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The study of curves in projective varieties has been central to algebraic geome-
try since the nineteenth century. It was reinvigorated through its introduction into
symplectic topology in Gromov’s seminal work [4] and now plays prominent roles
in symplectic topology and string theory as well. The foundations of (complex)
Gromov-Witten invariants, i.e. counts of J-holomorphic curves in symplectic man-
ifolds, were established in the 1990s and have been spectacularly applied ever since.
However, there has been much less progress in establishing the foundations of and
applying real Gromov-Witten invariants, i.e. counts of J-holomorphic curves in
symplectic manifolds preserved by anti-symplectic involutions.

A real symplectic manifold is a triple (X,ω, φ) consisting of a symplectic mani-
fold (X,ω) and an anti-symplectic involution φ. For such a triple, we denote by J φω
the space of ω-compatible almost complex structures J on X such that φ∗J=−J .
The fixed locus Xφ of φ is then a Lagrangian submanifold of (X,ω) which is to-
tally real with respect to any J ∈J φω . The basic example of a real Kahler manifold
(X,ω, φ, J) is the complex projective space Pn−1 with the Fubini-Study symplectic
form, the coordinate conjugation

τn : Pn−1 −→ Pn−1, τn
(
[z1, . . . , zn]

)
=
[
z1, . . . , zn

]
,

and the standard complex structure. Another example is a real quintic threefoldX5,
i.e. a smooth hypersurface in P4 cut out by a real equation; it plays a prominent
role in the interactions with string theory and algebraic geometry. A symmetric
Riemann surface (Σ, σ, j) is a connected nodal Riemann surface (Σ, j) with an anti-
holomorphic involution σ.

Let (X,ω, φ) be a real symplectic manifold, g, l ∈ Z≥0, B ∈ H2(X;Z), and
J ∈J φω . For a symmetric surface (Σ, σ), we denote by

Mg,l(X,B; J)φ,σ ⊂Mg,l(X,B; J)φ,σ

the uncompactified moduli space of degree B real J-holomorphic maps from (Σ, σ)
to (X,φ) with l conjugate pairs of marked points and its stable map compactifica-
tion. Each codimension-one stratum of Mg,l(X,B; J)φ,σ is either a hypersurface

in Mg,l(X,B; J)φ,σ or a boundary of the spaces Mg,l(X,B; J)φ,σ for precisely two
topological types of orientation-reversing involutions σ on Σ. Thus, the union of
real moduli spaces

Mg,l(X,B; J)φ =
⋃
σ

Mg,l(X,B; J)φ,σ

over all topological types of orientation-reversing involutions σ on Σ forms a space
without boundary. There is a natural forgetful morphism

f : Mg,l(X,B; J)φ −→ RMg,l

to the Deligne-Mumford moduli space of marked real curves. An orientation on
Mg,l(X,B; J)φ determined by some topological data on (X,ω, φ) gives rise to
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invariants of (X,ω, φ) that enumerate real J-holomorphic curves in X, just as
happens in the complex Gromov-Witten theory.

The two main obstacles to defining real Gromov-Witten invariants (or any
other count of real curves) is the potential non-orientability of the moduli space
Mg,l(X,B; J)φ,σ and the fact that its boundary strata have real codimension one.
In contrast, the complex analogues of these spaces are canonically oriented and
have boundary of real codimension two. These obstacles were overcome in many
genus 0 situations in [5, 6], providing lower bounds for counts of real rational
curves in the corresponding settings. In [2], we overcome these obstacles in all
genera for many real symplectic manifolds.

A real bundle pair (V, ϕ) over a topological space X with an involution φ consists
of a complex vector bundle V over X and a conjugation ϕ on V lifting φ. If X is a
smooth manifold, then (TX,dφ) is a real bundle pair over (X,φ). The inspiration
for our approach comes in part from the topological classification of real bundle
pairs over smooth symmetric surfaces in [1].

Definition ([2, Part I]). A real orientation on a real symplectic manifold (X,ω, φ)
consists of

(RO1) a rank 1 real bundle pair (L, φ̃) over (X,φ) such that

w2(TXφ) = w1(Lφ̃)2 and Λtop
C (TX,dφ) ≈ (L, φ̃)⊗2,

(RO2) a homotopy class of above isomorphisms of real bundle pairs, and

(RO3) a spin structure on the real vector bundle TXφ⊕2(L∗)φ̃
∗

over Xφ compat-
ible with the orientation induced by the above homotopy class.

We call a real symplectic manifold (X,ω, φ) real-orientable if it admits a real
orientation. The examples include P2n−1, X5, many other projective complete
intersections, and simply-connected real symplectic Calabi-Yau and real Kahler
Calabi-Yau manifolds with spin fixed locus; see [2, Part III].

Theorem ([2, Part I]). Let (X,ω, φ) be a real-orientable 2n-manifold, g, l∈Z≥0,
B∈H2(X;Z), and J ∈J φω .
(1) If n is odd, a real orientation on (X,ω, φ) orients Mg,l(X,B; J)φ.
(2) If n is even, a real orientation on (X,ω, φ) orients the real line bundle

Λtop
R (Mg,l(X,B; J)φ)⊗ f∗Λtop

R (RMg,l) −→Mg,l(X,B; J)φ.

This theorem is fundamentally about orienting tensor products of determinants
of Cauchy-Riemann (or CR) operators on real bundle pairs over symmetric sur-
faces. The most basic such operator is the standard ∂̄-operator on the trivial
rank 1 real bundle pair over (Σ, σ), denoted by ∂̄C|(Σ,σ). The linearization Du of

the ∂̄J,j-operator at a real (J, j)-holomorphic map u from (Σ, σ) to (X,φ) is a CR-
operator on the real bundle pair u∗(TX,dφ) over (Σ, σ). A key step in our proof is
a classification of automorphisms of real bundle pairs over smooth and one-nodal
symmetric surfaces; we extend it to arbitrary nodal symmetric surfaces in [3]. It
implies that a real orientation on a real bundle pair (V, ϕ) over (Σ, σ) determines

a homotopy class of trivializations of (V ⊕2L∗, ϕ⊕2φ̃∗). Thus, a real orientation
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on (X,ω, φ) orients the tensor product of (detDu) and (det ∂̄C|(Σ,σ))
⊗n for every

element [u] of Mg,l(X,B; J)φ in a continuous fashion. Furthermore, the Kodaira-

Spencer map orients the tensor product of T(Σ,σ)RMg,l and det ∂̄C|(Σ,σ) whenever

Σ is smooth. The last orientation extends across RMg,l after being reversed over
smooth symmetric surfaces (Σ, σ) with the parity of the number of the components
of the fixed locus Σσ equal to the parity of the genus g. The tensor product of
the resulting orientations on the above two tensor products orients Mg,l(X,B; J)φ

if n is odd and the line bundle in (2) if n is even.
Our notion of real orientation on (X,ω, φ) can be viewed as the real arbitrary-

genus analogue of the now standard notion of relative spin structure in the open
genus 0 GW-theory. The latter induces orientations on the moduli spaces of J-
holomorphic disks and can in some cases be used to orient the moduli spaces of
real J-holomorphic maps from P1 with the standard involution τ2. In [2, Part II],
we show that in these special cases our orientations on these moduli spaces re-
duce to the orientations induced by the associated relative spin structure up to a
topological sign.

As in the complex case, the curve-counting invariants arising from the above
theorem are generally rational numbers. For specific real almost Kahler manifolds
(X,ω, φ, J), they can be converted into signed counts of genus g degree B real
J-holomorphic curves passing through specified conjugate pairs of constraints and
thus provide lower bounds in real enumerative geometry. If n=3 and (X,ω, φ, J)
is sufficiently positive, e.g. X =P3, then the g= 1 real GW-invariants themselves
are such signed counts. This is also the case of the real GW-invariants with real
points constraints that arise from the above theorem if g=1 and n=3.

The equivariant localization data needed to compute the real GW-invariants
of P2n−1 is described in [2, Part III]. We use it to show that the real genus g
degree d GW-invariants with conjugate pairs of constraints vanish whenever d−g
is even. We also find that the absolute value of the signed count of real genus 1
degree d curves through d pairs of conjugate points in P3 is 0 for d=2, 1 for d=4,
and 4 for d=6; the details of the last computation appear in [2, Appendix]. These
values are consistent with the corresponding complex counts: 0, 1, and 2860.
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