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Abstract

We construct positive-genus analogues of Welschinger’s invariants for many real symplectic
manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold.
In some cases, our invariants provide lower bounds for counts of real positive-genus curves in real
algebraic varieties. Our approach to the orientability problem is based entirely on the topology
of real bundle pairs over symmetric surfaces; the previous attempts involved direct computations
for the determinant lines of Fredholm operators over bordered surfaces. We use the notion of real
orientation introduced in this paper to obtain isomorphisms of real bundle pairs over families
of symmetric surfaces and then apply the determinant functor to these isomorphisms. This
allows us to endow the uncompactified moduli spaces of real maps from symmetric surfaces
of all topological types with natural orientations and to verify that they extend across the
codimension-one boundaries of these spaces, thus implementing a far-reaching proposal from
C.-C. Liu’s thesis for a fully fledged real Gromov-Witten theory. The second and third parts of
this work concern applications: they describe important properties of our orientations on the
moduli spaces, establish some connections with real enumerative geometry, provide the relevant
equivariant localization data for projective spaces, and obtain vanishing results in the spirit of
Walcher’s predictions.
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1 Introduction

The theory of J-holomorphic maps plays prominent roles in symplectic topology, algebraic geom-
etry, and string theory. The foundational work of [23, 29, 35, 27, 9] has established the theory of
(closed) Gromov-Witten invariants, i.e. counts of J-holomorphic maps from closed Riemann sur-
faces to symplectic manifolds. In contrast, the theory of real Gromov-Witten invariants, i.e. counts
of J-holomorphic maps from symmetric Riemann surfaces commuting with the involutions on the
domain and the target, is still in early stages of development, especially in positive genera. The
two main obstacles to defining real Gromov-Witten invariants are the potential non-orientability of
the moduli space of real J-holomorphic maps and the existence of real codimension-one boundary
strata.

In this paper, we introduce the notion of real orientation on a real symplectic 2n-manifold pX,ω, φq;
see Definitions 1.1 and 1.2. We overcome the first obstacle by showing that a real orientation induces
orientations on the uncompactified moduli spaces of real maps for all genera of and for all types of
involutions σ on the domain if n is odd; see Theorem 1.3. We then show that these orientations
do not change across the codimension-one boundary strata after they are reversed for half of the
involution types in each genus. This allows us to overcome the second obstacle by gluing the moduli
spaces for different types of involutions along their common boundaries; this realizes an aspiration
going back to [28]. We thus obtain real Gromov-Witten invariants of arbitrary genus for many real
symplectic manifolds; see Theorems 1.4 and 1.5. Many projective complete intersections, including
the quintic threefold which plays a central role in Gromov-Witten theory and string theory, are
among these manifolds; see Proposition 2.1. These invariants can be used to obtain lower bounds
for counts of real positive-genus curves in real algebraic varieties; see Proposition 2.5. For example,
we find that there are at least 4 real genus 1 degree 6 irreducible curves passing through a generic
collection of 6 pairs of conjugate points in P3.
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1.1 Terminology and setup

An involution on a smooth manifold X is a diffeomorphism φ : XÝÑX such that φ˝φ“ idX . Let

Xφ “
 

xPX : φpxq“x
(

denote the fixed locus. An anti-symplectic involution φ on a symplectic manifold pX,ωq is an
involution φ : XÝÑX such that φ˚ω“´ω. For example, the maps

τn : Pn´1 ÝÑ Pn´1, rZ1, . . . , Zns ÝÑ rZ1, . . . , Zns,

η2m : P2m´1 ÝÑ P2m´1, rZ1, Z2, . . . , Z2m´1, Z2ms ÝÑ
“

´ Z2, Z1, . . . ,´Z2m, Z2m´1

‰

,

are anti-symplectic involutions with respect to the standard Fubini-Study symplectic forms ωn
on Pn´1 and ω2m on P2m´1, respectively. If

kě0, a ” pa1, . . . , akq P pZ`qk ,

and Xn;aĂPn´1 is a complete intersection of multi-degree a preserved by τn, then τn;a”τn|Xn;a is
an anti-symplectic involution on Xn;a with respect to the symplectic form ωn;a“ωn|Xn;a . Similarly,
if X2m;a Ă P2m´1 is preserved by η2m, then η2m;a ” η2m|X2m;a is an anti-symplectic involution on
X2m;a with respect to the symplectic form ω2m;a“ω2m|X2m;a . A real symplectic manifold is a triple
pX,ω, φq consisting of a symplectic manifold pX,ωq and an anti-symplectic involution φ.

Let pX,φq be a manifold with an involution. A conjugation on a complex vector bundle V ÝÑX
lifting an involution φ is a vector bundle homomorphism ϕ : V ÝÑV covering φ (or equivalently a
vector bundle homomorphism ϕ : V ÝÑ φ˚V covering idX) such that the restriction of ϕ to each
fiber is anti-complex linear and ϕ˝ϕ“ idV . A real bundle pair pV, ϕqÝÑpX,φq consists of a complex
vector bundle V ÝÑX and a conjugation ϕ on V lifting φ. For example,

pTX,dφq ÝÑ pX,φq and pXˆCn, φˆcq ÝÑ pX,φq,

where c : CnÝÑCn is the standard conjugation on Cn, are real bundle pairs. For any real bundle
pair pV, ϕqÝÑpX,φq, we denote by

Λtop
C pV, ϕq “ pΛtop

C V,Λtop
C ϕq

the top exterior power of V over C with the induced conjugation. Direct sums, duals, and tensor
products over C of real bundle pairs over pX,φq are again real bundle pairs over pX,φq.

A symmetric surface pΣ, σq is a closed connected oriented smooth surface Σ (manifold of real di-
mension 2) with an orientation-reversing involution σ. The fixed locus of σ is a disjoint union of
circles. If in addition pX,φq is a manifold with an involution, a real map

u : pΣ, σq ÝÑ pX,φq

is a smooth map u : ΣÝÑX such that u˝σ “ φ˝u. We denote the space of such maps by BgpXq
φ,σ,

with g denoting the genus of the domain Σ of σ.
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For a symplectic manifold pX,ωq, we denote by Jω the space of ω-compatible almost complex
structures on X. If φ is an anti-symplectic involution on pX,ωq, let

J φ
ω “

 

J PJω : φ˚J“´J
(

. (1.1)

For a genus g symmetric surface pΣ, σq, we similarly denote by J σ
Σ the space of complex structures j

on Σ compatible with the orientation such that σ˚j“´j. For J PJ φ
ω , jPJ σ

Σ , and uPBgpXq
φ,σ, let

B̄J,ju “
1

2

`

du` J ˝ du˝j
˘

be the B̄J -operator on BgpXq
φ,σ.

Let g, l PZě0, pΣ, σq be a genus g symmetric surface, B PH2pX;Zq´0, and J PJ φ
ω . Let ∆2lĂΣ2l

be the big diagonal, i.e. the subset of 2l-tuples with at least two coordinates equal. Denote by

Mg,lpX,B; Jqφ,σ “
 

pu, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, jqPBgpXq

φ,σˆpΣ2l´∆2lqˆJ σ
Σ :

z´i “σpz
`
i q @ i“1, . . . , l, u˚rΣsZ“B, B̄J,ju“0

(L

„

the (uncompactified) moduli space of equivalence classes of degree B real J-holomorphic maps from
pΣ, σq to pX,φq with l conjugate pairs of marked points. Two marked J-holomorphic pφ, σq-real
maps determine the same element of this moduli space if they differ by an orientation-preserving
diffeomorphism of Σ commuting with σ. We denote by

Mg,lpX,B; Jqφ,σ ĄMg,lpX,B; Jqφ,σ (1.2)

Gromov’s convergence compactification of Mg,lpX,B; Jqφ,σ obtained by including stable real maps
from nodal symmetric surfaces. The (virtually) codimension-one boundary strata of

Mg,lpX,B; Jqφ,σ ´Mg,lpX,B; Jqφ,σ ĂMg,lpX,B; Jqφ,σ

consist of real J-holomorphic maps from one-nodal symmetric surfaces to pX,φq. Each stra-
tum is either a (virtual) hypersurface in Mg,lpX,B; Jqφ,σ or a (virtual) boundary of the spaces
Mg,lpX,B; Jqφ,σ for precisely two topological types of orientation-reversing involutions σ on Σ.
Let

Mg,lpX,B; Jqφ “
ğ

σ

Mg,lpX,B; Jqφ,σ and Mg,lpX,B; Jqφ “
ď

σ

Mg,lpX,B; Jqφ,σ (1.3)

denote the (disjoint) union of the uncompactified real moduli spaces and the union of the com-
pactified real moduli spaces, respectively, taken over all topological types of orientation-reversing
involutions σ on Σ.

Similarly to Example 4.3, we denote by

det B̄C ÝÑMg,lpX,B; Jqφ

the determinant line bundle of the standard real Cauchy-Riemann operator with values in pC, cq.
This real line bundle is not orientable if X is a point and gě1. It is not needed to formulate the
main immediately applicable results of this paper, Theorems 1.4 and 1.5 below, but is used in the
overarching statement of Theorem 1.3.
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1.2 Real orientations and real GW-invariants

We now introduce the notion of real orientation on a real symplectic manifold and state the main
theorems of this paper.

Definition 1.1. A real symplectic manifold pX,ω, φq is real-orientable if there exists a rank 1 real
bundle pair pL, rφq over pX,φq such that

w2pTX
φq “ w1pL

rφq2 and Λtop
C pTX,dφq « pL, rφqb2 . (1.4)

Definition 1.2. A real orientation on a real-orientable symplectic manifold pX,ω, φq consists of

(RO1) a rank 1 real bundle pair pL, rφq over pX,φq satisfying (1.4),

(RO2) a homotopy class rψs of isomorphisms of real bundle pairs in (1.4), and

(RO3) a spin structure s on the real vector bundle TXφ‘2pL˚q
rφ˚ over Xφ compatible with the

orientation induced by (RO2).

Theorem 1.3. Let pX,ω, φq be a real-orientable 2n-manifold, g, lPZě0, B PH2pX;Zq, and J PJ φ
ω .

Then a real orientation on pX,ω, φq determines an orientation on the real line bundle

Λtop
R

`

TMg,lpX,B; Jqφ
˘

b
`

det B̄C
˘bpn`1q

ÝÑMg,lpX,B; Jqφ. (1.5)

In particular, the real moduli space Mg,lpX,B; Jqφ is orientable if n is odd.

A homotopy class of isomorphisms as in (1.4) determines an orientation on TXφ and thus on

TXφ‘2pL˚q
rφ˚ ; see the paragraph after Definition 5.1. In particular, Theorem 1.3 does not ap-

ply to any real symplectic manifold pX,ω, φq with unorientable Lagrangian Xφ. By the first

assumption in (1.4), the real vector bundle TXφ‘2pL˚q
rφ˚ over Xφ admits a spin structure. Since

2pL˚q
rφ˚«L˚|Xφ , a real orientation on pX,ω, φq includes a relative spin structure on XφĂX in the

sense of [10, Definition 8.1.2].

The moduli space Mg,lpX,B; Jqφ is not smooth in general. Its tangent bundle in (1.5) should
be viewed in the usual moduli-theoretic (or virtual) sense, i.e. as the index of suitably defined
linearization of the B̄J -operator (which includes deformations of the complex structure j on Σ).
The first statement of Theorem 1.3 and its proof also apply to Kuranishi charts for Mg,lpX,B; Jqφ

and the tangent spaces of the moduli spaces of real pJ, νq-maps for generic local φ-invariant de-
formations ν of [36]. A Kuranishi structure for Mg,lpX,B; Jqφ is obtained by carrying out the
constructions of [27, 9] in a φ-invariant manner; see [37, Section 7] and [11, Appendix]. Since the
(virtual) boundary of Mg,lpX,B; Jqφ is empty, Theorem 1.3 implies that this moduli space carries
a virtual fundamental class in some cases and thus gives rise to real GW-invariants in arbitrary
genus.

Theorem 1.4. Let pX,ω, φq be a compact real-orientable 2n-manifold with n R 2Z, g, l P Zě0,

B PH2pX;Zq, and J P J φ
ω . Then a real orientation on pX,ω, φq endows the moduli space

Mg,lpX,B; Jqφ with a virtual fundamental class and thus gives rise to genus g real GW-invariants

of pX,ω, φq that are independent of the choice of J PJ φ
ω .
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The resulting real GW-invariants of pX,ω, φq in general depend on the choice of real orientation.
This situation is analogous to the dependence on the choice of relative spin structure often seen in
open GW-theory.

A notion of semi-positive for a real symplectic manifold pX,ω, φq is introduced in [50, Definition 1.2].
Monotone symplectic manifolds with an anti-symplectic involution, including all projective spaces
with the standard involutions and real Fano hypersurfaces of dimension at least 3, are semi-positive.
By [50, Theorem 3.3], the semi-positive property of [50, Definition 1.2] plays the same role in real
GW-theory as the semi-positive property of [30, Definition 6.4.1] plays in “classical” GW-theory. In
particular, the real analogues of the geometric perturbations of [36] introduced in [50, Section 3.1]
suffice to define the invariants of Theorem 1.4 with constraints pulled back from the target and the
Deligne-Mumford moduli space of real curves for a semi-positive real symplectic manifold pX,ω, φq
endowed with a real orientation. In these cases, the virtual tangent space of Mg,lpX,B; Jqφ ap-
pearing in (1.5) can be replaced by the actual tangent space of the moduli space of simple real
pJ, νq-holomorphic maps from smooth and one-nodal symmetric surfaces of genus g. The invariance
of the resulting counts of such maps can then be established by following along a path of auxiliary
data; it can pass only through one-nodal degenerations.

Theorem 1.4 yields counts of real curves with conjugate pairs of insertions only. By the last
statement of [13, Theorem 6.5], the orientability of the Deligne-Mumford moduli space RMg,l;k

of real genus g curves with l conjugate pairs of marked points and k real marked points does not
capture the orientability of the analogous moduli space Mg,l;kpX,B; Jqφ of real maps whenever
ką0. Theorem 1.3 remains valid for such moduli spaces outside of certain “bad” codimension-one
strata. However, these strata are avoided by generic one-parameter families of real maps in certain
cases; Theorem 1.3 then yields counts of real curves with conjugate pairs of insertions and real
point insertions.

Theorem 1.5. Let pX,ω, φq be a compact real-orientable 6-manifold such that xc1pXq, ByP4Z for
all B PH2pX;Zq with φ˚B“´B. For all

B P H2pX;Zq, µ1, . . . , µl PH
6pX;QqYH2pX;Qq, and k P Zě0,

a real orientation on pX,ω, φq determines a signed count

@

µ1, . . . , µl; ptk
Dφ

1,B
P Q

of real J-holomorphic genus 1 degree B curves which is independent of the choice of J PJ φ
ω .

The n“ 0 case of Theorem 1.3 is essentially Proposition 6.1 which describes the orientability of
the Deligne-Mumford moduli space RMg,l of genus g symmetric surfaces with l conjugate pairs of
marked points. If n P 2Z and g` l ě 2, Theorem 1.3 implies that a real orientation on pX,ω, φq
induces an orientation on the real line bundle

Λtop
R

`

TMg,lpX,B; Jqφ
˘

b f˚
`

Λtop
R pTRMg,lq

˘

ÝÑMg,lpX,B; Jqφ, (1.6)

where f is the forgetful morphism (3.2). This orientation can be used to construct GW-invariants
of pX,ω, φq with classes twisted by the orientation system of RMg,l, as done in [13] in the g“ 0
case.
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1.3 Previous results and acknowledgments

Invariant signed counts of real genus 0 curves with point constraints in real symplectic 4-manifolds
and in many real symplectic 6-manifolds are defined in [39, 40]. An approach to interpreting these
counts in the style of Gromov-Witten theory, i.e. as counts of parametrizations of such curves, is
presented in [4, 37]. Signed counts of real genus 0 curves with conjugate pairs of arbitrary (not
necessarily point) constraints in arbitrary dimensions are defined in [13]. All of these invariants
involve morphisms from P1 with the standard involution τ”τ2 only and are constructed under the
assumption that the fixed circle cannot shrink in a limit; thus, only the degenerations of type (H3)
in Section 3.2 are relevant in this case. This assumption is dropped in [7] by combining counts
of pP1, τq-morphisms with counts of pP1, ηq-morphisms for the fixed-point-free involution η ” η2

on P1 and thus also considering the degenerations of type (E). As the degenerations of types (H1)
and (H2) do not appear in genus 0, [7] thus implements the genus 0 case of an aspiration raised
in [28] and elucidated in [34, Section 1.5]. The target manifolds considered in [7] are real-orientable
in the sense of Definition 1.1 and have spin fixed locus.

We would like to thank E. Brugallé, R. Crétois, E. Ionel, S. Lisi, C.-C. Liu, J. Solomon, J. Starr,
M. Tehrani, G. Tian, and J. Welschinger for related discussions. We would also like to thank a
referee for very thorough comments on a previous version of this paper which led to corrections
of a number of misstatements and to other improvements in the exposition. The second author is
very grateful to the IAS School of Mathematics for its hospitality during the initial stages of our
project on real GW-theory.

2 Examples, properties, and applications

We begin this section with examples of distinct collections of real-orientable symplectic manifolds.
We then describe a number of properties of the real GW-invariants of Theorems 1.4 and 1.5,
including connections with real enumerative geometry and compatibility with key morphisms of
GW-theory. With the exception of Proposition 2.3 and Corollaries 2.6 and 2.7, the claims below
are established in [17, 18].

Proposition 2.1. Let m,nPZ`, kPZě0, and a”pa1, . . . , akqPpZ`qk.

(1) If Xn;aĂPn´1 is a complete intersection of multi-degree a preserved by τn,

k
ÿ

i“1

ai ” n mod 2, and
k
ÿ

i“1

a2
i ”

k
ÿ

i“1

ai mod 4,

then pXn;a, ωn;a, τn;aq is a real-orientable symplectic manifold.

(2) If X2m;aĂP2m´1 is a complete intersection of multi-degree a preserved by η2m and

a1`. . .`ak ” 2m mod 4,

then pX2m;a, ω2m;a, η2m;aq is a real-orientable symplectic manifold.

Proposition 2.2. Let pX,ω, φq be a real symplectic manifold with w2pX
φq“0. If

(1) H1pX;Qq“0 and c1pXq“2pµ´φ˚µq for some µPH2pX;Zq or
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(2) X is compact Kahler, φ is anti-holomorphic, and KX “ 2prDs`rφ˚Dsq for some divisor D
on X,

then pX,ω, φq is a real-orientable symplectic manifold.

Both of these propositions are established in [18]. The first one is obtained by explicitly construct-
ing suitable rank 1 real bundle pairs pL, rφq, while the second follows easily from the proof of [7,
Proposition 1.5].

We recall that GW-invariants involving insertions only from the target X are called primitive. Such
GW-invariants are related to counts of J-holomorphic curves in X passing through a corresponding
collection of constraints (i.e. of representatives for the Poincare duals of the insertions used). In
contrast, GW-invariants also involving ψ-classes, i.e. the Chern classes of the universal tangent
line bundles at the marked points, are called descendant. The next vanishing result extends [16,
Theorem 2.5]. Since the proof of the latter applies, we refer the reader to [16].

Proposition 2.3. Let pX,ω, φq be a compact real-orientable 2n-manifold with nR2Z and gPZě0.
The primary genus g real GW-invariants of pX,ω, φq with conjugate pairs of constraints that include
an insertion µPH˚pX;Qq such that φ˚µ“µ vanish.

The genus g real GW-invariants of P2n´1 with conjugate pairs of constraints can be computed
using the virtual equivariant localization theorem of [21]. In the g“1 case, all torus fixed loci are
contained in the smooth locus of the moduli space and the classical equivariant localization theorem
of [2] suffices. The relevant fixed loci data, which we describe in [18] based on the properties of the
orientations of Theorem 1.3 obtained in [17], is consistent with [38, (3.22)]. We also obtain the two
types of cancellations of contributions from some fixed loci predicted in [38, Sections 3.2,3.3]. We
use this data to obtain the following qualitative observations in [18]; they extend [7, Theorem 1.10]
from the g“0 case and [8, Theorem 7.2] from the g“1 case (the latter assuming that genus 1 real
GW-invariants can be defined).

Proposition 2.4. The genus g degree d real GW-invariants of pP2n´1, ω2n, τ2nq and pP4n´1, ω4n, η4nq

with only conjugate pairs of insertions vanish if d´g P 2Z. The genus g real GW-invariants of
pP4n´1, ω4n, τ4nq and pP4n´1, ω4n, η4nq with only conjugate pairs of insertions differ by the factor
of p´1qg´1.

The primary genus g real GW-invariants arising from Theorem 1.4 are in general combinations
of counts of real curves of genus g and counts of real curves of lower genera and/or of lower
degree (lower symplectic energy). In light of [44, Theorems 1A,1B] and [48, Theorem 1.5], it seems
plausible that the former can be extracted from these GW-invariants to directly provide lower
bounds for enumerative counts of real curves in good situations. This would typically involve
delicate obstruction analysis. However, the situation is fairly simple if g“1 and n“3.

Proposition 2.5. Let pX,ω, φq be a compact real-orientable 6-manifold and J PJ φ
ω be an almost

complex structure which is genus 1 regular in the sense of [45, Definition 1.4]. The primary
genus 1 real GW-invariants of pX,ω, φq are then equal to the corresponding signed counts of real
J-holomorphic curves and thus provide lower bounds for the number of real genus 1 irreducible
curves in pX, J, φq.

Since the standard complex structure J0 on P3 is genus 1 regular, the genus 1 real GW-invariants of
pP3, ω4, τ4q and pP3, ω4, η4q are lower bounds for the enumerative counts of such curves in pP3, J0, τ4q
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and pP3, J0, η4q, respectively. The claim of Proposition 2.5 is particularly evident in the case of real
invariants of pP3, J0, τ4q and pP3, J0, η4q. The only lower-genus contributions for the genus 1 GW-
invariants of 6-dimensional symplectic manifolds can come from the genus 0 curves. If J is genus 1
regular, such contributions arise from the stratum of the moduli space consisting of morphisms
with contracted genus 1 domain and a single effective bubble. In the case of real morphisms, the
node of the domain of such a map would have to be real. There are no such morphisms in the case
of pP3, J0, η4q because the real locus of pP3, η4q is empty. In the case of pP3, J0, τ4q, the genus 0
contribution to the genus 1 real GW-invariant is a multiple of the genus 0 real GW-invariant with
the same insertions. The genus 0 real GW-invariants of pP3, J0, τ4q are known to vanish in the even
degrees; see [40, Remark 2.4(2)] and [7, Theorem 1.10]. However, the substance of Proposition 2.5
is that the genus 0 real enumerative counts do not contribute to the genus 1 real GW-invariants in
all of the cases under consideration; this is shown in [18]. The situation in higher genus is described
in [32].

From the equivariant localization data in [18], we find that the genus 1 degree d real GW-invariant
of P3 with d pairs of conjugate point insertions is 0 for d “ 2, ´1 for d “ 4, and ´4 for d “ 6.
The d“2 number is as expected, since there are no connected degree 2 curves of any kind passing
through two generic pairs of conjugate points in P3. The d“4 number is also not surprising, since
there is only one genus 1 degree 4 curve passing through 8 generic points in P3; see the first three
paragraphs of [26, Section 1]. By [12], the genus 0 and genus 1 degree 6 GW-invariants of P3 with
12 point insertions are 2576 and 1496/3, respectively. By [46, Theorem 1.1], this implies that the
number of genus 1 degree 6 curves passing through 12 generic points in P3 is 2860. Our signed
count of ´4 for the real genus 1 degree 6 curves through 6 pairs of conjugate points in P3 is thus
consistent with the complex count and provides a non-trivial lower bound for the number of real
genus 1 degree 6 curves with 6 pairs of conjugate point insertions. Complete computations of the
d“2, 4 numbers and of the d“6 number appear in [18] and [19, 33], respectively.

In all cases, the lower-genus contributions to the primary genus g real GW-invariants arise from
real curves passing through corresponding constraints. If n “ 3, xc1pXq, By ‰ 0, and the almost

complex structure J PJ φ
ω is sufficiently regular, all such contributions arise from curves of the same

degree. Since the real enumerative counts are of the same parity as the complex enumerative counts,
Propositions 2.3, 2.4, and 2.5 yield the following observations concerning the complex enumerative
invariants

Eg,B
`

µ1, φ
˚µ1, . . . , µl, φ

˚µl
˘

P Z (2.1)

with µi P H
˚pX;Zq that count genus g degree B J-holomorphic curves passing through generic

representatives of the Poincare duals of µi.

Corollary 2.6. Let pX,ω, φq be a real-orientable 6-manifold, g, l P Zě0, and B P H2pX;Zq with

xc1pXq, By ‰ 0. If φ˚µi “ µi for some i “ 1, . . . , l and J P J φ
ω is sufficiently regular, then the

number (2.1) is even.

Corollary 2.7. Let g, l, d P Zě0 with dě 2g´1. If either µi PH
4pP3;Zq for some i“ 1, . . . , l or

g“0, 1 and g´dP2Z, then the genus g degree d enumerative invariants of P3 of the form (2.1) are
even.

The real GW-invariants arising from Theorems 1.4 and 1.5 are compatible with standard mor-
phisms of GW-theory, such as the morphisms forgetting pairs of conjugate marked points and
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the node-identifying immersions (2.3) below. By construction, the orientations on the real line
bundles (1.5) induced by a fixed real orientation on pX,ω, φq are preserved by the morphisms for-
getting pairs of conjugate marked points (the fibers of these morphisms are canonically oriented).
If n R 2Z, this implies that the orientations on the moduli spaces of real morphisms induced by a
fixed real orientation on pX,ω, φq are preserved by the forgetful morphisms. If nP2Z, the orienta-
tions on the real line bundles (1.6) induced by a fixed real orientation on pX,ω, φq are preserved by
the forgetful morphisms. In both cases, the orientations are compatible with the standard node-
identifying immersions (2.3) below; see Proposition 2.8. This in turn implies that a uniform system
of these orientations is determined by a choice of orientation of the Deligne-Mumford moduli space
Mτ

0,2«r0,8s, where τ ”τ2 is the standard conjugation on P1, and a real orientation on pX,ω, φq.
If gR2Z, this also implies that the real GW-invariants of pP2n´1, ω2n, τ2nq and pP4n´1, ω4n, η4nq are
independent of the choice of real orientation.

Let pX,ω, φq, l, B, and J be as in Theorem 1.3 and gPZ. We denote by M
‚

g,lpX,B; Jqφ the moduli
space of stable real degree B morphisms from possibly disconnected nodal symmetric surfaces of
Euler characteristic 2p1´gq with l pairs of conjugate marked points. For each i“1, . . . , l, let

evi : M
‚

g,lpX,B; Jqφ ÝÑ X,
“

u, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q

‰

ÝÑ upz`i q,

be the evaluation at the first point in the i-th pair of conjugate points. Let

M
1‚

g,lpX,B; Jqφ “
 

rusPM
‚

g,lpX,B; Jqφ : evl´1prusq“evlprusq
(

.

The short exact sequence

0 ÝÑ TM
1‚

g,lpX,B; Jqφ ÝÑ TM
‚

g,lpX,B; Jqφ|
M
1‚

g,lpX,B;Jqφ
ÝÑ ev˚l TX ÝÑ 0

induces an isomorphism

Λtop
R

`

TM
‚

g,lpX,B; Jqφ|
M
1‚

g,lpX,B;Jqφ

˘

« Λtop
R

`

TM
1‚

g,lpX,B; Jqφ
˘

b ev˚l
`

Λtop
R pTXq

˘

(2.2)

of real line bundles over M
1‚

g,lpX,B; Jqφ.

The identification of the last two pairs of conjugate marked points induces an immersion

ι : M
1‚

g´2,l`2pX,B; Jqφ ÝÑM
‚

g,lpX,B; Jqφ . (2.3)

This immersion takes the main stratum of the domain, i.e. the subspace consisting of real morphisms
from smooth symmetric surfaces, to the subspace of the target consisting of real morphisms from
symmetric surfaces with one pair of conjugate nodes. There is a canonical isomorphism

N ι ”
ι˚TM

‚

g,lpX,B; Jqφ

TM
1‚

g´2,l`2pX,B; Jqφ
« Ll`1bCLl`2

of the normal bundle of ι with the tensor product of the universal tangent line bundles for the first
points in the last two conjugate pairs. It induces an isomorphism

ι˚
`

Λtop
R

`

TM
‚

g,lpX,B; Jqφ
˘˘

« Λtop
R

`

TM
1‚

g´2,l`2pX,B; Jqφ
˘

b Λ2
R
`

Ll`1bCLl`2

˘

(2.4)
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of real line bundles over M
1‚

g´2,l`2pX,B; Jqφ. Along with (2.2) with pg, lq replaced by pg´2, l`2q,
it determines an isomorphism

Λtop
R

`

TM
‚

g´2,l`2pX,B; Jqφ|
M
1‚

g´2,l`2pX,B;Jqφ

˘

b Λ2
R
`

Ll`1bCLl`2

˘

« ι˚
`

Λtop
R

`

TM
‚

g,lpX,B; Jqφ
˘˘

b ev˚l`1

`

Λtop
R pTXq

˘

(2.5)

of real line bundles over M
1‚

g´2,l`2pX,B; Jqφ.

Proposition 2.8. Let pX,ω, φq, g, l, B, and J be as in Theorem 1.3 with n R 2Z. The isomor-
phism (2.5) is orientation-reversing with respect to the orientations on the moduli spaces determined
by a real orientation on pX,ω, φq and the canonical orientations on Ll`1bCLl`2 and TX.

This proposition is established in [17]. Its substance is that the orientations on M
1‚

g´2,l`2pX,B, Jq
φ

induced from the orientations of M
‚

g´2,l`2pX,B, Jq
φ and M

‚

g,lpX,B, Jq
φ via the isomorphisms (2.2)

and (2.4) are opposite. This unfortunate reversal of orientations under the immersion (2.3) can
be fixed by multiplying the orientation on M

‚

g,lpX,B, Jq
φ described at the end of Section 3.2 by

p´1qtg{2u`1, for example. Along with the sign flip at the end of Section 3, this would change the
canonical orientation on M‚

g,lpX,B, Jq
φ,σ constructed in the proof of Corollary 5.10 by p´1qtg{2u`|σ|0 ,

where |σ|0 is the number of topological components of the fixed locus of pΣ, σq. This sign change
would make the real genus 1 degree d GW-invariant of pP3, ω4, τ4q with d pairs of conjugate point
constraints to be 0 for d“ 2, 1 for d“ 4, and 4 for d“ 6. In particular, it would make the d“ 4
number congruent to its complex analogue modulo 4; this is the case for Welschinger’s (genus 0)
invariants for many target spaces. However, this property fails for the pg, dq“p1, 5q numbers (the
real enumerative invariant is 0, while its complex analogue is 42).

We note that the statement of Proposition 2.8 is invariant under interchanging the points within
the last two conjugate pairs simultaneously (this corresponds to reordering the nodes of a nodal
map). This interchange reverses the orientation of the last factor on the left-hand side of (2.5),
because the complex rank of Ll`1bCLl`2 is 1, and the orientation of the last factor on the right-
hand side of (2.5), because the complex rank of TX is odd.

If nP2Z and g`lě2, the comparison (2.5) should be made with the tangent bundles of the moduli
spaces twisted as in (1.6). The proof of Proposition 2.8 appearing in [17] still applies, but leads to
the opposite conclusion; see [17, Remark 1.3].

3 Outline of the main proofs

The origins of real GW-theory go back to [28], where the spaces (1.3) are topologized by adapting
the description of Gromov’s topology in [27] via versal families of deformations of abstract complex
curves to the real setting. This demonstrates that the codimension 1 boundaries of the spaces
in (1.2) form hypersurfaces inside the full moduli space (1.3) and thus reduces the problem of
constructing a real GW-theory for a real symplectic manifold pX,ω, φq to showing that

(A) the uncompactified moduli spaces Mg,lpX,B; Jqφ,σ are orientable for all types of orientation-
reversing involutions σ on a genus g symmetric surface, and

(B) an orientation of Mg,lpX,B; Jqφ extends across the (virtually) codimension-one strata of the
compact moduli space Mg,lpX,B; Jqφ.
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In this paper, we achieve both objectives for real-orientable 2n-manifolds with nR2Z.

Let g, l PZě0 with g`lě 2. Denote by Mσ
g,l the Deligne-Mumford moduli space of σ-compatible

complex structures on a genus g symmetric surface pΣ, σq with l conjugate pairs of marked points
and by

Mσ
g,l ĄMσ

g,l

its compactification obtained by including stable nodal symmetric surfaces. The codimension-one
boundary strata of Mσ

g,l´Mσ
g,l consist of real one-nodal symmetric surfaces. Each stratum is either

a hypersurface in Mσ
g,l or is a boundary of the spaces Mσ

g,l for precisely two topological types of
orientation-reversing involutions σ on Σ. Let

RMg,l “
ď

σ

Mσ
g,l and RMg,l “

ď

σ

Mσ
g,l

denote the (disjoint) union of the uncompactified real Deligne-Mumford moduli spaces and the
union of the compactified real Deligne-Mumford moduli spaces, respectively, taken over all topo-
logical types of orientation-reversing involutions σ on Σ. The moduli space RMg,l is not orientable
if gPZ`. One of the two main steps in the proof of Theorem 1.3 is Proposition 6.1; it implies that
the real line bundle

Λtop
R

`

TRMg,l

˘

b
`

det B̄C
˘

ÝÑ RMg,l (3.1)

has a canonical orientation.

With g, l as above, let
f : Mg,lpX,B; Jqφ ÝÑ RMg,l (3.2)

denote the forgetful morphism. For each rusPMg,lpX,B; Jqφ with stable domain, it induces a canon-
ical isomorphism

Λtop
R

`

TrusMg,lpX,B; Jqφ,σ
˘

«
`

detDpTX;dφq;u

˘

b Λtop
R pTfpuqM

σ
g,lq, (3.3)

where detDpTX;dφq;u is the determinant of the linearization DpTX;dφq;u of the real B̄J -operator at u;
see Section 4.3. The orientability of the last factor in (3.3) as u varies is indicated by the previous
paragraph. We study the orientability of the first factor on the right-hand side of (3.3) via the
relative determinant of DpTX;dφq;u,

xdetDpTX;dφq;u ”
`

detDpTX;dφq;u

˘

b
`

det B̄Σ;C
˘bn

, (3.4)

where 2n “ dimX and det B̄Σ;C is the standard real Cauchy-Riemann (or CR-) operator on the
domain pΣ, σq of u with values in pC, cq. An orientation on (3.4) determines a correspondence
between the orientations on detDpTX;dφq;u and on the determinant detnB̄Σ;C of the standard real
B̄-operator on the trivial rank n real bundle pΣˆCn, σˆ cq over pΣ, σq. On the other hand, orien-

tations on xdetDpTX;dφq;u are naturally related to the topology of real bundles pairs over pΣ, σq. In
particular, the second main step in the proof of Theorem 1.3 is Proposition 5.2; it implies that a
real orientation on pX,ω, φq determines an orientation on (3.4) which varies continuously with u.
Combined with the canonical orientation of (3.1) and the canonical isomorphism of (3.3), the latter
orientation determines an orientation on the line bundle (1.4).
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3.1 The orientability problem

The typical approaches to the orientability problem in real GW-theory, i.e. (A) on page 11, involve
computing the signs of the actions of appropriate real diffeomorphisms on determinant lines of
real CR-operators over some coverings of MgpX,B; Jqφ,σ arising from bordered surfaces. These
approaches work as long as all relevant diffeomorphisms are homotopically fairly simple and in
particular preserve a bordered surface in Σ that doubles to Σ or map it to its conjugate half. This
is the case if the fixed locus ΣσĂΣ of the involution σ is separating; a good understanding of the
orientability of the moduli spaces MgpX,B; Jqφ,σ in such cases is obtained in [37, 11, 13, 6, 14, 15].
This is also the case for any involution σ of genus g“ 0, 1. In particular, the restriction of The-
orem 1.3 to MgpX,B; Jqφ,σ for the genus 1 involutions σ is essentially [14, Theorem 1.2]; a less
general version of [14, Theorem 1.2] is [8, Theorem 1.1]. However, understanding the orientability
in the bordered case is not sufficient beyond genus 1, due to the presence of real diffeomorphisms
of pΣ, σq not preserving any half of Σ; see Example 4.1. The subtle effect of such diffeomorphisms
on the orientability is hard to determine.

In contrast to [37, 11], in [15] we allowed the complex structure on a bordered domain to vary
and considered diffeomorphisms interchanging the boundary components and their lifts to auto-
morphisms of real bundle pairs. We discovered that they often act with the same signs on

(A1) a natural cover of Mσ
g and the determinant line bundle for the trivial rank 1 real bundle pair

over it;

(A2) the determinants of real CR-operators on the square of a rank 1 real bundle pair with ori-
entable real part and on the trivial rank 1 real bundle pair;

(A3) the determinants of real CR-operators on an odd-rank real bundle pair and its top exterior
power;

see [15, Propositions 2.5,4.1,4.2]. In this paper, we show that these analytic statements are in
fact underpinned by the topological statement of Proposition 5.2 concerning canonical homotopy
classes of isomorphisms between real bundle pairs over a symmetric surface pΣ, σq. As we work
on the more elemental, topological level of real bundle pairs, we do not compute the signs of any
automorphisms, as is done in the bordered surfaces approach. We instead obtain isomorphisms of
real bundle pairs over (families of) symmetric surfaces and apply the determinant functor to these
isomorphisms (Corollaries 5.7 and 6.6). In contrast to the bordered surfaces approach, this works
for all type of involutions on the domain and in flat families of (possibly) nodal curves.

Proposition 5.9, which appears to be of its own interest, endows the restriction of the line bun-
dle (3.1) to each topological component Mσ

g,l of RMg,l with a canonical orientation and thus
explains (A1). This canonical orientation over an element rCs of Mσ

g,l is obtained by tensoring
canonical orientations on four lines:

(1) the orientation on the tensor product of the top exterior powers of the left and middle terms
in (5.22) induced by the Kodaira-Spencer (or KS) isomorphism,

(2) the orientation on the tensor product of the top exterior powers of the middle term in (5.22)
and of the right-hand side in (5.23) induced by the Dolbeault Isomorphism and Serre Duality,
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(3) the orientation on (5.25) induced by the short exact sequence (5.24) and the specified orienta-
tions of (5.21),

(4) the orientation on the fiber of the line bundle (5.27) over rCs determined by Corollaries 5.6
and 5.7.

We combine the canonical orientation on the restriction of the line bundle (3.1) to the main stra-
tum RMg,l, the orientation on the relative determinants (3.4) induced by the real orientation
on pX,ω, φq, and the isomorphism (3.3) to establish the restriction of Theorem 1.3 to the uncom-
pactified moduli space Mg,lpX,B; Jqφ; see Corollary 5.10.

3.2 The codimension-one boundary problem

Once the orientability problem (A) is resolved, one can study the codimension-one boundary prob-
lem, i.e. (B) on page 11. It then asks whether it is possible to choose an orientation on the subspace

Mg,lpX,B; Jqφ,σ ĂMg,lpX,B; Jqφ

for each topological type of orientation-reversing involutions σ on a genus g symmetric surface
so that the resulting orientations do not change across the (virtually) codimension-one strata of
Mg,lpX,B; Jqφ. These strata are (virtual) hypersurfaces inside of the full moduli space and consist
of morphisms from one-nodal symmetric surfaces to pX,φq.

As described in [28, Section 3], there are four distinct types of one-nodal symmetric surfaces
pΣ, x12, σq:

(E) x12 is an isolated real node, i.e. x12 is an isolated point of the fixed locus ΣσĂΣ;

(H) x12 is a non-isolated real node and

(H1) the topological component Σσ
12 of Σσ containing x12 is algebraically irreducible (the normal-

ization rΣrσ
12 of Σσ

12 is connected);

(H2) the topological component Σσ
12 of Σσ containing x12 is algebraically reducible, but Σ is

algebraically irreducible (the normalization rΣrσ
12 of Σ12 is disconnected, but the normalization

rΣ of Σ is connected);

(H3) Σ is algebraically reducible (the normalization rΣ of Σ is disconnected).

In [8, Section 3], the above types are called (II), (IC1), (IC2), and (ID), respectively. In the genus 0
case, the degenerations (E) and (H3) are known as codimension-one sphere bubbling and disk bub-
bling, respectively; the degenerations (H1) and (H2) cannot occur in the genus 0 case.

The transitions between smooth symmetric surfaces across the four types of one-nodal symmet-
ric surfaces are illustrated in [28, Figures 12-15]. A transition through a degeneration (H3) does
not change the topological type of the involution. Thus, each stratum of morphisms from a one-
nodal symmetric surface of type (H3) to pX,φq is a hypersurface inside of Mg,lpX,B; Jqφ,σ for
some genus g involution σ. This transition does not play a material role in the approach of [39, 40],
which is based on counting real genus 0 curves, rather than their parametrizations. In the approach
of [4, 37], which is based on counting morphisms from disks as halves of morphisms from pP1, τq,
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Figure 1: The real locus transition through (H2) and (H3) degenerations

the degeneration (H3) appears as a codimension-one boundary consisting of morphisms from two
disks. This boundary is glued to itself in [4, 37] by the involution which corresponds to flipping
one of the disks; this involution is orientation-reversing under suitable assumptions and so the
orientation on the main stratum extends across the resulting hypersurfaces. A perspective that
combines the hypersurface viewpoint of [39, 40] with the parametrizations setting of [4, 37] appears
in [13]. It fits naturally with the approach of this paper to studying transitions through all four
degeneration types.

A transition through a degeneration (E) changes the number |σ|0 of topological components (cir-
cles) of the fixed locus Σσ Ă Σ by one. In the terminology of Section 4.1, such a transition can
be described as collapsing a standard boundary component of a bordered half-surface (correspond-
ing to a component of Σσ) and then replacing it with a crosscap. In particular, each stratum of
morphisms from a one-nodal symmetric surface of type (E) to pX,φq is a boundary of the spaces
Mg,lpX,B; Jqφ,σ for precisely two topological types of genus g involutions σ. In the genus 0 case,
the analysis of orientations necessary for the gluing of the two spaces along their common boundary
is carried out in [7, Section 3].

A transition through a degeneration (H1) also changes the number |σ|0 by one, but through a
more complicated process. Such a transition transforms two components of Σσ into one and cre-
ates an additional crosscap “near” the node of the one-nodal surface pΣ, x12, σq. Each stratum of
morphisms from a one-nodal symmetric surface of type (H1) to pX,φq is a boundary of the spaces
Mg,lpX,B; Jqφ,σ for precisely two topological types of genus g involutions σ. A degeneration (H1)
cannot occur in genus 0, but does occur in genus 1 and higher; see the last diagram in [8, Figure 2].

A transition through a degeneration (H2) does not change the number of topological components
of Σσ, but cuts one of them into two arcs and re-joins the arcs in the opposite way. The trans-

Figure 2: The real locus transition through an (H1) degeneration
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formation of the real locus is the same as in the (H3) case, but an (H2) transition also inserts or
removes two crosscaps. This transition may or may not change the topological type of the involu-
tion σ. If the fixed locus of pΣ, x12, σq is separating, then this transition changes the topological
type of σ and each stratum of morphisms from pΣ, x12, σq to pX,φq is a boundary of the spaces
Mg,lpX,B; Jqφ,σ for precisely two topological types of genus g involutions σ. If the fixed locus of
pΣ, x12, σq is non-separating, then this transition does not change the topological type of σ and
each stratum of morphisms from pΣ, x12, σq to pX,φq is a hypersurface inside of Mg,lpX,B; Jqφ,σ

for some genus g involution σ. A degeneration (H2) cannot occur in genus 0 or 1, but does occur
in genus 2 and higher.

The transitions (H1) and (H2) do not preserve any bordered surface in Σ that doubles to Σ, in
contrast to the transition (E); the transition (H3) does not preserve any bordered surface in Σ that
doubles to Σ either, but its nature is fairly simple. As in the case of (A) discussed in Section 3.1,
this makes the issue (B) difficult to study using the standard approaches to orienting the determi-
nant lines of real CR-operators even when issue (A) is resolved; see [8, Conjectures 1.3,6.3]. We
approach (B) by studying isomorphisms between real bundle pairs, but this time over one-nodal
symmetric surfaces pΣ, x12, σq. As in the smooth case, this circumvents a direct computation of
the signs of any automorphisms of the determinant lines of real CR-operators.

Corollary 5.10 uses a real orientation on pX,ω, φq to endow the fiber of the line bundle (1.5) over
each element rus of Mg,lpX,B; Jqφ with an orientation. The latter is obtained by combining the
orientation on the relative determinant (3.4) of the linearization of the B̄J -operator at u induced by
the real orientation on pX,ω, φq and the canonical orientation on the fiber of the line bundle (3.1)
over fpuq via the isomorphism (3.3). The real orientation on pX,ω, φq specifies a homotopy class of
isomorphisms (5.5) with pV, ϕq“u˚pTX,dφq. The latter determines an orientation on the relative
determinant (3.4). An isomorphism in the specified homotopy class over a one-nodal symmetric sur-
face pΣ, x12, σq extends to an isomorphism in the specified homotopy class for each nearby smooth
symmetric surface. Therefore, so does the induced orientation on the relative determinant (3.4);
see Corollary 6.7. This means that the induced orientation of the line bundle formed by the rela-
tive determinants (3.4) does not change across any of the codimension-one strata of Mg,lpX,B; Jqφ.

The situation with the canonical orientation on the restriction of the line bundle (3.1) to RMg,l

provided by Proposition 5.9 on page 32 is very different. This is partly indicated by the state-
ment of Proposition 6.1, but the actual situation is even more delicate. This canonical orientation
constructed in Proposition 5.9 is the tensor product of the four orientations listed at the end of
Section 3.1. The line bundles on which these orientations are defined naturally extend across the
codimension-one boundary strata of RMg,l. The behavior of the four orientations across these
strata of RMg,l is described in the proof of Proposition 6.1 at the end of Section 6.3. The ori-
entations (2) and (3) in Section 3.1 do not change across any of codimension-one strata. The
orientation (1), determined by the KS isomorphism (5.22) for smooth symmetric surfaces, changes
across all codimension-one boundary strata; see Lemma 6.17. The orientation (4) over a smooth
symmetric surface is induced by Corollary 5.7 from the canonical real orientation of Corollary 5.6
with L“ T ˚Σ. The analogue of L for a one-nodal symmetric surface pΣ, x12, σq is played by the
restriction of the line bundle pT of Lemma 6.8. The restriction of its real part to the singular
component of the fixed locus is orientable for the degenerations of types (E) and (H1) and is not
orientable for the degenerations of types (H2) and (H3); see Lemma 6.13. In the latter cases, the
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orientation/parity of induced by (E)/(H1) (H2)/(H3)

Λtop
R pTΣMσ

g,lqbΛtop
R p qH1pΣ;TΣqqσq KS isomorphism (5.22) ´ ´

pdet B̄pT˚Σ,dσ˚qb2qbpdet B̄Σ;Cq Corollaries 5.6 and 5.7 ` ´

|σ|0 N/A ´ `

Table 1: The extendability of the canonical orientations and of the parity of the number of compo-
nents of Σσ across the codimension-one strata: ` extends, ´ flips. All other canonical orientations
factoring into the orientation of the line bundle (1.5) extend across all codimension-one strata.

orientation (4) for pΣ, x12, σq depends on the orientation of the fixed locus; see Corollary 5.6. For
the degenerations of types (H2) and (H3), no orientation of the singular component of the fixed
locus extends to nearby smooth symmetric surfaces (because (H2) and (H3) involve cutting a fixed
circle into two arcs and re-joining them in the opposite way). Therefore, the orientation (4) changes
in the transitions (H2) and (H3) and does not in the transitions (E) and (H1); see Corollary 6.16.

The key points of the previous paragraph are summarized in Table 1. They imply that the canon-
ical orientation on the restriction of the line bundle (3.1) to RMg,l provided by Proposition 5.9
does not change in the transitions (H2) and (H3) and changes in the transitions (E) and (H1).
These transitions have the same effect on the parity of the number |σ|0 of connected components
of the fixed locus Σσ of pΣ, σq. Thus, the canonical orientation on the restriction of (3.1) to
RMg,l multiplied by p´1qg`|σ|0`1 over each topological component Mσ

g,l of RMg,l extends over

all of RMg,l. The same considerations apply to the orientation on the restriction of the line bun-
dle (1.5) to Mg,lpX,B; Jqφ,σ provided by Corollary 5.10. If nR2Z, this sign modification leaves the
orientations of the moduli spaces Mg,lpX,B; Jqφ,σ for separating involutions σ unchanged.

4 Notation and review

In this section, we set up the notation and terminology used throughout Sections 5 and 6. We recall
some facts about symmetric surfaces, associated half-surfaces, their moduli spaces, real Cauchy-
Riemann operators, and their determinant line bundles.

4.1 Symmetric surfaces and half-surfaces

Let pΣ, σq be a genus g symmetric surface. We denote by |σ|0 P Zě0 the number of connected
components of Σσ; each of them is a circle. Let xσy“0 if the quotient Σ{σ is orientable, i.e. Σ´Σσ

is disconnected, and xσy“1 otherwise. There are
Y

3g`4
2

]

different topological types of orientation-

reversing involutions σ on Σ classified by the triples pg, |σ|0, xσyq; see [31, Corollary 1.1].

An oriented symmetric half-surface (or simply oriented sh-surface) is a pair pΣb, cq consisting of an
oriented bordered smooth surface Σb and an involution c : BΣbÝÑBΣb preserving each component
and the orientation of BΣb. The restriction of c to a boundary component is either the identity or
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Figure 3: Doubling an oriented sh-surface

the antipodal map
a : S1 ÝÑ S1, z ÝÑ ´z, (4.1)

for a suitable identification of pBΣbqi with S1ĂC; the latter type of boundary structure is called
crosscap in the string theory literature. We define

ci “ c|pBΣbqi , |ci| “

#

0, if ci “ id;

1, otherwise;
|c|k “

ˇ

ˇtpBΣbqiĂΣb : |ci|“ku
ˇ

ˇ k “ 0, 1.

Thus, |c|0 is the number of standard boundary components of pΣb, BΣbq and |c|1 is the number of
crosscaps. Up to isomorphism, each oriented sh-surface pΣb, cq is determined by the genus g of Σb,
the number |c|0 of ordinary boundary components, and the number |c|1 of crosscaps. We denote
by pΣg,m0,m1 , cg,m0,m1q the genus g oriented sh-surface with |cg,m0,m1 |0“m0 and |cg,m0,m1 |1“m1.

An oriented sh-surface pΣb, cq of type pg,m0,m1q doubles to a symmetric surface pΣ, σq of type

pgpΣq, |σ|0, xσyq “

#

p2g`m0`m1´1,m0, 0q, if m1 “ 0;

p2g`m0`m1´1,m0, 1q, if m1 ‰ 0;

so that σ restricts to c on the cutting circles (the boundary of Σb); see [14, (1.6)] and Figure 3. Since
this doubling construction covers all topological types of orientation-reversing involutions σ on Σ,
for every symmetric surface pΣ, σq there is an oriented sh-surface pΣb, cq which doubles to pΣ, σq.
In general, the topological type of such an sh-surface is not unique. There is a topologically unique
oriented sh-surface pΣb, cq doubling to a symmetric surface pΣ, σq if xσy“ 0, in which case pΣb, cq
has no crosscaps, or |σ|0ě gpΣq´1, in which case pΣb, cq is either of genus at most 1 and has no
crosscaps or of genus 0 and has at most 2 crosscaps.

Denote by Dσ the group of orientation-preserving diffeomorphisms of Σ commuting with the invo-
lution σ. If pX,φq is a smooth manifold with an involution, lPZě0, and B P H2pX;Zq, let

Bg,lpX,Bq
φ,σ Ă BgpXq

φ,σ ˆ Σ2l
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denote the space of real maps u : pΣ, σq ÝÑ pX,φq with u˚rΣsZ “ B and l pairs of conjugate
non-real marked distinct points. We define

Hg,lpX,Bq
φ,σ “

`

Bg,lpX,Bq
φ,σˆJ σ

Σ

˘

{Dσ.

The action of Dσ on JΣ given by h ¨ j “ h˚j preserves J σ
Σ ; thus, the above quotient is well-defined.

If J PJ φ
ω , the moduli space of marked real J-holomorphic maps in the class B P H2pX;Zq is the

subspace

Mg,lpX,B; Jqφ,σ “
 

ru, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, jsPHg,lpX,Bq

φ,σ : B̄J,ju“0
(

,

where B̄J,j is the usual Cauchy-Riemann operator with respect to the complex structures J on X
and j on Σ. If g`lě2,

Mσ
g,l ”Mg,lppt, 0qid,σ ” Hg,lppt, 0qid,σ

is the moduli space of marked symmetric domains. There is a natural forgetful morphism

f : Hg,lpX,Bq
φ,σ ÝÑMσ

g,l ;

it drops the map component u from each element of the domain.

The following example shows that the orientability of a moduli space of symmetric half-surfaces does
not imply the orientability of the corresponding moduli space of symmetric surfaces. It indicates
the subtle effect of diffeomorphisms of a symmetric surface pΣ, σq not preserving any half-surface Σb

and the difficulties arising in the standard approaches to the orientability problem (A) on page 11
in positive genus.

Example 4.1. Let Σb be an sh-surface of genus 2 with one boundary component and non-trivial
involution, as in the left diagram of Figure 4. Its double is a symmetric surface pΣ, σq of genus 4
without a fixed locus, as in the middle diagram of Figure 4. The moduli space Mc

Σb
of sh-

surfaces Σb is orientable by [14, Lemma 6.1] and [15, Lemma 2.1]. The natural automorphisms of
Mc

Σb
associated with real orientation-reversing diffeomorphisms of Σb are orientation-preserving by

[14, Lemma 6.1] and [15, Corollary 2.3]. On the double Σ of Σb, these diffeomorphisms correspond to
flipping the surface across the crosscap. The real moduli space Mσ

4 parametrizing such symmetric
surfaces Σ is not orientable for the following reason. By [31, Theorem 1.2], every representative of a
point in Mσ

4 has 5 invariant circles which separate the surface, as in the right diagram of Figure 4.
There is a real diffeomorphism h which fixes 3 of these circles and interchanges the other 2. By
[15, Corollary 2.2], the mapping torus of h defines a loop in Mσ

4 which pairs non-trivially with the
first Stiefel-Whitney class of the moduli space.

4.2 Gromov’s convergence topology

Let C”pΣ, z1, . . . , zl, jq be a compact nodal marked Riemann surface. A flat family of deformations
of C is a tuple

`

π : UÝÑ∆, s1 : ∆ÝÑU , . . . , sl : ∆ÝÑU
˘

, (4.2)

where U is a complex manifold, ∆ĂCN is a ball around 0, and π, s1, . . . , sl are holomorphic maps
such that
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Figure 4: Orientability of crosscaps vs. real moduli spaces

‚ Σt”π
´1ptq is a (possibly nodal) Riemann surface for each tP∆ and π is a submersion outside

of the nodes of the fibers of π,

‚ for every t˚ ” pt˚1 , . . . , t
˚
N q P∆ and every node z˚ P Σt˚ , there exist i P t1, . . . , Nu with t˚i “ 0,

neighborhoods ∆t˚ of t˚ in ∆ and Uz˚ of z˚ in U , and a holomorphic identification

Ψ: Uz˚ ÝÑ
 `

pt1, . . . , tN q, x, y
˘

P∆t˚ˆC2 : xy“ ti
(

such that the composition of Ψ with the projection to ∆t˚ equals π|Uz˚ ,

‚ π˝si“ id∆ and siptq‰sjptq for all tP∆ and i, j“1, . . . , l with i‰j,

‚ pΣ0, s1p0q, . . . , slp0qq“C.

Let C”pΣ, σ, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, jq be a nodal marked symmetric Riemann surface. A flat family

of deformations of C is a tuple
`

π : UÝÑ∆,rc : UÝÑU , s1 : ∆ÝÑU , . . . , sl : ∆ÝÑU
˘

such that pπ, s1,rc˝s1, . . . , sl,rc˝slq is a flat family of deformations of pΣ, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, jq

and rc is an anti-holomorphic involution on U lifting the standard involution c on ∆ and restricting
to σ over Σ“π´1p0q. In such a case, let σt“rc|Σt for each parameter t in ∆R”∆XRN .

For any nodal surface Σ, we denote by Σ˚ĂΣ the subset of its smooth points. Suppose π : UÝÑ∆
is a flat family of deformations of pΣ, jq. There then exist a neighborhood ∆1 of 0 in ∆ and a
continuous collapsing map

q : U
ˇ

ˇ

∆1
ÝÑ Σ

so that the preimage of each node of Σ under the restriction of q to Σt with tP∆1 is either a node
of Σt or an embedded circle and the map

πˆq : q´1pΣ˚q ÝÑ ∆1ˆΣ˚

is a diffeomorphism. For each tP∆1, let

ψt : Σ˚ ÝÑ q´1pΣ˚qXΣt (4.3)
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be the restriction of its inverse to t̂ Σ˚. If tr P∆ is a sequence converging to 0P∆ and ur : ΣtrÝÑX
is a sequence of continuous maps that are smooth on Σ˚tr , we say that the sequence ur converges
to a smooth map u :Σ˚ÝÑX u.c.s. (uniformly on compact subsets) if the sequence of maps

ur˝ψtr : Σ˚ ÝÑ X

converges to u uniformly in the C8-topology on compact subsets of Σ˚. This notion is independent
of the choices of ∆1 and trivialization of π|q´1pΣ˚q.

For a Riemannian metric g on X and an Lp1-map u : ΣÝÑX, for some pą2, let

Egpuq ”
1

2

ż

Σ
|du|2g P Rě0

denote the energy of u; this notion is independent of the choice of j-compatible metric on Σ.

Definition 4.2 (Gromov’s Convergence). Suppose pX,φq is a manifold with an involution, g is
a Riemannian metric on X, and Jr is an almost complex structure on X for every rPZě0\t8u.
A sequence pCr, σr, urq of φ-real Jr-holomorphic maps with l conjugate pairs of marked points
converges to a φ-real J8-holomorphic map pC8, σ8, u8q with l conjugate pairs of marked points if
EgpurqÝÑEgpu8q as rÝÑ8 and there exist

(a) a flat family pπ,rc, s1, . . . , slq of deformations of pC8, σ8q as above,

(b) a sequence tr P∆R converging to 0P∆, and

(c) equivalences hr : pΣtr , σrqÝÑpCr, σtrq

such that ur˝hr converges to u8|Σ˚8 u.c.s.

Suppose pX,φq, g, and Jr are as in Definition 4.2, X is compact, and the sequence Jr converges
to J8 with respect to the C2-topology. Gromov’s Compactness Theorem for J-holomorphic maps,
arising from [23], then implies that every sequence of stable φ-real Jr-holomorphic maps ur with
l conjugate pairs of marked points so that lim inf Egpuiq is finite contains a subsequence that
converges in the sense of Definition 4.2 to some stable φ-real J8-holomorphic map pC8, u8q with
l conjugate pairs of marked points. By the compactness of Σ8, this notion of convergence is
independent of the choice of metric g on X.

4.3 Determinant lines of Fredholm operators

Let pV, ϕq be a real bundle pair over a symmetric surface pΣ, σq. A real Cauchy-Riemann (or CR-)
operator on pV, ϕq is a linear map of the form

D “ B̄`A : ΓpΣ;V qϕ ”
 

ξPΓpΣ;V q : ξ˝σ“ϕ˝ξ
(

ÝÑ Γ0,1
j pΣ;V qϕ ”

 

ζ PΓpΣ; pT ˚Σ, jq0,1bCV q : ζ˝dσ “ ϕ˝ζ
(

,
(4.4)

where B̄ is the holomorphic B̄-operator for some jPJ σ
Σ and a holomorphic structure in V reversed

by ϕ and
A P Γ

`

Σ; HomRpV, pT
˚Σ, jq0,1bCV q

˘ϕ

is a zeroth-order deformation term. A real CR-operator on a real bundle pair is Fredholm in the
appropriate completions. The space of completions of all real CR-operators on pV, ϕq is contractible
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with respect to the operator norm.

If X,Y are Banach spaces and D : XÝÑY is a Fredholm operator, let

detD ” Λtop
R pkerDq b

`

Λtop
R pcokDq

˘˚

denote the determinant line of D. A continuous family of such Fredholm operators Dt over a topo-
logical space H determines a line bundle over H, called the determinant line bundle of tDtu and
denoted detD; see [30, Section A.2] and [49]. Combined with the note at the end of the pre-
vious paragraph, this implies that there is a canonical homotopy class of isomorphisms between
the determinants of any two CR-operators on a real bundle pair pV, ϕq; we thus denote any such
determinant by detDpV,ϕq.

An exact triple (short exact sequence) t of Fredholm operators

0 // X 1

D1

��

// X

D
��

// X2

D2

��

// 0

0 // Y 1 // Y // Y 2 // 0

(4.5)

determines a canonical isomorphism

Ψt : pdetD1q b pdetD2q
«
ÝÑ detD. (4.6)

For a continuous family of exact triples of Fredholm operators, the isomorphisms (4.6) give rise to
a canonical isomorphism between the determinant line bundles.

Let pΣ0, σ0, j0q be a (possibly nodal) symmetric Riemann surface and pπ : U ÝÑ∆,rc : U ÝÑUq be
a flat family of deformations of pΣ0, σ0, j0q as in Section 4.2. Suppose pV, ϕq is a real bundle pair
over pU ,rcq, ∇ is a ϕ-compatible (complex-linear) connection in V , and

A P Γ
`

U ; HomRpV, pT
˚U , Jq0,1 bCV q

˘ϕ
, (4.7)

where J is the complex structure on U . The restrictions of ∇ and A to each fiber pΣt, σtq of π
with tP∆R then determine a real CR-operator

DpV,ϕq;t : Γ
`

Σt;V |Σt

˘ϕ
ÝÑ Γ0,1

jt

`

Σt;V |Σt

˘ϕ
(4.8)

on pV, ϕq|Σt . Let

πpV,ϕq : detDpV,ϕq”
ğ

tP∆R

`

ttuˆdetDpV,ϕq;t
˘

ÝÑ ∆R . (4.9)

The set detDpV,ϕq carries natural topologies so that the projection πpV,ϕq is a real line bundle; see
Appendix A. The case of (4.9) with ∆ Ă C (and thus ∆R is an open subset of R) and pΣ0, σ0q

having only a conjugate pair of nodes underpins all orienting constructions in the open GW-theory
and Fukaya category literature that follow [10, Section 8.1].

Good topologies on the total space of (4.9) arise directly from some of the analytic considerations
of [27] combined with the algebraic conclusions of [25]. This implies that the resulting topologies
satisfy analogues of all properties listed in [49, Section 2]. In particular,
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(D1) a homotopy class of continuous isomorphisms Ψ : pV1, ϕ1q ÝÑ pV2, ϕ2q of real bundle pairs
over pU ,rcq|∆R determines a homotopy class of isomorphisms

detDΨ : detDpV1,ϕ1q ÝÑ detDpV2,ϕ2q

of line bundles over ∆R;

(D2) the isomorphisms (4.6) determine a homotopy class of isomorphisms

det
`

DpV1,ϕ1q‘pV2,ϕ2q

˘

«
`

detDpV1,ϕ1q

˘

b
`

detDpV2,ϕ2q

˘

of line bundles over ∆R for all real bundle pairs pV1, ϕ1q and pV2, ϕ2q over pU ,rcq.

These two properties correspond to the Naturality I and Direct Sum properties in [49, Section 2].

Families of real CR-operators often arise by pulling back data from a target manifold by smooth
maps as follows. Suppose pX, J, φq is an almost complex manifold with an anti-complex involution
and pV, ϕq is a real bundle pair over pX,φq. Let ∇ be a ϕ-compatible (complex-linear) connection
in V and

A P Γ
`

X; HomRpV, pT
˚X, Jq0,1 bCV q

˘ϕ
.

For any real map u : pΣ, σq ÝÑ pX,φq from a symmetric surface and j P J σ
Σ , let ∇u denote the

induced connection in u˚V and

Aj;u “ A ˝ Bju P ΓpΣ; HomRpu
˚V, pT ˚Σ, jq0,1 bC u

˚V q
˘u˚ϕ

.

The homomorphisms

B̄∇u “
1

2
p∇u ` i ˝∇u ˝ jq, DpV,ϕq;u ” B̄

∇
u `Aj;u : ΓpΣ;u˚V qu

˚ϕ ÝÑ Γ0,1
j pΣ;u˚V qu

˚ϕ

are real CR-operators on u˚pV, ϕqÝÑpΣ, σq that form families of real CR-operators over families
of maps.

For g, lPZě0 and B PH2pX;Zq, let

detDpV,ϕq ÝÑ Bg,lpX,Bq
φ,σˆJ σ

Σ

denote the determinant line bundle of the family of the CR-operators DpV,ϕq;pu,jq constructed as
above. This line bundle descends to an orbi-bundle

detDpV,ϕq ÝÑ Hg,lpX,Bq
φ,σ;

it is a line bundle over the open subspace of the base consisting of marked maps with no non-trivial
automorphisms.

Let pπ,rc, s1, . . . , slq be a flat family of deformations as in Section 4.2. A smooth real map F : UÝÑX
pulls back the connection ∇ and the zeroth-order deformation term A on pV, ϕq above to a con-
nection ∇F and a zeroth-order deformation term AF on F ˚pV, ϕq. The latter in turn determine a
line bundle

πF˚pV,ϕq : detDF˚pV,ϕq ÝÑ ∆R

as in (4.9), which we call detDpV,ϕq when there is no ambiguity.
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Example 4.3. Let g, lPZě0 with g l̀ě2. The pair pV, ϕq”pC, cq is a real bundle pair over ppt, idq.
The induced families of the operators B̄C;u”DpC,cq;u over flat families of stable real genus g curves
with l conjugate pairs of marked points define a line bundle

det B̄C ÝÑ RMg,l .

If pX,φq is an almost complex manifold with anti-complex involution φ and

pV, ϕq “ pXˆC, φˆcq ÝÑ pX,φq,

then there is a canonical isomorphism

detDpC,cq « f˚
`

det B̄C
˘

of line bundles over Hg,lpX,Bq
φ,σ.

5 Real orientations on real bundle pairs

The main stepping stone in our proof of Theorem 1.3 for the uncompactified moduli space

Mg,lpX,B; Jqφ ĂMg,lpX,B; Jqφ

is Proposition 5.2 below. By Corollary 5.7 of this proposition, a real orientation on a rank n
real bundle pair pV, ϕq over a symmetric surface pΣ, σq determines an orientation on the relative
determinant

xdetD ”
`

detD
˘

b
`

det B̄Σ;C
˘bn

(5.1)

for every real CR-operator D on pV, ϕq, where B̄Σ;C is the standard real CR-operator on pΣ, σq with
values in pC, cq.

Definition 5.1. Let pX,φq be a topological space with an involution and pV, ϕq be a real bundle
pair over pX,φq. A real orientation on pV, ϕq consists of

(RO1) a rank 1 real bundle pair pL, rφq over pX,φq such that

w2pV
ϕq “ w1pL

rφq2 and Λtop
C pV, ϕq « pL, rφqb2, (5.2)

(RO2) a homotopy class rψs of isomorphisms of real bundle pairs in (5.2), and

(RO3) a spin structure s on the real vector bundle V ϕ‘2pL˚q
rφ˚ over Xφ compatible with the

orientation induced by (RO2).

An isomorphism Θ in (5.2) restricts to an isomorphism

Λtop
R V ϕ « pL

rφqb2 (5.3)

of real line bundles over Xφ. Since the vector bundles pL
rφqb2 and 2pL˚q

rφ˚ are canonically oriented,

Θ determines orientations on V ϕ and V ϕ‘2pL˚q
rφ˚ . We will call them the orientations determined
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by (RO2) if Θ lies in the chosen homotopy class. An isomorphism Θ in (5.2) also induces an
isomorphism

Λtop
C

`

V ‘2L˚, ϕ‘2rφ˚
˘

« Λtop
C pV, ϕq b pL˚, rφ˚qb2

« pL, rφqb2 b pL˚, rφ˚qb2 «
`

ΣˆC, σˆc
˘

,
(5.4)

where the last isomorphism is the canonical pairing. We will call the homotopy class of isomor-
phisms (5.4) induced by the isomorphisms Θ in (RO2) the homotopy class determined by (RO2).

Proposition 5.2. Suppose pΣ, σq is a symmetric surface and pV, ϕq is a rank n real bundle pair
over pΣ, σq. A real orientation on pV, ϕq as in Definition 5.1 determines a homotopy class of
isomorphisms

Ψ:
`

V ‘2L˚, ϕ‘2rφ˚
˘

«
`

ΣˆCn`2, σˆc
˘

(5.5)

of real bundle pairs over pΣ, σq. An isomorphism Ψ belongs to this homotopy class if and only if
the restriction of Ψ to the real locus induces the chosen spin structure (RO3) and the isomorphism

Λtop
C Ψ: Λtop

C
`

V ‘2L˚, ϕ‘2rφ˚
˘

ÝÑ Λtop
C

`

ΣˆCn`2, σˆc
˘

“
`

ΣˆC, σˆc
˘

(5.6)

lies in the homotopy class determined by (RO2).

This proposition is proved in Section 5.2 after some topological preliminaries concerning symmetric
functions on symmetric surfaces are established in Section 5.1. Proposition 5.2 is applied to the
orientability problem (A) on page 11 in Section 5.3.

5.1 Homotopies of functions from symmetric surfaces

Let pX,φq be a topological space with an involution. For any Lie group G with a natural conjuga-
tion, such as C˚, SLnC, or GLnC, denote by CpX,φ;Gq the topological group of continuous maps
f : X ÝÑG such that fpφpxqq“fpxq for all x PX. The restrictions of such functions to the fixed
locus XφĂX take values in the real locus of G, i.e. R˚, SLnR, and GLnR, in the three examples.

Lemma 5.3. Let pΣ, σq be a symmetric surface with fixed components Σσ
1 , . . . ,Σ

σ
m and nPZ`. For

every i “ 1, . . . ,m and continuous map ψ : Σσ
i ÝÑGLnR, there exists f PCpΣ, σ; GLnCq such that

f |Σσi “ ψ and f is the identity outside of an arbitrarily small neighborhood of Σσ
i . The same

statement holds with GLnR and GLnC replaced by SLnR and SLnC, respectively.

Proof. Let S1ˆp´2, 2q ÝÑ Σ be a parametrization of a neighborhood U of Σσ
i such that S1ˆ0

corresponds to Σσ
i and

σpθ, tq “ pθ,´tq @ pθ, tqPS1ˆp´2, 2q.

Since the inclusion GLnRÝÑGLnC induces trivial homomorphisms from π1 of either component
of GLnR to π1pGLnCq, we can homotope ψ to the identity-valued constant map through maps
ht : S

1ÝÑGLnC. We define f on U by

fpθ, tq “

$

’

&

’

%

htpθq, if t P r0, 1s;

In, if t P r1, 2q;

h´tpθq, if t P p´2, 0s;

and extend it as the identity-valued constant map over Σ´U . The same argument applies with
GLnR and GLnC replaced by SLnR and SLnC, respectively.
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Figure 5: The paths C1, . . . , C4 cut Σb to a disk.

Lemma 5.4. Suppose pΣ, σq is a symmetric surface, nPZ`, and f PCpΣ, σ; SLnCq. If

f |Σσ : Σσ ÝÑ SLnR

is homotopic to a constant map, then f is homotopic to the constant map Id through maps
ftPCpΣ, σ; SLnCq.

Proof. Let pΣb, cq be an oriented sh-surface which doubles to pΣ, σq. By assumption,

f |pBΣbqi : pBΣ
bqi ÝÑ SLnC

is homotopic to Id through maps ftPCppBΣbqi, c; SLnCq on each boundary component pBΣbqi of Σb

with |ci|“0. Since f PCpΣ, σ; SLnCq, this is also the case for f |pBΣbqi for each boundary component

pBΣbqi of Σb with |ci|“1; see [7, Lemma 2.4].

A homotopy ft as above extends over Σb as follows. Suppose f0“f |BΣb and f1“ Id. Let I“r0, 1s
and pBΣbqˆIÝÑU be a parametrization of a (closed) neighborhood U of BΣb ĂΣb with coordi-
nates pw, sq. Define

Gt : Σb ÝÑ SLnC by Gtpzq “

#

fp1´sqtpwq ¨ f
´1pwq, if z “ pw, sq P U « pBΣbqˆI;

In, if z P Σb´U.

Since Gtpw, 1q“In for all t, this map is continuous. Moreover, G0pzq“In for all zPΣb and

Gtpw, 0q “ ftpwq ¨ f
´1pwq

is a homotopy between Id and f´1. Thus, Ht “ Gt ¨ f is a homotopy over Σb extending ft.

By the previous paragraph, we may assume that f is the constant map Id on BΣb. Choose embedded
non-intersecting paths tCiu in Σb with endpoints on BΣb which cut Σb into a disk D2; see Figure 5.
The restriction of f to each Ci defines an element of

π1

`

SLnC, In
˘

« π1

`

SUn, In
˘

“ 0.
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Thus, we can homotope f to Id over Ci while keeping it fixed at the endpoints. Similarly to the
previous paragraph, this homotopy extends over Σb without changing f over BΣb or over Cj for
any Cj‰Ci. Thus, we may assume that f is the constant map Id over the boundary of D2. Since

π2

`

SLnC, In
˘

« π2

`

SUn, In
˘

“ 0,

the map f : pD2, S1q ÝÑ pSLnC, Inq can be homotoped to Id as a relative map. Doubling such a
homotopy ft by the requirement that ftpσpzqq“ftpzq for all zPΣ, we obtain the desired homotopy
from f to Id over all of Σ.

Corollary 5.5. Let pΣ, σq be a symmetric surface and

Φ,Ψ: pV, ϕq ÝÑ
`

ΣˆCn, σˆc
˘

be isomorphisms of real bundle pairs over pΣ, σq. If the isomorphisms

Φ|V ϕ ,Ψ|V ϕ : V ϕ ÝÑ ΣˆRn,
Λtop
C Φ,ΛnCΨ: Λtop

C pV, ϕq ÝÑ Λtop
C

`

ΣˆCn, σˆc
˘

“
`

ΣˆC, σˆc
˘ (5.7)

are homotopic, then so are the isomorphisms Φ and Ψ.

Proof. Let f PCpΣ, σ;C˚q be given by

Λtop
C Φ “ f ΛnCΨ: Λtop

C pV, ϕq ÝÑ
`

ΣˆC, σˆc
˘

.

Since the second pair of isomorphisms in (5.7) are homotopic, there exists a path ft P CpΣ, σ;C˚q
such that f0“1 and f1“f . Let

Ψft : pV, ϕq ÝÑ
`

ΣˆCn, σˆc
˘

be the composition of Ψ with the real bundle map

`

ΣˆCn, σˆc
˘

ÝÑ
`

ΣˆCn, σˆc
˘

, pz, vq ÝÑ

¨

˚

˚

˚

˝

ftpzq 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 . . . 0 1

˛

‹

‹

‹

‚

v. (5.8)

Thus, Ψf “Ψf1 is homotopic to Ψ and Λtop
C Φ“Λtop

C Ψf .

Let F PCpΣ, σ; GLnCq be given by

Ψpvq “
 

idˆF pπpvqq
(`

Φpvq
˘

@ vPV,

where π : V ÝÑ Σ is the projection map. By the previous paragraph, we can assume that
F PCpΣ, σ; SLnCq. Since the first pair of isomorphisms in (5.7) are homotopic,

F |Σσi : Σσ
i ÝÑ SLnR

is homotopically trivial for every component Σσ
i Ă Σσ of the fixed locus. By Lemma 5.4, F is

thus homotopic to the constant map Id through elements Ft PCpΣ, σ; SLnCq. This establishes the
claim.
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5.2 Isomorphisms induced by real orientations

We now apply Lemma 5.3 and Corollary 5.5 to establish Proposition 5.2. We then deduce some
corollaries from this proposition.

Proof of Proposition 5.2. Let Σσ
1 , . . . Σσ

mĂΣσ be the connected components of the fixed locus.

Since c1pV‘2L˚q“0 and the vector bundle V ϕ‘2pL˚q
rφ˚ is orientable, an isomorphism Ψ as in (5.5)

exists; see [3, Propositions 4.1,4.2]. For each i“ 1, . . . ,m, choose ψi : Σσ
i ÝÑGLn`2R so that the

composition of the restriction of Ψ to pV ϕ‘2pL˚q
rφ˚q|Σσi with the isomorphism

Σσ
i ˆRn`2 ÝÑ Σσ

i ˆRn`2, pz, vq ÝÑ
`

z, ψipzqv
˘

,

induces the chosen orientation and spin structure on pV ϕ‘2pL˚q
rφ˚q|Σσi . Let fi : Σ ÝÑGLn`2C

be a continuous map as in Lemma 5.3 corresponding to pi, ψiq. The composition of the original
isomorphism Ψ with the real map

`

ΣˆCn`2, σˆc
˘

ÝÑ
`

ΣˆCn`2, σˆc
˘

, pz, vq ÝÑ
`

z, f1pzq. . .fmpzqv
˘

,

is again an isomorphism of real bundle pairs as in (5.5).

By the previous paragraph, there exists an isomorphism Ψ as in (5.5) that induces the chosen

orientation and spin structure on V ϕ‘2pL˚q
rφ˚ . It determines an isomorphism

Λtop
C

`

V ‘2L˚, ϕ‘2rφ˚
˘

« Λtop
C

`

ΣˆCn`2, σˆc
˘

“
`

ΣˆC, σˆc
˘

and thus an isomorphism Λtop
C Ψ as in (5.6). If ψ is the isomorphism in (5.6) determined by an

isomorphism in (5.2) from the chosen homotopy class (RO2), then

ψ “ fΛtop
C Ψ (5.9)

for some f PCpΣ, σ;C˚q. Let

Ψf :
`

V ‘2L˚, ϕ‘2rφ˚
˘

«
`

ΣˆCn`2, σˆc
˘

be defined as in (5.8). By (5.9), Λtop
C Ψf “ ψ. Since Ψ and ψ induce the same orientations on

V ϕ‘2pL˚q
rφ˚ , f |Σσą0. Thus, Ψf induces the same orientation and spin structure on V ϕ‘2pL˚q

rφ˚

as Ψ.

We conclude that there exists an isomorphism Ψ as in (5.5) inducing the chosen orientation and

spin structure on V ϕ‘2pL˚q
rφ˚ so that the isomorphism Λtop

C Ψ lies in the homotopy class of the
isomorphisms (5.4) determined by (RO2). By Corollary 5.5, any two such isomorphisms are ho-
motopic.

Corollary 5.6. Suppose pΣ, σq is a symmetric surface and pL, rφqÝÑpΣ, σq is a rank 1 real bundle

pair. If L
rφÝÑΣσ is orientable, there exists a canonical homotopy class of isomorphisms

`

Lb2‘2L˚, rφb2‘2rφ˚
˘

«
`

ΣˆC3, σˆc
˘

(5.10)

of real bundle pairs over pΣ, σq. In general, an orientation of each component Σσ
i of Σσ such that

L
rφ|Σσi is non-orientable determines a canonical homotopy class of isomorphisms (5.10); changing

an orientation of such a component Σσ
i changes the induced spin structure, but not the orientation,

of the real part of LHS in (5.10) over Σσ
i .
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Proof. The line bundle pL
rφqb2 is canonically oriented and thus has a canonical homotopy class of

trivializations. We apply Proposition 5.2 with pV, ϕq“pL, rφqb2. There is then a canonical choice of
isomorphism in (5.2). It induces the canonical orientations on the real parts of 2pL˚, rφ˚q or of LHS

in (5.10). If L
rφ is orientable, an orientation on L

rφ determines a homotopy class of trivializations
of the real part of LHS in (5.10). The resulting spin structure is independent of the choice of the
orientation.

If the restriction of L
rφ to a component Σσ

i «RP1 of the fixed locus ΣσĂΣ is not orientable, then

pL˚q
rφ˚ |Σσi is isomorphic to the tautological line bundle

γ ”
 `

`, px, yq
˘

PRP1ˆR2 : px, yqP`ĂR2
(

ÝÑ RP1 .

Combining this isomorphism with the trivialization

γ ‘ γ ÝÑ RP1ˆR2,
`

`, px1, y1q, px2, y2q
˘

ÝÑ
`

`, px1´y2, x2`y1q
˘

, (5.11)

we obtain an isomorphism

2pL˚q
rφ˚ ÝÑ RP1ˆR2. (5.12)

It induces the canonical orientation on the domain. The homotopy class of the isomorphism (5.12)

does not depend on the choice of isomorphism of pL˚q
rφ˚ |Σσi with γ, once an identification of Σσ

i

with RP1 is fixed. However, it does depend on the orientation class of this identification even after
stabilization by the trivial line bundle, as shown in the next paragraph.

A bundle isomorphism γÝÑγ covering an orientation-reversing map RP1ÝÑRP1 is given by

γ ÝÑ γ,
`

ru, vs, px, yq
˘

ÝÑ
`

ru,´vs, px,´yq
˘

.

The composition of this isomorphism with the isomorphism (5.11) is the isomorphism

γ ‘ γ ÝÑ RP1ˆR2,
`

`, px1, y1q, px2, y2q
˘

ÝÑ
`

`, px1`y2, x2´y1q
˘

. (5.13)

Under the standard identification of R2 with C, RP1 can be parametrized as

S1 ÝÑ RP1, eiθ ÝÑ
“

eiθ{2
‰

.

Under this identification, the isomorphisms (5.11) and (5.13) are given by

`

eiθ, aeiθ{2, beiθ{2
˘

ÝÑ
`

eiθ, eiθ{2pa`ibq
˘

@ a, bPR,
`

eiθ, aeiθ{2, beiθ{2
˘

ÝÑ
`

eiθ, e´iθ{2pa`ibq
˘

@ a, bPR,

respectively. They differ by the map

S1 ÝÑ GL2R, eiθ ÝÑ e´iθ.

Since this map generates π1pGL2Rq, the trivializations of γ‘γ in (5.11) and (5.13) are not homotopy
equivalent, even after stabilization by the trivial line bundle.
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Corollary 5.7. Suppose pΣ, σq is a symmetric surface and D“DpV,ϕq is a real CR-operator on a
rank n real bundle pair pV, ϕq over pΣ, σq. Then a real orientation on pV, ϕq as in Definition 5.1

induces an orientation on the relative determinant xdetD of D in (5.1). Changing a real orientation
on pV, ϕq by changing the spin structure s in (RO3) over one component Σσ

i of Σσ reverses the

orientation on xdetD.

Proof. Let ppL, rφq, rψs, sq be a real orientation on pV, ϕq. By (4.6), there is a canonical homotopy
class of isomorphisms

detD
pV‘2L˚,ϕ‘2rφ˚q

«
`

detDpV,ϕq
˘

b
`

detD
pL˚,rφ˚q

˘b2

of real lines, where the subscripts indicate the real bundle pair associated with the corresponding
real CR-operator. Since the last factor above is canonically oriented, so is the line

`

detDpV,ϕq
˘

b
`

detD
pV‘2L˚,ϕ‘2rφ˚q

˘

. (5.14)

By Proposition 5.2, the real orientation on pV, ϕq determines a homotopy class of isomorphisms

`

V ‘2L˚, ϕ‘2rφ˚
˘

«
`

ΣˆCn`2, σˆc
˘

.

By (4.6), the latter in turn determines an orientation on the line

xdetD
pV‘2L˚,ϕ‘2rφ˚q

”
`

detD
pV‘2L˚,ϕ‘2rφ˚q

˘

b
`

det B̄Σ;C
˘bpn`2q

.

Combining this with the canonical orientation of the line (5.14), we obtain an orientation on xdetD.

Let scan denote the canonical spin structure on ΣˆRn`2. By Proposition 5.2, the identity au-
tomorphism of Λtop

C pΣˆCn`2q and a spin structure on ΣσˆRn`2 determine a homotopy class of
isomorphisms

Ψ:
`

ΣˆCn`2, σˆc
˘

ÝÑ
`

ΣˆCn`2, σˆc
˘

(5.15)

of real bundle pairs over pΣ, σq. The latter in turn determines a homotopy class of isomorphisms

detDΨ :
`

det B̄Σ;C
˘bpn`2q

“ det
`

pn`2qB̄Σ;C
˘

ÝÑ det
`

pn`2qB̄Σ;C
˘

“
`

det B̄Σ;C
˘bpn`2q

. (5.16)

For the purposes of the last claim of this corollary, it is sufficient to check that the last isomor-
phisms are orientation-reversing for the spin structure si on ΣσˆRn`2 which differs from scan on
precisely one component Σσ

i of Σσ.

By Lemma 5.3, we can assume that the map Ψ in (5.15) is the identity outside of a tubular
neighborhood UĂΣ of Σσ

i with UĂΣ disjoint from Σσ´Σσ
i . Pinching each of the two components

of the boundary BU
1

of a slightly larger tubular neighborhood U 1, we obtain a nodal symmetric
surface pΣ0, σ0q consisting of pP1, τq and a smooth symmetric, possibly disconnected, surface pΣ1, σ1q
which share a pair of conjugate points. We can choose a flat family

`

π : UÝÑ∆,rc : UÝÑU
˘

of deformations of pΣ0, σ0q as in Section 4.2 with ∆ĂC2 and pΣt˚ , σt˚q“pΣ, σq for some t˚P∆R
and a quotient map

q : ∆ˆΣt˚ ÝÑ U

30



intertwining the involutions cˆσ and rc so that q is a diffeomorphism outside of ∆ˆBU
1
and the map

Σt˚ ÝÑ Σt˚ , z ÝÑ qpt˚, zq,

is the identity.

Since the isomorphism Ψ in (5.15) is the identity over Σ´UĄBU
1
, Ψ induces an isomorphism

rΨ:
`

UˆCn`2,rcˆc
˘

ÝÑ
`

UˆCn`2,rcˆc
˘

which restricts to Ψ over pΣt˚ , σt˚q and to the identity over qp∆ˆpΣ´UqqĄΣ1. Denote by

Ψ0 :
`

Σ0ˆCn`2, σ0ˆc
˘

ÝÑ
`

Σ0ˆCn`2, σ0ˆc
˘

the restriction of rΨ over pΣ0, σ0q and by

detDΨ0 : det
`

pn`2qB̄Σ0;C
˘

ÝÑ det
`

pn`2qB̄Σ0;C
˘

(5.17)

the homotopy class of isomorphisms induced by Ψ0.

By (D1) on page 23, rΨ determines a homotopy class of isomorphisms

detD
rΨ

: det
`

pn`2qB̄U |∆R ;C
˘

ÝÑ det
`

pn`2qB̄U |∆R ;C
˘

of determinant line bundles over ∆R. Since detD
rΨ

restricts to detDΨ over pΣt˚ , σt˚q and to detDΨ0

over pΣ0, σ0q, the isomorphisms (5.16) are orientation-reversing if and only if the isomorphisms
detDΨ0 are orientation-reversing. The latter correspond to the tensor products of isomorphisms
detDΨ0|Σ1

for pΣ1, σ1q and detDΨ0|P1
for pP1, τq. The isomorphisms detDΨ0|Σ1

are the identity.

Since the isomorphisms Ψ0 reverse the spin structure on the fixed locus qpΣσ
i q of pP1, τq, the

isomorphisms detDΨ0|P1
are orientation-reversing; see [10, Proposition 8.1.7]. We conclude that

the isomorphisms (5.17) and thus (5.16) are orientation-reversing.

Corollary 5.8. Suppose pX, J, φq is an almost complex manifold with an anti-complex involution
and pV, ϕq is a rank n real bundle pair over pX,φq. Let B PH2pX;Zq, g, l P Zě0, and pΣ, σq be
a genus g symmetric surface. Then a real orientation on pV, ϕq as in Definition 5.1 induces an
orientation on the line bundle

xdetDpV,ϕq ”
`

detDpV,ϕq
˘

b
`

det B̄C
˘bn

ÝÑ Hg,lpX,Bq
φ,σ . (5.18)

Proof. By Corollary 5.7 applied with the real bundle pairs u˚pV, ϕq and u˚pL, rφq over pΣ, σq, a real
orientation on pV, ϕq determines an orientation on the fiber of the line bundle

`

detDpV,ϕq
˘

b
`

det B̄C
˘bn

ÝÑ BgpX,Bq
φ,σˆJ σ

Σ

over each point pu, jq which varies continuously with pu, jq. Since the resulting orientation on
this line bundle is completely determined by the chosen real orientation on pV, ϕq via the isomor-
phisms (5.5), it descends to the quotient (5.18).

31



5.3 The orientability of uncompactified moduli spaces

We will now apply Proposition 5.2 to study the orientability of the uncompactified real moduli
spaces in Theorem 1.3. We first consider the case X“pt and then use it to establish the restriction
of Theorem 1.3 to the main stratum Mg,lpX,B; Jqφ of Mg,lpX,B; Jqφ.

Proposition 5.9. Let g, l P Zě0 be such that g`lě 2. For every genus g type σ of orientation-
reversing involutions, the line bundle

Λtop
R

`

TMσ
g,l

˘

b
`

det B̄C
˘

ÝÑMσ
g,l (5.19)

is canonically oriented. The interchanges of pairs of conjugate points and the forgetful morphisms
preserve this orientation; the interchange of the points within a conjugate pair reverses this orien-
tation.

Proof. The cardinality of the automorphism group is an upper semi-continuous function on the
compact moduli space Mσ

g,l. Thus, there exists lpgqPZ` so that for every lě lpgq every element

rCs ”
“

Σ, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, j

‰

PMσ
g,l

has no automorphisms. We first establish the proposition under the assumption that lě lpgq.

Let T ÝÑUσg,l denote the vertical tangent bundle over the universal curve for Mσ
g,l. For C as above,

let

TC “ TΣ
`

´z`1 ´z
´
1 ´. . .´z

`
l ´z

´
l

˘

and T ˚C “ T ˚Σ
`

z`1 `z
´
1 `. . .`z

`
l `z

´
l

˘

, (5.20)

be the twisted holomorphic line bundles associated to the sheaves of holomorphic tangent vector
fields vanishing at the marked points and of meromorphic one-forms with at most simple poles at
the marked points and holomorphic everywhere else. We construct these line bundles using holo-
morphic identifications of small neighborhoods of z`i and z´i interchanged by σ. The involutions dσ
on TΣ and dσ˚ on T ˚Σ then induce involutions on TC and T ˚C; we denote the induced involutions
also by dσ and dσ˚.

Let SC` and SC´ be the skyscraper sheaves over Σ given by

SC` “ T ˚Σ|z`1 `...`z
`
l
, SC´ “ T ˚Σ|z´1 `...`z

´
l
.

The projection

π1 : qH0pΣ;SC`‘SC´qσ “
`

qH0pΣ;SC`q‘ qH0pΣ;SC´q
˘σ
ÝÑ qH0pΣ;SC`q (5.21)

is an isomorphism of real vector spaces. We orient qH0pΣ;SC`‘SC´qσ and its dual via the isomor-
phism

π˚1 : qH0pΣ;SC`q˚ “ Tz`1
Σ‘. . .‘Tz`l

Σ ÝÑ
`

qH0pΣ;SC`‘SC´qσ
˘˚

from the complex orientations of Tz`1
Σ, . . . , Tz`l

Σ.

The Kodaira-Spencer (or KS) map and the Dolbeault isomorphism provide canonical isomorphisms

TrCsMσ
g,l «

qH1pΣ;TCqσ « H1pΣ;TCqσ; (5.22)
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see [28, Section 3.1.2] and [22, p151]. By Serre Duality (or SD), there is a canonical isomorphism

H1pΣ;TCq «
`

H0pΣ;T ˚CbT ˚Σq
˘˚

;

see [22, p153]. Since σ is orientation-reversing, the real part of the SD pairing identifies the space
of invariant sections on one side with the space of anti-invariant sections on the other; the latter
is isomorphic to the space of invariant sections by multiplication by i. Thus, there is a canonical
isomorphism

H1pΣ;TCqσ «
`

H0pΣ;T ˚CbT ˚Σqσ
˘˚
. (5.23)

Since the degree of the holomorphic line bundle TC is negative,

Λtop
R

`

H0pΣ;T ˚CbT ˚Σqσ
˘

“ det B̄pT˚C,dσ˚qbpT˚Σ,dσ˚q.

The long exact sequence in cohomology for the sequence

0 ÝÑ T ˚ΣbT ˚Σ ÝÑ T ˚CbT ˚Σ ÝÑ SC`‘SC´ ÝÑ 0 (5.24)

and the chosen orientation on qH0pΣ;SC`‘SC´qσ induce an orientation on the line

det B̄pT˚C,dσ˚qbpT˚Σ,dσ˚q b det B̄pT˚Σ,dσ˚qb2 . (5.25)

Thus, the real line bundle

Λtop
R

`

TMσ
g,l

˘

b
`

det B̄pT ˚,dσ˚qb2

˘

ÝÑMσ
g,l (5.26)

is canonically oriented.

By Corollary 5.6 applied with pL, rφq“pT ˚Σ, dσ˚q, there is a canonical homotopy class of isomor-
phisms

`

T ˚Σb2‘2TΣ, pdσ˚qb2‘2dσ
˘

«
`

ΣˆC3, σˆc
˘

of real bundle pairs over pΣ, σq. Since the determinants of B̄-operators on the real bundle pairs
2pTΣ,dσq and 2pΣˆC2, σˆcq are canonically oriented, so is the line bundle

`

det B̄pT ˚,dσ˚qb2

˘

b
`

det B̄C
˘

ÝÑMσ
g,l. (5.27)

Combining this orientation with the canonical orientation for the line bundle (5.26), we obtain an
orientation on the line bundle (5.19).

Since the interchanges of pairs of conjugate points and the forgetful morphisms preserve the orienta-
tion of (5.21), they also preserve the orientation on (5.19) constructed above. Since the interchange
of the points within a conjugate pair reverses the orientation of (5.21), it also reverses the orienta-
tion on (5.19).

For lă lpgq, we orient the line bundle (5.19) by downward induction from the orientation of (5.19)
with l replaced by l`1 and the orientation of the fibers of the forgetful morphism

Mσ
g,l`1 ÝÑMσ

g,l (5.28)

obtained from the complex orientation of Tz`l`1
Σ. If the fixed locus Σσ of pΣ, σq is separating, the

fibers of this morphism are disconnected and differ by the interchange of the points in the last
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conjugate pair of points. However, the induced orientation on (5.19) is still well-defined for the
following reason. By Proposition 5.9 with l replaced by l`1, the interchange of the points within
a conjugate pair reverses the orientation on the line bundle (5.19) with l replaced by l`1. In the
case of the last conjugate pair of points, such an interchange also reverses the orientation of the
fibers of (5.28). Thus, it has no effect on the induced orientation on (5.19).

Corollary 5.10. Theorem 1.3 holds with Mg,lpX,B; Jqφ replaced by Mg,lpX,B; Jqφ,σ for every
genus g orientation-reversing involution σ.

Proof. We first assume that g` l ě 2 as in Proposition 5.9. The forgetful morphism f induces a
canonical isomorphism

Λtop
R

`

TMg,lpX,B; Jqφ,σ
˘

«
`

detDpTX,dφq
˘

b f˚
`

Λtop
R pTMσ

g,lq
˘

ÝÑMg,lpX,B; Jqφ,σ (5.29)

of real line bundles. By Corollary 5.8 applied with pV, ϕq“pTX,dφq, a real orientation on pX,ω, φq
determines an orientation on

xdetDpTX,dφq ”
`

detDpTX,dφq
˘

b
`

det B̄C
˘bn

ÝÑ Hg,lpX,Bq
φ,σ . (5.30)

Combining the canonical isomorphism (5.29), the canonical orientation of (5.19), and the orienta-
tion of (5.30) determined by the chosen real orientation on pX,ω, φq, we obtain an orientation on
the line bundle (1.5) over Mg,lpX,B; Jqφ,σ.

If g`lă2, we orient the line bundle (1.5) from the orientation of (1.5) with l replaced by l`2 and
the orientation of the fibers of the forgetful morphism

Mg,l`2pX,B; Jqφ,σ ÝÑMg,lpX,B; Jqφ,σ (5.31)

obtained from the complex orientations of Tz`l`1
Σ and Tz`l`2

Σ. The induced orientation on (1.5) is

still well-defined for the following reason. By Proposition 5.9, the interchange of the points within
a conjugate pair reverses the orientation on the line bundle (5.19) with l replaced by l`2 and thus
on the line bundle (1.5) with l replaced by l`2. In the case of the last two pairs of conjugate points,
such an interchange also reverses the orientation of the fibers of (5.31). Thus, it has no effect on
the induced orientation on (1.5).

Proposition 5.9 is also obtained in [6]; see Corollaires 1.2 and 1.1, Proposition 1.4, and Lemmes 1.3
and 1.4 in [6]. A version of Corollary 5.10 for certain covers of the uncompactified moduli spaces
Mg,lpX,B; Jqφ,σ appears in [6] as well. The orientability of these covers is obtained in [6] in
a subset of cases for which Corollary 5.10 implies the orientability of the spaces Mg,lpX,B; Jqφ,σ

themselves (while Theorem 1.3 also yields the orientability of their compactifications). For example,
let Xn;δĂPn´1 denote a hypersurface of degree δPZ` preserved by τn. Corollary 5.10 implies that
Mg,lpXn;δ, B; Jqτn;δ,σ is orientable if

δ “ 0, 1 mod 4 and δ ” n mod 2.

With the second condition strengthened to δ”n mod 4, this conclusion is obtained in [6, Corol-
laire 2.4] under the additional assumption that Σσ is a single circle. If Σσ consists of more than
one circle, [6, Corollaire 2.4] shows that this conclusion holds after pulling back to a cover of
Mg,lpXn;δ, B; Jqφ,σ. The orientability of the compactified moduli spaces of real maps necessary for
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defining real GW-invariants is not considered in [6].

A canonical orientation on the real line xdetD in Corollary 5.7 under overlapping topological as-
sumptions is obtained in [6] using a completely different approach. We obtain it as an immediate
consequence of the existence of a canonical homotopy class of isomorphisms for the corresponding
real bundle pairs. The argument of [6] is heavily analytic in nature and is based on explicit sign
computations for certain automorphisms of determinant line bundles in [5]. In contrast, our proof
is completely topological; the proofs of the two statements from [7] and [3] cited in the proofs of
Lemma 5.4 and Proposition 5.2, respectively, are also topological and take up only a few pages in
total. This approach allows us to study the extendability of the canonical orientations of Corol-
lary 5.10 across the codimension-one boundary strata of the moduli spaces on the topological level
of real bundle pairs; see Section 6.

6 Extensions over compactifications

In this section, we study the extendability of the canonical isomorphisms and orientations of Sec-
tion 5 across paths passing through one-nodal symmetric surfaces. Proposition 6.1 below implies
that the line bundle (3.1) is orientable. This is a key technical result needed to extend the proof
of Corollary 5.10 to the compactified setting of Theorem 1.3. We deduce this proposition from the
proof of Proposition 5.9 and the statements of Corollary 6.16 and Lemma 6.17.

Proposition 6.1. Let g, l P Zě0 be such that g l̀ě2. The orientation on the restriction of the real
line bundle (3.1) to RMg,l provided by Proposition 5.9 flips across the codimension-one boundary
strata of types (E) and (H1) and extends across the codimension-one boundary strata of types (H2)
and (H3).

6.1 One-nodal symmetric surfaces

A one-nodal oriented surface Σ is a topological space obtained by identifying two distinct points
of a closed oriented smooth surface rΣ, not necessarily connected. The surface rΣ is called the
normalization of Σ; it is unique up to a diffeomorphism preserving the two distinct points as a
set. A one-nodal symmetric surface pΣ, σq is a connected one-nodal surface Σ with an involution σ
induced by an orientation-reversing involution rσ on the normalization rΣ of Σ. Throughout this
section, we will denote the two distinguished points of rΣ by x1 and x2 and their image in Σ, i.e. the
node, by x12. The four topological possibilities for the singular structure of pΣ, σq are described
by (E)-(H3) in Section 3.2. Note that

rσpxiq “

#

x3´i, if pΣ, σq is of type (E);

xi, if pΣ, σq is of type (H).

Let rσ1px1q“x2 and rσ1px2q“x1.

We begin by extending the main statements of Sections 5.1 and 5.2 to one-nodal symmetric surfaces.
In particular, we observe that Proposition 5.2 extends to such surfaces. In [20], we show that
Proposition 5.2 actually extends to all nodal symmetric surfaces.

Proposition 6.2. The conclusion of Proposition 5.2 holds for one-nodal symmetric surfaces.
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Lemma 6.3. The conclusion of Lemma 5.4 holds for one-nodal symmetric surfaces.

Proof. Let rf P CprΣ, rσ; SLnCq be the function corresponding to f P CpΣ, σ; SLnCq. In particular,
rfpx1q“ rfpx2q.

Suppose pΣ, σq is of type (E). Proceeding as in the proof of Lemma 5.4, choose Σb and U so that
x1PΣb´U , the cutting paths Ci so that x1RCi, and the extensions of the homotopies of rf from Ci
to Σb so that they do not change rf at x1. Choose an embedded path γ in the disk D2 in the last
paragraph of the proof of Lemma 5.4 from x1 to BD2. Since rfpx1q P SLnR in this case, we can
homotope rf to Id over γ while keeping the values of rf at x1 and at the other endpoint in SLnR and
at Id, respectively. Similarly to the second paragraph in the proof of Lemma 5.4, this homotopy
extends over D2 without changing rf over BD2 and thus descends to Σb. We then cut D2 along γ
into another disk and proceed as in the second half of the last paragraph in the proof of Lemma 5.4.
The doubled homotopy then satisfies rftpx1q“ rftpx2q and so descends to Σ.

If pΣ, σq is of type (H), then
rf :

ď

|ci|“0

pBΣbqi ÝÑ SLnR

is homotopic to Id through maps rft such that rftpx1q “ rftpx2q. The remainder of the proof of
Lemma 5.4 preserves this condition on the homotopy.

Corollary 6.4. The conclusion of Corollary 5.5 holds for one-nodal symmetric surfaces.

Proof. The first paragraph of the proof of Corollary 5.5 applies without any changes. The second
paragraph applies with Lemma 5.4 replaced by Lemma 6.3.

Lemma 6.5. Let pV, iq be a finite-dimensional complex vector space and A,B : V ÝÑ V be
C-antilinear isomorphisms such that A2, B2 “ IdV . Then there exists a C-linear isomorphism
ψ : V ÝÑV such that ψ“A˝ψ˝B. If

 

Λtop
C A

(

˝
 

Λtop
C B

(

“
 

Λtop
C B

(

˝
 

Λtop
C A

(

: Λtop
C V ÝÑ Λtop

C V, (6.1)

then ψ can be chosen so that Λtop
C ψ“ Id.

Proof. Since A2, B2“ IdV , the isomorphisms A,B are diagonalizable with all eigenvalues ˘1. Since
A,B are C-antilinear, we can choose C-bases tviu and twiu for V such that

Apviq “ vi, Apiviq “ ´ivi, Bpwiq “ wi, Bpiwiq “ ´iwi.

The C-linear isomorphism ψ : V ÝÑV defined by ψpwiq“vi then has the first desired property.

The automorphisms Λtop
C A and Λtop

C B are C-antilinear and have one eigenvalue of `1 and one

of ´1. If (6.1) holds, the eigenspaces of Λtop
C A and Λtop

C B are the same and so

v1^C . . .^Cvn “ r ¨ w1^C . . .^Cwn P Λtop
C V

for some rPR˚. Replacing w1 by rw1 in the previous paragraph, we obtain an isomorphism ψ that
also satisfies the second property.
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Proof of Proposition 6.2. Let rV , rLÝÑ rΣ be complex vector bundles and

ψ1 : rV
ˇ

ˇ

x1
ÝÑ rV

ˇ

ˇ

x2
and ψ2 : rL

ˇ

ˇ

x1
ÝÑ rL

ˇ

ˇ

x2

be isomorphisms of complex vector spaces such that

V “ rV
L

„, v„ψ1pvq @ vP rV
ˇ

ˇ

x1
, and L “ rL

L

„, v„ψ2pvq @ vP rL
ˇ

ˇ

x1
.

Denote by rϕ1 and rϕ2 the lift of ϕ to rV and the lift of rφ to rL, respectively. Define
`

ĂW, rϕ12

˘

“
`

rV ‘2rL˚, rϕ1‘2rϕ˚2
˘

, ψ12 “ ψ1 ‘ 2pψ´1
2 q˚ : ĂW

ˇ

ˇ

x1
ÝÑ ĂW

ˇ

ˇ

x2
.

Thus, prV , rϕ1q and prL, rϕ2q are real bundle pairs over prΣ, rσq that descend to the real bundle pairs
pV, ϕq and pL, rφq over pΣ, σq. Furthermore,

ψ12pvq “

#

rϕ12pψ
´1
12 prϕ12pvqqq, if pΣ, σq is of type (E);

rϕ12pψ12prϕ12pvqqq, if pΣ, σq is of type (H);
(6.2)

for all vPĂW
ˇ

ˇ

x1
.

For any f PCprΣ, rσ; GLn`2Cq, let

rΨf :
`

rΣˆCn`2, rσˆc
˘

ÝÑ
`

rΣˆCn`2, rσˆc
˘

, rΨf pz, vq “
`

z, fpzqv
˘

.

The choices (RO2) and (RO3) in Definition 5.1 for pΣ, σq lift to prΣ, rσq. By Proposition 5.2, there
thus exists an isomorphism

rΦ: pĂW, rϕ12q ÝÑ
`

rΣˆCn`2, rσˆc
˘

of real bundle pairs over prΣ, rσq that lies in the homotopy class determined by the lifted real
orientation. By the proof of Proposition 5.2, rΦ can be chosen so that it induces the isomorphism
in (5.6) over prΣ, rσq determined by the lift of a given isomorphism in (5.2) over pΣ, σq. This
implies that

 

rσ1ˆId
(

˝
 

Λtop
C

rΦ
(

“
 

Λtop
C

rΦ
(

˝
 

Λtop
C ψ12

(

: Λtop
C

ĂW |x1 ÝÑ tx2uˆΛtop
C Cn`2“tx2uˆC. (6.3)

We show below that there exists f PCpΣ, σ; SLn`2Cq so that

 

rσ1ˆId
(

˝ rΨf ˝rΦ “ rΨf ˝rΦ˝ψ12 : ĂW |x1 ÝÑ tx2uˆCn`2 . (6.4)

Thus, rΨf˝rΦ descends to an isomorphism Ψ in (5.5) of real bundle pairs over pΣ, σq that induces the
isomorphism in (5.6) determined by a given isomorphism in (5.2). Furthermore, f can be chosen
so that Ψ satisfies the spin structure requirement of Proposition 5.2. By Corollary 6.4, any two
isomorphisms (5.5) satisfying the conditions at the end of Proposition 5.2 are homotopic.

Suppose pΣ, σq is of type (E). By (6.2), the C-antilinear isomorphisms

idˆc,
 

rσˆc
(

˝rΦ˝ψ12˝rΦ
´1“ rΦ˝ rϕ12˝ψ12˝rΦ

´1 : tx1uˆCn`2 ÝÑ tx1uˆCn`2

square to the identity. By (6.3), the top exterior powers of these automorphisms commute (both
compositions are the identity). By Lemma 6.5, there thus exists ψPSLn`2C such that

idˆψ “
 

rσˆcψc
(

˝rΦ˝ψ12˝rΦ
´1 : tx1uˆCn`2 ÝÑ tx1uˆCn`2. (6.5)
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Since SLn`2C is connected, there exist f P CprΣ, rσ; SLn`2Cq and a neighborhood U of x1 in rΣ
such that

fpzq “

#

ψ, if z“x1;

Id, if zRUYrσpUq;
UXrσpUq “ H. (6.6)

By (6.5) and (6.6), f satisfies (6.4). Since f restricts to the identity over rΣrσ, rΨf ˝ rΦ induces the

same orientation and spin structure over rΣrσ´tx12u as rΦ. The orientation and spin conditions are
automatically satisfied over x12, since they are determined by the real part of the isomorphism (5.6).

If pΣ, σq is of type (H), define ψPGLn`2C by

idˆψ “
 

rσ1ˆId
(

˝rΦ˝ψ12˝rΦ
´1 : tx1uˆCn`2 ÝÑ tx1uˆCn`2 . (6.7)

By (6.2) and (6.3), ψ˝c “ c˝ψ and detCψ“ 1, i.e. ψ P SLn`2R. If pΣ, σq is of type (H2) or (H3),
i.e. x1 and x2 lie on different topological components rΣrσ

1 ,
rΣrσ

2 of rΣrσ, let

rψ : rΣrσ
1 ÝÑ SLn`2R (6.8)

be the constant function with value ψ. If pΣ, σq is of type (H1), i.e. x1 and x2 lie on the same
topological component rΣrσ

1 of rΣrσ, first choose (6.8) so that rψpx1q“ψ and rψpx2q“ Id. Since f “ rψ

satisfies (6.4), rΨf˝rΦ induces a trivialization of V ϕ‘2pL˚q
rφ˚ over the image Σσ

1 of rΣrσ
1 in Σ. This is

also the case if rψ is replaced by rψ1 rψ for any rψ1 as in (6.8) such that rψ1px1q, rψ
1px2q“ Id. Choose such

rψ1 so that the induced trivialization on each of the two loops in Σσ
1 lies in the chosen spin structure;

we then replace rψ with rψ1 rψ. Returning to the general pHq case, choose f PCprΣ, rσ; SLn`2Cq and a
neighborhood U of rΣrσ

1 in rΣ such that

fpzq “

#

rψ, if zP rΣrσ
1 ;

Id, if zRU ;
UX

`

rΣrσ´rΣrσ
1

˘

“ H; (6.9)

this is possible by Lemma 5.3. By (6.7) and (6.9), rΨ satisfies (6.4). Since f restricts to the identity
over rΣrσ´rΣrσ

1 , rΨf˝rΦ induces the same orientation and spin structure over rΣrσ´rΣrσ
1 as rΦ. If pΣ, σq is

of type (H2) or (H3), the latter is also the case over rΣrσ
1 because f is constant over rΣrσ

1 . If pΣ, σq is

of type (H1), the orientation and spin structure structure induced by rΨf ˝rΦ over Σσ
1 are those of

the original real orientation by the choice of rψ above.

Corollary 6.6. The first conclusion of Corollary 5.7 holds for one-nodal symmetric surfaces.

Proof. An orientation on the determinant line of a real CR-operator on a real bundle pair pV, ϕq
over a one-nodal symmetric surface pΣ, σq is determined by

(1) an orientation on the determinant line of a real CR-operator on the corresponding real bundle
pair prV , rϕq over prΣ, rσq as in the proof of Proposition 6.2, and

(2) an orientation on the real vector space V ϕ
x12 .

An isomorphism of real bundle pairs over pΣ, σq as in (5.5) lifts to a similar isomorphism over prΣ, rσq
which respects all identifications on the lifted bundles. A real orientation on pV, ϕq determines (2)
and an isomorphism of real bundle pairs over pΣ, σq as in (5.5); see Proposition 6.2. Thus, the
claim follows from the proof of the first conclusion of Corollary 5.7.
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6.2 Smoothings of one-nodal symmetric surfaces

Let C”pΣ, σ, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l qq be a one-nodal marked symmetric Riemann surface and

pπ : UÝÑ∆,rc : UÝÑU , s1 : ∆ÝÑU , . . . , sl : ∆ÝÑUq

be a flat family of deformations of C as in Section 4.2 with ∆ĂC. Define

∆˚ “ ∆´t0u, ∆R “ ∆XR, ∆˚
R “ ∆˚XR, ∆˘

R “ ∆XR˘ .

Denote by x12 PΣ the node of Σ, by rΣÝÑΣ its normalization, and by Σ˚”Σ´tx12u its smooth
locus.

A neighborhood of x12 in U is isomorphic to

U0 ”
 

pt, z1, z2qP∆ˆC2 : |z1|, |z2|ă1, z1z2“ t
(

.

As fibrations over ∆,

U «
`

U0 \ U 1
˘L

„, pt, z1, z2q „

#

pt, z1q, if |z1|ą|z2|;

pt, z2q, if |z1|ă|z2|;
(6.10)

for some family U 1 of deformations of Σ˚ over ∆, a choice of coordinates zi on rΣ centered at xi,
and their extensions to U . The local coordinates z1, z2 and the family U 1 in (6.10) can be chosen
so that U 1 is preserved by rc and the identification in (6.10) intertwines the involution

U0 ÝÑ U0, pt, z1, z2q ÝÑ
`

t, z2, z1

˘

or pt, z1, z2q ÝÑ
`

t, z1, z2

˘

, (6.11)

depending on whether pΣ, x12, σq is of type (E) or (H), with the involution rc on U . In particular,
U retracts onto Σ0 respecting the involution rc.

Suppose π : U ÝÑ∆ and rc are as above, pV, ϕq ÝÑ pU ,rcq is a real bundle pair, and ∇ and A are
a connection and a 0-th order deformation term on pV, ϕq as in Section 4.3. The restriction of ∇
and A to pV, ϕq|pΣt,σtq with t P∆R determines a real CR-operator Dt. The determinant lines of
these operators form a line bundle

detDpV,ϕq ÝÑ ∆R ; (6.12)

see Section 4.3 and Appendix A. We denote by det B̄CÝÑ∆R the determinant line bundle associated
with the standard holomorphic structure on pUˆC,rcˆcq.

Corollary 6.7. Let pπ,rcq, pV, ϕq, and p∇, Aq be as above. Then a real orientation on pV, ϕq as in
Definition 5.1 induces an orientation on the line bundle

xdetDpV,ϕq ”
`

detDpV,ϕq
˘

b pdet B̄Cq
bn ÝÑ ∆R, (6.13)

where n“ rkCV . The restriction of this orientation to the fiber over each tP∆˚
R is the orientation

on xdetDt induced by the restriction of the real orientation to pV, ϕq|pΣt,σtq as in Corollary 5.7.
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Proof. By Proposition 6.2, the restriction of the real orientation to pV, ϕq|pΣ0,σ0q determines a
homotopy class of isomorphisms Ψ of real bundle pairs as in (5.5). Since U retracts onto Σ0

respecting the involution rc, every isomorphism Ψ0 over pΣ0, σ0q extends to an isomorphism

Ψ:
`

V ‘2L˚, ϕ‘2rφ˚
˘

«
`

UˆCn`2,rcˆc
˘

(6.14)

of real bundle pairs over pU ,rcq. Since an isomorphism Ψ0 in the homotopy class determined by the
restriction of the real orientation to pV, ϕq|pΣ0,σ0q satisfies the spin structure and Λtop

C conditions at
the end of Proposition 5.2, the restriction Ψt of (6.14) to pV, ϕq|pΣt,σtq also satisfies these conditions.
The restriction of the orientation of the line bundle (6.13) induced by Ψ to the fiber over each tP∆˚

R
is the orientation induced by Ψt. The latter is the orientation induced by the restriction of the real
orientations to pV, ϕq|pΣt,σtq.

Thus, the real line bundle (5.30) extends across the (codimension-one) boundary strata of the
moduli spaces Mg,lpX,B; Jqφ and so does its orientation induced by a real orientation on pX,φq.
The other factor in orienting the line bundle (1.5) over the uncompactified space Mg,lpX,B; Jqφ

is the canonical orientation of the line bundle (5.19). The next lemma makes it possible to extend
the orientations induced by the isomorphisms (5.22) used in orienting (5.19) to (but not across)
the boundary strata.

Let rΣ be a smooth Riemann surface and x P rΣ. A holomorphic vector field ξ on a neighborhood
of x in rΣ with ξpxq“0 determines an element

∇ξ
ˇ

ˇ

x
P T ˚x

rΣbC TxrΣ “ C .

Similarly, a meromorphic one-form η on a neighborhood of x in rΣ has a well-defined residue at x,
which we denote by Rxη. For a holomorphic line bundle LÝÑ rΣ, we denote by ΩpLq the sheaf of
holomorphic sections of L.

Lemma 6.8. Let pπ : UÝÑ∆,rcq be a flat family of deformations of a one-nodal symmetric Riemann
surface pΣ, σq with ∆ĂC and x1, x2 P rΣ be the preimages of the node x12 PΣ in its normalization.
There exist holomorphic line bundles T , pT ÝÑU with involutions ϕ, pϕ lifting rc such that

pT , ϕq
ˇ

ˇ

Σt
“

`

TΣt, drc|TΣt

˘

, ppT , pϕq
ˇ

ˇ

Σt
“

`

T ˚Σt, pdrc|TΣtq
˚
˘

@ tP∆˚,

Ω
`

T |Σ0

˘

“
 

ξPΩ
`

T rΣp´x1´x2q
˘

: ∇ξ|x1`∇ξ|x2“0
(

,

Ω
`

pT |Σ0

˘

“
 

ηPΩ
`

T ˚rΣpx1`x2q
˘

: Rx1η`Rx2η“0
(

.

Furthermore, ppT , pϕq«pT , ϕq˚.

Proof. We continue with the notation as in (6.10) and (6.11). Denote by T vrtU 1ÝÑU 1 the vertical
tangent bundle. Let

T “
`

U0ˆC\ T vrtU 1
˘L

„, pT “
`

U0ˆC\ pT vrtU 1q˚
˘L

„,

pt, z1, z2, cq „

#

c z1
B
Bz1

ˇ

ˇ

pt,z1q
, if |z1|ą|z2|;

´c z2
B
Bz2

ˇ

ˇ

pt,z2q
, if |z1|ă|z2|;

pt, z1, z2, cq „

#

c
dpt,z1qz1

z1
, if |z1|ą|z2|;

´c
dpt,z2qz2

z2
, if |z1|ă|z2|.
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Under the identifications (6.10), the vector field and one-form on a neighborhood of the node in U
associated with pt, z1, z2, cqPU0ˆC correspond to the vector field and one-form on U0 given by

c

ˆ

z1
B

Bz1
´ z2

B

Bz2

˙

and c
dz1|Σt

z1
“ ´c

dz2|Σt

z2
,

respectively (the above equality of one-forms holds for t ‰ 0). Thus, T and pT have the desired
restriction properties. Since the map

TbCpT ÝÑ U Ĉ,

“

t, z1, z2, c1

‰

b
“

t, z1, z2, c2

‰

ÝÑ
`

rt, z1, z2s, c1c2

˘

, pt, z1, z2q P U0, c1, c2PC,
rvs b rαs ÝÑ αpvq @ vPTziΣt, αPT

˚
ziΣt, pt, ziq P U 1,

is a well-defined isomorphism of holomorphic line bundles, pT «T ˚.

The identifications in the construction of T and pT above intertwine the trivial lift of (6.11) to a
conjugation on U0ˆC with the conjugations on T vrtU 1 and pT vrtU 1q˚ induced by drc. Thus, they
induce conjugations ϕ and pϕ on T and pT . The above trivialization of T bC pT intertwines the
resulting conjugation on the domain with the conjugation rcˆc on UˆC. Thus, ppT , pϕq and pT , ϕq˚
are isomorphic as real bundle pairs over pU ,rcq.

Lemma 6.9 (Dolbeault Isomorphism). Suppose pΣ, σq and pπ : UÝÑ∆,rcq are as in Lemma 6.8 and
pL, rφqÝÑpU ,rcq is a holomorphic line bundle so that degL|Σă0 and degL|Σ1ď0 for each irreducible
component Σ1ĂΣ. The families of vector spaces H1

B̄
pΣt;Lq and qH1pΣt;Lq then form vector bundles

R1
B̄
π˚L and qR1π˚L over ∆ with conjugations lifting c which are canonically isomorphic as real

bundle pairs over p∆, cq.

Proof. The assumptions on L ensure that H0
B̄
pΣt;Lq“ 0 for all t P∆. By the Dolbeault Theorem

[22, p151], this implies that qH0pΣt;Lq“0 for all tP∆. Since H0
B̄
pΣt;Lq“0 for all tP∆, the vector

spaces H1
B̄
pΣt;Lq naturally form a vector bundle R1

B̄
π˚L over ∆. By the second statement, the

sheaf R1π˚L is locally free over ∆ and thus corresponds to a vector bundle qR1π˚L over ∆. The
involutionrc and conjugation rφ induce conjugations on the two bundles. The Dolbeault Isomorphism
provides an isomorphism between the two resulting real bundle pairs over p∆, cq.

Lemma 6.10 (Serre Duality). Suppose pΣ, σq, pπ : UÝÑ∆,rcq, and ppT , pϕq are as in Lemma 6.8 and
pL, rφqÝÑpU ,rcq is a holomorphic line bundle so that degL|Σą2gapΣq´2 and degL|Σ1ě2gapΣ

1q´2
for each irreducible component Σ1ĂΣ. The family of vector spaces H0

B̄
pΣt;Lq then forms a vector

bundle R0
B̄
π˚L over ∆ with a conjugation lifting c and there is a canonical isomorphism

R1
B̄
π˚

`

L˚b pT
˘

«
`

R0
B̄
π˚L

˘˚
(6.15)

of real bundle pairs over p∆, cq.

Proof. The left-hand side of (6.15) is a vector bundle by Lemma 6.9. The assumptions on L ensure
that H1

B̄
pΣt;Lq “ 0 for all t P∆. Thus, the vector spaces H0

B̄
pΣt;Lq with t P∆ naturally form a

vector bundle R0
B̄
π˚L over ∆. The involution rc and conjugation rφ induce a conjugation on the

right-hand side of (6.15). The Serre Duality provides an isomorphism between the two bundles
in (6.15). Its composition with the multiplication by i is an isomorphism between the two bundles
in (6.15) as real bundle pairs over p∆, cq.
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Remark 6.11. The justification of Dolbeault Isomorphism Theorem in the case of Lemma 6.9
consists of applying the exact sequence of sheaves at the bottom of [22, p150] with p, q “ 0 and
E “L. As the standard B̄-operator on a wedge of two disks is surjective, this sequence is indeed
exact over the central fiber Σ0 “Σ (the exactness is established in [22] over complex manifolds).
The Serre Duality for CR-operators over nodal Riemann surfaces appears in [48, Lemma 2.3] and
endows the total spaces of the left-hand side in (6.15) and of the bundle R1

B̄
π˚L in Lemma 6.9 with

a topology via the fiberwise SD isomorphisms. The Serre Duality appears on the level of Čech
cohomology in the standard algebro-geometric perspective; see [1, p98]. This viewpoint would
establish Corollary 6.12 below by applying the Serre Duality first and the Dolbeault Isomorphism
second.

Let pπ,rc, s1, . . . , slq be a smoothing of a one-nodal marked symmetric Riemann surface

C ”
`

Σ, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q

˘

, (6.16)

T , pT ÝÑU be the holomorphic line bundles with involutions ϕ, pϕ as in Lemma 6.8, and

T C “ T
`

´s1´rc˝s1´. . .´sl´rc˝sl
˘

, pT C “ pT
`

s1`rc˝s1`. . .`sl`rc˝sl
˘

.

By the last statement of Lemma 6.8, T C˚“ pT C.

Corollary 6.12. If the marked curve (6.16) is stable, the orientation on the restriction of the real
line bundle

Λtop
R

`

p qR1π˚T Cqσ
˘

b Λtop
R

`

pR0
B̄
π˚ppT Cb pT qqσ

˘

ÝÑ ∆R (6.17)

to ∆˚
R induced by the Dolbeault and SD isomorphisms as in the proof of Proposition 5.9 extends

across t“0.

Proof. By Lemma 6.9 with L“T C and Lemma 6.10 with L“ pT Cb pT , there are canonical isomor-
phisms of vector bundles

qR1π˚T C « R1
B̄
π˚T C “ R1

B̄
π˚

`

ppT Cb pT q˚b pT
˘

«
`

R0
B̄
π˚ppT Cb pT q

˘˚

over ∆ which restrict to the Dolbeault and SD isomorphisms over each point. Since they commute
with the involutions on the vector bundles, these isomorphisms induce an orientation on the real
line bundle (6.17) that restricts to the orientation on each fiber induced by the real parts of the
Dolbeault and SD isomorphisms.

6.3 The orientability of the real Deligne-Mumford space

We now study the extendability of the canonical orientations of the line bundles appearing in the
proof of Proposition 5.9 and establish Proposition 6.1. The two main ingredients in this proof are
Lemmas 6.14 and 6.17 below. The next lemma summarizes the fundamental difference between
the two pairs of cases in Proposition 6.1.

Lemma 6.13. Let pΣ, x12, σq, pπ,rcq, and pT , ϕq be as in Lemma 6.8. The restriction of the real
line bundle T ϕ ÝÑ Σσ to the singular topological component Σσ

1 Ă Σσ is orientable if the one-
nodal symmetric surface pΣ, x12, σq is of type (E) or (H1) and is not orientable if pΣ, x12, σq is of
type (H2) or (H3).
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Proof. If pΣ, x12, σq is of type (E), Σσ
1 consists of the node x12 and there is nothing to prove.

Otherwise, a local section of T ϕ near x12 is given by x B
Bx along the x-axis and ´y B

By along the
y-axis. It points away from the origin along the x-axis and towards along the y-axis. The claims
in the (H1) and (H2)/(H3) are thus immediate from the middle diagrams in Figures 2 and 1,
respectively.

Suppose pΣ, x12, σq is of type (E) or (H1). By the first part of the proof of Corollary 5.6, the
restriction of the real bundle pair

`

pT b2‘2T , pϕb2‘2ϕ
˘

ÝÑ pU ,rcq (6.18)

to the central fiber pΣ, σq thus has a canonical real orientation. It extends to a real orientation
on (6.18) which restricts to the canonical real orientation over each fiber pΣt, σtq with tP∆˚

R.

Suppose pΣ, x12, σq is of type (H2) or (H3). The singular component Σσ
1 of Σσ consists of two

copies of S1 with a point x1 on the first copy identified with a point x2 on the second copy. By
Corollary 5.6, there are then four natural real orientations on the restriction of (6.18) to pΣ, σq.
They correspond to the two orientations of each of the two irreducible components of Σσ

1 . Each of
the four real orientations extends to a real orientation on the real bundle pair (6.18) over pU ,rcq.

Lemma 6.14. Let C, pπ,rcq, and T , pT ÝÑ U be as in Lemma 6.8 with pΣ, x12, σq of type (H2)
or (H3). For each of the four natural real orientations on the restriction of (6.18) to pΣ, σq,
there exists εPt˘1u such that the restriction over pΣt, σtq of the extension of this real orientation
over pU ,rcq is the canonical real orientation if εtP∆`

R and differs from the canonical real orientation
by the spin structure over precisely one component of Σσt

t if εtP∆´
R .

Proof. For tP∆˚
R, the topological component Σσt

t;1 of Σσt
t corresponding to Σσ

1 is obtained as follows.

Cut the first copy of S1 at x1 into a closed interval S1
1 with endpoints 1´ and 1`; cut the second

copy of S1 at x2 into a closed interval S1
2 with endpoints 2´ and 2`. For tP∆`

R , Σσt
t;1«S

1 is formed

from S1
1 and S1

2 by identifying either 1´ with 2` and 1` with 2´ or 1´ with 2´ and 1` with 2`.
For tP∆´

R , Σσt
t;1 is formed by the other identification. Thus, the transition from Σσt

t;1 with tP∆´
R to

Σσt
t;1 with tP∆`

R is equivalent to flipping the second copy of S1 around x2 and another point. This

flips the orientation on S1
2 . By the second part of the proof of Corollary 5.6, this is equivalent to

flipping the spin structure on the restriction of the real part of (6.18) to half of Σσt
t «S

1 with tP∆˚
R.

Thus, precisely one of the two spin structures (either before or after the flip) on the restriction of
the real part of (6.18) to Σσt

t is the canonical one.

Remark 6.15. Suppose both copies of S1 in the proof of Lemma 6.14 are oriented from the ´ to `
end. These orientations determine spin structures on the restrictions of the real part of (6.18) to
the two irreducible components of Σσ

1 . The spin structure over Σσt
t is then the canonical one if Σσt

t

is obtained by gluing 1´ with 2´ and 1` with 2`. This gluing untwists back a half-spin of R in R2

over the first circle, instead of completing it to a full twist.

Corollary 6.16. Let pΣ, σq, prΣ, rσq, pπ,rcq, and T , pT ÝÑU be as in Lemma 6.8. The orientation
on the restriction of the real line bundle

`

det B̄
p pT ,pϕqb2

˘

b
`

det B̄C
˘

ÝÑ ∆R (6.19)

to ∆˚
R determined by the canonical isomorphisms of Corollary 5.6 extends across t“0 if pΣ, x12, σq

is of type (E) or (H1) and flips if pΣ, x12, σq is of type (H2) or (H3).
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Proof. Since U retracts onto Σ respecting the involution rc, a real orientation on the restriction of
the real bundle pair (6.18) to the central fiber pΣ, σq extends to a real orientation on (6.18). By
Corollary 6.7, the former induces an orientation on the real line bundle (6.19) over ∆R. The re-
striction of this orientation to the fiber over each tP∆˚

R is the orientation induced by the restriction
of the extended real orientation to the fiber of (6.18) as in Corollary 5.7.

Suppose pΣ, x12, σq is of type (E) or (H1). The canonical real orientation on (6.18) over pΣ, σq then
induces the canonical real orientation on the restriction of (6.18) over pΣt, σtq with tP∆˚

R. Thus,
the orientation on (6.19) induced by the canonical real orientation on (6.18) over pΣ, σq restricts
to the canonical orientation over tP∆˚

R. This establishes the claim for types (E) and (H1).

Suppose pΣ, x12, σq is of type (H2) or (H3). Fix one of the four natural real orientations on (6.18)
over pΣ, σq and let εPt˘1u be as in Lemma 6.14. Since this real orientation induces the canonical
real orientation on (6.18) over pΣ, σq if εtP∆`

R , the orientation on (6.19) induced by the former re-
stricts to the canonical orientation if εtP∆`

R . Since the chosen real orientation on (6.18) over pΣ, σq
induces an orientation on (6.18) differing from the canonical one by the spin structure over precisely
one component of Σσt

t if εt P∆´
R , the orientation on (6.19) induced by the former restricts to the

opposite of the canonical orientation if εt P∆´
R ; see Corollary 5.7. This establishes the claim for

types (H2) and (H3).

Lemma 6.17. Suppose g, l P Zě0 with g` l ě 2 and pΣ, x12, σq, C, and pπ,rc, s1, . . . , slq are as
in (6.16) with U |∆R ÝÑ ∆R embedded inside of the universal curve fibration over RMg,l. The
orientation on the restriction of the real line bundle

`

Λtop
R pTRMg,lq

˘˚
b Λtop

R
`

p qR1π˚T Cqσ
˘

ÝÑ ∆R (6.20)

to ∆˚
R induced by the KS isomorphism as in (5.22) flips across t“0.

Proof. Let x1, x2P rΣ be the preimages of the node x12PΣ as before and

T rC “ T rΣ
`

´z`1 ´z
´
1 ´. . .´z

`
l ´z

´
l ´x1´x2

˘

.

Denote by Ng,lĂMg,l and RNg,lĂRMg,l the one-node strata, by LRÝÑRNg,l the normal bundle

of RNg,l in RMg,l, and by T rC ÝÑ rUg´2,l`2 the twisted down vertical tangent bundle over the

universal curve π : rUg´2,l`2ÝÑNg,l. Let Cx12ÝÑΣ be the skyscraper sheaf over x12.

The short exact sequence of sheaves

0 ÝÑ OpT C|Σq ÝÑ O
`

T rC
˘

ÝÑ Cx12 ÝÑ 0 (6.21)

induces an exact sequence

0 ÝÑ C ÝÑ qH1
`

Σ;OpT C|Σq
˘

ÝÑ qH1
`

rΣ;O
`

T rC
˘˘

ÝÑ 0

of complex vector spaces. Its real part is a short exact sequence

0 ÝÑ R ÝÑ qH1
`

Σ;OpT C|Σq
˘σ
ÝÑ qH1

`

rΣ;O
`

T rC
˘˘σ

ÝÑ 0 (6.22)

of real vector spaces. By the definition of LR, there is also a natural short exact sequence

0 ÝÑ TCRNg,l ÝÑ TCRMg,l ÝÑ LR|C ÝÑ 0 (6.23)
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of real vector spaces.

By (6.22) and (6.23), there is a canonical isomorphism

Λtop
R pTCRNg,lqbΛtop

R
`

qH1
`

rΣ;O
`

T rC
˘˘σ˘

«

´

Λtop
R pTCRMg,lqbΛtop

R
`

qH1
`

Σ;OpT C|Σq
˘σ˘

¯

b LRbR .
(6.24)

The complex vector bundles
TNg,l, qR

1π˚
`

T rC
˘

ÝÑ Ng,l

extend over a neighborhood of Ng,l in Mg,l as a subbundle of TMg,l and a quotient bundle of
qR1π˚T C. The KS map induces an isomorphism between these two extensions. Over a neighborhood
of C, these extensions can be chosen to be σ-invariant. We then obtain a diagram

TCRNg,l
//

KS «

��

TCtRMg,l

KS «

��

// LR|C

KS «

��
qH1

`

rΣ;O
`

T rC
˘˘σ

qH1
`

Σt;OpT C|Σtq
˘σtoo Roo

of vector space homomorphisms which commutes up to homotopy of the isomorphisms given by
the vertical arrows. The KS map for prΣ, x1, x2q induces a continuous orientation on the first tensor
product on the right-side side in (6.24) and its extension over ∆R. Thus, it is sufficient to show
that for small values of tP∆˚

R the KS map for pΣt, σtq associates the radial vector

B

B|t|
P TΣtRMg,l (6.25)

with the same direction of the factor R in (6.24), regardless of whether tP∆`
R or tP∆´

R (in these
two cases, the radial vector field determines opposite orientations on LR|Σ).

We use the explicit description of the KS map at the bottom of page 11 in [28] and continue with
the notation in the proof of Lemma 6.8. We cover a neighborhood of Σt in U by the open sets

U1 “
 

pt, z1, z2qPU0 : 2|z2|ă1
(

and U2 “
 

pt, z1, z2qPU0 : 2|z1|ă1
(

,

along with coordinate charts each of which intersects at most one of U1 and U2. Since z1z2 “ t
on U0, the overlaps between the coordinates z1 on U1 and z2 on U2 are given by

z1 ” f12pt, z2q “ tz´1
2 and z2 ” f21pt, z1q “ tz´1

1 ;

all other overlap maps do not depend on t. Thus, the KS map takes the tangent vector (6.25) to
the Čech 1-cocycle on Σt given by

θt;12 ”
Bf12

B|t|

B

Bz1
“ |t|´1z1

B

Bz1
, θt;21 ”

Bf21

B|t|

B

Bz2
“ |t|´1z2

B

Bz2
,

and vanishing on all remaining overlaps. The positive factor of |t|´1 does not effect the orientation
on the fiber of (6.20) over tP∆˚

R induced by the KS map and can be dropped above. The resulting

Čech 1-cocycle pθt is then an extension of the Čech 1-cocycle pθ0 on Σ given by

pθ0;12 ” z1
B

Bz1
´ z2

B

Bz2
, pθ0;21 ” ´z1

B

Bz1
` z2

B

Bz2
, (6.26)

45



and vanishing on all remaining overlaps. For t P ∆R˚, the positive direction of the last tensor
product on the right-hand side of (6.24) is thus given by

B

B|t|
b pθt;

this orientation does not extend across t“0.

Proof of Proposition 6.1. Suppose pΣ, x12, σq, C, and pπ,rc, s1, . . . , slq are as in (6.16) with
U |∆R ÝÑ ∆R embedded inside of the universal curve fibration over RMg,l. The orientation on
the restriction of the real line bundle (3.1) to ∆˚

R provided by Proposition 5.9 is the tensor prod-
uct of

(1) the orientation on the restriction of the real line bundle (6.20) to ∆˚
R induced by the KS

isomorphism,

(2) the orientation on the restriction of the real line bundle (6.17) to ∆˚
R induced by the Dolbeault

and SD isomorphisms,

(3) the orientation on the restriction of the real line bundle

`

det B̄
p pT C,pϕqbp pT ,pϕq

˘

b
`

det B̄
p pT ,pϕqb2

˘

ÝÑ ∆R

to ∆˚
R induced by the short exact sequences (5.24) and the specified orientations of (5.21),

(4) the orientation on the restriction of the real line bundle (6.19) to ∆˚
R determined by the

canonical isomorphisms of Corollary 5.6.

Since the family of the short exact sequences (5.24) and the specified orientations of (5.21) extend
across t“ 0, so does the orientation in (3). By Corollary 6.12, the orientation in (2) also extends
across t “ 0. By Lemma 6.17, the orientation in (1) flips across t “ 0. By Corollary 6.16, the
orientation in (4) extends across t“0 if pΣ, x12, σq is of type (E) or (H1) and flips if pΣ, x12, σq is
of type (H2) or (H3). Combining these four statements, we obtain the claim.

6.4 Proofs of the main statements

We now establish the main statements of this paper, Theorems 1.3 and 1.5.

Proof of Theorem 1.3. By Corollary 5.10, a real orientation on pX,ω, φq determines an orien-
tation on the restriction of the real line bundle (1.5) to the uncompactified moduli space

Mg,lpX,B; Jqφ,σ ĂMg,lpX,B; Jqφ

for every topological type σ of genus g orientation-reversing involutions. We show that these ori-
entations multiplied by p´1qg`|σ|0`1 extend across the codimension-one strata of Mg,lpX,B; Jqφ.

Suppose ru, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, js is a stable real morphism from a one-nodal symmetric sur-

face pΣ, σq. Since the fibers of the forgetful morphism

Mg,l`1pX,B; Jqφ ÝÑMg,lpX,B; Jqφ
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are canonically oriented, we can assume that

C ”
`

Σ, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, j

˘

is a stable symmetric surface and thus defines an element of RMg,l. The canonical isomor-
phism (5.29) then extends across rus. By Corollary 6.7, the canonical orientation on the restric-
tion of the real line bundle (5.30) to Mg,lpX,B; Jqφ also extends across rus. Since p´1qg`|σ|0`1

flips across the codimension-one boundary strata of types (E) and (H1) and extends across the
codimension-one boundary strata of types (H2) and (H3), the claim now follows from Proposi-
tion 6.1.

Proof of Theorem 1.5. For J PJ φ
ω and a (real) perturbation ν of the real B̄J -equation, we de-

note by M1,l;kpX,B; J, νqφ the moduli space of real genus 1 degree B pJ, νq-maps with l conjugate
pairs of marked points and k real marked points. For k“0, we omit the corresponding subscript.
If pX,ω, φq is semi-positive in the sense of [50, Definition 1.2], then ν can be taken to be a real
Ruan-Tian perturbation as defined in [50, Section 3.1]. In general, ν is a perturbation in the sense
of Kuranishi structures.

By Theorem 1.3, the compactified moduli space M1,lpX,B; J, νqφ is orientable. Thus, the ori-
entability of M1,l;kpX,B; J, νqφ is determined by the orientability of the vertical tangent bundle of
the forgetful morphism

M1,l;kpX,B; J, νqφ ÝÑM1,lpX,B; J, νqφ (6.27)

dropping the real marked points. The fibers of (6.27) over the main strata

M1,lpX,B; J, νqφ,σ ĂM1,lpX,B; J, νqφ

are open subsets of pS1qk.

Since there are diffeomorphisms hPDσ which reverse an orientation on the fixed locus, the vertical
tangent bundle of (6.27) is not orientable over M1,lpX,B; J, νqφ,σ if k is odd. If k is even, the
fibers of (6.27) are canonically oriented as follows. If |σ|0 “ 1, an orientation on the fixed locus
determines an orientation on each fiber of (6.27) which is independent of the choice of the first
orientation. If |σ|0“2, the fixed locus Σσ splits Σ into two annuli; let Σb be either of these annuli.
Endow one of the boundary circles of Σb with the induced boundary orientation and the other
with the opposite of the induced boundary orientation. These choices determine an orientation on
each fiber of (6.27). Since k is even, this orientation is independent of which circle is oriented as
a boundary and thus of the choice of the half Σb. We determine the orientability of the vertical
tangent bundle over M1,lpX,B; J, νqφ,σ by studying how these canonical orientations change across
the codimension-one boundary strata.

If g“ 1, the codimension-one boundary strata can be of types (E), (H1), and (H3) only. If ką 0,
the domains of all morphisms of type (E) are one-nodal symmetric surfaces pΣ, x12, σq with the
fixed locus consisting of the node x12 and a fixed circle Σσ

1 containing all of the real marked points.
The canonical orientations on the fibers of (6.27) extend across such strata.

In the (H1) case, the nodal symmetric surface pΣ, σq is pP1, τq with two real points identified. In
particular, the fixed locus Σσ splits Σ into two copies of a disk with two boundary points identified;
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denote by Σb either of these copies and by x12PΣσ the node. Let pT , ϕq be the real bundle pair over
a one-parameter family of smoothings of pΣ, σq as in Lemma 6.8. An orientation on T ϕ|ΣσÝÑΣσ

induces an orientation on TΣσt
t for every smoothing of pΣt, σtq. By the matching condition on

ΩpT |Σ0q in Lemma 6.8, the orientation on

T ϕ|Σσ´x12 “ T
`

Σσ´x12

˘

as the boundary of Σb does not extend over x12. This implies that the orientation on Σσt
t with

|σt|0 “ 2 induced by an orientation on T ϕ|Σσ is not the boundary orientation from either of the
annuli obtained by cutting Σt along Σσt

t . Thus, the canonical orientations on the fibers of (6.27)
extend across the (H1) boundary strata as well.

In the (H3) case, the nodal symmetric surface pΣ, σq consists of a genus 1 surface with a sphere
bubble attached. A choice of an orientation on Σσ is compatible with the orientation of the fixed
locus on only one side of the boundary. If the number of the real marked points on either the torus
or the sphere is even, then the orientation of the fibers of (6.27) still extends across this stratum.
We will call the codimension-one boundary strata of type (H3) with odd numbers of real marked
points on the torus and the sphere to be of type (H3´). Following the approach of [4, 37], we show
that in a generic one-parameter family the cut-down moduli space does not cross such strata and
thus the counting invariant (1.5) is well-defined.

Let

ev: M˚
1,l;kpX,B; J, νqφ ÝÑ X lˆpXφqk,

“

u, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, x1, . . . , xk, j

‰

ÝÑ
`

upz`1 q, . . . , upz
`
l q, upx1q, . . . , upxkq

˘

,

be the total evaluation map from the moduli space of simple pJ, νq-maps. Choose pseudocycle
representatives

h1 : Y1 ÝÑ X, . . . , hl : Yl ÝÑ X

for the Poincare duals of µ1, . . . , µl; this is possible to do by [43, Theorem 1.1]. We can assume that

l
ÿ

i“1

pdegµi´2q ` 2k “
@

c1pXq, B
D

(6.28)

and so k is even under our assumptions. Choose k real points p1, . . . , pk PX
φ. If pX,ω, φq is semi-

positive, pJ, νq is generic, and h1, . . . , hl, p1, . . . , pk are chosen generically, then ev is transverse to
the pseudocycle

l
ź

i“1

Yi ÝÑ X lˆpXφqk,
`

y1, . . . , yl
˘

ÝÑ
`

h1py1q, . . . , hlpylq, p1, . . . , pk
˘

.

The intersection of ev with this pseudocycle, i.e.

M˚
1,l;kpX,B; J, νqφh1,...,hl;p1,...,pk

”

!

`

ru, pz`1 , z
´
1 q, . . . , pz

`
l , z

´
l q, x1, . . . , xk, js, y1, . . . , yl

˘

PM˚
1,l;kpX,B; J, νqφˆ

l
ź

i“1

Yi :

upz`i q“hipyiq @ i“1, . . . , `, upxiq“pi @ i“1, . . . , k
)

,
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is then a zero-dimensional manifold. A real orientation on pX,ω, φq and the canonical orientation
on the vertical tangent bundle of (6.27) determine an orientation of this manifold. We set

@

µ1, . . . , µl; ptk; J, ν
Dφ

1,B
“ ˘

ˇ

ˇM˚
1,l;kpX,B; J, νqφh1,...,hl;p1,...,pk

ˇ

ˇ

to be the signed cardinality of this set.

Let pJ1, ν1q and pJ2, ν2q be two regular φ-invariant pairs and tJt, νtu be a generic path between
them. If pX,ω, φq is semi-positive, the image of the φ-multiply covered maps is of codimension
at least 2; a generic path of cut-down moduli spaces thus avoids them. Along the path tJt, νtu,
the cut-down moduli space forms a one-dimensional bordism and contains finitely many points in
the codimension-one boundary strata of type (H3´). We orient this bordism outside of the (H3´)
elements as the preimage of the submanifold

 

pq1, . . . , ql, p1, . . . , pk, q1, . . . , qlq : q1, . . . , ql PX
(

Ă X lˆpXφqkˆX l

under the transverse morphism

evˆ h1ˆ. . .ˆhl :
ď

tPr0,1s

ttuˆM˚
1,l;kpX,B; Jt, νtq ˆ

l
ź

i“1

Yi ÝÑ X lˆpXφqkˆX l.

The signed cardinalities of the boundaries of this bordism over t“0 and t“1 are

´
@

µ1, . . . , µl; ptk; J0, ν0

Dφ

1,B
and

@

µ1, . . . , µl; ptk; J1, ν1

Dφ

1,B
, (6.29)

respectively.

Suppose that in a one-parameter family the cut-down moduli space crosses a codimension-one
boundary stratum of type (H3) with the map degree splitting into classes B1, B2PH2pX;Zq between
the genus 1 surface and the sphere bubble, respectively. Let l1, l2PZě0 be the numbers of conjugate
pairs of marked points carried by the two components and k1, k2PZě0 be the numbers of real marked
points carried by them. Thus,

B1`B2 “ B, l1`l2 “ l, k1`k2 “ k.

By a dimension count, this can happen only if

l1
ÿ

i“1

pdegµji´2q ` 2k1 ď
@

c1pXq, B1

D

` 1 and
l2
ÿ

i“1

pdegµji´2q ` 2k2 ď
@

c1pXq, B2

D

` 1.

Using (6.28), we obtain

l2
ÿ

i“1

pdegµji´2q ` 2k2 ´ 1 ď
@

c1pXq, B2

D

ď

l2
ÿ

i“1

pdegµji´2q ` 2k2 ` 1 .

Since degµji ´ 2 and xc1pXq, B2y are divisible by 4, this implies that k2 is even and that the
codimension-one boundary strata of type (H3´) are never crossed. Thus, the canonical orienta-
tions extend over the whole cobordism and the two counts in (6.29) are equal.

A similar cobordism argument holds for a semi-positive deformation of ω and for a change of the
pseudocycle representatives. The general case is treated using Kuranishi structures similarly to
[37, Section 7].
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A Topologizing determinant line bundles

The existence of topologies on the total space of (4.9) with good properties is readily implied by the
main algebraic conclusion of [25] in combination with some of the analytic results obtained in [27,
Section 3]. The latter ensure that the kernels of surjective CR-operators DpV,ϕq;t in (4.8) and their
extensions DΘ;t in (A.12) form vector bundles over ∆ and thus so do the determinants of these
operators (the determinants are then the top exterior powers of the kernels); see Proposition A.2.
In the general case, the bundle isomorphisms (A.20) would topologize the total space of (4.9) from
the determinant line bundles of surjective operators if the resulting overlap maps between the latter
are continuous. For the property (D2) on page 23 to hold, all isomorphisms (A.20) and thus the
aforementioned overlap maps need to be continuous.

The isomorphisms (A.20) are special cases of the isomorphisms pIΘ;D in (A.4); the latter are in-
duced by the isomorphisms (4.6) associated with the exact triples (A.1) of Fredholm operators.
The isomorphisms (4.6) associated with the exact triples (A.2) induce the isomorphisms IΘ;D

in (A.4) going in the opposite direction. The property (D2) and thus the continuity of the iso-
morphisms in (A.4) would be implied by the two purely algebraic Compositions properties of [49,
Section 2] for homomorphisms between finite-dimensional vector spaces. By the main algebraic
conclusion of [25], it is possible to choose the isomorphisms (4.6) for exact triples of operators
between finite-dimensional vector spaces so that they satisfy these two properties. Furthermore,
the resulting topologies on the determinant line bundles (4.9) satisfy all properties in [49, Sec-
tion 2] with Fredholm spaces replaced by real bundle pairs. In fact, the choice of a good collection
of the isomorphisms (4.6) for non-surjective operators between finite-dimensional vector spaces is
not unique. However, any two choices induce topologies that differ by homeomorphisms intertwin-
ing all isomorphisms between determinant line bundles listed in [49, Section 2]; see [49, Theorem 2].

As shown in [24, Appendix D.2] and [49, Section 3.2], the topologies on the determinant line
bundles over families of Fredholm operators between fixed Banach spaces arise from exactly the same
algebraic considerations. The only difference is that the analogue of Proposition A.2 for continuous
families of surjective Fredholm operators between fixed Banach spaces is straightforward.

A.1 Linear algebra

We begin by recalling the relevant algebraic facts from [49]. We denote by

ΩN ” e1^. . .^eN

the standard volume tensor on RN and by Ω˚N P pΛ
N
RRN q˚ its dual. For a Banach space X and

N,N1, N2PZě0, define

ιX;N : X ÝÑ X‘RN , ιX;N pxq “ px, 0q,

RX;N1,N2 : X‘RN1‘RN2 ÝÑ X‘RN2‘RN1 , RX;N1,N2px, v1, v2q “ px, v2, v1q.

For vector space homomorphisms Θ : RN ÝÑ Y and R : RN 1ÝÑRN and a Fredholm operator
D : XÝÑY , define

DΘ : X‘RN ÝÑ Y, DΘpx, vq “ Dx`Θpvq,

RΘ;D : kerDΘ˝R ÝÑ kerDΘ, RΘ;Dpx, v
1q “ px,Rv1q.
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In particular, the triple tΘ;D

0 // X

D
��

// X‘RN

DΘ

��

π2 // RN

��

// 0

0 // Y // Y // 0 // 0

(A.1)

of Fredholm operators is exact.

A homomorphism between Fredholm operators D : X ÝÑ Y and D1 : X 1 ÝÑ Y 1 is a pair of homo-
morphisms φ : X ÝÑX 1 and ψ : Y ÝÑY 1 so that D1˝φ“ψ˝D; an isomorphism between Fredholm
operators D and D1 is a homomorphism pφ, ψq : DÝÑD1 so that φ and ψ are isomorphisms. Such
an isomorphism induces isomorphisms

detφ : Λtop
R pkerDq

«
ÝÑ Λtop

R pkerD1q, detψ´1 : Λtop
R pcokD1q

«
ÝÑ Λtop

R pcokDq,

Iφ,ψ;D : detD
«
ÝÑ detD1, x^α ÝÑ

`

tdetφupxq
˘

^
`

α˝tdetψ´1u
˘

.

For homomorphisms Θ1 : RN1ÝÑY and Θ2 : RN2ÝÑY , let

RΘ1,Θ2;D“IRX;N1,N2
,idY ;DΘ1‘Θ2

: detDΘ1‘Θ2

«
ÝÑ detDΘ2‘Θ1 .

A pair of Fredholm operators D1 : X1ÝÑX2 and D2 : X2ÝÑX3 determines an exact triple

0 // X1

D1

��

iX // X1‘X2

D2˝D1‘idX2

��

jX // X2

D2

��

// 0
iXpx1q “ px1, D1x1q

jXpx1, x2q “ D1x1´x2

0 // X2
iY // X3‘X2

jY // X3
// 0

iY px2q “ pD2x2, x2q

jY px3, x2q “ x3´D2x2 ,

(A.2)

of Fredholm operators. The isomorphism (4.6) for this triple becomes

rCD1,D2 :
`

detD1

˘

b
`

detD2

˘ «
ÝÑ detpD2˝D1q . (A.3)

If D, Θ, and π2 are as above, D“DΘ˝ιX;N and the projection

π2 : cok ιX;N ÝÑ RN

is an isomorphism. We thus obtain two isomorphisms induced by (4.6),

pIΘ;D : detD
«
ÝÑ detDΘ, pIΘ;Dp$q “ ΨtΘ;D

`

$bΩNb1˚
˘

,

IΘ;D : detDΘ
«
ÝÑ detD, IΘ;Dp$q “ CιX;N ,DΘ

`

1bpΩ˚N ˝tdetπ2uq b$
˘

,
(A.4)

via (A.1) and (A.3), respectively.

Every short exact sequence
0 ÝÑ V 1 ÝÑ V ÝÑ V 2 ÝÑ 0 (A.5)

of finite-dimensional vector spaces determines an isomorphism

`

Λtop
R V 1

˘

b
`

Λtop
R V 2

˘ «
ÝÑ Λtop

R V (A.6)
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between the top exterior powers of the vector spaces involved; see [49, Lemma 4.1]. By the Snake
Lemma, an exact triple (4.5) induces an exact sequence

0 ÝÑ kerD1
iX
ÝÑ kerD

jX
ÝÑ kerD2

δ
ÝÑ cokD1

iY
ÝÑ cokD

jY
ÝÑ cokD2 ÝÑ 0 (A.7)

of finite-dimensional vector spaces. It is equivalent to four short exact sequences, such as

0 ÝÑ kerD1
iX
ÝÑ kerD

jX
ÝÑ Im jX ÝÑ 0.

The isomorphisms (4.6) should clearly be induced by the isomorphisms (A.6) corresponding to
these four short exact sequences. However, there are at least choices of signs involved in putting
the four resulting isomorphisms together, depending on the dimensions of the vector spaces appear-
ing in the four sequences. Choosing these signs in some compatible fashion is necessary to ensure
that the isomorphisms (A.20) used to topologize determinant line bundles overlap continuously.

If the operators in (4.5) are surjective, the exact sequence (A.7) reduces to the exact sequence

0 ÝÑ kerD1
iX
ÝÑ kerD

jX
ÝÑ kerD2 ÝÑ 0.

It is then standard to require that the corresponding isomorphism (4.6) be given by the isomor-
phism (A.6) associated with this exact sequence of kernels; this property is Normalization II in [49,
Section 2]. An explicit formula for the isomorphism (4.6) in the general case with this property
is given by [49, (4.10)]. The induced isomorphisms (A.3) satisfy the two algebraic Compositions
properties in [49, Section 2] and thus the remaining algebraic properties listed there (Naturality II
and III and Exact Squares); see the paragraph after Theorem 1 in [49, Section 2]. The associated
isomorphisms (A.4) satisfy

IΘ;D˝pIΘ;D “ p´1qpindDqN id : detD
«
ÝÑ detD, (A.8)

I´1
Θ2;D˝IΘ1;D “ p´1qN1N2IΘ1;DΘ2

˝RΘ1,Θ2;D˝I´1
Θ2;DΘ1

: detDΘ1

«
ÝÑ detDΘ2 (A.9)

for all Fredholm operators D : XÝÑY and homomorphisms

Θ: RN ÝÑ Y, Θ1 : RN1 ÝÑ Y, Θ2 : RN2 ÝÑ Y ;

see [49, Lemma 4.11] and the end of the proof of [49, Proposition 5.3].

A.2 Analysis and topology

Let pΣ0, σ0, j0q, pπ,rcq, and pV, ϕq be as above (4.9). Fix pą2, rc-invariant Riemannian metric on U ,
and a ϕ-invariant metric on V . For each tP∆R, we denote by

EtpV qϕ Ą Γ
`

Σt;V |Σt

˘ϕ
and E0,1

t pV qϕ Ą Γ0,1
jt

`

Σt;V |Σt

˘ϕ

the completions of the spaces of smooth pϕ, σtq-invariant bundle sections in the modified Lp1- and
Lp-norms } ¨ }p,1 and } ¨ }p, respectively, introduced in [27, Section 3]. The norms } ¨ }p,1 and } ¨ }p
dominate the usual Lp1- and Lp-norms, but are equivalent to them away from the nodes of Σt.
Some of the key properties of these norms are summarized by the next statement. Let

Dt : EtpV qϕ ÝÑ E0,1
t pV qϕ (A.10)

be the operator induced by DpV,ϕq;t.
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Lemma A.1. For every t˚P∆R, there exist a neighborhood ∆t˚ of t˚ in ∆R and Ct˚ PR` such that

}ξ}C0 ď Ct˚}ξ}p,1,
›

›Dtξ
›

›

p
ď Ct˚}ξ}p,1, }ξ}p,1 ď Ct˚

`

}Dtξ
›

›

p
`}ξ}p

˘

for all ξPEtpV qϕ and tP∆t˚.

The second inequality above is immediate from the definition of the norms }¨}p,1 and }¨}p. The first
inequality holds even with the standard Lp1-norm on the right-hand side; see [27, Lemma 3.2] and
[47, Proposition 4.10]. The last inequality is the crucial uniform elliptic estimate of [27, Lemma 3.9];
see the proof of [41, Proposition 5.11] and [47, Section 4.3] for more details. By Lemma A.1, (A.10)
is a Fredholm operator; its index, which we denote by indDpV,ϕq, does not depend on t.

The normed topologies on the fibers of the projections

EpV qϕ”
ğ

tP∆R

`

ttuˆEtpV qϕ
˘

ÝÑ ∆R and E0,1pV qϕ”
ğ

tP∆R

`

ttuˆE0,1
t pV qϕ

˘

ÝÑ ∆R

are extended to topologies on EpV qϕ and E0,1pV qϕ in [27, Section 3]. These topologies are described
as follows. Let tP∆R and

ψt1 : Σ˚t ÝÑ q´1pΣ˚t qXΣt1

be analogues of the diffeomorphisms (4.3) defined for t1 P ∆ in a neighborhood of t. For each
δ PR`, denote by B1t;δĂU the δ-neighborhood of the nodes of Σt. Suppose tr P∆R is a sequence
converging to t. A sequence ξr PEtrpV qϕ converges to ξPEtpV qϕ if

(a) the sequence ξr˝ψtr converges to ξ in the Lp1-norm on compact subsets of Σ˚t and

(b) lim
δÝÑ0

lim
rÝÑ8

›

›ξr|B1t;δXΣtr

›

›

p,1
“0.

The topology on E0,1pV qϕ introduced in [27] is described analogously, with the Lp1-norms replaced
by Lp-norms.

For any bundle homomorphism

Θ: ∆RˆRN ÝÑ E0,1pV qϕ, Θpt, vq “
`

t, ζt,v
˘

, (A.11)

and tP∆R, let
Θt : RN ÝÑ E0,1

t pV qϕ, Θtpvq “ ζt,v ,

be the restriction of Θ to the fiber over t. Define

DΘ;t“pDtqΘt : EtpV qϕ‘RN ÝÑ E0,1
t pV qϕ, UΘ “

 

tP∆R : cokDΘ;t“t0u
(

, (A.12)

kerDΘ “
 

pt, ξ, vqPEpV qϕˆRN: tPUΘ, DΘ;tpξ, vq“0
(

ÝÑ UΘ , (A.13)

pIΘ;t“ pIΘt;Dt : detDt
«
ÝÑ detDΘ;t, IΘ;t“IΘt;Dt : detDΘ;t

«
ÝÑ detDt .

If in addition

R : ∆RˆRN
1

ÝÑ ∆RˆRN , (A.14)

Θ1 : ∆RˆRN1 ÝÑ E0,1pV qϕ, Θ2 : ∆RˆRN2 ÝÑ E0,1pV qϕ (A.15)
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are bundle homomorphisms, let

RΘ;t“RΘt;Dt : kerDΘ˝R;t ÝÑ kerDΘ;t,

RΘ1,Θ2;t“RpΘ1qt,pΘ2qt;Dt
: detDΘ1‘Θ2;t

«
ÝÑ detDΘ2‘Θ1;t .

By (A.8) and (A.9),

IpΘ2qt;DΘ1;t
˝pIpΘ2qt;DΘ1;t

“ p´1qpindDpV,ϕq`N1qN2 id : detDΘ1;t
«
ÝÑ detDΘ1;t, (A.16)

I´1
Θ2;t˝IΘ1;t “ p´1qN1N2IpΘ1qt;DΘ2;t

˝RΘ1,Θ2;t˝I´1
pΘ2qt;DΘ1;t

: detDΘ1;t
«
ÝÑ detDΘ2;t (A.17)

for all tP∆R.

We call a bundle homomorphism as in (A.11) smoothly supported if ζt,v P E0,1
t pV qϕ is smooth and

supppζt,vqĂΣ˚t for all tP∆R and vPRN .

Proposition A.2. For every continuous smoothly supported bundle homomorphism Θ as in (A.11),
UΘĂ∆R is an open subset and (A.13) is a vector bundle. If in addition R is a continuous bundle
homomorphism as in (A.14), then UΘ˝RĂUΘ and

RΘ : kerDΘ˝R ÝÑ kerDΘ

ˇ

ˇ

UΘ˝R
, RΘpt, ξ, vq “

`

t, RΘ;tpξ, vq
˘

,

is a continuous bundle map.

This proposition follows from Lemma A.1, as demonstrated by the gluing construction of [27,
Section 3] for pJ, νq-holomorphic maps instead of bundle sections. The greatly simplified, linear
version of this construction (without the quadratic term of the first equation in the proof of [27,
Proposition 3.4]) provides local trivializations for the projection

EpV qϕˆRN Ą kerDΘ ÝÑ UΘ

around every point t P∆R and thus that UΘ Ă∆R is open. This construction in the N “ 0 case
and without restricting to the invariant sections is carried out in [42, Section 3.2]. By the smooth
support assumption on Θ (which is in line with the setup in [27]), the reasoning in [42] applies in
the general case, including for invariant sections, and implies the first statement of the proposition.
The claim UΘ˝R Ă UΘ is immediate from the definitions. Factoring R through its graph reduces
the remaining claim of the proposition to the case that R has constant rank. This case in turn
reduces to showing that kerDΘ˝R is a subbundle of kerDΘ|UΘ˝R

if R is induced by the inclusion of
a coordinate subspace of RN . This follows readily from the setup in [42, Section 3.2].

By the first statement of Proposition A.2, the total space of the projection

detDΘ

ˇ

ˇ

UΘ
“Λ

indDpV,ϕq`N

R pkerDΘq ÝÑ UΘ

is a real line bundle with a natural topology. The isomorphisms (A.6) associated with short exact
sequences of vector spaces as in (A.5) induce continuous isomorphisms of the same kind for short
exact sequences of vector bundles. Along with the second statement of Proposition A.2, this implies
that the bundle isomorphisms

pIΘ2;DΘ1
: detDΘ1 ÝÑ detDΘ1‘Θ2

ˇ

ˇ

UΘ1
, pIΘ2;DΘ1

pt, $q “
`

t, pIpΘ2qt;DΘ1
;tp$q

˘

,

RΘ1,Θ2 : detDΘ1‘Θ2

ˇ

ˇ

UΘ1‘Θ2
ÝÑ detDΘ2‘Θ1

ˇ

ˇ

UΘ1‘Θ2
, RΘ1,Θ2pt, $q “

`

t,RΘ1,Θ2;tp$q
˘

,
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are continuous with respect to the natural topologies on the domains and targets for all continuous
smoothly supported bundle homomorphisms Θ1 and Θ2 as in (A.15). Combining this with (A.16)
and (A.17), we obtain the following.

Corollary A.3. For all continuous smoothly supported bundle homomorphisms Θ1 and Θ2 as
in (A.15), the bundle map

pIΘ1Θ2 : detDΘ2

ˇ

ˇ

UΘ1
XUΘ2

ÝÑ detDΘ1

ˇ

ˇ

UΘ1
XUΘ2

, pIΘ1Θ2pt, $q “
`

t, pIΘ1;t

`

pI´1
Θ2;tp$q

˘̆

,

is continuous with respect to the natural topologies on its domain and target.

We now topologize the total space of the projection (4.9). Let t˚ P∆R. By the elliptic regularity
of Dt˚ , there exists a homomorphism

Θt˚ : RN ÝÑ E0,1
t˚ pV q

ϕ, Θt˚pvq “ ζt˚,v, (A.18)

such that every p0, 1q-form ζt˚,v is smooth and supported in Σ˚t˚ and the operator

`

Dt˚
˘

Θt˚
: Et˚pV qϕ‘RN ÝÑ E0,1

t˚ pV q
ϕ,

`

Dt˚
˘

Θt˚
pξ, vq “ Dt˚ξ`ζt˚,v, (A.19)

is surjective. Choose a continuous smoothly supported homomorphism Θ as in (A.11) which
restricts to (A.18) over t˚. By (A.19), t˚ PUΘ. We topologize detDpV,ϕq|UΘ

by requiring that the
bundle map

pIΘ : detDpV,ϕq
ˇ

ˇ

UΘ
ÝÑ detDΘ

ˇ

ˇ

UΘ
, pIΘpt, $q “

`

t, pIΘ;tp$q
˘

, (A.20)

be a homeomorphism with respect to the natural topology on its target. By Corollary A.3, the
overlaps between these maps are continuous. Thus, these maps define a topology on the total space
of the projection (4.9).

It is immediate from the construction that the resulting topologies on the determinant line bundle
corresponding to different real bundle pairs pV, ϕq satisfy (D1) on page 23. By the proof of [49,
Corollary 5.4], these topologies also satisfy (D2).

Remark A.4. Other topologies on the total space of the projection (4.9) with good properties can be
obtained by modifying the isomorphisms (4.6) associated with exact sequences (A.7) as described
above Theorem 2 in [49, Section 3.2]. This would modify the topologizing maps (A.20) and would
thus generally change the topology on the total space of (4.9). The two topologies would differ by
a homeomorphism which restricts to the identity over the points tP∆R such that Dt is surjective.

Remark A.5. A connection ∇ as above (4.9) induces a splitting

TV « π˚V ‘ π˚TU .

The complex structure i in the fibers of π : V ÝÑ U , the complex structure jU on U , and the
zeroth-order deformation term (4.7) induce a complex structure JV on the total space of V by

JV
ˇ

ˇ

v

`

9v, 9x
˘

“
`

i 9v`tAvup 9xq, jU 9x
˘

.

For each t P∆R, Dt is then the B̄JV -operator on the space of real maps from pΣt, jtq to the total
space of V . In particular, kerDt consists of real pJV , jtq-holomorphic maps. By the smooth support
assumption on Θ, the subspace topology on kerDΘ can thus be described in terms of convergence
of sequences similarly to Definition 4.2.
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