of conjugate point insertions is 0 for d = 2, —1 for d = 4, and —4 for d = 6.
The d=2 number is as expected, since there are no connected degree 2 curves of any kind passing
through two generic pairs of conjugate points in P3. The d=4 number is also not surprising, since
there is only one genus 1 degree 4 curve passing through 8 generic points in P3; see the first three
paragraphs of [26, Section 1]. By [12], the genus 0 and genus 1 degree 6 GW-invariants of P? with
12 point insertions are 2576 and 1496/3, respectively. By [46, Theorem 1.1], this implies that the
number of genus 1 degree 6 curves passing through 12 generic points in P3 is 2860. Our signed
count of —4 for the real genus 1 degree 6 curves through 6 pairs of conjugate points in P? is thus
consistent with the complex count and provides a non-trivial lower bound for the number of real
genus 1 degree 6 curves with 6 pairs of conjugate point insertions. Complete computations of the
d=2,4 numbers and of the d=6 number appear in [18] and [19, 33|, respectively.

In all cases, the lower-genus contributions to the primary genus g real GW-invariants arise from
real curves passing through corresponding constraints. If n =3, {(¢1(X), B) # 0, and the almost
complex structure Je T2 s sufficiently regular, all such contributions arise from curves of the same
degree. Since the real enumerative counts are of the same parity as the complex enumerative counts,
Propositions 2.3, 2.4, and 2.5 yield the following observations concerning the complexr enumerative
invariants

Eg,B(M17¢*/’L1)°"7Ml7¢*ul) €Z (21)

with p; € H*(X;Z) that count genus g degree B J-holomorphic curves passing through generic
representatives of the Poincare duals of p;.

Corollary 2.6. Let (X,w, ) be a real-orientable 6-manifold, g,1 € ZZ°, and B € Hy(X;Z) with
(c1(X),B) # 0. If ¢*u; = p; for some i =1,...,1 and J € T2 is sufficiently regular, then the
number (2.1) is even.

Corollary 2.7. Let g,1,de Z7° with d = 2g—1. If either u; € H*(P3;Z) for some i=1,...,1 or
g=0,1 and g—de27Z, then the genus g degree d enumerative invariants of P3 of the form (2.1) are
even.

The real GW-invariants arising from Theorems 1.4 and 1.5 are compatible with standard mor-
phisms of GW-theory, such as the morphisms forgetting pairs of conjugate marked points and



the node-identifying immersions (2.3) below. By construction, the orientations on the real line
bundles (1.5) induced by a fixed real orientation on (X, w, ¢) are preserved by the morphisms for-
getting pairs of conjugate marked points (the fibers of these morphisms are canonically oriented).
If n¢ 27, this implies that the orientations on the moduli spaces of real morphisms induced by a
fixed real orientation on (X, w, ¢) are preserved by the forgetful morphisms. If ne2Z, the orienta-
tions on the real line bundles (1.6) induced by a fixed real orientation on (X, w, ¢) are preserved by
the forgetful morphisms. In both cases, the orientations are compatible with the standard node-
identifying immersions (2.3) below; see Proposition 2.8. This in turn implies that a uniform system
of these orientations is determined by a choice of orientation of the Deligne-Mumford moduli space
MS’Q ~ [0, 0], where 7=, is the standard conjugation on P!, and a real orientation on (X,w, ¢).
If g¢ 27, this also implies that the real GW-invariants of (P21, wa,, T2,) and (P!, w4y, n4n) are
independent of the choice of real orientation.

Let (X,w, ), |, B, and J be as in Theorem 1.3 and geZ. We denote by ﬁ;jl(X, B; J)? the moduli
space of stable real degree B morphisms from possibly disconnected nodal symmetric surfaces of
Euler characteristic 2(1—g) with [ pairs of conjugate marked points. For each i=1,... 1, let

ev;: ﬁ;,l(X,B; J)? — X, [u, (2, 20),---, (z;’,zl_)] — u(z),

)

be the evaluation at the first point in the i-th pair of conjugate points. Let
My (X, B; J)? = {[u]eM; (X, B; J)?: evi_1([u]) =evy([u])}.
The short exact sequence

0 — T, (X, B; J)® — TN, (X, B; J) — eviTX — 0

¢ |7/. ¢
mg,l (X7B§J)
induces an isomorphism

AP (T90%; (X, B; J)¢|ﬁ/.

9,

Z(X,B;J)¢) ~ Ag? (Tﬁ;l(Xa B; J)?) ®@evi (AFP(TX)) (2.2)

of real line bundles over ﬁ;l(X ,B; J)%.

The identification of the last two pairs of conjugate marked points induces an immersion
<H/® ooy ]
v o o(X, By ) — M (X, B3 J)?. (2.3)

This immersion takes the main stratum of the domain, i.e. the subspace consisting of real morphisms
from smooth symmetric surfaces, to the subspace of the target consisting of real morphisms from
symmetric surfaces with one pair of conjugate nodes. There is a canonical isomorphism
T, (X, B; J)?
Ni=— -2
TM,_5,42(X, B; J)®

~ L141®cLit2

of the normal bundle of ¢ with the tensor product of the universal tangent line bundles for the first
points in the last two conjugate pairs. It induces an isomorphism

(AFP (T (X, By J)%)) ~ AFP (T 5 14(X, Bi J)®) @ AR (Lis1®cLiv2)  (24)
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of real line bundles over ﬁlg:Q?HZ(X, B;J)?. Along with (2.2) with (g,1) replaced by (g—2,1+2),
it determines an isomorphism

Aﬁ)p (Tﬁ;—2,l+2(Xv B; J)¢|ﬁlg:2,z+2(X,B;J)¢) ® A%% (£l+1®<C EH_?)

o (2.5)
~ 0 (AFP (TG (X, B: J)%)) @ vl (AP (TX)

of real line bundles over ﬁ/g._g,HQ(X, B; J)®.

Proposition 2.8. Let (X,w,®), g,l, B, and J be as in Theorem 1.3 with n ¢ 27Z. The isomor-
phism (2.5) is orientation-reversing with respect to the orientations on the moduli spaces determined
by a real orientation on (X,w, ) and the canonical orientations on Li11®c Lo and TX.

This proposition is established in [17]. Its substance is that the orientations on ﬁ;ll Lo(X, B, J)?
induced from the orientations of ﬁ;—z,lH(Xa B, J)? and ﬁ;J(X, B, J)? via the isomorphisms (2.2)
and (2.4) are opposite. This unfortunate reversal of orientations under the immersion (2.3) can
be fixed by multiplying the orientation on ﬁ;l(X ,B,.J)? described at the end of Section 3.2 by
(_1)19/ 2141 for example. Along with the sign flip at the end of Section 3, this would change the
canonical orientation on M? (X, B, J )®7 constructed in the proof of Corollary 5.10 by (—1)L9/2I+lolo
where |o|p is the number of topological components of the fixed locus of (3, ). This sign change
would make the real genus 1 degree d GW-invariant of (P2, wy, 74) with d pairs of conjugate point
constraints to be 0 for d=2, 1 for d =4, and 4 for d =6. In particular, it would make the d =4
number congruent to its complex analogue modulo 4; this is the case for Welschinger’s (genus 0)
invariants for many target spaces. However, this property fails for the (g,d)=(1,5) numbers (the
real enumerative invariant is 0, while its complex analogue is 42).

We note that the statement of Proposition 2.8 is invariant under interchanging the points within
the last two conjugate pairs simultaneously (this corresponds to reordering the nodes of a nodal
map). This interchange reverses the orientation of the last factor on the left-hand side of (2.5),
because the complex rank of £;11®c L2 is 1, and the orientation of the last factor on the right-
hand side of (2.5), because the complex rank of TX is odd.

If ne2Z and g+1>2, the comparison (2.5) should be made with the tangent bundles of the moduli
spaces twisted as in (1.6). The proof of Proposition 2.8 appearing in [17] still applies, but leads to
the opposite conclusion; see [17, Remark 1.3].

3 Outline of the main proofs

The origins of real GW-theory go back to [28], where the spaces (1.3) are topologized by adapting
the description of Gromov’s topology in [27] via versal families of deformations of abstract complex
curves to the real setting. This demonstrates that the codimension 1 boundaries of the spaces
in (1.2) form hypersurfaces inside the full moduli space (1.3) and thus reduces the problem of
constructing a real GW-theory for a real symplectic manifold (X,w, ¢) to showing that

(A) the uncompactified moduli spaces 9, (X, B; J)#° are orientable for all types of orientation-
reversing involutions ¢ on a genus g symmetric surface, and

(B) an orientation of M, (X, B; J)? extends across the (virtually) codimension-one strata of the
compact moduli space M, (X, B; J)e.

11



In this paper, we achieve both objectives for real-orientable 2n-manifolds with n¢2Z.

Let g,le Z*° with g+1>2. Denote by ./\/l;l the Deligne-Mumford moduli space of o-compatible
complex structures on a genus g symmetric surface (2, o) with [ conjugate pairs of marked points
and by

40

Mg = Mg,

its compactification obtained by including stable nodal symmetric surfaces. The codimension-one
boundary strata of M;l—/\/lgl consist of real one-nodal symmetric surfaces. Each stratum is either

a hypersurface in ﬂ;l or is a boundary of the spaces ﬂ;l for precisely two topological types of
orientation-reversing involutions ¢ on Y. Let

RM,; = UM;I and Rﬂ%z = Uﬂ;z

denote the (disjoint) union of the uncompactified real Deligne-Mumford moduli spaces and the
union of the compactified real Deligne-Mumford moduli spaces, respectively, taken over all topo-
logical types of orientation-reversing involutions o on ¥. The moduli space RM,; is not orientable
if geZ*. One of the two main steps in the proof of Theorem 1.3 is Proposition 6.1; it implies that
the real line bundle

ARP(TRM,) ® (det o) — RM,, (3.1)

has a canonical orientation.

With g,1 as above, let o o
f: 9, (X, B; J)? — RM,, (3.2)

denote the forgetful morphism. For each [u]e 9, (X, B; J)? with stable domain, it induces a canon-
ical isomorphism

AR (T M1 (X, B; 1)) ~ (det Dirxagyu) ® AR (L) My,), (3:3)

where det D(7x.q¢);u is the determinant of the linearization D7 x,q¢).u of the real 0 y-operator at u;
see Section 4.3. The orientability of the last factor in (3.3) as u varies is indicated by the previous
paragraph. We study the orientability of the first factor on the right-hand side of (3.3) via the
relative determinant of D(rx.44):u;

d/e\t D(TX;dd));u = (det D(TX;dcb);u) ® (det éz;@)®n y (34)

where 2n = dim X and det ds.c is the standard real Cauchy-Riemann (or CR-) operator on the
domain (¥,0) of u with values in (C,¢). An orientation on (3.4) determines a correspondence
between the orientations on det D(7x,4¢);u and on the determinant det nég;@ of the standard real
0-operator on the trivial rank n real bundle (¥ xC" o x ¢) over (X,0). On the other hand, orien-
tations on det D (1x:d4¢):u are naturally related to the topology of real bundles pairs over (¥, 0). In
particular, the second main step in the proof of Theorem 1.3 is Proposition 5.2; it implies that a
real orientation on (X,w, ¢) determines an orientation on (3.4) which varies continuously with u.
Combined with the canonical orientation of (3.1) and the canonical isomorphism of (3.3), the latter

orientation determines an orientation on the line bundle (1.4).
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3.1 The orientability problem

The typical approaches to the orientability problem in real GW-theory, i.e. (A) on page 11, involve
computing the signs of the actions of appropriate real diffeomorphisms on determinant lines of
real CR-operators over some coverings of M, (X, B; J )% arising from bordered surfaces. These
approaches work as long as all relevant diffeomorphisms are homotopically fairly simple and in
particular preserve a bordered surface in X that doubles to X or map it to its conjugate half. This
is the case if the fixed locus 37 c ¥ of the involution o is separating; a good understanding of the
orientability of the moduli spaces M, (X, B; J)?° in such cases is obtained in [37, 11, 13, 6, 14, 15].
This is also the case for any involution o of genus g =0,1. In particular, the restriction of The-
orem 1.3 to My (X, B; J )#7 for the genus 1 involutions o is essentially [14, Theorem 1.2]; a less
general version of [14, Theorem 1.2] is [8, Theorem 1.1]. However, understanding the orientability
in the bordered case is not sufficient beyond genus 1, due to the presence of real diffeomorphisms
of (X, 0) not preserving any half of X; see Example 4.1. The subtle effect of such diffeomorphisms
on the orientability is hard to determine.

In contrast to [37, 11], in [15] we allowed the complex structure on a bordered domain to vary
and considered diffeomorphisms interchanging the boundary components and their lifts to auto-
morphisms of real bundle pairs. We discovered that they often act with the same signs on

(A1) anatural cover of M and the determinant line bundle for the trivial rank 1 real bundle pair
over it;

(A2) the determinants of real CR-operators on the square of a rank 1 real bundle pair with ori-
entable real part and on the trivial rank 1 real bundle pair;

(A3) the determinants of real CR-operators on an odd-rank real bundle pair and its top exterior
power;

see [15, Propositions 2.5,4.1,4.2]. In this paper, we show that these analytic statements are in
fact underpinned by the topological statement of Proposition 5.2 concerning canonical homotopy
classes of isomorphisms between real bundle pairs over a symmetric surface (3,0). As we work
on the more elemental, topological level of real bundle pairs, we do not compute the signs of any
automorphisms, as is done in the bordered surfaces approach. We instead obtain isomorphisms of
real bundle pairs over (families of) symmetric surfaces and apply the determinant functor to these
isomorphisms (Corollaries 5.7 and 6.6). In contrast to the bordered surfaces approach, this works
for all type of involutions on the domain and in flat families of (possibly) nodal curves.

Proposition 5.9, which appears to be of its own interest, endows the restriction of the line bun-
dle (3.1) to each topological component M;l of RM,; with a canonical orientation and thus
explains (A1l). This canonical orientation over an element [C] of M7, is obtained by tensoring
canonical orientations on four lines:

(1) the orientation on the tensor product of the top exterior powers of the left and middle terms
in (5.22) induced by the Kodaira-Spencer (or KS) isomorphism,

(2) the orientation on the tensor product of the top exterior powers of the middle term in (5.22)
and of the right-hand side in (5.23) induced by the Dolbeault Isomorphism and Serre Duality,
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(3) the orientation on (5.25) induced by the short exact sequence (5.24) and the specified orienta-
tions of (5.21),

(4) the orientation on the fiber of the line bundle (5.27) over [C] determined by Corollaries 5.6
and 5.7.

We combine the canonical orientation on the restriction of the line bundle (3.1) to the main stra-
tum RM,, the orientation on the relative determinants (3.4) induced by the real orientation
on (X,w, ¢), and the isomorphism (3.3) to establish the restriction of Theorem 1.3 to the uncom-
pactified moduli space M, (X, B; J )?; see Corollary 5.10.

3.2 The codimension-one boundary problem

Once the orientability problem (A) is resolved, one can study the codimension-one boundary prob-
lem, i.e. (B) on page 11. It then asks whether it is possible to choose an orientation on the subspace

M, (X, B; J)*° = M, (X, B; J)?

for each topological type of orientation-reversing involutions o on a genus g symmetric surface
so that the resulting orientations do not change across the (virtually) codimension-one strata of
ﬁgJ(X ,B;J)?. These strata are (virtual) hypersurfaces inside of the full moduli space and consist
of morphisms from one-nodal symmetric surfaces to (X, ¢).

As described in [28, Section 3], there are four distinct types of one-nodal symmetric surfaces
(2, 212,0):

(E) z12 is an isolated real node, i.e. x12 is an isolated point of the fixed locus X7 c ¥;

(H) x12 is a non-isolated real node and

(H1) the topological component ¥, of 37 containing x12 is algebraically irreducible (the normal-
ization %9, of X9, is connected);
the topological component o) containing xi12 1s algebraically reducible, but 18
H2) th logical X7, of X7 ini is algebraically reducible, but ¥ i
algebraically irreducible (the normalization %9, of ¥15 is disconnected, but the normalization
Y of ¥ is connected);

(H3) X is algebraically reducible (the normalization S of ¥ is disconnected).

In [8, Section 3], the above types are called (II), (IC1), (IC2), and (ID), respectively. In the genus 0
case, the degenerations (E) and (H3) are known as codimension-one sphere bubbling and disk bub-
bling, respectively; the degenerations (H1) and (H2) cannot occur in the genus 0 case.

The transitions between smooth symmetric surfaces across the four types of one-nodal symmet-
ric surfaces are illustrated in [28, Figures 12-15]. A transition through a degeneration (H3) does
not change the topological type of the involution. Thus, each stratum of morphisms from a one-
nodal symmetric surface of type (H3) to (X, ¢) is a hypersurface inside of M, (X, B;J)%° for
some genus ¢ involution o. This transition does not play a material role in the approach of [39, 40],
which is based on counting real genus 0 curves, rather than their parametrizations. In the approach
of [4, 37], which is based on counting morphisms from disks as halves of morphisms from (P!, 1),
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Figure 1: The real locus transition through (H2) and (H3) degenerations

the degeneration (H3) appears as a codimension-one boundary consisting of morphisms from two
disks. This boundary is glued to itself in [4, 37] by the involution which corresponds to flipping
one of the disks; this involution is orientation-reversing under suitable assumptions and so the
orientation on the main stratum extends across the resulting hypersurfaces. A perspective that
combines the hypersurface viewpoint of [39, 40] with the parametrizations setting of [4, 37] appears
in [13]. It fits naturally with the approach of this paper to studying transitions through all four
degeneration types.

A transition through a degeneration (E) changes the number ||y of topological components (cir-
cles) of the fixed locus X% ¥ by one. In the terminology of Section 4.1, such a transition can
be described as collapsing a standard boundary component of a bordered half-surface (correspond-
ing to a component of ¥7) and then replacing it with a crosscap. In particular, each stratum of
morphisms from a one-nodal symmetric surface of type (E) to (X, ¢) is a boundary of the spaces
ﬁgJ(X , B; J)®7 for precisely two topological types of genus g involutions o. In the genus 0 case,
the analysis of orientations necessary for the gluing of the two spaces along their common boundary
is carried out in [7, Section 3.

A transition through a degeneration (H1) also changes the number |o|p by one, but through a
more complicated process. Such a transition transforms two components of ¥ into one and cre-
ates an additional crosscap “near” the node of the one-nodal surface (X, z12,0). Each stratum of
morphisms from a one-nodal symmetric surface of type (H1) to (X, ¢) is a boundary of the spaces
M, (X, B; J)#* for precisely two topological types of genus g involutions o. A degeneration (H1)
cannot occur in genus 0, but does occur in genus 1 and higher; see the last diagram in [8, Figure 2].

A transition through a degeneration (H2) does not change the number of topological components
of X7, but cuts one of them into two arcs and re-joins the arcs in the opposite way. The trans-

Figure 2: The real locus transition through an (H1) degeneration
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formation of the real locus is the same as in the (H3) case, but an (H2) transition also inserts or
removes two crosscaps. This transition may or may not change the topological type of the involu-
tion o. If the fixed locus of (X, x12,0) is separating, then this transition changes the topological
type of o and each stratum of morphisms from (X, z12,0) to (X, ) is a boundary of the spaces
M, (X, B; J )7 for precisely two topological types of genus g involutions o. If the fixed locus of
(3, x12,0) is non-separating, then this transition does not change the topological type of o and
each stratum of morphisms from (¥, z12,0) to (X, ) is a hypersurface inside of M, (X, B; J)*
for some genus ¢ involution o. A degeneration (H2) cannot occur in genus 0 or 1, but does occur
in genus 2 and higher.

The transitions (H1) and (H2) do not preserve any bordered surface in ¥ that doubles to X, in
contrast to the transition (E); the transition (H3) does not preserve any bordered surface in ¥ that
doubles to ¥ either, but its nature is fairly simple. As in the case of (A) discussed in Section 3.1,
this makes the issue (B) difficult to study using the standard approaches to orienting the determi-
nant lines of real CR-operators even when issue (A) is resolved; see [8, Conjectures 1.3,6.3]. We
approach (B) by studying isomorphisms between real bundle pairs, but this time over one-nodal
symmetric surfaces (3, x12,0). As in the smooth case, this circumvents a direct computation of
the signs of any automorphisms of the determinant lines of real CR-operators.

Corollary 5.10 uses a real orientation on (X,w, ¢) to endow the fiber of the line bundle (1.5) over
each element [u] of M, (X, B;J )® with an orientation. The latter is obtained by combining the
orientation on the relative determinant (3.4) of the linearization of the 0-operator at u induced by
the real orientation on (X,w, ¢) and the canonical orientation on the fiber of the line bundle (3.1)
over f(u) via the isomorphism (3.3). The real orientation on (X,w, ¢) specifies a homotopy class of
isomorphisms (5.5) with (V,¢)=u*(TX,d¢). The latter determines an orientation on the relative
determinant (3.4). An isomorphism in the specified homotopy class over a one-nodal symmetric sur-
face (3, 12, 0) extends to an isomorphism in the specified homotopy class for each nearby smooth
symmetric surface. Therefore, so does the induced orientation on the relative determinant (3.4);
see Corollary 6.7. This means that the induced orientation of the line bundle formed by the rela-
tive determinants (3.4) does not change across any of the codimension-one strata of 9, (X, B; J)?.

The situation with the canonical orientation on the restriction of the line bundle (3.1) to RMg;
provided by Proposition 5.9 on page 32 is very different. This is partly indicated by the state-
ment of Proposition 6.1, but the actual situation is even more delicate. This canonical orientation
constructed in Proposition 5.9 is the tensor product of the four orientations listed at the end of
Section 3.1. The line bundles on which these orientations are defined naturally extend across the
codimension-one boundary strata of Rﬂml. The behavior of the four orientations across these
strata of Rﬂgyl is described in the proof of Proposition 6.1 at the end of Section 6.3. The ori-
entations (2) and (3) in Section 3.1 do not change across any of codimension-one strata. The
orientation (1), determined by the KS isomorphism (5.22) for smooth symmetric surfaces, changes
across all codimension-one boundary strata; see Lemma 6.17. The orientation (4) over a smooth
symmetric surface is induced by Corollary 5.7 from the canonical real orientation of Corollary 5.6
with L =T%*X. The analogue of L for a one-nodal symmetric surface (X, z12,0) is played by the
restriction of the line bundle 7 of Lemma 6.8. The restriction of its real part to the singular
component of the fixed locus is orientable for the degenerations of types (E) and (H1) and is not
orientable for the degenerations of types (H2) and (H3); see Lemma 6.13. In the latter cases, the
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orientation/parity of induced by (E)/(H1) | (H2)/(H3)

AEQOP(TEM;l)@A%OP(ﬁl(E; T3))?) | KS isomorphism (5.22) - -

(det O3 dox)@2 ) @ (det Osic) Corollaries 5.6 and 5.7 + —

lolo N/A - +

Table 1: The extendability of the canonical orientations and of the parity of the number of compo-
nents of X7 across the codimension-one strata: + extends, — flips. All other canonical orientations
factoring into the orientation of the line bundle (1.5) extend across all codimension-one strata.

orientation (4) for (3, x12,0) depends on the orientation of the fixed locus; see Corollary 5.6. For
the degenerations of types (H2) and (H3), no orientation of the singular component of the fixed
locus extends to nearby smooth symmetric surfaces (because (H2) and (H3) involve cutting a fixed
circle into two arcs and re-joining them in the opposite way). Therefore, the orientation (4) changes
in the transitions (H2) and (H3) and does not in the transitions (E) and (H1); see Corollary 6.16.

The key points of the previous paragraph are summarized in Table 1. They imply that the canon-
ical orientation on the restriction of the line bundle (3.1) to RM,; provided by Proposition 5.9
does not change in the transitions (H2) and (H3) and changes in the transitions (E) and (H1).
These transitions have the same effect on the parity of the number ||y of connected components
of the fixed locus X7 of (3,0). Thus, the canonical orientation on the restriction of (3.1) to
RM,; multiplied by (—1)~‘7+|‘I|OJr1 over each topological component /\/lg’l of RM,; extends over
all of ng,l. The same considerations apply to the orientation on the restriction of the line bun-
dle (1.5) to M, (X, B; J)?° provided by Corollary 5.10. If n¢2Z, this sign modification leaves the
orientations of the moduli spaces M, (X, B; J )‘bﬂ for separating involutions o unchanged.

4 Notation and review

In this section, we set up the notation and terminology used throughout Sections 5 and 6. We recall
some facts about symmetric surfaces, associated half-surfaces, their moduli spaces, real Cauchy-
Riemann operators, and their determinant line bundles.

4.1 Symmetric surfaces and half-surfaces

Let (,0) be a genus g symmetric surface. We denote by |o|g € ZZ° the number of connected

components of ¥.7; each of them is a circle. Let (o) =0 if the quotient 3 /o is orientable, i.e. ¥—X7

3

is disconnected, and {(o)=1 otherwise. There are [%ﬂ different topological types of orientation-

reversing involutions ¢ on ¥ classified by the triples (g, |o]o,{c)); see [31, Corollary 1.1].
An oriented symmetric half-surface (or simply oriented sh-surface) is a pair (X?, ¢) consisting of an

oriented bordered smooth surface ¥? and an involution ¢: 0% — % preserving each component
and the orientation of 03°. The restriction of ¢ to a boundary component is either the identity or
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— S

Figure 3: Doubling an oriented sh-surface

the antipodal map
a: St — St z2—> —2z, (4.1)

for a suitable identification of (0X%); with S' — C; the latter type of boundary structure is called
crosscap in the string theory literature. We define

0, ife =id;

C;, = C|(52b)i, |CZ‘ = {1 |C‘k = |{(8Eb)lc2b |Cz|:k}| k= O, 1.

otherwise;

Thus, |c|o is the number of standard boundary components of (3%, %) and |c|; is the number of
crosscaps. Up to isomorphism, each oriented sh-surface (Eb, ¢) is determined by the genus g of X,
the number |c|p of ordinary boundary components, and the number |c|; of crosscaps. We denote
by (Xg,mo,m1sCg,mo,m:) the genus g oriented sh-surface with |cg mg.m, o =m0 and |cgmg,m,|[1=m1.

An oriented sh-surface (X°, ¢) of type (g, mg, m1) doubles to a symmetric surface (X, o) of type

(9(2).lolo. () = {<29+m°+m1‘1’m°’°)’ L
(2g4+mo+mq1—1,mg, 1), if my #0;
so that o restricts to c on the cutting circles (the boundary of ¥:%); see [14, (1.6)] and Figure 3. Since
this doubling construction covers all topological types of orientation-reversing involutions ¢ on X,
for every symmetric surface (X, o) there is an oriented sh-surface (X%, ¢) which doubles to (3, ).
In general, the topological type of such an sh-surface is not unique. There is a topologically unique
oriented sh-surface (X%, ¢) doubling to a symmetric surface (X, o) if (o) =0, in which case (X?,c)
has no crosscaps, or |o|o = g(X)—1, in which case (X%, ¢) is either of genus at most 1 and has no
crosscaps or of genus 0 and has at most 2 crosscaps.

Denote by D, the group of orientation-preserving diffeomorphisms of ¥ commuting with the invo-
lution o. If (X, ¢) is a smooth manifold with an involution, [€Z>°, and B € Hy(X;Z), let

B, (X, B)?7 c By(X)?7 x 02
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denote the space of real maps u: (X,0) — (X, ¢) with u[X]z = B and [ pairs of conjugate
non-real marked distinct points. We define

Hg1(X,B)? = (By1(X,B)"" xJZ)/Ds.

The action of D, on Jx, given by h-j = h*j preserves J3; thus, the above quotient is well-defined.
If Jejf, the moduli space of marked real J-holomorphic maps in the class B € Hy(X;Z) is the
subspace

S)j/tg,l(*erB; J)d)’o- = {[U, (Zf_azl_)a--'a(Zl+7zl_)aj]eHg,l(X7B)¢7a: a],juzo}a

where 0 7; is the usual Cauchy-Riemann operator with respect to the complex structures J on X
and jon X. If g+1>2, . ‘
MG, = Mg(pt, 047 = Hyy(pt, 0)'47

is the moduli space of marked symmetric domains. There is a natural forgetful morphism

frHg(X,B)"7 — MG,;

it drops the map component u from each element of the domain.

The following example shows that the orientability of a moduli space of symmetric half-surfaces does
not imply the orientability of the corresponding moduli space of symmetric surfaces. It indicates
the subtle effect of diffeomorphisms of a symmetric surface (X, o) not preserving any half-surface %?
and the difficulties arising in the standard approaches to the orientability problem (A) on page 11
in positive genus.

Example 4.1. Let X% be an sh-surface of genus 2 with one boundary component and non-trivial
involution, as in the left diagram of Figure 4. Its double is a symmetric surface (X, o) of genus 4
without a fixed locus, as in the middle diagram of Figure 4. The moduli space Mg, of sh-
surfaces ¥.* is orientable by [14, Lemma 6.1] and [15, Lemma 2.1]. The natural automorphisms of
M, associated with real orientation-reversing diffeomorphisms of ¥’ are orientation-preserving by
[14, Lemma 6.1] and [15, Corollary 2.3]. On the double ¥ of ¥, these diffeomorphisms correspond to
flipping the surface across the crosscap. The real moduli space M parametrizing such symmetric
surfaces ¥ is not orientable for the following reason. By [31, Theorem 1.2], every representative of a
point in MY has 5 invariant circles which separate the surface, as in the right diagram of Figure 4.
There is a real diffeomorphism h which fixes 3 of these circles and interchanges the other 2. By
[15, Corollary 2.2], the mapping torus of i defines a loop in M§ which pairs non-trivially with the
first Stiefel-Whitney class of the moduli space.

4.2 Gromov’s convergence topology

Let C=(X%, 21, ..., 2;,j) be a compact nodal marked Riemann surface. A flat family of deformations
of C is a tuple

(TFZU—>A,812A—>Z/{,...,SZZA—>U), (4.2)
where U is a complex manifold, AcC¥ is a ball around 0, and 7, s1, ..., s; are holomorphic maps

such that
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Figure 4: Orientability of crosscaps vs. real moduli spaces

e Yy=7"1(t) is a (possibly nodal) Riemann surface for each te A and 7 is a submersion outside
of the nodes of the fibers of ,

o for every t* = (t7,...,t5) € A and every node z* € X¢x, there exist ie {1,..., N} with tf =0,
neighborhoods A+ of t* in A and U,« of z* in U, and a holomorphic identification

U: U, —> {((tl, . ,tN),:c,y) € Agx xC2: xyzti}
such that the composition of ¥ with the projection to Agx equals 7|y, ,
o mos;=ida and s;(t) #s;(t) for all te A and 4, j=1,...,1 with i#j,

(20, 81(0), PN ,SZ(O)) =C.

Let C=(%,0,(2,27),..., (%, 2 ),i) be a nodal marked symmetric Riemann surface. A flat family
of deformations of C is a tuple

(77: U— AT U—U,s1: A—U,..., 5: A—>Z/{)

such that (m,s1,€os1,...,s,¢0s) is a flat family of deformations of (X, (2], 27),..., (%", 2, ),j)
and ¢ is an anti-holomorphic involution on ¢ lifting the standard involution ¢ on A and restricting
to o over L =7"1(0). In such a case, let oy =¢|x, for each parameter t in Ag=ANRY.

For any nodal surface X, we denote by ¥* — ¥ the subset of its smooth points. Suppose 7: U — A
is a flat family of deformations of (X,j). There then exist a neighborhood A’ of 0 in A and a
continuous collapsing map

— )

q:U|,,
so that the preimage of each node of ¥ under the restriction of ¢ to 3¢ with te A’ is either a node
of ¥t or an embedded circle and the map

nxq:q H(ZF) — A'xX*
is a diffeomorphism. For each te A’, let

Yy XF — ¢ HEF) NSy (4.3)
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be the restriction of its inverse to txX*. If t, € A is a sequence converging to 0e A and u,: Xy, — X
is a sequence of continuous maps that are smooth on Xf , we say that the sequence u, converges
to a smooth map u:¥* — X u.c.s. (uniformly on compact subsets) if the sequence of maps

upothy, : N — X

converges to u uniformly in the C®-topology on compact subsets of X*. This notion is independent
of the choices of A" and trivialization of 7|1 ().

For a Riemannian metric g on X and an L{-map u: ¥ — X, for some p>2, let

1
Ey(u) = 3 jz |du\§ e R>?

denote the energy of u; this notion is independent of the choice of j-compatible metric on X..

Definition 4.2 (Gromov’s Convergence). Suppose (X, ¢) is a manifold with an involution, g is
a Riemannian metric on X, and J, is an almost complex structure on X for every reZ>"i{c0}.
A sequence (Cy, 0., u,) of ¢-real J.-holomorphic maps with [ conjugate pairs of marked points
converges to a ¢-real Jy-holomorphic map (Coy, 0op, Uep) With I conjugate pairs of marked points if
Ey(uy) — E4(ux) as r—> o0 and there exist

(a) a flat family (7,¢, s1,...,5) of deformations of (Co, 0o) as above,
(b) a sequence t, € Ag converging to 0€ A, and

(c) equivalences h,: (Z¢,,0,) — (Cy, 04,.)
such that u,oh, converges to UOO|2§;O U.C.S.

Suppose (X, ¢), g, and J, are as in Definition 4.2, X is compact, and the sequence J, converges
to Jo with respect to the C2-topology. Gromov’s Compactness Theorem for J-holomorphic maps,
arising from [23], then implies that every sequence of stable ¢-real J,-holomorphic maps u, with
[ conjugate pairs of marked points so that liminf F4(u;) is finite contains a subsequence that
converges in the sense of Definition 4.2 to some stable ¢-real Jy-holomorphic map (Co, uey) With
I conjugate pairs of marked points. By the compactness of >, this notion of convergence is
independent of the choice of metric g on X.

4.3 Determinant lines of Fredholm operators

Let (V, ) be a real bundle pair over a symmetric surface (3,0). A real Cauchy-Riemann (or CR-)
operator on (V, ¢) is a linear map of the form

D =0+A:T(Z;V)? ={¢el(%;V): Loo=pof}

I EV)P = (T (DM Y): Codo = poc),

where 0 is the holomorphic ¢-operator for some j€ Jy and a holomorphic structure in V' reversed
by ¢ and
A€ T (S Homg(V, (T*8,5) " ®cV))”

is a zeroth-order deformation term. A real CR-operator on a real bundle pair is Fredholm in the
appropriate completions. The space of completions of all real CR-operators on (V, ¢) is contractible
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with respect to the operator norm.

If X, Y are Banach spaces and D: X —Y is a Fredholm operator, let
det D = AP (ker D) ® (AgP(cok D))*

denote the determinant line of D. A continuous family of such Fredholm operators D; over a topo-
logical space H determines a line bundle over #, called the determinant line bundle of {D;} and
denoted det D; see [30, Section A.2] and [49]. Combined with the note at the end of the pre-
vious paragraph, this implies that there is a canonical homotopy class of isomorphisms between
the determinants of any two CR-operators on a real bundle pair (V,¢); we thus denote any such
determinant by det Dy, ).

An exact triple (short exact sequence) t of Fredholm operators

0 X' X X" 0
\LD’ lD J{D” (4.5)
0 Y’ Y Y” 0

determines a canonical isomorphism
Ty: (det D') ® (det D”) =5 det D. (4.6)

For a continuous family of exact triples of Fredholm operators, the isomorphisms (4.6) give rise to
a canonical isomorphism between the determinant line bundles.

Let (39, 00,j0) be a (possibly nodal) symmetric Riemann surface and (7: U — A, ¢: U —U) be
a flat family of deformations of (3, 09,jo) as in Section 4.2. Suppose (V, ) is a real bundle pair
over (U,7), V is a p-compatible (complex-linear) connection in V', and

A e (U Homg(V, (T*U, J)" @c V)7, (4.7)

where J is the complex structure on ¢. The restrictions of V and A to each fiber (X,0) of 7
with te Ag then determine a real CR-operator

Dyt T (26 Vi, )” — T (S Vs, )7 (4.8)
on (V,¢)[s,. Let
T(Vyp)* det Diyp) = |_| ({t} xdet D(V,go);t) — Ag. (4.9)
tEAR

The set det Dy, carries natural topologies so that the projection (v, is a real line bundle; see
Appendix A. The case of (4.9) with A c C (and thus A is an open subset of R) and (Xg, o)
having only a conjugate pair of nodes underpins all orienting constructions in the open GW-theory
and Fukaya category literature that follow [10, Section 8.1].

Good topologies on the total space of (4.9) arise directly from some of the analytic considerations

of [27] combined with the algebraic conclusions of [25]. This implies that the resulting topologies
satisfy analogues of all properties listed in [49, Section 2]. In particular,
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(D1) a homotopy class of continuous isomorphisms ¥ : (Vi,¢1) — (Va, p2) of real bundle pairs
over (U,7)|a, determines a homotopy class of isomorphisms

det Dy : det Dy, ) — det Dy, o)
of line bundles over Ag;

(D2) the isomorphisms (4.6) determine a homotopy class of isomorphisms

det (D(Vhs@l)@(Vz,tpz)) ~ (det D(V1,<P1)) ® (det D(V27<P2))
of line bundles over Ay for all real bundle pairs (V1, 1) and (Va, p2) over (U,%).

These two properties correspond to the Naturality I and Direct Sum properties in [49, Section 2].

Families of real CR-operators often arise by pulling back data from a target manifold by smooth
maps as follows. Suppose (X, J, ¢) is an almost complex manifold with an anti-complex involution
and (V, ) is a real bundle pair over (X, ¢). Let V be a p-compatible (complex-linear) connection
in V and
Ae(X;Homg(V, (T*X, )" @cV))”.
For any real map u: (¥,0) — (X, ¢) from a symmetric surface and j € JZ, let V* denote the
induced connection in 4*V and
*

Ajy = Ao du e I'(E; Hompg (u*V, (T*%,5) %! @c w*V))* %,

The homomorphisms
_ 1 _
o = 5 (V! +10 V" 0j), Diygyu = 0 +Aju: D(S1u*V)*F — TP (S50 V) "¢

are real CR-operators on u*(V, ) — (X, 0) that form families of real CR-operators over families
of maps.

For g,1€Z?° and Be Hy(X;7Z), let
det Dy ) — By (X, B)?7 x JZ

denote the determinant line bundle of the family of the CR-operators D(y,,).(4,) constructed as
above. This line bundle descends to an orbi-bundle

det Dy, ) —> Hgu(X, B)*;

it is a line bundle over the open subspace of the base consisting of marked maps with no non-trivial
automorphisms.

Let (,7¢, s1,...,s;) be a flat family of deformations as in Section 4.2. A smooth real map F: U — X
pulls back the connection V and the zeroth-order deformation term A on (V,¢) above to a con-
nection V¥ and a zeroth-order deformation term A* on F*(V, ). The latter in turn determine a
line bundle

TR+ (V,p)* det DF*(V7g0) — AR

as in (4.9), which we call det Dy, when there is no ambiguity.
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Example 4.3. Let g, Z>° with g+ >2. The pair (V,¢)=(C,¢) is a real bundle pair over (pt, id).
The induced families of the operators dc,, = D¢, over flat families of stable real genus g curves
with [ conjugate pairs of marked points define a line bundle

det o — ng,l )
If (X, ¢) is an almost complex manifold with anti-complex involution ¢ and
(Vip) = (XxC,pxc) — (X, 9),
then there is a canonical isomorphism
det D¢ ) ~ f* (det oc)

of line bundles over H, (X, B)#°.

5 Real orientations on real bundle pairs
The main stepping stone in our proof of Theorem 1.3 for the uncompactified moduli space
M, (X, B; J)® < M, (X, B; J)®

is Proposition 5.2 below. By Corollary 5.7 of this proposition, a real orientation on a rank n
real bundle pair (V,¢) over a symmetric surface (X, 0) determines an orientation on the relative
determinant N

det D = (det D) ® (det ds.c)®" (5.1)

for every real CR-operator D on (V, ), where s, is the standard real CR-operator on (¥, o) with

values in (C,¢).

Definition 5.1. Let (X, @) be a topological space with an involution and (V,¢) be a real bundle
pair over (X, ¢). A real orientation on (V, ¢) consists of

~.

(RO1) a rank 1 real bundle pair (L, ¢) over (X, ¢) such that

wa(VP) =wi(L?)?  and  AZP(V, ) ~ (L, $)%2, (5.2)

(RO2) a homotopy class [¢)] of isomorphisms of real bundle pairs in (5.2), and

(RO3) a spin structure s on the real vector bundle V¢(—BQ(L*)¢~5* over X? compatible with the
orientation induced by (RO2).

An isomorphism O in (5.2) restricts to an isomorphism

ARPV? ~ (L9)®? (5.3)

of real line bundles over X?. Since the vector bundles (L‘E)®2 and 2(L*)¢~’* are canonically oriented,
© determines orientations on V¥ and V‘P(—B2(L*)¢*. We will call them the orientations determined
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by (RO2) if © lies in the chosen homotopy class. An isomorphism O in (5.2) also induces an
isomorphism

AP (VO2L*, 0@26%) ~ AP (V, ) ® (L*, ¥)®?

N N 5.4
~ (L, 9)%? @ (L*, %)% ~ (BxC,0x¢), o4

where the last isomorphism is the canonical pairing. We will call the homotopy class of isomor-
phisms (5.4) induced by the isomorphisms © in (RO2) the homotopy class determined by (RO2).

Proposition 5.2. Suppose (X,0) is a symmetric surface and (V,p) is a rank n real bundle pair
over (X,0). A real orientation on (V,) as in Definition 5.1 determines a homotopy class of
isomorphisms

U (V@2L*, p@26*) ~ (ExC"2 o) (5.5)

of real bundle pairs over (X,0). An isomorphism ¥ belongs to this homotopy class if and only if
the restriction of ¥ to the real locus induces the chosen spin structure (RO3) and the isomorphism

APT: AP (VD2LY, p@2¢*) — AP (ExC 2 0 x¢) = (£xC, 0 x¢) (5.6)
lies in the homotopy class determined by (RO2).

This proposition is proved in Section 5.2 after some topological preliminaries concerning symmetric
functions on symmetric surfaces are established in Section 5.1. Proposition 5.2 is applied to the
orientability problem (A) on page 11 in Section 5.3.

5.1 Homotopies of functions from symmetric surfaces

Let (X, ¢) be a topological space with an involution. For any Lie group G with a natural conjuga-
tion, such as C*, SL,,C, or GL,,C, denote by C(X, ¢; G) the topological group of continuous maps
f: X — G such that f(¢(x))=f(x) for all z€ X. The restrictions of such functions to the fixed
locus X?c X take values in the real locus of G, i.e. R*, SL,R, and GL,R, in the three examples.

Lemma 5.3. Let (X,0) be a symmetric surface with fized components X9, ...,X7 and neZ*. For
every i = 1,...,m and continuous map ¢ : ¥ — GL,R, there ezxists feC (3, o; GL,C) such that
f]g;r = 1 and f is the identity outside of an arbitrarily small neighborhood of 7. The same

statement holds with GL,R and GL,C replaced by SL,R and SL,C, respectively.

Proof. Let S x(—2,2) — X be a parametrization of a neighborhood U of X7 such that S*x0
corresponds to X7 and

o(0,t) = (0,—t) Y (0,t)eS'x(-2,2).

Since the inclusion GL,R — GL,,C induces trivial homomorphisms from 7; of either component
of GL,R to 71 (GL,C), we can homotope ¥ to the identity-valued constant map through maps
hy: S'— GL,,C. We define f on U by

h(0), ifteo,1];
£0,1) =4 I, if ¢ e [1,2);
h_i(0), ifte (—2,0];

and extend it as the identity-valued constant map over X —U. The same argument applies with
GL,R and GL,C replaced by SL,R and SL,,C, respectively. O
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Figure 5: The paths C1,...,Cy cut X° to a disk.

Lemma 5.4. Suppose (3,0) is a symmetric surface, neZ*, and feC(%,o;SL,C). If
flse: 27 — SL,R

1s homotopic to a constant map, then f is homotopic to the constant map Id through maps
fteC(E, 0;SL,C).

Proof. Let (X% ¢) be an oriented sh-surface which doubles to (¥, ). By assumption,
Fliasey, : (05%); — SL,C

is homotopic to Id through maps f;eC((0%?);, ¢; SL,C) on each boundary component (9%°); of X°
with [¢;|=0. Since feC(%, 0;SL,C), this is also the case for f|s), for each boundary component
(0%0); of X0 with |¢;|=1; see [7, Lemma 2.4].

A homotopy f; as above extends over ¥° as follows. Suppose fo= f|,s» and f; =Id. Let I=[0,1]
and (0X°) xI— U be a parametrization of a (closed) neighborhood U of 0%° < ¥ with coordi-
nates (w, s). Define

Faospw) - F7Hw), i 2 = (w,5) € U ~ (657 <,

Gy : X —SL,C by Giz)=
t " y Giz) {[n, if ze YT

Since Gy(w, 1) =1I,, for all ¢, this map is continuous. Moreover, Go(z) = 1I,, for all ze X and

Gi(w,0) = fi(w) - [~ (w)
is a homotopy between Id and f~!. Thus, H; = G; - f is a homotopy over ¥ extending f;.
By the previous paragraph, we may assume that f is the constant map Id on 0%°. Choose embedded

non-intersecting paths {C;} in X* with endpoints on 0%? which cut X into a disk D?; see Figure 5.
The restriction of f to each C; defines an element of

71(SLnC, I,) ~ 71 (SUy, I,) = 0.
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Thus, we can homotope f to Id over C; while keeping it fixed at the endpoints. Similarly to the
previous paragraph, this homotopy extends over X? without changing f over dX° or over C; for
any C; # C;. Thus, we may assume that f is the constant map Id over the boundary of D?. Since

9 (SLn(C, In) X T2 (SUn,In) = 0,

the map f: (D%, S') — (SL,C, I,,) can be homotoped to Id as a relative map. Doubling such a

homotopy f; by the requirement that fi(o(z)) = fi(z) for all ze X, we obtain the desired homotopy
from f to Id over all of X. O

Corollary 5.5. Let (X,0) be a symmetric surface and
P,V (V) — (ExC", 0xc)
be isomorphisms of real bundle pairs over (X, 0). If the isomorphisms

q)|v¢, \IJ|V¢>Z VY —s EXRn,

5.7
AP, AZT: ASP(V, ) — AZP(ExC™, o xc) = (ExC,0xc) (5.7)

are homotopic, then so are the isomorphisms ® and W.
Proof. Let feC(X,0;C*) be given by
AP = fART: AZP(V, ) — (ExC, 0 xc).

Since the second pair of isomorphisms in (5.7) are homotopic, there exists a path f;eC(X,0;C*)
such that fy=1 and fi=f. Let

Uy (V) — (ExC", 0 x¢)

be the composition of ¥ with the real bundle map

ft(Z) 0 0

0 1 0
(ExC"oxc) — (ExC" oxc), (z,v)— . NE (5.8)

0 ... 0 1

Thus, ¥ ;=W is homotopic to ¥ and Ag)pé :Agpq;f'

Let FeC(%,0;GL,C) be given by
U(v) = {idx F(r(v))} (®(v)) YV veV,

where m : V — X is the projection map. By the previous paragraph, we can assume that
FeC(%,0;SL,C). Since the first pair of isomorphisms in (5.7) are homotopic,

F‘E?: Ef I SLnR

is homotopically trivial for every component ¥¢ < X7 of the fixed locus. By Lemma 5.4, F' is
thus homotopic to the constant map Id through elements F;eC (X, o;SL,C). This establishes the
claim. 0
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5.2 Isomorphisms induced by real orientations

We now apply Lemma 5.3 and Corollary 5.5 to establish Proposition 5.2. We then deduce some
corollaries from this proposition.

Proof of Proposition 5.2. Let ¥7,... X7 <X be the connected components of the fixed locus.

Since ¢1 (V@2L*) =0 and the vector bundle V“’G—)Q(L*)J’* is orientable, an isomorphism ¥ as in (5.5)
exists; see [3, Propositions 4.1,4.2]. For each i=1,...,m, choose ¢;: £ — GL,12R so that the
composition of the restriction of ¥ to (V“”@Q(L*)¢*)|gg with the isomorphism

Y7 xR — N7 xR (z,0) — (2,%5(2)v),

induces the chosen orientation and spin structure on (V“"(—BQ(L*)‘};*)E;’. Let f;: ¥ —> GL,2C
be a continuous map as in Lemma 5.3 corresponding to (7,1;). The composition of the original
isomorphism ¥ with the real map

(ExC"2 o xc) — (ExC"*2, o xc), (z,0) — (2, f1(2). . .fm(2)V),

is again an isomorphism of real bundle pairs as in (5.5).

By the previous paragraph, there exists an isomorphism ¥ as in (5.5) that induces the chosen
orientation and spin structure on V¥@2(L*)?". It determines an isomorphism

AfCOp (Ve2L*, 90@25*) ~ Ag’p (Tx C"t? o x ¢) = (XxC,oxc)
and thus an isomorphism AFPW as in (5.6). If ¢ is the isomorphism in (5.6) determined by an
isomorphism in (5.2) from the chosen homotopy class (RO2), then
) = fACPY (5.9)
for some feC(3,0;C*). Let
Uy (VO2L*, p@26%) ~ (ExC"2, 0 xc)

be defined as in (5.8). By (5.9), AfCOp\IIf = 1. Since ¥ and 1 induce the same orientations on

V“D@Q(L*)(Z*, flxe >0. Thus, ¥y induces the same orientation and spin structure on V‘p(—BQ(L*)g*
as .

We conclude that there exists an isomorphism ¥ as in (5.5) inducing the chosen orientation and

spin structure on V“pG—)Q(L*)‘g* so that the isomorphism AfCOp\II lies in the homotopy class of the
isomorphisms (5.4) determined by (RO2). By Corollary 5.5, any two such isomorphisms are ho-
motopic. O

Corollary 5.6. Suppose (X, 0) is a symmetric surface and (L, 5)—>(E,0) is a rank 1 real bundle
pair. If L — X7 is orientable, there exists a canonical homotopy class of isomorphisms
(L22@2L*, ¢®2@2¢*) ~ (ExC3, 0 x¢) (5.10)

of real bundle pairs over (¥,0). In general, an orientation of each component £ of 37 such that

L‘g\gg is non-orientable determines a canonical homotopy class of isomorphisms (5.10); changing
an orientation of such a component XY changes the induced spin structure, but not the orientation,
of the real part of LHS in (5.10) over ¥¢.
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Proof. The line bundle (L‘;)®2 is canonically oriented and thus has a canonical homotopy class of
trivializations. We apply Proposition 5.2 with (V, )= (L, ¢)®?. There is then a canonical choice of
isomorphism in (5.2). It induces the canonical orientations on the real parts of 2(L*, ¢*) or of LHS

in (5.10). If L? is orientable, an orientation on L? determines a homotopy class of trivializations
of the real part of LHS in (5.10). The resulting spin structure is independent of the choice of the
orientation.

If the restriction of L? to a component ¢ ~RP! of the fixed locus ¥ = ¥ is not orientable, then

(L*)‘g* |z is isomorphic to the tautological line bundle
v={(( (z,y)) eRP' xR?: (z,y)elcR?’} — RP'.
Combining this isomorphism with the trivialization
7@y — RP'xR?, (0, (x1,31), (22,92)) — (€, (x1—y2, 22 +11)), (5.11)

we obtain an isomorphism

2(L*)** — RP! xR2. (5.12)

It induces the canonical orientation on the domain. The homotopy class of the isomorphism (5.12)

does not depend on the choice of isomorphism of (L*)¢*|gg with ~, once an identification of 3¢
with RP! is fixed. However, it does depend on the orientation class of this identification even after
stabilization by the trivial line bundle, as shown in the next paragraph.

A bundle isomorphism v —~ covering an orientation-reversing map RP' — RP! is given by
Y7, ([u’v]v(xvy)) - ([u7 —v],(a:, _y))
The composition of this isomorphism with the isomorphism (5.11) is the isomorphism
7@y — RP'xR?, (0, (z1,31), (w2, 52)) — (€, (2142, T2—11)). (5.13)
Under the standard identification of R? with C, RP! can be parametrized as
Sl _ R]P)l, eiO _ [eiG/Q]'
Under this identification, the isomorphisms (5.11) and (5.13) are given by

(¥, ae®/2, bei?/2) — (e &?/2(q+ib)) Y a,beR,
(eie7aei9/27b619/2) N (e197e*i9/2(a+ib)) Y a,beR,

respectively. They differ by the map
St — GLsR, et — o7,

Since this map generates m1(GL2R), the trivializations of 4@y in (5.11) and (5.13) are not homotopy
equivalent, even after stabilization by the trivial line bundle. ]
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Corollary 5.7. Suppose (X, 0) is a symmetric surface and D =Dy, is a real CR-operator on a
rank n real bundle pair (V,¢) over (¥,0). Then a real orientation on (V,¢) as in Definition 5.1

induces an orientation on the relative determinant det D of D in (5.1). Changing a real orientation
on (V,¢) by changing the spin structure s in (RO3) over one component ¥J of X7 reverses the

orientation on det D.

Proof. Let ((L, qz~5), [¢],5) be a real orientation on (V,¢). By (4.6), there is a canonical homotopy
class of isomorphisms

®2

det Dy gors paode) (det D)) ® (det D(L*,&*))

of real lines, where the subscripts indicate the real bundle pair associated with the corresponding
real CR-operator. Since the last factor above is canonically oriented, so is the line

(det D)) ® (det D (5.14)

(V@zL*,v@zcﬁ*)) :

By Proposition 5.2, the real orientation on (V,¢) determines a homotopy class of isomorphisms
(Ve2L*, 4,0@25*) ~ (Bx C"*2 o x ¢).
By (4.6), the latter in turn determines an orientation on the line

detD )= (det D ) @ (det ds,c) &)

(V@2L* o@2¢* (V@2L* 0@26%)

Combining this with the canonical orientation of the line (5.14), we obtain an orientation on det D.

Let Scan denote the canonical spin structure on ¥ x R"*2. By Proposition 5.2, the identity au-
tomorphism of Agp(E x C"*2) and a spin structure on X% x R"*2? determine a homotopy class of

isomorphisms
U: (IxC"2 o xc) — (ExC"? o xc) (5.15)

of real bundle pairs over (3, 0). The latter in turn determines a homotopy class of isomorphisms
det Dy : (det dn,c)®™?) = det(n+2)d.0) —> det(n+2)ds.0) = (detdxc)®™? . (5.16)

For the purposes of the last claim of this corollary, it is sufficient to check that the last isomor-
phisms are orientation-reversing for the spin structure s; on £ x R"*2 which differs from sca, on
precisely one component ¥¢ of 7.

By Lemma 5.3, we can assume that the map ¥ in (5.15) is the identity outside of a tubular
neighborhood U ¢ ¥ of ¥¢ with U ¢ ¥ disjoint from X7 —X7. Pinching each of the two components
of the boundary oU of a slightly larger tubular neighborhood U’, we obtain a nodal symmetric
surface (Xo, 0g) consisting of (P!, 7) and a smooth symmetric, possibly disconnected, surface (¥, o)
which share a pair of conjugate points. We can choose a flat family

(7r: U—sAc: U—>U)

of deformations of (X, 0¢) as in Section 4.2 with A =C? and (Zgx,0¢x) = (2, o) for some t*e Ag

and a quotient map
q: AxYpx — U
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intertwining the involutions ¢xo and ¢ so that ¢ is a diffeomorphism outside of AxdU and the map

Yix —> Dix, z — q(t*, 2),

is the identity.

Since the isomorphism W in (5.15) is the identity over ¥—U D&U/, ¥ induces an isomorphism
U (UX(C"H,?X c) — (UX(C"+2,EX c)
which restricts to ¥ over (X¢x,0¢x) and to the identity over (A x (X—U))>X'. Denote by
Tp: (Zox C"*2, oo x ¢) — (Zox C"*2 og x c)
the restriction of U over (2, 0q) and by
det Dy, : det((n+2)ds,,c) — det((n+2)dsyc) (5.17)

the homotopy class of isomorphisms induced by Wy.

By (D1) on page 23, U determines a homotopy class of isomorphisms
det Dy : det ((n+2)3UIAR;C) —> det ((n+2)3u|AR;(c)

of determinant line bundles over Ag. Since det Dy, restricts to det Dy over (3¢x, o¢x ) and to det Dy,
over (Xg,00), the isomorphisms (5.16) are orientation-reversing if and only if the isomorphisms
det Dy, are orientation-reversing. The latter correspond to the tensor products of isomorphisms
det Dy, for (¥',0') and det Dy, , for (P!, 7). The isomorphisms det Dy, are the identity.
Since the isomorphisms Wy reverse the spin structure on the fixed locus ¢(X9) of (P!, 7), the
isomorphisms det D‘I’0|u>1 are orientation-reversing; see [10, Proposition 8.1.7]. We conclude that
the isomorphisms (5.17) and thus (5.16) are orientation-reversing. O

Corollary 5.8. Suppose (X, J,®) is an almost complex manifold with an anti-complex involution
and (V,¢) is a rank n real bundle pair over (X,¢). Let Be Hy(X;7Z), g,1€Z>°, and (X,0) be
a genus g symmetric surface. Then a real orientation on (V,¢) as in Definition 5.1 induces an
orientation on the line bundle

det Dy, = (det D(y)) ® (det ac)®" —> Hy (X, B)? . (5.18)

~.

Proof. By Corollary 5.7 applied with the real bundle pairs u*(V, ¢) and u*(L, ¢) over (X, o), a real
orientation on (V, ) determines an orientation on the fiber of the line bundle

(det Dy ) ® (det 3c)®" — By (X, B)*7 x J<

over each point (u,j) which varies continuously with (u,j). Since the resulting orientation on
this line bundle is completely determined by the chosen real orientation on (V, ) via the isomor-
phisms (5.5), it descends to the quotient (5.18). O
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5.3 The orientability of uncompactified moduli spaces

We will now apply Proposition 5.2 to study the orientability of the uncompactified real moduli
spaces in Theorem 1.3. We first consider the case X =pt and then use it to establish the restriction
of Theorem 1.3 to the main stratum M, (X, B; J)? of M, (X, B; J)?.

Proposition 5.9. Let g,1 € Z° be such that g+1>2. For every genus g type o of orientation-
reversing involutions, the line bundle

ARP(TMS)) ® (det o) —> MY, (5.19)

1s canonically oriented. The interchanges of pairs of conjugate points and the forgetful morphisms
preserve this orientation; the interchange of the points within a conjugate pair reverses this orien-
tation.

Proof. The cardinality of the automorphism group is an upper semi-continuous function on the
compact moduli space M;}l. Thus, there exists [(g)€Z™ so that for every [ >1(g) every element

[C] = [E,(ZT,ZI_),...,(Z;_,ZI_)J] € Mg,l

has no automorphisms. We first establish the proposition under the assumption that =1(g).

Let T—>Z/l;l denote the vertical tangent bundle over the universal curve for M; ;- For C as above,
let

TC =TS (=2 =21 —...—2 —2) and T*C=T*S(zf 421 +...+2 +2), (5.20)

be the twisted holomorphic line bundles associated to the sheaves of holomorphic tangent vector
fields vanishing at the marked points and of meromorphic one-forms with at most simple poles at
the marked points and holomorphic everywhere else. We construct these line bundles using holo-
morphic identifications of small neighborhoods of z;r and z; interchanged by o. The involutions do
on 7Y and do* on T*Y then induce involutions on TC and T*C; we denote the induced involutions
also by do and do™.

Let SC* and SC~ be the skyscraper sheaves over X given by

+ - - _
SCT = T*E’zf+...+zfr7 SC = T*E|zf+...+z; :

The projection
m: HO(S; 8Ct@Sc™) = (HO(%; SCH@H  (%;5¢7))7 — HO(%; SC) (5.21)
is an isomorphism of real vector spaces. We orient H 0(%; SCT@®SC™)° and its dual via the isomor-

phism 5 5 .
¥ HO(X; SCH)* = T:3@...0T+T — (HY(Z; SCt@sc)7)
from the complex orientations of Tz;rE, e ,TZTE.

The Kodaira-Spencer (or KS) map and the Dolbeault isomorphism provide canonical isomorphisms

TieyMS, ~ H'(S,TC)7 ~ H' (3;,7C)7; (5.22)
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see [28, Section 3.1.2] and [22, p151]. By Serre Duality (or SD), there is a canonical isomorphism
HY(S;TC) ~ (H*(Z; T*CRT*Y))™;

see [22, p153]. Since o is orientation-reversing, the real part of the SD pairing identifies the space
of invariant sections on one side with the space of anti-invariant sections on the other; the latter
is isomorphic to the space of invariant sections by multiplication by i. Thus, there is a canonical
isomorphism

HY(S,7TC)° ~ (HY(S; T*CRT*Y)7) . (5.23)
Since the degree of the holomorphic line bundle T'C is negative,
ARP(HY(S; T*CRT*X)7) = det O+ do)@(T+5.do* ) -
The long exact sequence in cohomology for the sequence
0 — T*SRT*Y — T*CRT*Y —> SCT@®SC™ — 0 (5.24)
and the chosen orientation on H°(Z; SC*@SC~)? induce an orientation on the line
det O(7xc do)@(T#5,do*) @ det Oprss do)o2 - (5.25)
Thus, the real line bundle
ARP (T M) @ (det (7 gouy2) — MY, (5.26)

is canonically oriented.

By Corollary 5.6 applied with (L, 5) = (T*%,do™), there is a canonical homotopy class of isomor-
phisms
(T*S®2@2TY, (do*)®?@2do) ~ (ExC?, o xc)

of real bundle pairs over (X, 0). Since the determinants of d-operators on the real bundle pairs
2(TY,do) and 2(X xC?, 0 x ¢) are canonically oriented, so is the line bundle

(det 9(7-*7(10*)@2) ® (det é(c) — M;l' (5.27)
Combining this orientation with the canonical orientation for the line bundle (5.26), we obtain an

orientation on the line bundle (5.19).

Since the interchanges of pairs of conjugate points and the forgetful morphisms preserve the orienta-
tion of (5.21), they also preserve the orientation on (5.19) constructed above. Since the interchange
of the points within a conjugate pair reverses the orientation of (5.21), it also reverses the orienta-
tion on (5.19).

For [ <l(g), we orient the line bundle (5.19) by downward induction from the orientation of (5.19)
with [ replaced by [+1 and the orientation of the fibers of the forgetful morphism

Mg — Mg, (5.28)

obtained from the complex orientation of T’ + Y. If the fixed locus X7 of (X, 0) is separating, the
+1

fibers of this morphism are disconnected and differ by the interchange of the points in the last
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conjugate pair of points. However, the induced orientation on (5.19) is still well-defined for the
following reason. By Proposition 5.9 with [ replaced by [+1, the interchange of the points within
a conjugate pair reverses the orientation on the line bundle (5.19) with [ replaced by [+1. In the
case of the last conjugate pair of points, such an interchange also reverses the orientation of the
fibers of (5.28). Thus, it has no effect on the induced orientation on (5.19). O

Corollary 5.10. Theorem 1.3 holds with My (X, B; J)? replaced by My (X, B; J)* for every
genus g orientation-reversing involution o.

Proof. We first assume that g+1 > 2 as in Proposition 5.9. The forgetful morphism f§ induces a
canonical isomorphism

ARP (T (X, B; J)*7) ~ (det Dirx ag)) @ f* (AfR?p(TM;l)) — M, (X, B; J)*° (5.29)

of real line bundles. By Corollary 5.8 applied with (V, ¢)=(TX,d¢), a real orientation on (X, w, ¢)
determines an orientation on

det D(1x ag) = (det Dipx.ag)) ® (det 3c)®" — Hyi(X, B)* . (5.30)

Combining the canonical isomorphism (5.29), the canonical orientation of (5.19), and the orienta-
tion of (5.30) determined by the chosen real orientation on (X,w, @), we obtain an orientation on
the line bundle (1.5) over 9, (X, B; J)%°.

If g+1<2, we orient the line bundle (1.5) from the orientation of (1.5) with [ replaced by [+2 and
the orientation of the fibers of the forgetful morphism

My12(X, B; J)*7 — My (X, B; J)*° (5.31)

obtained from the complex orientations of T Z and T, - Z The induced orientation on (1.5) is

still well-defined for the following reason. By Prop051t10n 5 9, the interchange of the points within
a conjugate pair reverses the orientation on the line bundle (5.19) with [ replaced by [+2 and thus
on the line bundle (1.5) with [ replaced by [+2. In the case of the last two pairs of conjugate points,
such an interchange also reverses the orientation of the fibers of (5.31). Thus, it has no effect on
the induced orientation on (1.5). O

Proposition 5.9 is also obtained in [6]; see Corollaires 1.2 and 1.1, Proposition 1.4, and Lemmes 1.3
and 1.4 in [6]. A version of Corollary 5.10 for certain covers of the uncompactified moduli spaces
M, (X, B; J)?7 appears in [6] as well. The orientability of these covers is obtained in [6] in
a subset of cases for which Corollary 5.10 implies the orientability of the spaces M, (X, B; J 4
themselves (while Theorem 1.3 also yields the orientability of their compactifications). For example,
let X,,.,5 cP"~! denote a hypersurface of degree §€Z™ preserved by 7,,. Corollary 5.10 implies that
My (X5, By J)™97 is orientable if

0=0,1 mod 4 and d=n mod 2.

With the second condition strengthened to d =n mod 4, this conclusion is obtained in [6, Corol-
laire 2.4] under the additional assumption that X7 is a single circle. If 37 consists of more than
one circle, [6, Corollaire 2.4] shows that this conclusion holds after pulling back to a cover of
My 1( X5, By J )#9. The orientability of the compactified moduli spaces of real maps necessary for
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defining real GW-invariants is not considered in [6].

A canonical orientation on the real line det D in Corollary 5.7 under overlapping topological as-
sumptions is obtained in [6] using a completely different approach. We obtain it as an immediate
consequence of the existence of a canonical homotopy class of isomorphisms for the corresponding
real bundle pairs. The argument of [6] is heavily analytic in nature and is based on explicit sign
computations for certain automorphisms of determinant line bundles in [5]. In contrast, our proof
is completely topological; the proofs of the two statements from [7] and [3] cited in the proofs of
Lemma 5.4 and Proposition 5.2, respectively, are also topological and take up only a few pages in
total. This approach allows us to study the extendability of the canonical orientations of Corol-
lary 5.10 across the codimension-one boundary strata of the moduli spaces on the topological level
of real bundle pairs; see Section 6.

6 Extensions over compactifications

In this section, we study the extendability of the canonical isomorphisms and orientations of Sec-
tion 5 across paths passing through one-nodal symmetric surfaces. Proposition 6.1 below implies
that the line bundle (3.1) is orientable. This is a key technical result needed to extend the proof
of Corollary 5.10 to the compactified setting of Theorem 1.3. We deduce this proposition from the
proof of Proposition 5.9 and the statements of Corollary 6.16 and Lemma 6.17.

Proposition 6.1. Let g,1 € ZZ° be such that g+1>2. The orientation on the restriction of the real
line bundle (3.1) to RMg; provided by Proposition 5.9 flips across the codimension-one boundary
strata of types (E) and (H1) and extends across the codimension-one boundary strata of types (H2)
and (H3).

6.1 One-nodal symmetric surfaces

A one-nodal oriented surface ¥ is a topological space obtained by identifying two distinct points
of a closed oriented smooth surface i, not necessarily connected. The surface Y is called the
normalization of X; it is unique up to a diffeomorphism preserving the two distinct points as a
set. A one-nodal symmetric surface (X, 0) is a connected one-nodal surface ¥ with an involution o
induced by an orientation-reversing involution & on the normalization ¥ of % Throughout this
section, we will denote the two distinguished points of ) by x1 and z9 and their image in X, i.e. the
node, by z19. The four topological possibilities for the singular structure of (X, ) are described
by (E)-(H3) in Section 3.2. Note that

o x5, if (X,0) is of type (E);
x;, if (X, 0) is of type (H).

Let ¢/ (x1) =9 and &' (z2) =21.
We begin by extending the main statements of Sections 5.1 and 5.2 to one-nodal symmetric surfaces.

In particular, we observe that Proposition 5.2 extends to such surfaces. In [20], we show that
Proposition 5.2 actually extends to all nodal symmetric surfaces.

Proposition 6.2. The conclusion of Proposition 5.2 holds for one-nodal symmetric surfaces.
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Lemma 6.3. The conclusion of Lemma 5.4 holds for one-nodal symmetric surfaces.

Proof. Let fe C(%,5;SL,C) be the function corresponding to f € C(3,0;SL,C). In particular,
f(z1) = f(22).

Suppose (3, 0) is of type (E). Proceeding as in the proof of Lemma 5.4, choose ¥* and U so that
z1€XP—U, the cutting paths C; so  that z1 ¢}, and the extensions of the homotopies of f from Cj
to X% so that they do not change f at 1. Choose an embedded path v in the disk D? in the last
paragraph of the proof of Lemma 5.4 from x; to 0D?. Since f(ml) € SL,R in this case, we can
homotope f to Id over v while keeping the values of f at x1 and at the other endpoint in SL,R and
at Id, respectively. Similarly to the second paragraph in the proof of Lemma 5.4, this homotopy
extends over D? without changing f over dD? and thus descends to ¥.°. We then cut D? along
into another disk and proceed as in the second half of the last paragraph in the proof of Lemma 5.4.
The doubled homotopy then satisfies f;(z1) = ft(xg) and so descends to X.

If (3,0) is of type (H), then
f: U (02%); —> SL,R
leil=

is homotopic to Id through maps f; such that ft(:nl) = ft(:cg) The remainder of the proof of
Lemma 5.4 preserves this condition on the homotopy. O

Corollary 6.4. The conclusion of Corollary 5.5 holds for one-nodal symmetric surfaces.

Proof. The first paragraph of the proof of Corollary 5.5 applies without any changes. The second
paragraph applies with Lemma 5.4 replaced by Lemma 6.3. 0

Lemma 6.5. Let (V,i) be a finite-dimensional complex vector space and A,B : V. — V be
C-antilinear isomorphisms such that A%, B> = Idy. Then there exists a C-linear isomorphism
V: V—V such that 1» = AoyoB. If

{APA o {ALPBY = {ACPBYo{AZPA}: ACPV — ALY, (6.1)
then 1 can be chosen so that Ag’pwzld.

Proof. Since A?, B?>=Idy, the isomorphisms A, B are diagonalizable with all eigenvalues +1. Since
A, B are C-antilinear, we can choose C-bases {v;} and {w;} for V' such that

A(Uz) = V4, A(ivi) = —ivi, B(w,) = W, B(iwi) = —iwi.
The C-linear isomorphism ¢: V —V defined by ¢ (w;) =v; then has the first desired property.

The automorphisms Ag)pA and AFCOPB are C-antilinear and have one eigenvalue of +1 and one
of —1. If (6.1) holds, the eigenspaces of Ag)pA and Ang are the same and so

VIAC...ACUp =T - WL AC...ACWp € A(tCOpV

for some reR*. Replacing wy by rw; in the previous paragraph, we obtain an isomorphism 1 that
also satisfies the second property. O
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Proof of Proposition 6.2. Let 17, L—> be complex vector bundles and

Wy V‘xl — ‘7’362 and Py E}Il — Z}’x

2

be isomorphisms of complex vector spaces such that
V=T~//~, v~ (v) VU€‘7|:E1, and L=Z/~, v~1o(v) Vvef/bl.
Denote by ¢1 and @9 the lift of ¢ to V and the lift of & to L, respectively. Define
(VTN/7 P12) = (V@2L*, 31®23%), PYra = 1 D 2(Py H)*: WN/’

~
— W .
x1 T2

Thus, (V,31) and (L, 32) are real bundle pairs over (£,5) that descend to the real bundle pairs
(V,) and (L, ¢) over (X, 0). Furthermore,

bra(v) = {szlz(wml(@u(vm if (2,0 is of type (E); 62)

P12(¥12(P12(v))),  if (¥, 0) is of type (H);

for all ve |, .

For any feC(2,5; GLp4+2C), let
\T/f: (ix@””,&xc) — (ZNIX(C"Jrz,&xc), \Tlf(z,v) = (z, f(2)v).

The choices (RO2) and (RO3) in Definition 5.1 for (X, o) lift to (3,5). By Proposition 5.2, there
thus exists an isomorphism o N
®: (W, 12) — (ExC"2 5 xc)

of real bundle pairs over (i,&) that lies in the homotopy class determined by the lifted real
orientation. By the proof of Proposition 5.2, & can be chosen so that it induces the isomorphism
in (5.6) over (3,5) determined by the lift of a given isomorphism in (5.2) over (2,5). This
implies that

{5/ x1d} o {AFPD} = {ALPB o { AR 1o} : AP |4y —> {22} x ARPC™H2 = {22} xC.  (6.3)
We show below that there exists feC(X, o; SL,4+2C) so that
{5’><Id}o\ifo&> = \Ilfoéowlg: Wla, —> {@2} xC*2. (6.4)

Thus, ¥ foi descends to an isomorphism V¥ in (5.5) of real bundle pairs over (X, o) that induces the
isomorphism in (5.6) determined by a given isomorphism in (5.2). Furthermore, f can be chosen
so that U satisfies the spin structure requirement of Proposition 5.2. By Corollary 6.4, any two
isomorphisms (5.5) satisfying the conditions at the end of Proposition 5.2 are homotopic.
Suppose (3, 0) is of type (E). By (6.2), the C-antilinear isomorphisms

id x C, {5 X C}O&)meo&)_l = E’O&lnglQO&)_l : {3}1} X Cn+2 -— {xl} X Cn+2

square to the identity. By (6.3), the top exterior powers of these automorphisms commute (both
compositions are the identity). By Lemma 6.5, there thus exists 1€ SL,,;2C such that

idx1p = {Fx cpe}oPorhrpo® L o} x C"2 — {1} x C" T2 (6.5)
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Since SL,.2C is connected, there exist f € C(i,&;SLnJrg(C) and a neighborhood U of x; in )
such that

,(707 if z=uwy; ~
z) = Uno(U) = . 6.6

fz) {Id7 if z¢Uva(U); =2 (6.6)
By (6.5) and (6.6), f satisfies (6.4). Since f restricts to the identity over %7, \Tlfo<5 induces the
same orientation and spin structure over %% —{x5} as ®. The orientation and spin conditions are
automatically satisfied over x12, since they are determined by the real part of the isomorphism (5.6).

If (3, 0) is of type (H), define »€ GL,,12C by
idx1p = {5 xTd}oPorhigo®~t: {a1} x C"2 — {21} xC™+2. (6.7)

By (6.2) and (6.3), oc =co¢) and detcyp =1, i.e. € SLyioR. If (X, 0) is of type (H2) or (H3),
i.e. 1 and z9 lie on different topological components EU, E" of E" let

¢: 57 —> SLp4oR (6.8)

be the constant function with value 4. If (¥,0) is of type (H1), i.e. 1 and z2 lie on the same
topological component E" of 329, first choose (6.8) so that zp(xl) 1 and w(xg) =1Id. Since f= 1/}
satisfies (6.4), \Ilfo<1> induces a trivialization of V“QC—DQ(L*)‘? over the image £¢ of 327 in . This is
also the case if ¢ is replaced by 9’4 for any ¢ as in (6.8) such that 12’(:101), 1;’(1’2) =1Id. Choose such
zZ' so that the induced trivialization on each of the two loops in X{ lies in the chosen spin structure;
we then replace ¥ with g 1/} Returning to the general (H) case, choose feC(,5; SL;,+2C) and a
neighborhood U of Ef{ in 3 such that

o Ja 1f2€§(1;, AR AN .
f(z) = {Id’ it 24U Un(X7-%9) = &; (6.9)

this is possible by Lemma 5.3. By (6.7) and (6.9), U satisfies (6.4). Since [ restricts to the identity
over 37 — Z‘l’ U fo<I> induces the same orientation and spm structure over 37— E" as ®. If (3,0) is

of type (H2) or (H3), the latter is also the case over E" because f is constant over Z" I (3, 0) is
of type (H1), the orientation and spin structure structure induced by Wyo® over ¥{ are those of
the original real orientation by the choice of 1 above. O

Corollary 6.6. The first conclusion of Corollary 5.7 holds for one-nodal symmetric surfaces.

Proof. An orientation on the determinant line of a real CR-operator on a real bundle pair (V)
over a one-nodal symmetric surface (X, 0) is determined by

(1) an orientation on the determinant line of a real CR-operator on the corresponding real bundle
pair (V, @) over (X£,5) as in the proof of Proposition 6.2, and

(2) an orientation on the real vector space V,/,.

An isomorphism of real bundle pairs over (3, o) as in (5.5) lifts to a similar isomorphism over (&, &)
which respects all identifications on the lifted bundles. A real orientation on (V, ¢) determines (2)
and an isomorphism of real bundle pairs over (X,0) as in (5.5); see Proposition 6.2. Thus, the
claim follows from the proof of the first conclusion of Corollary 5.7. O
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6.2 Smoothings of one-nodal symmetric surfaces
Let C=(%,0, (2,27 )s---, (2,2 )) be a one-nodal marked symmetric Riemann surface and
(m:U— AT U—U,s1: A—U,...,51: A—U)
be a flat family of deformations of C as in Section 4.2 with AcC. Define
A* = A—{0}, Ap=AnR, Aj=A*nR, Af=AnRE.

Denote by z12 € ¥ the node of ¥, by S its normalization, and by Y*=Y— {12} its smooth
locus.

A neighborhood of x12 in U is isomorphic to
U = {(t, 21, zg)eAx(CQ: |z1], |22] <1, legzt}.
As fibrations over A,

(t,21), if [z1]>|z2];

U= (Z/{o I_Iu/)/ ~, (t,zl,ZQ) ~ { (6.10)

(t, ZQ), if |Z1| < |ZQ|;

for some family U’ of deformations of ¥* over A, a choice of coordinates z; on ¥ centered at T,
and their extensions to &. The local coordinates z1, z2 and the family ' in (6.10) can be chosen
so that U’ is preserved by ¢ and the identification in (6.10) intertwines the involution

Uy — Uy, (t,Zl,ZQ) — (%,72,71) or (t,zl,zg) — (f,?l,@), (611)

depending on whether (X, z12,0) is of type (E) or (H), with the involution ¢ on ¢. In particular,
U retracts onto Yy respecting the involution ¢.

Suppose 7: U — A and ¢ are as above, (V,p) — (U,¢) is a real bundle pair, and V and A are
a connection and a 0-th order deformation term on (V,¢) as in Section 4.3. The restriction of V
and A to (V,¢)|z,0,) With t € Ag determines a real CR-operator D;. The determinant lines of
these operators form a line bundle

det D(V,go) — AR > (6.12)

see Section 4.3 and Appendix A. We denote by det dc —> Ag the determinant line bundle associated
with the standard holomorphic structure on (U x C,¢xc).

Corollary 6.7. Let (m,%), (V,p), and (V,A) be as above. Then a real orientation on (V,p) as in
Definition 5.1 induces an orientation on the line bundle

cfe\t D(V,<,o) = (det D(V,go)) ® (det é(c)®n — Ap, (613)

where n=rkcV. The restriction of this orientation to the fiber over each te Ay is the orientation

on det Dy induced by the restriction of the real orientation to (V, go)](gtm) as in Corollary 5.7.
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Proof. By Proposition 6.2, the restriction of the real orientation to (V, cp)|(20,ao) determines a
homotopy class of isomorphisms ¥ of real bundle pairs as in (5.5). Since U retracts onto ¥
respecting the involution ¢, every isomorphism ¥ over (Xg, 09) extends to an isomorphism

U (VO2L*, p®20%) ~ (UxC"2 Txc) (6.14)

of real bundle pairs over (U,¢). Since an isomorphism ¥y in the homotopy class determined by the
restriction of the real orientation to (V, ¢)|(s,,+,) satisfies the spin structure and Ag’p conditions at
the end of Proposition 5.2, the restriction W; of (6.14) to (V, ¢)|(x, o,) also satisfies these conditions.
The restriction of the orientation of the line bundle (6.13) induced by W to the fiber over each te Aj
is the orientation induced by W,;. The latter is the orientation induced by the restriction of the real
orientations to (V,¢)|(s,.0,)- O

Thus, the real line bundle (5.30) extends across the (codimension-one) boundary strata of the
moduli spaces M, (X, B; J)? and so does its orientation induced by a real orientation on (X, ).
The other factor in orienting the line bundle (1.5) over the uncompactified space M, (X, B; J)?
is the canonical orientation of the line bundle (5.19). The next lemma makes it possible to extend
the orientations induced by the isomorphisms (5.22) used in orienting (5.19) to (but not across)
the boundary strata.

Let & be a smooth Riemann surface and z € 3. A holomorphic vector field £ on a neighborhood
of  in ¥ with £(2) =0 determines an element

V¢l e TiE@c T,E = C.

Similarly, a meromorphic one-form 7 on a neighborhood of x inﬁ) has a well-defined residue at =,
which we denote by JR,n. For a holomorphic line bundle L — X, we denote by Q(L) the sheaf of
holomorphic sections of L.

Lemma 6.8. Let (m: U —> A7) be a flat family of deformations of a one-nodal symmetric Riemann
surface (X,0) with AcC and x1,z2€% be the preimages of the node x12€X in its normalization.
There exist holomorphic line bundles T, T —U with involutions @, lifting © such that

~

(Tv (P)’Et = (TEhdath)a (7-7 @)’Zt = (T*Eh (dE’TEt)*) v tGA*,
Q(Tls,) = {£eQTS(—21-22)) 1 VE|e, +VEln, =0},
Q(’ﬁgo) = {neQ(T*fE(wl—l—xz)): %mln+iﬁx2n=0}.
Furthermore, (T,3)~ (T, ¢)*.

Proof. We continue with the notation as in (6.10) and (6.11). Denote by T""*'U’ —U’ the vertical
tangent bundle. Let

T = (U() xC u Tvrtul)/~, T = (Uo < C L (Tvrtul)*)/~7
0 ; . d(t,29)%1 . )
(2129, ) ~ cz azll(t,zl)v if [21]> |22]; (1 21, 20, 0) ~ dzill; if |z1|>|22];
—e225 |y I 1211 <I22) —e T || <),
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Under the identifications (6.10), the vector field and one-form on a neighborhood of the node in U/
associated with (t, 21, 22, ¢) Uy x C correspond to the vector field and one-form on Uy given by

0 0 dzly, dzolx,
cl 21— — 29— and c———=—c—,
z Z1 Z9

respectively (the above equality of one-forms holds for t # 0). Thus, 7 and 7 have the desired
restriction properties. Since the map

Tt LiC [t, 21, 22, c1|®[t, 21, 22, 2| — ([t, 21, 22], c162), (£, 21, 22) € Up, c1,¢2€C,
O =0 @ la] — a(v) VoeT. Sy, aeTiSy, (tz) el

is a well-defined isomorphism of holomorphic line bundles, T ~T*.

The identifications in the construction of 7 and 7 above intertwine the trivial lift of (6.11) to a
conjugation on Uy x C with the conjugations on TV*'*U’ and (TV**U’)* induced by dc. Thus, they
induce conjugations ¢ and @ on 7 and 7. The above trivialization of T®@7A' intertwines the
resulting conjugation on the domain with the conjugation tx¢ on U xC. Thus, (7, @) and (T, ¢)*
are isomorphic as real bundle pairs over (U,%). O
Lemma 6.9 (Dolbeault Isomorphism). Suppose (X,0) and (7: U —> A,<) are as in Lemma 6.8 and
(L, qz) — (U, <) is a holomorphic line bundle so that deg L|s; <0 and deg L|sy <0 for each irreducible
component X' <X. The families of vector spaces H%(Et; L) and ﬁl(Et; L) then form vector bundles

R(%?T*L and R'm.L over A with conjugations lifting ¢ which are canonically isomorphic as real
bundle pairs over (A,c).

Proof. The assumptions on L ensure that H3(3; L) =0 for all te A. By the Dolbeault Theorem

[22, p151], this implies that FIO(Zt; L)=0 for all te A. Since Hg(Et; L)=0 for all te A, the vector
spaces Hél(Et;L) naturally form a vector bundle Réﬂ'*L over A. By the second statement, the

sheaf R, L is locally free over A and thus corresponds to a vector bundle élﬂ'*L over A. The
involution ¢ and conjugation ¢ induce conjugations on the two bundles. The Dolbeault Isomorphism
provides an isomorphism between the two resulting real bundle pairs over (A, ¢). ]

~

Lemma 6.10 (Serre Duality). Suppose (X,0), (m: U — A7), and (T, p) are as in Lemma 6.8 and
(L, ¢)—> (U,3) is a holomorphic line bundle so that deg L|s, >2¢4(X)—2 and deg L|sy > 2g, (%) —2
for each irreducible component ¥’ < X. The family of vector spaces Hg(Zt; L) then forms a vector
bundle R%W*L over A with a conjugation lifting ¢ and there is a canonical isomorphism

*

Rim (L*®T) ~ (RYm.L) (6.15)

of real bundle pairs over (A, ¢).

Proof. The left-hand side of (6.15) is a vector bundle by Lemma 6.9. The assumptions on L ensure
that Hé(Zt;L) =0 for all t€ A. Thus, the vector spaces Hg(Zt;L) with ¢ € A naturally form a
vector bundle R%W*L over A. The involution ¢ and conjugation 5 induce a conjugation on the
right-hand side of (6.15). The Serre Duality provides an isomorphism between the two bundles

in (6.15). Its composition with the multiplication by i is an isomorphism between the two bundles
in (6.15) as real bundle pairs over (A, ¢). O
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Remark 6.11. The justification of Dolbeault Isomorphism Theorem in the case of Lemma 6.9
consists of applying the exact sequence of sheaves at the bottom of [22, p150] with p,q =0 and
E = L. As the standard d-operator on a wedge of two disks is surjective, this sequence is indeed
exact over the central fiber ¥y =3 (the exactness is established in [22] over complex manifolds).
The Serre Duality for CR-operators over nodal Riemann surfaces appears in [48, Lemma 2.3] and
endows the total spaces of the left-hand side in (6.15) and of the bundle R(%W*L in Lemma 6.9 with
a topology via the fiberwise SD isomorphisms. The Serre Duality appears on the level of Cech
cohomology in the standard algebro-geometric perspective; see [1, p98]. This viewpoint would
establish Corollary 6.12 below by applying the Serre Duality first and the Dolbeault Isomorphism
second.

Let (m,%,s1,...,5) be a smoothing of a one-nodal marked symmetric Riemann surface
C= (3= 20),-- . (5 7)), (6.16)
T, 7 —>U be the holomorphic line bundles with involutions ¢, ¢ as in Lemma 6.8, and
TC =T(—s1—Fos;—...—s—cosy), TC = 7A’(51 +Cos1+...+s+c0s).

By the last statement of Lemma 6.8, 7C* —=TC.

Corollary 6.12. If the marked curve (6.16) is stable, the orientation on the restriction of the real
line bundle

AFP((R'mTC)%) ® AP ((Rma(TCRT))7) — Ar (6.17)

to Af induced by the Dolbeault and SD isomorphisms as in the proof of Proposition 5.9 extends
across t=0.

Proof. By Lemma 6.9 with L =7TC and Lemma 6.10 with L=T¢C ®’7\', there are canonical isomor-
phisms of vector bundles

R'7.TC ~ R, TC = Ry, (TCRT)*®T) ~ (Rera(TCRT))"

over A which restrict to the Dolbeault and SD isomorphisms over each point. Since they commute
with the involutions on the vector bundles, these isomorphisms induce an orientation on the real
line bundle (6.17) that restricts to the orientation on each fiber induced by the real parts of the
Dolbeault and SD isomorphisms. O

6.3 The orientability of the real Deligne-Mumford space

We now study the extendability of the canonical orientations of the line bundles appearing in the
proof of Proposition 5.9 and establish Proposition 6.1. The two main ingredients in this proof are
Lemmas 6.14 and 6.17 below. The next lemma summarizes the fundamental difference between
the two pairs of cases in Proposition 6.1.

Lemma 6.13. Let (X, x12,0), (7,¢), and (T,¢) be as in Lemma 6.8. The restriction of the real
line bundle T¥ — X7 to the singular topological component X7 < 37 is orientable if the one-
nodal symmetric surface (X, x12,0) is of type (E) or (H1) and is not orientable if (X, x12,0) is of
type (H2) or (H3).
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Proof. If (¥,x12,0) is of type (E), X7 consists of the node x12 and there is nothing to prove.
Otherwise, a local section of 7% near z12 is given by x% along the z-axis and —ya—ay along the
y-axis. It points away from the origin along the z-axis and towards along the y-axis. The claims
in the (H1) and (H2)/(H3) are thus immediate from the middle diagrams in Figures 2 and 1,
respectively. O

Suppose (X, x12,0) is of type (E) or (H1). By the first part of the proof of Corollary 5.6, the
restriction of the real bundle pair

(T®*@2T, §%2@2¢) — U,7) (6.18)

to the central fiber (3, 0) thus has a canonical real orientation. It extends to a real orientation
on (6.18) which restricts to the canonical real orientation over each fiber (3¢, 0y) with te Aj.

Suppose (3, x12,0) is of type (H2) or (H3). The singular component 3 of ¥ consists of two
copies of S' with a point x; on the first copy identified with a point x5 on the second copy. By
Corollary 5.6, there are then four natural real orientations on the restriction of (6.18) to (X, 0).
They correspond to the two orientations of each of the two irreducible components of ¥¢. Each of
the four real orientations extends to a real orientation on the real bundle pair (6.18) over (i, ¢).

Lemma 6.14. Let C, (m,¢), and T, 7T — U be as in Lemma 6.8 with (3, x12,0) of type (H2)
or (H3). For each of the four natural real orientations on the restriction of (6.18) to (X,0),
there exists e€ {1} such that the restriction over (X¢,0¢) of the extension of this real orientation
over (U,<) is the canonical real orientation ifsteAf{g and differs from the canonical real orientation
by the spin structure over precisely one component of 7' if ete Ag.

Proof. For te A, the topological component 2;”1 of X7t corresponding to X is obtained as follows.
Cut the first copy of S! at 1 into a closed interval S} with endpoints 1~ and 17; cut the second
copy of S1 at x5 into a closed interval S with endpoints 2~ and 27. For teAﬁg, Z‘t’fl ~ S' is formed
from Si and S2 by identifying either 1~ with 27 and 17 with 2~ or 1~ with 2~ and 1% with 2+.
For te Ay, Eftl is formed by the other identification. Thus, the transition from Eftl with te Ay to
E?"l with tEAEg is equivalent to flipping the second copy of S! around x5 and another point. This
flips the orientation on S3. By the second part of the proof of Corollary 5.6, this is equivalent to
flipping the spin structure on the restriction of the real part of (6.18) to half of £7* ~ S with te A%.
Thus, precisely one of the two spin structures (either before or after the flip) on the restriction of
the real part of (6.18) to X7* is the canonical one. O

Remark 6.15. Suppose both copies of S! in the proof of Lemma 6.14 are oriented from the — to +
end. These orientations determine spin structures on the restrictions of the real part of (6.18) to
the two irreducible components of 3. The spin structure over X7 is then the canonical one if X7
is obtained by gluing 1~ with 2~ and 17 with 2*. This gluing untwists back a half-spin of R in R?
over the first circle, instead of completing it to a full twist.

Corollary 6.16. Let (X,0), (i&), (m,%), and ’7',’?'—>L{ be as in Lemma 6.8. The orientation
on the restriction of the real line bundle

(det 07 5)82) ® (det oc) — A (6.19)

to A determined by the canonical isomorphisms of Corollary 5.6 extends across t=0 if (X, 12,0)
is of type (E) or (H1) and flips if (X, x12,0) is of type (H2) or (H3).
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Proof. Since U retracts onto ¥ respecting the involution ¢, a real orientation on the restriction of
the real bundle pair (6.18) to the central fiber (X, 0) extends to a real orientation on (6.18). By
Corollary 6.7, the former induces an orientation on the real line bundle (6.19) over Ag. The re-
striction of this orientation to the fiber over each t€ Ay is the orientation induced by the restriction
of the extended real orientation to the fiber of (6.18) as in Corollary 5.7.

Suppose (X, z12,0) is of type (E) or (H1). The canonical real orientation on (6.18) over (X, o) then
induces the canonical real orientation on the restriction of (6.18) over (¥4, 0y) with te Ak. Thus,
the orientation on (6.19) induced by the canonical real orientation on (6.18) over (X, o) restricts
to the canonical orientation over te Ak. This establishes the claim for types (E) and (H1).

Suppose (3, x12,0) is of type (H2) or (H3). Fix one of the four natural real orientations on (6.18)
over (¥,0) and let ee{+1} be as in Lemma 6.14. Since this real orientation induces the canonical
real orientation on (6.18) over (,0) if et€ Af, the orientation on (6.19) induced by the former re-
stricts to the canonical orientation if et€ Af. Since the chosen real orientation on (6.18) over (X, o)
induces an orientation on (6.18) differing from the canonical one by the spin structure over precisely
one component of X7 if et e Ag, the orientation on (6.19) induced by the former restricts to the
opposite of the canonical orientation if et € Ag; see Corollary 5.7. This establishes the claim for
types (H2) and (H3). O

Lemma 6.17. Suppose g,1 € ZZ° with g+1 > 2 and (3,z12,0), C, and (7,%,51,...,5) are as
in (6.16) with U|a, — Ar embedded inside of the universal curve fibration over RM, ;. The
orientation on the restriction of the real line bundle

(ARP(TRMy))* ® AgP ((R'm.TC)") — Ar (6.20)
to A} induced by the KS isomorphism as in (5.22) flips across t=0.
Proof. Let x1,x0€ Y be the preimages of the node x12€X as before and

TC = Ti(—zf—zf—. . .—zf—zf—xl—xg).

Denote by Ny = M, and RN, ;cRM,,; the one-node strata, by L® — RN/ ; the normal bundle
of RN, in Rﬂg,l, and by TC — Uy_2;42 the twisted down vertical tangent bundle over the
universal curve m: Uy_2 42 —’Ng,l- Let C;,, — X be the skyscraper sheaf over zs.

The short exact sequence of sheaves
0 — O(TC|y) — O(TC) —> Cyy, —> 0 (6.21)
induces an exact sequence
0—> C— H'Y(;0(TCls)) — H'(Z;0(TC)) — 0
of complex vector spaces. Its real part is a short exact sequence
0—R— H(Z0(7Cls))” — H'(3,0(1C))” — 0 (6.22)
of real vector spaces. By the definition of L¥, there is also a natural short exact sequence

0 —> TeRN,; —> TeRM,; — LF|c — 0 (6.23)
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of real vector spaces.

By (6.22) and (6.23), there is a canonical isomorphism
AR (TeRNG)@ALP (1 (5 0(1C))°)

_ $ 6.24
~ (A%p(TCRMgJ)(@AK’p(Hl(Z;O(TC|E))J)) R LE®R. (6.24)

The complex vector bundles
TNy, R'm, (Té} Nyl
extend over a neighborhood of Ny, in ﬂgJ as a subbundle of Tﬂgyl and a quotient bundle of

Rz, TC. The KS map induces an isomorphism between these two extensions. Over a neighborhood
of C, these extensions can be chosen to be o-invariant. We then obtain a diagram

TcRNg,l TCt]RMg,l LR‘C
KS\L% KSi% Ks|~
HY(5;0(TC))” —— H(4; O(TC)x,)) " R

of vector space homomorphisms which commutes up to homotopy of the isomorphisms given by
the vertical arrows. The KS map for (i, x1,x2) induces a continuous orientation on the first tensor
product on the right-side side in (6.24) and its extension over Ag. Thus, it is sufficient to show
that for small values of te Af the KS map for (¥, 0¢) associates the radial vector

0

T, R 2
ﬁ‘t‘ S 3¢ ./\/lgl (6 5)

with the same direction of the factor R in (6.24), regardless of whether t€ Af or te A; (in these
two cases, the radial vector field determines opposite orientations on L¥|x).

We use the explicit description of the KS map at the bottom of page 11 in [28] and continue with
the notation in the proof of Lemma 6.8. We cover a neighborhood of ¥; in U by the open sets

U, = {(t,zl,ZQ)EU(): 2’22|<1} and Uy = {(t, Zl,ZQ)EZ/{O: 2|Zl|<1},

along with coordinate charts each of which intersects at most one of U; and Us. Since z1z0 =t
on Uy, the overlaps between the coordinates z; on U; and z9 on Us are given by

21 = fia(t, 20) = tzy ! and 22 = for(t,z1) = a7

all other overlap maps do not depend on ¢. Thus, the KS map takes the tangent vector (6.25) to
the Cech 1-cocycle on 3; given by

_O0fip 0 O ofn 0 o1 0
Ori12 = ot 0z i L Orn = ot 0z2 i

and vanishing on all remaining overlaps. The positive factor of [t|~! does not effect the orientation
on the fiber of (6 20) over te A} induced by the KS map and can be dropped above. The resulting
Cech 1-cocycle Ht is then an extension of the Cech 1-cocycle 90 on X given by

0 0 0
— 295, 9021=—Z1 + 29—

2
0z9 071 (6.26)

90;12 =z

! 0721 622
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and vanishing on all remaining overlaps. For ¢ € Ag#*, the positive direction of the last tensor
product on the right-hand side of (6.24) is thus given by
o -
= R0,
0]15] ® ts
this orientation does not extend across t=0. O

Proof of Proposition 6.1. Suppose (3,x12,0), C, and (W,E,Sl,...,ﬂ) are as in (6.16) with
U|ap — Ar embedded inside of the universal curve fibration over RM,;. The orientation on
the restriction of the real line bundle (3.1) to A} provided by Proposition 5.9 is the tensor prod-
uct of

(1) the orientation on the restriction of the real line bundle (6.20) to Aj induced by the KS
isomorphism,

(2) the orientation on the restriction of the real line bundle (6.17) to Aj induced by the Dolbeault
and SD isomorphisms,

(3) the orientation on the restriction of the real line bundle
(det O pyp(70)) @ (40607 je2) — A
to Af induced by the short exact sequences (5.24) and the specified orientations of (5.21),

(4) the orientation on the restriction of the real line bundle (6.19) to Aj determined by the
canonical isomorphisms of Corollary 5.6.

Since the family of the short exact sequences (5.24) and the specified orientations of (5.21) extend
across t =0, so does the orientation in (3). By Corollary 6.12, the orientation in (2) also extends
across t = 0. By Lemma 6.17, the orientation in (1) flips across ¢ = 0. By Corollary 6.16, the
orientation in (4) extends across t =0 if (X, z12,0) is of type (E) or (H1) and flips if (2, z12,0) is
of type (H2) or (H3). Combining these four statements, we obtain the claim. O
6.4 Proofs of the main statements

We now establish the main statements of this paper, Theorems 1.3 and 1.5.

Proof of Theorem 1.3. By Corollary 5.10, a real orientation on (X, w, ¢) determines an orien-
tation on the restriction of the real line bundle (1.5) to the uncompactified moduli space

My 1(X, B; J)P7 « My (X, B; J)?

for every topological type o of genus g orientation-reversing involutions. We show that these ori-
entations multiplied by (—1)9+17l0+1 extend across the codimension-one strata of 9, (X, B; J)?.

Suppose [u, (21,27 ),..., (2,2 ),i] is a stable real morphism from a one-nodal symmetric sur-
face (X, 0). Since the fibers of the forgetful morphism

My11(X, B; J)? — M, (X, B; J)?
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are canonically oriented, we can assume that
C=(3,(e 20 )5 (57 2)0)

is a stable symmetric surface and thus defines an element of ng’l. The canonical isomor-
phism (5.29) then extends across [u]. By Corollary 6.7, the canonical orientation on the restric-
tion of the real line bundle (5.30) to M, (X, B; J)? also extends across [u]. Since (—1)9*lolo+1
flips across the codimension-one boundary strata of types (E) and (H1) and extends across the
codimension-one boundary strata of types (H2) and (H3), the claim now follows from Proposi-
tion 6.1. O

Proof of Theorem 1.5. For J e J% and a (real) perturbation v of the real d;-equation, we de-
note by My ;.1 (X, B; J,v)? the moduli space of real genus 1 degree B (.J, v)-maps with [ conjugate
pairs of marked points and k real marked points. For k=0, we omit the corresponding subscript.
If (X,w,¢) is semi-positive in the sense of [50, Definition 1.2], then v can be taken to be a real
Ruan-Tian perturbation as defined in [50, Section 3.1]. In general, v is a perturbation in the sense
of Kuranishi structures.

By Theorem 1.3, the compactified moduli space My (X, B; J, v)? is orientable. Thus, the ori-
entability of ﬁu;k(X , B; J,v)? is determined by the orientability of the vertical tangent bundle of
the forgetful morphism

My 1.1 (X, B; J,v)? — My (X, B; J,v)? (6.27)

dropping the real marked points. The fibers of (6.27) over the main strata
My (X, B; J,v)*° < My (X, B; J,v)?
are open subsets of (S1)*.

Since there are diffeomorphisms he D, which reverse an orientation on the fixed locus, the vertical
tangent bundle of (6.27) is not orientable over My ;(X, B;J,v)%° if k is odd. If k is even, the
fibers of (6.27) are canonically oriented as follows. If |o|g =1, an orientation on the fixed locus
determines an orientation on each fiber of (6.27) which is independent of the choice of the first
orientation. If |o|op=2, the fixed locus ¥ splits ¥ into two annuli; let 3° be either of these annuli.
Endow one of the boundary circles of ¥* with the induced boundary orientation and the other
with the opposite of the induced boundary orientation. These choices determine an orientation on
each fiber of (6.27). Since k is even, this orientation is independent of which circle is oriented as
a boundary and thus of the choice of the half ¥°. We determine the orientability of the vertical
tangent bundle over ﬁu(X , B; J,v)*? by studying how these canonical orientations change across
the codimension-one boundary strata.

If g=1, the codimension-one boundary strata can be of types (E), (H1), and (H3) only. If k>0,
the domains of all morphisms of type (E) are one-nodal symmetric surfaces (X, z12,0) with the
fixed locus consisting of the node 12 and a fixed circle 3¢ containing all of the real marked points.
The canonical orientations on the fibers of (6.27) extend across such strata.

In the (H1) case, the nodal symmetric surface (2, o) is (P!, 7) with two real points identified. In
particular, the fixed locus X7 splits ¥ into two copies of a disk with two boundary points identified;
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denote by X? either of these copies and by x12€ %7 the node. Let (7, ) be the real bundle pair over
a one-parameter family of smoothings of (3, 0) as in Lemma 6.8. An orientation on 7% |xs —> X7
induces an orientation on T7* for every smoothing of (¥;,0¢). By the matching condition on
Q(T|s,) in Lemma 6.8, the orientation on

TSO|E°'—$12 = T(EO—_$12)

as the boundary of £? does not extend over x15. This implies that the orientation on X7t with
|ot|lo = 2 induced by an orientation on 7¥|xs is not the boundary orientation from either of the
annuli obtained by cutting ¥; along X7*. Thus, the canonical orientations on the fibers of (6.27)
extend across the (H1) boundary strata as well.

In the (H3) case, the nodal symmetric surface (X, 0) consists of a genus 1 surface with a sphere
bubble attached. A choice of an orientation on 3.7 is compatible with the orientation of the fixed
locus on only one side of the boundary. If the number of the real marked points on either the torus
or the sphere is even, then the orientation of the fibers of (6.27) still extends across this stratum.
We will call the codimension-one boundary strata of type (H3) with odd numbers of real marked
points on the torus and the sphere to be of type (H37). Following the approach of [4, 37], we show
that in a generic one-parameter family the cut-down moduli space does not cross such strata and
thus the counting invariant (1.5) is well-defined.

Let
ev: MY 1 (X, B; J,v)? — X x (X)F,
[’LL, (Zii_?’zl_)v Tty (Z;_?Zl_)vxl: e >$k7j] - (U(Zf_), e ,U(Z;_),U($1>, . .,U(.Tk)),

be the total evaluation map from the moduli space of simple (J,v)-maps. Choose pseudocycle
representatives
h1:Y1—>X, ceey hl:YE—’X

for the Poincare duals of 1, ..., y; this is possible to do by [43, Theorem 1.1]. We can assume that

l

> (deg pi—2) + 2k = {e1(X), B) (6.28)
i=1
and so k is even under our assumptions. Choose k real points py, ..., pre X?. If (X,w, ¢) is semi-
positive, (J,v) is generic, and hq, ..., h;,p1,...,pr are chosen generically, then ev is transverse to

the pseudocycle

l
HE - XZX (X¢)k7 (y17 o 7yl) I (hl(y1)7 .. ‘7hl(yl)7p17 CIEaE 7pk) .
i=1

The intersection of ev with this pseudocycle, i.e.

* . @
iml,l;k(X’ B; J, V)hh.--,hz;ph.-.,pk

l

= {([u, (zf,zf),...,(z;rjzf),xl,...,xk,j],yl,...,yl) efmfl;k(X?B;J,l/)‘bXHY;:
i=1

w(zH) =hi(y) Vi=1,.... 0, u(z;)=p; Vizl,...,k},

)

48



is then a zero-dimensional manifold. A real orientation on (X,w, ¢) and the canonical orientation
on the vertical tangent bundle of (6.27) determine an orientation of this manifold. We set
¢
S5 Jv) ]y = I (X BV,

to be the signed cardinality of this set.

Let (J1,v1) and (J2,1v2) be two regular ¢-invariant pairs and {.J;, 74} be a generic path between
them. If (X,w,¢) is semi-positive, the image of the ¢-multiply covered maps is of codimension
at least 2; a generic path of cut-down moduli spaces thus avoids them. Along the path {J;, 1},
the cut-down moduli space forms a one-dimensional bordism and contains finitely many points in
the codimension-one boundary strata of type (H37). We orient this bordism outside of the (H37)
elements as the preimage of the submanifold

{(Q17"‘7qlap17"'7pk7q1)"'7ql): Q17‘~'7q16X} CXIX(X¢)kXXl

under the transverse morphism

!
ev X hyx...xh: U{t}xfmil;k(X,B; Ji ) % HYZ — X (X9 x X1
te[0,1] i=1

The signed cardinalities of the boundaries of this bordism over t=0 and t=1 are

—<u1,.--7m;pt’“;Jo,vO>fB and  {pi,..., s pth; J1,V1>1B, (6.29)

respectively.

Suppose that in a one-parameter family the cut-down moduli space crosses a codimension-one
boundary stratum of type (H3) with the map degree splitting into classes By, Bo€ Ha(X; Z) between
the genus 1 surface and the sphere bubble, respectively. Let l1, o€ Z=° be the numbers of conjugate
pairs of marked points carried by the two components and k1, ks € Z=% be the numbers of real marked
points carried by them. Thus,

Bi1+By; =B, i+l =1, ki+ko = k.

By a dimension count, this can happen only if

lo

I
Z(deg i, —2) + 2k < {c1(X),Biy+1 and Z deg 1, —2) + 2ky < {c1(X), B2y + 1.
= i=1

1
Using (6.28), we obtain

lg l2

Z(deg,uji—2) +2ky — 1< <01(X), BQ> < Z(deguji—Q) + 2k + 1.

i=1 i=1
Since degpj, —2 and {c1(X), By) are divisible by 4, this implies that ks is even and that the
codimension-one boundary strata of type (H37) are never crossed. Thus, the canonical orienta-
tions extend over the whole cobordism and the two counts in (6.29) are equal.

A similar cobordism argument holds for a semi-positive deformation of w and for a change of the

pseudocycle representatives. The general case is treated using Kuranishi structures similarly to
[37, Section 7]. O
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A Topologizing determinant line bundles

The existence of topologies on the total space of (4.9) with good properties is readily implied by the
main algebraic conclusion of [25] in combination with some of the analytic results obtained in [27,
Section 3]. The latter ensure that the kernels of surjective CR-operators Dy ,).¢ in (4.8) and their
extensions Deg in (A.12) form vector bundles over A and thus so do the determinants of these
operators (the determinants are then the top exterior powers of the kernels); see Proposition A.2.
In the general case, the bundle isomorphisms (A.20) would topologize the total space of (4.9) from
the determinant line bundles of surjective operators if the resulting overlap maps between the latter
are continuous. For the property (D2) on page 23 to hold, all isomorphisms (A.20) and thus the
aforementioned overlap maps need to be continuous.

The isomorphisms (A.20) are special cases of the isomorphisms i@; p in (A.4); the latter are in-
duced by the isomorphisms (4.6) associated with the exact triples (A.1) of Fredholm operators.
The isomorphisms (4.6) associated with the exact triples (A.2) induce the isomorphisms Zg.p
in (A.4) going in the opposite direction. The property (D2) and thus the continuity of the iso-
morphisms in (A.4) would be implied by the two purely algebraic Compositions properties of [49,
Section 2] for homomorphisms between finite-dimensional vector spaces. By the main algebraic
conclusion of [25], it is possible to choose the isomorphisms (4.6) for exact triples of operators
between finite-dimensional vector spaces so that they satisfy these two properties. Furthermore,
the resulting topologies on the determinant line bundles (4.9) satisfy all properties in [49, Sec-
tion 2] with Fredholm spaces replaced by real bundle pairs. In fact, the choice of a good collection
of the isomorphisms (4.6) for non-surjective operators between finite-dimensional vector spaces is
not unique. However, any two choices induce topologies that differ by homeomorphisms intertwin-
ing all isomorphisms between determinant line bundles listed in [49, Section 2]; see [49, Theorem 2].

As shown in [24, Appendix D.2] and [49, Section 3.2], the topologies on the determinant line
bundles over families of Fredholm operators between fized Banach spaces arise from ezxactly the same
algebraic considerations. The only difference is that the analogue of Proposition A.2 for continuous
families of surjective Fredholm operators between fized Banach spaces is straightforward.

A.1 Linear algebra

We begin by recalling the relevant algebraic facts from [49]. We denote by

Ay =e1n...nen

the standard volume tensor on RY and by Q% e (AYRY)* its dual. For a Banach space X and
N, N1, NoeZ?°, define

ix.n: X — XORY, ix.n(z) = (x,0),
Rx.ny Nyt XORMERNM — XORM@RM |  Ryx.n, ., (,v1,v2) = (2,09, v1).

For vector space homomorphisms © : RY — ¥ and R:RY — R and a Fredholm operator
D: X—Y, define

Do: X®RY — Y, De(z,v) = Dx + O(v),
Re.p: ker Dgor — ker Deg, Re,p(z,v") = (z, R).
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In particular, the triple te,p

0—=X—>XeRVN 2RV~

oo e (A1)

0 Y Y 0 0

of Fredholm operators is exact.

A homomorphism between Fredholm operators D: X — Y and D’: X' — Y’ is a pair of homo-
morphisms ¢: X — X’ and ¢: Y — Y’ so that D'o¢ =1 0D; an isomorphism between Fredholm
operators D and D’ is a homomorphism (¢,%): D— D’ so that ¢ and ¢ are isomorphisms. Such
an isomorphism induces isomorphisms

det o: AP (ker D) —> ARP(ker D), detyy™': ARP(cok D) —> AP (cok D),
Ty p:p: det D = detD', zra—> ({det gi)}(x)) A (ao{det 1/1*1}).

For homomorphisms ©;: RY —Y and ©,: R — Y| let

Re,.02:D :IRX;Nl,N27idY§D(—)1®(—)2 : det Do ,go, — det De,ge, -

A pair of Fredholm operators D;: X; —> X5 and Dy: X9 — X3 determines an exact triple
ix(z1) = (21, D121)

ix(z1,22) = Dix1—22

Dy D2oDi@®idx, Do (A.2)

0— > X 5 10Xy 5> Xy — >0

iy (x2) = (Dax2, x2)
iy (z3,22) = x3—Doxa,

OHXQLch-BXQLXg*)O
of Fredholm operators. The isomorphism (4.6) for this triple becomes
Cp,,p,: (det D)@ (det Dg) — det(DooDy). (A.3)
If D, ©, and w3 are as above, D= Dgovx.n and the projection

T COka;N —> RN

is an isomorphism. We thus obtain two isomorphisms induced by (4.6),

i—@;D: det D = det Dg, f@;D(w) = \I/t@;D (w@QN®1*), (A4)
To:.p: det Dg — det D, To:0(w) = Coy.y.De (12 o{det m}) ® w), '
via (A.1) and (A.3), respectively.
Every short exact sequence
00—V —V —->V"—0 (A.5)
of finite-dimensional vector spaces determines an isomorphism
(ARPV) @ (ARPV") = APV (A.6)
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between the top exterior powers of the vector spaces involved; see [49, Lemma 4.1]. By the Snake
Lemma, an exact triple (4.5) induces an exact sequence

0 —> ker D' % ker D 2% ker D” -2 cok D' X5 cok D X5 cok D" —> 0 (A.7)
of finite-dimensional vector spaces. It is equivalent to four short exact sequences, such as
0 — ker D' %5 ker D 2% Imjx — 0.

The isomorphisms (4.6) should clearly be induced by the isomorphisms (A.6) corresponding to
these four short exact sequences. However, there are at least choices of signs involved in putting
the four resulting isomorphisms together, depending on the dimensions of the vector spaces appear-
ing in the four sequences. Choosing these signs in some compatible fashion is necessary to ensure
that the isomorphisms (A.20) used to topologize determinant line bundles overlap continuously.

If the operators in (4.5) are surjective, the exact sequence (A.7) reduces to the exact sequence

0 —> ker D' =% ker D 2% ker D" — 0.

It is then standard to require that the corresponding isomorphism (4.6) be given by the isomor-
phism (A.6) associated with this exact sequence of kernels; this property is Normalization II in [49,
Section 2]. An explicit formula for the isomorphism (4.6) in the general case with this property
is given by [49, (4.10)]. The induced isomorphisms (A.3) satisfy the two algebraic Compositions
properties in [49, Section 2| and thus the remaining algebraic properties listed there (Naturality II
and III and Exact Squares); see the paragraph after Theorem 1 in [49, Section 2]. The associated
isomorphisms (A.4) satisfy

To.poZe.p = (—1)M4PNid: det D > det D, (A.8)
Tg,.p°Tenp = (1) Te,;py, oRe, 00T, p,, : det Do, — det D, (A.9)

for all Fredholm operators D: X — Y and homomorphisms
0:RY —v, ©61:RM —Y, 0,R“ Y

see [49, Lemma 4.11] and the end of the proof of [49, Proposition 5.3].

A.2 Analysis and topology

Let (3o, 00,j0), (m,¢), and (V,¢) be as above (4.9). Fix p>2, t-invariant Riemannian metric on U,
and a p-invariant metric on V. For each te Ag, we denote by

(V)P 5T (S VIs,)?  and  &N(V)? 2T (S V]s,)?

the completions of the spaces of smooth (p, ot)-invariant bundle sections in the modified Lf- and
LP-norms | - |p1 and || - |, respectively, introduced in [27, Section 3]. The norms | - |, 1 and | - |,
dominate the usual L{- and LP-norms, but are equivalent to them away from the nodes of .
Some of the key properties of these norms are summarized by the next statement. Let

Dyi: (V)9 — EXN (V¥ (A.10)

be the operator induced by D(y,).-
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Lemma A.1. For every t* € AR, there exist a neighborhood Ay« of t* in Ar and Cyx € RY such that

I€llco < Cexll€

pls [ De], < Cexl€lpa,  1€lpr < Cox (I1Deg], +14p)

for all £€&(V)¥ and te Agx.

The second inequality above is immediate from the definition of the norms |-||, 1 and |-||,. The first
inequality holds even with the standard L{-norm on the right-hand side; see [27, Lemma 3.2] and
[47, Proposition 4.10]. The last inequality is the crucial uniform elliptic estimate of [27, Lemma 3.9];
see the proof of [41, Proposition 5.11] and [47, Section 4.3] for more details. By Lemma A.1, (A.10)
is a Fredholm operator; its index, which we denote by ind Dy, ), does not depend on t.

The normed topologies on the fibers of the projections

EWV)?= | |({t}xE(V)?) — Ap and 21 (V)P= | |({t}x & (V)?) — A
teAgr teAgr

are extended to topologies on £(V)? and £%1(V)# in [27, Section 3]. These topologies are described
as follows. Let te Ar and
Yy BF — 1 (D) Sy

be analogues of the diffeomorphisms (4.3) defined for t' € A in a neighborhood of t. For each
deR™, denote by B,é;a c U the d-neighborhood of the nodes of ¥;. Suppose t,.€ Ag is a sequence
converging to t. A sequence &€&, (V)¥ converges to £€&(V)¥ if

(a) the sequence & 0, converges to & in the Li-norm on compact subsets of Xf and

o1 =0.

(b) lim lim |&|g; 5,

—>0)r—0

The topology on £%!(V)# introduced in [27] is described analogously, with the L}-norms replaced
by LP-norms.

For any bundle homomorphism
O: ApxRY — €81 (V)2 O(t,v) = (t,Gw), (A.11)

and te Ag, let
@ti RN —> 51?71(‘/)('0, @t(v) = Ct,v 5

be the restriction of © to the fiber over t. Define

Doy =(Dp)e, : E(V)PORYN — £ (V)¥, U = {teAg: cok Doy = {0}, (A.12)
ker Do = {(t,&,0)eE(V)? xRY: teUg, De.t(¢,v)=0} — Us, (A.13)
f@;t ::/Z’\-@t;Dt : det Dy =5 det D@;t, I@;t :I@t;Dt : det D@;t =5 det Dy .

If in addition

R: Ar xRN — Ap xRV, (A.14)
O1: ApxRM — g0L(V)? @y Ag xRN — £01(V)¥ (A.15)

93



are bundle homomorphisms, let
Reo;t = Re,;p, : ker Dgor;t — ker Doy,
Ro1,02:t =R (01)4,(02)e:D¢ - det Doy gon;t —> det Do,@o, t -
By (A.8) and (A.9),

~

Z(@Q)t;D(—n:,t OI(@z)t;Del;t = (_1)(ind Do)t NN det Do, t —> det De, ¢, (A-16)

Toye0Tont = (=)™ Lo, Do, . O Ry 055 oz(*@g)t; Doy det Doyt 5 det Do, .t (A.17)

for all te Ag.

We call a bundle homomorphism as in (A.11) smoothly supported if (t , GES’I(V)@ is smooth and
supp((ew) € Bf for all te Ag and veRY,

Proposition A.2. For every continuous smoothly supported bundle homomorphism © as in (A.11),
Uo < AR is an open subset and (A.13) is a vector bundle. If in addition R is a continuous bundle
homomorphism as in (A.14), then Ugor < Ug and

R@ : ker D@OR — ker D@‘U@ORa R@(tv fa U) = (t7 R@;t(£7 ’U)),
18 a continuous bundle map.

This proposition follows from Lemma A.1, as demonstrated by the gluing construction of [27,
Section 3] for (J,v)-holomorphic maps instead of bundle sections. The greatly simplified, linear
version of this construction (without the quadratic term of the first equation in the proof of [27,
Proposition 3.4]) provides local trivializations for the projection

E(V)? xRN > ker Dg —> Ug

around every point t € Ag and thus that Ug < Ag is open. This construction in the N =0 case
and without restricting to the invariant sections is carried out in [42, Section 3.2]. By the smooth
support assumption on O (which is in line with the setup in [27]), the reasoning in [42] applies in
the general case, including for invariant sections, and implies the first statement of the proposition.
The claim Ugor < Ug is immediate from the definitions. Factoring R through its graph reduces
the remaining claim of the proposition to the case that R has constant rank. This case in turn
reduces to showing that ker Dgop is a subbundle of ker Dg|y,, ,, if R is induced by the inclusion of
a coordinate subspace of RY. This follows readily from the setup in [42, Section 3.2].

By the first statement of Proposition A.2, the total space of the projection

_ind Dy ) +N
det Dg| e =Ag (ker Dg) — Ug
is a real line bundle with a natural topology. The isomorphisms (A.6) associated with short exact
sequences of vector spaces as in (A.5) induce continuous isomorphisms of the same kind for short
exact sequences of vector bundles. Along with the second statement of Proposition A.2, this implies
that the bundle isomorphisms

I@2;D®1 . det D@1 — det D@l@GQ |U®1 ) I@Q;Del (t7 W) = (ta I(@Q)t;Dgl it (w))’

R@l,@z : det D91(—B®2|U@1®@2 — det D@Q@@l R@h@z (t> ?D) = (ta R@1,@2§t(w))v

’U@1®@2 ’
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are continuous with respect to the natural topologies on the domains and targets for all continuous
smoothly supported bundle homomorphisms ©; and O4 as in (A.15). Combining this with (A.16)
and (A.17), we obtain the following.

Corollary A.3. For all continuous smoothly supported bundle homomorphisms ©1 and ©9 as
in (A.15), the bundle map

Zo,0,: det De, |U@1mU@2 —> det Dg, ’Uel N Zo,0,(t,w) = (t,Igl;t (Iézl;t (w))),

1 continuous with respect to the natural topologies on its domain and target.

We now topologize the total space of the projection (4.9). Let t*€ Agr. By the elliptic regularity
of Dy, there exists a homomorphism

Op: RN — L (V)?, O (v) = (ot (A.18)
such that every (0, 1)-form (i¢+ , is smooth and supported in ¥}, and the operator
(Dex)e,, : €+ (V)PORYN — EL(V)?, (Der)g, (6:0) = Dpx&t-Gor o, (A.19)

is surjective. Choose a continuous smoothly supported homomorphism © as in (A.11) which
restricts to (A.18) over t*. By (A.19), t*eUg. We topologize det Dy ,)|ue by requiring that the
bundle map R R R

To: det D(VN’)’U@ —> det D@’U@, To(t,w) = (t,I@);t(w)), (A.20)

be a homeomorphism with respect to the natural topology on its target. By Corollary A.3, the
overlaps between these maps are continuous. Thus, these maps define a topology on the total space
of the projection (4.9).

It is immediate from the construction that the resulting topologies on the determinant line bundle
corresponding to different real bundle pairs (V, ) satisfy (D1) on page 23. By the proof of [49,
Corollary 5.4], these topologies also satisfy (D2).

Remark A.4. Other topologies on the total space of the projection (4.9) with good properties can be
obtained by modifying the isomorphisms (4.6) associated with exact sequences (A.7) as described
above Theorem 2 in [49, Section 3.2]. This would modify the topologizing maps (A.20) and would
thus generally change the topology on the total space of (4.9). The two topologies would differ by
a homeomorphism which restricts to the identity over the points te Agr such that Dy is surjective.

Remark A.5. A connection V as above (4.9) induces a splitting
TV ~ m*V @ n*TU .

The complex structure i in the fibers of 7 : V — U, the complex structure j;; on U, and the
zeroth-order deformation term (4.7) induce a complex structure Jy on the total space of V' by

Tyl (6,&) = (i0+{Av} (&), jui).

For each t e Ag, Dy is then the E’Jv—operator on the space of real maps from (X, jt) to the total
space of V. In particular, ker Dy consists of real (Jy, jt)-holomorphic maps. By the smooth support
assumption on 6, the subspace topology on ker Dg can thus be described in terms of convergence
of sequences similarly to Definition 4.2.
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