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Abstract

We establish a homology relation for the Deligne-Mumford moduli spaces of real curves which
lifts to a WDV V-type relation for a class of real Gromov-Witten invariants of real symplectic
manifolds; we also obtain a vanishing theorem for these invariants. For many real symplectic
manifolds, these results reduce all genus 0 real invariants with conjugate pairs of constraints to
genus 0 invariants with a single conjugate pair of constraints. In particular, we give a complete
recursion for counts of real rational curves in odd-dimensional projective spaces with conjugate
pairs of constraints and specify all cases when they are nonzero and thus provide non-trivial
lower bounds in high-dimensional real algebraic geometry. We also show that the real invariants
of the three-dimensional projective space with conjugate point constraints are congruent to their
complex analogues modulo 4.
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1 Introduction

The classical problem of enumerating (complex) rational curves in a complex projective space P
is solved in [22, 27] using the WDVV relation of Gromov-Witten theory. Over the past decade,
significant progress has been made in real enumerative geometry and real Gromov-Witten theory.

*Partially supported by NSF grant DMS 0846978



Invariant signed counts of real rational curves with point constraints in real surfaces and in many
real threefolds are defined in [31] and [32], respectively. An approach to interpreting these counts
in the style of Gromov-Witten theory, i.e. as counts of parametrizations of such curves, is presented
in [4, 28]. Signed counts of real curves with conjugate pairs of arbitrary (not necessarily point)
constraints in arbitrary dimensions are defined in [10] and extended to more general settings in [5].
Two different WDV V-type relations for the real Gromov-Witten invariants of real surfaces as de-
fined in [4, 28], along with the ideas behind them, are stated in [29]; they yield complete recursions
for counts of real rational curves in P? as defined in [31]. Other recursions for counts of real curves
in some real surfaces have since been established by completely different methods in [18, 2, 19, 20].

In this paper, we establish a homology relation between geometric classes on the Deligne-Mumford
moduli space Rﬂog, of real genus 0 curves with 3 conjugate pairs of marked points and use it to
obtain a WDVV-type relation for the real Gromov-Witten invariants of [10, 5]; see Proposition 3.3
and Theorem 2.1. This relation yields a complete recursion for counts of real rational curves with
conjugate pairs of arbitrary constraints in P?"~!; see Theorem 1.2 and Corollary 1.3. It is suffi-
ciently simple to characterize the cases when these invariants are nonzero and thus the existence of
real rational curves passing through specified types of constraints is guaranteed; see Corollary 1.4.
We also show that the real genus 0 Gromov-Witten invariants of P? with conjugate pairs of point
constraints are congruent to their complex analogues modulo 4, as expected for the real curve
counts of [31, 32], and that this congruence does not persist in higher dimensions or with other
types of constraints; see Corollary 1.5 and the paragraph right after it.

Each odd-dimensional projective space P?"~! has two standard anti-holomorphic involutions (au-
tomorphisms of order 2):

Ton: PP PP [, 20n] — [22, 2 - - B, B2,

Mo PP — P2 [y 2e] — [~ 20, 21, e, —Zon, B2 (1.2)
The fixed locus of the first involution is RP?"~!, while the fixed locus of the second involution is

empty. Let
T=To, N="2: .

For ¢ = Ton,Mon and ¢ = 7,71, a map u: P! — P21 is (¢, ¢)-real if uoc = ¢ou. For ke ZZ°, a
k-marked (¢, c)-real map is a tuple

(u, (zf,zl_),...,(z,j,z,:)),
where 21", 27 ,..., 2}, z;; € P! are distinct points with 2" =¢(z;") and u is a (¢, ¢)-real map. Such a
tuple is c-equivalent to another k-marked (¢, ¢)-real map
(Ula (Zi—i_f zi_)a EER) (Z;:’ z;c_))

if there exists a biholomorphic map h: P! — P! such that

hoc = coh, W' =wuoh, and ziizh(z;i) Vi=1,...,k.

If in addition deZ™, denote by

M5 (P21, d)C < Mg 1, (P* 1, d) >



the moduli space of c-equivalence classes of k-marked degree d holomorphic (¢, ¢)-real maps and its
natural compactification consisting of stable real maps from nodal domains. As in [5, Section 3],
let

ﬁo,k (P2n_1’ d)¢ = ﬁﬂ,k(lpﬁn_lv d)qsﬂ— o ﬁo,k (Pzn_17 d)d)m (13)

be the space obtained by identifying the two moduli spaces on the right-hand side along their

common boundary. The glued space has no codimension 1 boundary.

By [5, Lemma 1.9] and its proof,

Mo x (PP d)>m" = &5 Vd¢2Z,
Mo x (P d)Pr" = & Vde2Z, Mop(P* 1, d)»" =g YdeZ.

By [10, Theorem 6.5], Mg (P>~ d)™7 is orientable for every deZ. By [5, Section 5.2], the spaces
Mo (P d)™ " with de2Z and Mo (P* L, d)™" with d¢ 27

are orientable as well. If ¢ = 19, and d € 27Z, the orientations on the two moduli spaces on the
right-hand side of (1.3) can be chosen so that they extend across the common boundary; see [5,
Proposition 5.5]. In the remaining three cases, at most one of the spaces on the right-hand side
of (1.3) is not empty. Thus, the glued moduli space (1.3) is orientable and carries a fundamental
class.

The glued compactified moduli spaces come with natural evaluation maps

€Vt ﬁo,k(PQn_lv d)(b - PQn_la [uv (Zf_7 Zl_)a R (Z]ja Zk_)] - u(zj)

For ci,...,cp€Z™, we define

ety sen)y = J eviH® .. eviH* € 7, (1.4)

Mo, (P21, d)®
where He H?(P?"~1) is the hyperplane class. For dimensional reasons,

<cl,...,ck>$7é0 = 1+ ...+cp=n(d+1)—2+k. (1.5)

Similarly to [27, Lemma 10.1], the numbers (1.4) are enumerative counts of real curves in P?"~1,

i.e. of curves preserved by ¢, but now with some sign. They are invariant under the permutations
of the insertions and satisfy the usual divisor relation,

ety enyen, DS = dler, .. ). (1.6)
The latter holds because the fiber of the forgetful morphism
Mo 41 (P>, d)? — Mo (P71, d)°

]P>2n71

is oriented by z,j 41 and every degree d curve in meets a generic hyperplane in d points.



By [5, Theorem 1.10] and [5, Remark 1.11], the numbers (1.4) with ¢ = 7o, 72, vanish if either d
or any ¢; is even; see also Corollary 2.6(1). By [5, Remark 1.11] and Corollary 2.6(2),

<cl,...,ck>22" = i<01,...,ck>gzn ; (17)

the sign depends on the orientations of My (P21, d)™" and M (P21, d)™~. Systems of such
orientations, compatible with the recursion of Theorem 1.2 for P2"~! and the WDV V-type relation
of Theorem 2.1 for more general real symplectic manifolds, are described in Section 2. They ensure
a fixed sign in (1.7) and can be specified by choosing the sign of the d=1 numbers in (1.4).

Remark 1.1. The orientations for the 74, and 74, moduli spaces are determined by a spin structure
on RP*~1 and a real square root of the canonical line bundle Kpin—1 of P4"~1 respectively. On the
other hand, RP***! does not admit a spin structure, while Kpin+1 does not admit a real square root.
A relatively spin structure on RP***! does not provide a system of orientations compatible with
the recursion of Theorem 1.2, because such a system is not compatible with smoothing a conjugate
pair of nodes, as needed for the statement of Lemma 5.2; see Remark 2.7 for more details.

For any d,cy,...,c,€Z™, let

]P)2n71
<cl,...,ck>d =J eviH® ... eviH* € 770,
Mo, (P27~1,d)

where 90 x(P?"~1,d) is the usual moduli space of stable (complex) k-marked genus 0 degree d
holomorphic maps to P?"~!, denote the (complex) genus 0 Gromov-Witten invariants of P27~
they are computed in [27, Theorem 10.4]. Finally, if ¢;,...,cx€Z and I c{1,...,k}, let ¢; denote
a tuple with the entries ¢; with €, in some order.

Theorem 1.2. Let ¢="T9,,m2, and d,k,n,c,cy,...,c,k€Zt. If k=2 and c1,...,cr¢ 27,

<Cl,62+26,63,...,6k>3*<Cl+26,62,63,...,6k>3= Z Z Z 2”(

2d1+do=d TLJ={3,...,k} 2i+j=2n—1
dy,d2>1 5,j=1

<2C, C1,Cr, 2i>5fn_1<627 CJ, j>32 - <2C, C2,CJ, 2i>§jn_l<clv CJ, ]>§2> .

Corollary 1.3. Let ¢="7o,,m2, and d,k,n,c1,...,c,€Z™. If de27 or c;€27 for some 1,
<01,CQ, .o .,Ck>2) = 0.
If k=2 and c1,...,cL¢27,

<cl,02,03,...,ck>§=d<cl—|—62—1,03,...,ck>j+ Z Z Z 2'”(

2d1+da=d TuJ={3,...,k} 2i+j=2n—1
dy,d2>1 ,j=1

d2<C1 - 17 C2,Cr, 2Z’>anil<CJ7 ]>32 - d1<Cl - 17 Cr, 2Z.>I§fnil<627 CJ, ]>32> .

Corollary 1.4. Let ¢="7op, M2, and d, k,n,cy,...,cL€ZLT with

c1+...+cp=n(d+1)—2+k and cly...,cp < 2n—1.



(1) If d,c1,...,cx are odd, then so is <cl,02,...,ck>3.

(2) The signed number {c1,ca,.. .,ck>$ of degree d real curves in P>"~! passing through general
complex linear subspaces of codimensions ci, ..., ck is zero if and only if either de 27 or c;€27Z
for some 1.

The formula of Theorem 1.2, which is a special case of Theorem 2.1, can be seen as a real version
of [23, Theorem 1]. Along with (1.6), it immediately implies the recursion of Corollary 1.3. The
vanishing statement in this corrollary is the £ =0 case of Corollary 2.6(1). Corollary 1.3 reduces
all numbers {c1,co, ..., ck>3, with ¢ = 7o, non, to the single number <2n—1>(f, i.e. the number of
¢-real lines through a non-real point in P2"~!. The absolute value of this number is of course 1,
and we can choose a system of orientations so that <2nf 1><1;s =1. Taking d =1 in Corollary 1.3,

we obtain
(e, ... ,ck>(f = <2n—1>(f =

whenever ci,...,c € ZT are odd and ¢; +...+cp =2n—2+k; this conclusion agrees with [5, Ex-
ample 6.3]. Some other numbers obtained from Corollary 1.3 are shown in Tables 1 and 2; the
degree 3 and 5 numbers in the former agree with [5].

Corollary 1.4 is deduced from Corollary 1.3 in Section 7. It can be equivalently viewed as a
statement about the parity of the usual counts of genus 0 curves in P?"~! with certain types of
constraints (they must come in pairs of the same codimension). The standard WDVV recursion
for counts of complex curves is not closed under the relevant restriction on the constraints. We do
not see how to recover Corollary 1.4 directly from it.

In the case P?"~! =3, the only interesting non-real constraints for the real genus 0 counts are

points. Let
N§ _ (_ < 3>7'2n o < >772n (18)

be the number of degree d real rational curves through d non-real points in P? counted with sign;
by Corollary 1.4(2), NE is well-defined even if de2Z. Denote by

Ny __<3 34 and Ny =(2,2, 3, 3>

2d 2d 1

]Pa2n 1 ]Pu2n 1

the number of degree d (complex) rational curves through 2d points in P3 and the number of
degree d rational curves through 2 lines and 2d—1 points in P3, respectively. The next corollary is
also obtained in Section 7.

Corollary 1.5. If deZ* and d=2, then

d—2 1, ifdeZ*—27:
Ny = Z (—4)d1_1d2< )Nd Ng, Nj =4 Ny g4{ L 7
2dy +dy=d dy—1/ 0, ifde2r™;
d1,d2=1

where =4 denotes the congruence modulo 4.



The procedures of [32], [4, 28], and [10, 5] for determining the sign of each real curve passing
through a specified real collection of constraints in P? are very different and depend on some global
choices. The latter affect the signs of all curves of a fixed degree in the same way, and so the real
counts in each degree are determined up to an overall sign by all three procedures. In the case of
conjugate pairs of point constraints and odd-degree curves (the intersection of the three settings),
the three procedures yield the same count, up to a sign in each degree.

The second statement of Corollary 1.5 establishes a special case of Mikhalkin’s congruence, a con-
jectural relation between real and complex counts of rational curves. Its analogues for counts of real
rational curves with real point constraints in real del Pezzo surfaces as defined in [31] are proved
in [19, 20]. By [3, Proposition 3| and [3, Theorem 2], the analogue of this statement for real point
constraints in P? holds with the sign modification in (1.8). This suggests that it would be natural
to modify the signs of [32] as in (1.8). By [3, Theorem 2], such a modification would also ensure
the positivity of counts of rational curves with real point constraints (but not with conjugate pairs
of point constraints, as Table 1 shows). On the other hand, the second statement of Corollary 1.5
does not extend to more general constraints in P? (it fails for d=1 with two conjugate pairs of line
constraints) or to P2"~! with n>3 (according to Table 2).

The numbers (1.4) count real curves passing through specified constraints with signs and thus pro-
vide lower bounds for the actual numbers of such curves. There are indications that these bounds
are often sharp. For example, for d,meZ"* with d odd and m=1 if d>5, there are configurations
of d—m conjugate pairs of points and 2m conjugate pairs of lines in P? so that there are no real
degree d curves passing through them; see [21, Examples 12,17,18]. In light of the recursion of
Corollary 1.5 and (7.1), [21, Proposition 3], which relates the numbers NX to counts of real curves
in P! x P!, may be opening a way for a combinatorial proof that the numbers N§ provide sharp
lower bounds for d¢27 (if this is indeed the case).

The basic case (smallest k) of the analogue of Theorem 1.2 in complex Gromov-Witten theory is
equivalent to the associativity of the quantum product on the cohomology of the manifold; see [27,
Theorem 8.1]. The basic case of Theorem 2.1 is similarly equivalent to a property of the quantum
product of a real symplectic manifold; see Section 7.

Theorem 1.2 is a special case of Theorem 2.1, which provides a WDV V-type relation for real
Gromov-Witten invariants of real symplectic manifolds. In the next two paragraphs, we outline
the two proofs of Theorem 2.1 appearing in this paper. While the first approach requires some
preparation, it is more natural from the point of view of real Gromov-Witten theory. In [14], we
describe a third proof of Theorem 1.2, which can be extended to some other cases of Theorem 2.1.

The WDVV relation for complex Gromov-Witten theory obtained in [22, 27] is a fairly direct con-
sequence of a C-codimension 1 relation on the Deligne-Mumford moduli space Mg 4 of complex
genus 0 curves with 4 marked points. According to this relation, the homology classes represented
by two different nodal curves, e.g. [1,0] and [1, 1] in Figure 1, are the same. Thus, topologically
defined counts of morphisms from these two types of domains into an almost Kahler manifold are
the same. As this relation simply states that two points in Mo 4 represent the same homology
class, it is an immediate consequence of the connectedness of MOA. The WDV V-type relation of
Theorem 2.1 is a fairly direct consequence of an R-codimension 2 relation on the three-dimensional
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Figure 1: The universal curve U —>ﬂ0,4.

Deligne-Mumford moduli space RMj 3 of real genus 0 curves with 3 conjugate pairs of marked
points which we establish in Section 3 through a detailed topological description of RMj 3; see
Proposition 3.3 and its proof. According to this relation, the (relative) homology classes repre-
sented by two different, two-nodal degenerations of real curves are the same. Thus, topologically
defined counts of morphisms from these two types of domains into a real almost Kahler manifold
are the same; see Corollary 4.1. This relation, for both curves and maps, is illustrated in Figure 2,
where the vertical line represents the irreducible component of the curve preserved by the invo-
lution and the two horizontal lines represent the components interchanged by the involution. In
a sense, the situation with our recursion is analogous to the situation with the C-codimension 2
recursion of [16, Lemma 1.1] on My 4, which had to be discovered and established before it could
be applied to complex genus 1 Gromov-Witten invariants.

In Section 6, we give an alternative proof of Theorem 2.1, which bypasses Proposition 3.3. We pull
back the usual relation on Moy 4 by the forgetful morphism fj55 which keeps the marked points
za, 21,25, 2y ; see (6.1) and (6.2). In the proof of [27, Theorem 10.4], a nodal element of Mg 4 is
a regular value of a similar map and all of its preimages are of the same type and contribute +1
each to the relevant count; the situation with the proof of Corollary 4.1 from Proposition 3.3 is
analogous. In contrast, a nodal element of My 4 is not a regular value of fy;55 and its preimages
can be of four types, as indicated in Figures 6 and 7; they are morphisms from either a three-
component domain or from a two-component domain. The contribution of each three-component
morphism to the relevant count (6.2) is no longer necessarily +1; see Lemma 6.1. The stratum of
two-component morphisms is not even 0-dimensional, but we show through a topological analysis
that it does not contribute to the count; see Lemma 6.2.

i i 139 139
2e 2e le le
- - -
2 2 1 1
10 10 20 20

Figure 2: A relation in H; (Rﬂo,g); the dots labeled ¢ and 7 indicate the marked points z;” and
z; , respectively.

]



In real Gromov-Witten theory, signs of various contributions are generally a delicate issue. It shows
up explicitly in the above description of the second approach, but is hidden in the first approach.
The analysis of signs for both approaches is carried out in Section 5, where different orientations
of moduli spaces of constrained real morphisms are compared. This allows us to establish Propo-
sitions 4.2 and 4.3, which are used in the proofs of Theorem 2.1 in Sections 4 and 6, as well as
Theorem 2.2, which provides vanishing results for real Gromov-Witten invariants of real symplectic
manifolds, including in positive genera.

We would like to thank J. Morgan for his help in precisely identifying M]& in Remark 3.5 and
E. Ionel, J. Kollar, M. Liu, N. Sheridan, J. Solomon, M. Tehrani, and G. Tian for related discussions.
We are also grateful to the referees for comments on previous versions of this paper which led to
significant improvements in the exposition.

2 Main theorems and corollaries

The formula of Theorem 1.2 is fundamentally a relation between real genus 0 GW-invariants; it is
a special case of the relation of Theorem 2.1 for real symplectic manifolds. The latter implies that
the real invariants of at least some real symplectic manifolds are essentially independent of the
involution ¢; see Corollary 2.5. Likewise, the vanishing of the numbers {cy, ... ,ck>2’ with ¢; € 27
for some i, established in [5, Section A.5] using the Equivariant Localization Theorem [1, (3.8)], is
a special case of the general vanishing phenomenon for ¢-invariant insertions established in Theo-
rem 2.2 below.

A real symplectic manifold is a triple (X, w, ¢) consisting of a symplectic manifold (X,w) and an
involution ¢: X — X such that ¢*w = —w. Examples include P?"~! with the standard Fubini-
Study symplectic form wy, and the involutions (1.1) and (1.2), as well as (P?",wo,+1) with the
involution

Tony1: P2 — P2 [X1,. ., Xon, Xon1] — [Xo, X1, .+, Xon, Xon—1, Xonya],
which extends (1.1) to the even-dimensional projective spaces. If
(=0, a=(a1,...,ap) € (Z")", (2.1)

and X,.a C P! is a complete intersection of multi-degree a preserved by 7, Tnia = Tn| Xpia 18 an
anti-symplectic involution on X5 with respect to the symplectic form wya =wn|x, . Similarly, if
Xon:a C P?n—1 is preserved by 72y, Nonsa = 12| Xonia 18 an anti-symplectic involution on Xo,.a with
respect to the symplectic form woy.a =way| Xonia-

Let (X,w, ) be a real symplectic manifold. The fixed locus X? of ¢ is a Lagrangian submanifold,
which may be empty. Let

Hy(X)s = {BeHy(X;2): 6.8 = =B},  H*(X)% = {ne H*(X): ¢*p==tu}.
Similarly to [10, Section 1], we define

0: Hy(X) — Ha(X)p by  (B) =f —uf. (2.2)



A real bundle pair (V, QNS) —> (X, ¢) consists of a complex vector bundle V' — X and a conjugation b
on V lifting ¢, i.e. an involution restricting to an anti-complex linear homomorphism on each fiber.
The fixed locus V¢ — X is then a maximal totally real subbundle of V|4, i.e.

Ve = Ve@iv?,

where 1 is the complex structure on V. Let

wy(V) € H3(X; Zs) = HE,(X; Zs)
denote the equivariant second Stiefel-Whitney class of (V, ¢); see [11, Section 2].

Let J2 be the space of w-compatible almost complex structures J on X such that ¢*J=—.J. For
Jejff, c=1,n, and f€ Hy(X)y, denote by

Mo (X, B)° < Mok (X, B)* (2.3)

the moduli space of c-equivalence classes of k-marked J-holomorphic (¢, ¢)-real maps in the homol-
ogy class § and its natural compactification consisting of stable real maps from nodal domains.

By [10, Theorem 6.5], both spaces in (2.3) with ¢ = 7 are orientable in the sense of Kuranishi
structures (or for a generic J if (X,w) is strongly semi-positive) if

(O,) X? is orientable and there exists a real bundle pair (E, ¢) — (X, #) such that

wa(TX?) = wy (E?)?  and %<01(X),B’>+<01(E),5’>e 27 Y e Hy(X)y .

The first requirement on (E,$) above implies that TX S@2E? admits a spin structure. By [11,
Theorem 1.1], both spaces in (2.3) with ¢=7 are orientable if

(Oy) wAg)pdd)(AtOpTX) = k2 for some ke H!(X)

This condition implies that (7X,d¢) admits a spin sub-structure, as defined above [12, Corol-
lary 5.10]. By [11, Corollary 2.4], (O,) holds if either Agp(TX ,d¢) admits a real square root,
i.e. there is an isomorphism

ASP(TX,dg) ~ (L, $)®* (2.4)

for a real line bundle pair (L, ¢) — (X, ¢), or m1(X)=0 and wy(X)=0. A fixed real square root
determines a spin sub-structure on (7°X, d¢).

The moduli space Mg 1 (X, 3 )#¢ with ¢ =7, 7 has no boundary in the sense of Kuranishi structures if
B¢Im®d) or X¢=g. (2.5)

Thus, it carries a virtual fundamental class if (O.), with ¢ as above, and (2.5) hold. Under the
above assumptions, we define

<u1,...,uk>ﬁ’0= f evipn ... eviuk €Q (2.6)

[Mo, 1k (X,8)2c]vr

9



for any p1,...,ur€ H*(X). This number depends on the chosen orientation of the moduli space.
If c=7, we orient the moduli space as in the proofs of [9, Corollary 1.8] and [10, Theorem 6.5] from

any spin structure on TX?@2E?. If c=1, we orient the moduli space via the pinching construction
of [5, Lemma 2.5] from any spin sub-structure on (7X,d¢); see [12, Corollary 5.10]. In either case,
we use the same spin structure or sub-structure for all 3.

If (Or) and (O,) are satisfied, but not necessarily (2.5), the glued moduli space
Mo k(X, B)” = Mo (X, B)*7 L Mo (X, B)*" (2.7)

is orientable and has no boundary; see [5, Theorem 1.7]. We then define

(pas - .,uk>2 = f evip ... eviur € Q (2.8)
[Mo,x (X,B)¢]vir

for any puq,...,ur€ H*(X). The orientations on ﬁM(X, B)?T and My (X, B)?" constructed as
in the previous paragraph induce an orientation on My 1 (X, B)? after reversing the orientation on

Mo 1 (X, )P if the chosen spin structure on T'X e E? and spin sub-structure on (T'X, d¢) induce
the same orientation on X?; see [5, Proposition 3.3].

Choose bases {7;}i<¢ and {7};<, for H*(X) so that
v e H*(X)? UH*(X)? and  PDy2(Ax) = Y 7 x '€ H*(X?),
i=1

where Ax < X? is the diagonal. If 1, ..., ure H*(X) and I<{1,...,k}, let u; denote a tuple with
the entries p; with i€ I, in some order. Let

X
Gy = | evi ... evim € Q. (2.9)
[Mo, 1 (X,8)]Vi

denote the (complex) genus 0 GW-invariants of X.

Theorem 2.1. Let (X,w, ®) be a compact real symplectic manifold, keZ with k=2,
BeHy(X)s—{0},  peH*(X)?, and m,...,upe H*(X)?.

(1) If c=7,m and (O.) and (2.5) are satisfied, then

</~L17MM27/~L37"'7/J/7€>Z7C_</’LM17,U'27M37"'7MI€>/3’C: Z Z Z 2|I<

0(B1)+Be=8 ITuJ={3,..k} 1<i<t
B1,B2€H2(X)—{0} e H2#(X)?
X i\ D, b N
<:U’7 M1, KT, %’>51<H27 K, ,YZ>§2C_ <:U’7 M2, (7, fyi>/31</v61, HJ, ’Yl>226> .

(2) If (O;) and (O,) are satisfied, then the above identity holds for the {...)? invariants.

10



This theorem, established in Section 4, concerns real genus 0 GW-invariants (2.6) and (2.8) with all
insertions j; coming from H?*(X )‘f By the first part of Theorem 2.2 below, the invariants (2.6)
and (2.8) with any insertion p; coming from H?* (X)i) vanish. The proof of Theorem 2.2 in Section 5
extends the vanishing statement of [5, Theorem 1.10] for real genus 0 invariants with even-degree
insertions to all settings when the real GW-invariants are defined and the unmarked real moduli
space is orientable. By [13, Theorem 1.3], this is the case in any genus under the assumptions

in (2) of Theorem 2.2.

Theorem 2.2. Let (X,w,¢) be a compact real symplectic 2n-manifold, € Ha(X)y—{0}, and
Wiy -y i € H*(X) with uieH*(X)ﬁ for some 1.

(1) Suppose ¢ = 1,m, (O7) holds if ¢ = 7, and (Oy) holds if ¢ =n. If (2.5) is satisfied, then
(uay ooy uk>B’C=O. If (O:) and (O,) are satisfied, but not necessarily (2.5), {p1, ..., Mk>g =0.

(2) If ¢ is an orientation-reversing involution on a compact orientable genus g surface ¥4, n is
odd, A(té)p(TX, d¢) admits a real square root, and X? = &, then real genus g GW-invariants

<M17 s /'Lk>,87c of (Xa ) ¢) vanish.

Remark 2.3. Let ¢4 be an orientation-reversing involution on X, so that E;g = ¢J. By [26, Corol-
lary 1.1], ¢4 is unique up to conjugation by diffeomorphisms of ¥ . Similarly to (2.7), the moduli
spaces ﬁg,k(X , 3)?¢ of real J-holomorphic maps corresponding to different topological types of
involutions ¢ on X, can be glued together into a moduli space ﬁg,k (X, B)? without boundary. If
X? =, then

ﬁg,k(‘X’ ﬂ)¢ = ﬁg,k:()(? 5)(1),09 (210)

and the GW-invariants <. . .>z’0g are the same as the combined real GW-invariants ¢. . .>§’ 5 expected
to arise from the left-hand side of (2.10). Since the present paper was first completed, such
invariants have been defined with the condition X% = ¥ weakened to the existence of the square
root as in (2.4) such that wy (T X?) =w1(L?)?; see [15, Theorems 1.3,1.4]. The proof of Theorem 2.2
applies verbatim to the real genus ¢ GW-invariants of [15, Theorems 1.4,1.5].

For a strongly semi-positive real symplectic manifold (X, w, ¢), the real genus 0 GW-invariant
through constraints pq, ...,y is of the same parity as the complex GW-invariant of the same
degree through the constraints wi, ¢*u1, ..., e, @ . Thus, Theorem 2.2 implies that certain
complex genus 0 GW-invariants are even. For example, the GW-invariants of P?"~! with even
numbers of insertions of each codimension that include insertions of even codimensions are even.
This is not the case for even-dimensional projective spaces (for which the degree 4d+1 unmarked
real moduli spaces are not orientable; see [28, Proposition 5.1]). For example, the number of lines
through two points in P™ is 1 (these constraints are of even codimension if n is even).

For a real symplectic manifold (X,w, ¢), let Heg(X )y < Ha(X)4 denote the subset of nonzero classes
that can be represented by a J-holomorphic map from a disjoint union of copies of P! for every

JeJo.

Corollary 2.4. Let (X,w, ®) be a compact real symplectic manifold such that every positive-degree
element of H2*(X)? is divisible by an element of H*(X)? in H>*(X) and BeHeg(X)gp. Then there
exist linear maps

Pys: @ H*(X)® — H*(X)?, B'eHe(X)y 8- F'€(Hea(X)pu{0}) nNIm(d),
k=1
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determined by the GW-invariants of (X,w) and ¢y : Hyx(X) —> Hy(X) with the following properties.
(1) If c=7,n, (O,) is satisfied, and either f¢Im(d) or X® =, then
c @,c ; k
<,Uflv"‘7,uk‘>ﬁ7 = Z<P,3/;,3(Mla"'a//¢k) ﬁ; V®ILL16H2*(X)® s kEZ+. (211)
i=1

B'eHer(X)g
B—B'e(Hem(X)gu{0})nIm(0)

(2) If (O;) and (O,) are satisfied, then (2.11) holds with {-Y* replaced by {-)®.

Corollary 2.4 is deduced from Theorems 2.1 and 2.2 in Section 7. It provides the strongest results
for real Fano symplectic manifolds, i.e. real symplectic manifolds (X, w, ¢) such that {¢1(X), 3)>0
for all e Heg(X)4. For a real Fano symplectic manifold (X, w, ¢) and € Heg(X)g, let

& n(B). 5 (B) e ZF
denote the smallest and the second smallest values of the function
{f'eHea(X)y, B—F'elm(d)} — ZF,  p'—(a(X),8);
if the smallest value is achieved by two different classes 5, then cﬁlin(ﬁ) ﬁ(ﬁ) Let %€ Hog(X )é
be such that
<CI(X)7 B?> = Cﬁﬂn(ﬁ)

Corollary 2.5. Let (X,w, ¢) and B be as in Corollary 2.4. If X is Fano and cﬁ (8)>(dim X)/2+1,
then there exists a linear map

0
Pﬁ . 6_) H2>x< (X)®k Hn—l-i—cmin(qﬁ) (X)(E
k=1

determined by the GW-invariants of (X,w) and ¢y : Hy(X)—> Hy(X) with the following properties.
(1) If c=7,n, (O.) is satisfied, and either f¢Im(d) or X® =, then

<M17---7/~Lk>ﬁ’c = (Ps(p1,- - i) qﬁb; Vo, € H*(X)® kez™. (2.12)

(2) If (O;) and (O,) are satisfied, then (2.12) holds with (-Y* replaced by {-)?.

If X is Fano and cmm(ﬁ) > (dim X)/2+1, then the invariants <'>6’C and <>QB5 with insertions from
H?*(X) vanish under the assumptions in (1) and (2), respectively.

The virtual dimensions of the moduli spaces in (2.7) are
dim"" M (X, B)? = dim"™ My 1, (X, B) ¢ = {c1(X), B)+(n—3) + 2k, (2.13)

where n=(dim X)/2. In particular, the real genus 0 one-insertion GW-invariants <M>g’c and <,u>g
(whenever they are defined) vanish if {¢1(X),8) > n+1. Thus, Corollary 2.5 is an immediate
consequence of Corollary 2.4.
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For neZ and ¢,a as in (2.1), let
la| = a1+...+ay, (ay, = 2n—2—|a|—/.
If Xn;aC]P’”_1 is a complete intersection as before, then

A(tcopTXn;a ~ Opn-1 (n_|a|) |Xn:a'

By the Lefschetz Theorem on Hyperplane Sections [17, p156], 71 (Xp,a) =0 if the complex dimension
of X,.a is at least 2. If n€2Z and Xn;aCIP’”_1 is ny-invariant, then wy(X,.a) =0 and XZZ?; = .
By [11, Corollary 2.4], an n,-invariant complete intersection X, < P"~1 thus satisfies (0O,)) if its
complex dimension is at least 2 or Xn;a%IP’I. If the complex dimension of X,,., is 1 and Xn;a%]P’l,
then the moduli spaces in (2.7) with X = X,,., are empty. A 7,-invariant complete intersection
X,WJICIP’”_1 satisfies (O;) if

n—laje2Z and  a}+...+d} —|a|€dZ; (2.14)

see the proof of [10, Corollary 6.8]. If the first condition in (2.14) is satisfied, then (Xp.a, Tn:a)
satisfies (Oy).

For d € Z, let (dyc Ho(Xn;a) denote the subset of classes 3 whose image in P! is d times the
homology class of a line P! cP*~!. If in addition ¢ is an involution on Xn:a, let

(o = ()~ Hy(Xna) -

If the complex dimension of X4 is at least 3, {d) consists of a single element. In all cases, Be{d)y
satisfies the first condition in (2.5) if d ¢ 2Z. We denote by H € H?(X,,.») the restriction of the
hyperplane class.

Suppose X = X,,.a «P"! is a complete intersection of multi-degree a invariant under ¢pn—1 =1,
or ¢pn-1=Tp, ¢=pn-1|x, c=n,7, and deZ. We denote by

o (.. >3 the sum of the numbers (2.8) over Se{d)4 if ppn—1 =1, or (2.14) is satisfied;
o (...)7° the sum of the numbers (2.6) over Se{d)y if Ppn-1 =", or

(tam) d¢27Z , c=n, and the first condition in (2.14) is satisfied, or
(tnT) d¢27 , c=7, and both conditions in (2.14) are satisfied.

The next corollary is also proved in Section 7.

Corollary 2.6. Suppose neZ*, (eZ>°, ae(Z*)¢, X:Xmacl[””*1 is a complete intersection of
multi-degree a invariant under gpn—1 =1y, 0r ¢pn-1 =Ty, and ¢=pn-1|x.

(1) Let c=n,7 and p1,.. ., € H*(X). If ¢pn-1 =1n, and c =7, then {u1,...,pup)7  =0. The
same conclusion holds if either (t,n) holds or

o Opn—1 =1y or (T,7) is satisfied and

e a,€27 for some i, or pje H*(X) for some j, or de2Z.
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If the last bullet condition holds and either ¢pn—1 =mn,, or (2.14) is satisfied, then {u1, . .. ,,uk>§ =0.

(2) Suppose 3|a|—¢<2n and deZ. Then there exists a linear map

0
Ca: @ H*(X)® — 7
k=1

determined by the GW-invariants of (X,wn|x) and ¢x : He(X) — Hy(X) such that for all
pir, - e € H*(X)

(2a) sy i)y = Calpia, - ) H® if dpus =ny, or (2.14) is satisfied;

(2b) py- sy = Calpa, - - ,,uk)<H<a>”>(f’c if c=n,7 and either (t,m) or the first bullet
condition in (1) holds.

For example, the genus 0 real GW-invariants (1.4) of (P21, ¢) with ¢ =gy, To, satisfy

{er, - en)y = Caler, .- cr)2n—1)7

for some Cy(cy, ..., cr)€Z independent of the choice of ¢. This implies (1.7). Corollary 2.6(2) ex-
tends (1.7) to Fano complete intersections Xn;aCIP’Q“_1 with n€2Z™" that are preserved by both 7,
and 7,. The approach to (1.7) in [5] extends to X,.» = P"~! without a restriction on a, but is
generally limited to complete intersections in real symplectic manifolds with large torus actions and
insertions coming from the ambient manifolds. Corollary 2.6(1) extends the vanishing statement
of [5, Theorem 1.10] to complete intersection using completely different reasoning. More generally,
physical considerations in [30] suggest that the real genus 0 GW-invariants vanish whenever (2.5)
does not hold, but (O,) and (O,) are satisfied, i.e. when the gluing of the two parts of the moduli
space as in (2.7) is necessary and possible.

If X is orientable or Mg (X, B)?" # &, then {c1(X), 3)€2Z and
dim"* Mo (X, B)? = dim** My (X, B)*° = n—3 mod 2; (2.15)

see (2.13). Thus, the real genus 0 GW-invariants (2.6) and (2.8) with all insertions y; € H?*(X)
vanish if n € 2Z. In this case, Theorem 2.1 and Corollary 2.4 are inutile. Theorem 2.1 can be
extended to odd-degree cohomology insertions at the cost of adding signs for each summand de-
pending on the permutation of the odd-degree insertions. In particular, the formula of Theorem 2.1
is valid without any changes if there is only one odd-degree insertion, p or ;. Corollary 2.4 extends
to odd-degree insertions as a reduction to invariants with at most one even-degree insertion which
does not increase the number of odd insertions.

Theorem 2.1 can be extended to the real GW-invariants with real marked points defined in [10].
These invariants are defined by intersecting with the pull-back of a homology class I' from the
corresponding Deligne-Mumford space of real curves by the forgetful map; see [10, Section 1].
Since the proof of Theorem 2.1 is essentially intersection theory, it readily fits with the definition
of the invariants in [10]. The analogue of the right-hand side of the formula in Theorem 2.1 would
then involve Kunneth-style splitting of I' between the real and complex GW-invariants represented
by the diagrams in Figures 2, 6, and 7 and all splittings of {3,...,k} into three subsets I, 17, J.
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It would no longer be possible to merge IT and I~ into a single subset, as done in the proof
of Theorem 2.1. For a related reason, Theorem 2.2 does not extend to GW-invariants with real
marked points.

Remark 2.7. The homomorphism (2.2) factors through a similar doubling homomorphism
0: Hy(X, X% Z) — Ha(X)y;

see [10, Section 1]. Let
0: Ho(X, X% Z) — H, (X%, Z)

denote the boundary homomorphism. By the proof of [10, Theorem 6.5] and [12, Corollary 5.9],
Mok (X, B)®7 is orientable if

(OL) X? is orientable and there exist we H%(X;Zs) and ke H'(X?;Zs) such that
wy(TX?) = K2 + @|ys and

%<c1 (X),0(8) + (@, 0(8)) + (v, 08y € 2Z ¥ B'e Hy(X, Xy 7). (2.16)

The two requirements on (cw, ) imply that (X, X?) admits a relatively spin sub-structure in the
sense of [12, Definition 5.5] and that it can be chosen so that the (¢, 7)-moduli space is orientable,
respectively. The relatively spin condition of [7, Theorem 8.1.1] is the x = 0 case of the first
requirement; (O;) is effectively the k =0, w = wa(E) case of (O.). Theorems 2.1 and 2.2 and
Corollaries 2.4 and 2.5 can be extended with the assumption (O) relaxed to (OL). The key differ-
ence is that this would introduce the sign (—1){™#1 over N, 5, as happens in [14]. This sign can
be absorbed into the numbers (2.9) whenever (2.5) is satisfied, but this would result in a different
dependence on the complex GW-invariants for the 7- and n-invariants. It can be absorbed into
the numbers (2.6) with ¢ =7, similarly to (1.4), if ¢*w = w; this is the case for 7-relatively spin
structures in the sense of [8, Definition 3.11]. We avoid such a sign modification in (2.6) by treating
(P21 15,) as a special case of (O,).

Throughout this section and Sections 4-6, the moduli spaces ﬁg,k(X , 3)%¢ and their glued, con-
strained, and complex versions refer to regularizations of these spaces. If (X,w, ¢) is semi-positive
in the sense of [33, Definition 1.2], e.g. P?"~! the latter are obtained by choosing a generic .J eJe
and the invariants are defined through pairing with the pseudocycles determined by the moduli
spaces. Both proofs of Theorem 2.1, outlined at the end of Section 1, are completely geometric
in this case and have no relation to virtual fundamental class (VFC) constructions. The situation
with the first proof in the general case is analogous to that with the WDVV and Getzler’s relations
in complex GW-theory: as the relation of Proposition 3.3 is universal (induced from the moduli
of domains), its validity is independent of the choice of VFC construction and depends only on
properties of GW-invariants any such construction must yield to be relevant. The relevant prop-
erties are the g = 0 case of Kontsevich-Manin’s axioms 2.2.0 (Effectivity), 2.2.1 (Sy-invariance),
2.2.2 (Grading), 2.2.4 (Divisor), and 2.2.6 (Splitting) in [22] and their real analogues (Splitting at
interior nodes only). Suitable adaptations to the real case of the usual VFC constructions of [24, 6]
are carried out in [28, Section 7], [8, Section 7], and [5, Section 2.3]. The invariants arising from
these adaptations satisfy the real analogues of the first three axioms above for trivial reasons. The
proofs of the last two axioms in the complex case readily extend to the real case.
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3 A homology relation for RM;

In this section, we formulate and prove a codimension 2 relation on the Deligne-Mumford moduli
space RMj 3 of real genus 0 curves with 3 pairs of marked points; see Proposition 3.3. Its proof
involves a detailed topological description of RMj 3.

For ¢ = 7,17 and k€ Z*, denote by ﬂgﬂk 41 the moduli space of c-real rational curves with k+1
conjugate pairs of marked points. As it is convenient to designate one of the pairs as principal, we
index the pairs by the set {0,1,...,k} and view 0 as the principal index. Thus, the main stratum
of ﬂ&kﬂ is the quotient of

{((zar,za),(zf,zf),...,(z,j,z,;)): z;—relF’l,er:c(z;),z ;ézj, ; Vistj, 2 #2; }

by the natural action of the subgroup PSL5C = PSLyC of automorphisms of P! commuting with c.
Many notions concerning MO k+1 are defined below with respect to the index 0, which in these
cases is implicitly understood.

The moduli spaces va 41 and MS’ k41 are (2k—1)-dimensional manifolds with the same boundary,
— —
a/\/to,kﬂ = aMO,kH‘

The latter consists of the curves with no irreducible component fixed by the involution; the strata
of H&k 41 with two invariant bubbles attached at a real node are of codimension 1, but not a
boundary for this space. Gluing along the common boundary, we obtain the moduli space

7R _ T rwii .
MO,kH = MO,k+1 Y MO,k+1 )

it is a (2k—1)-dimensional manifold without boundary. We will use RM j41 to refer to any one
of these three moduli spaces and (z;" 2", z; ) to denote the i-th conjugate pair of marked points.

Ife=7,m, M&Q is a compact connected one-dimensional manifold with boundary and is therefore
an interval. It has a canonical orientation induced by requiring the boundary point corresponding
to the two-component curve with the marked points ZJ and z; on the same component to be
the initial point of the interval. An explicit orientation-preserving isomorphism is given by the
cross-ratio

+_ .+t

. _ _ 2y —z 21 —Z2q
Myp — T[], [, 2), ()] — (- 220 2250 0 g
1 %0 1 %0
1 if c=7;
where  (=1)¢=<{" 1 o
-1, if c=mn;

with z;j =0, the above element of MS 5 is sent to |2, |?. For k>2, ﬂg k+1 1s oriented using the
first element in each conjugate pair (zj ,%; ) with i >2 to orient the general fiber of the forgetful
morphism M&kﬂ —>./\/l872. Since the boundaries of M07k+1 and Mo,kz+1 are oriented in the same

way, we obtain an orientation on M., by reversing the orientation on Hgvk 4+1- An explicit
orientation-preserving isomorphism of HISQ with S =Rui{oo} is given by the map in (3.1) with
(—1)¢ dropped. The general fibers of the forgetful morphism Mﬁk 41 —>ﬂ]§2 are again oriented

using the first element in each conjugate pair (z;, z; ) with i>2.
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Lemma 3.1. Let keZ" and let RMg k11 denote M&kﬂ, ﬂ&kﬂ, or M](Iikﬂ.

(1) For everyi=0,1,...,k, the automorphism of RMy 41 interchanging the marked points in the
i-th conjugate pair is orientation-reversing.

(2) Foralli,j=0,1,... k, the automorphism ofRﬂo,kH interchanging the i-th and j-th conjugate
pairs of marked points is orientation-preserving.

Proof. (1) For i = 0,1, this automorphism interchanges the two boundary points of ﬂg’z with
c=r,n. Thus, it is orientation-reversing on the base of the forgetful morphism

Rﬂo,kﬂ — Rﬂog (3.2)

for every k> 1. Since this automorphism takes a general fiber of (3.2) to another general fiber
in an orientation-preserving way, it is orientation-reversing on RMg j41. For i >2, the automor-
phism of Rﬂmk“ interchanging the marked points in the i-th conjugate pair takes a general fiber
of (3.2) to itself in an orientation-reversing way. Thus, it is again orientation-reversing on RM j 1.

(2) If i, j <1 or 4,7 >2, the automorphism of RMg x4 interchanging i-th and j-th conjugate pairs
of marked points takes a general fiber of (3.2) to itself in an orientation-preserving way and so is
orientation-preserving on Rﬂo7k+1. Thus, it remains to consider the case i =1 and j =2. Since
the corresponding automorphism of RMg 11, with k > 2, takes a general fiber of the forgetful
morphism Rﬂak“ — Rﬂo’g to itself in an orientation-preserving way, it is sufficient to check
that it is orientation-preserving for k£ =2. The latter is the case if and only if the forgetful morphisms

Sz 20)s (275 20), (237, 29)1) = [(2075 20 ), (215 21) ]
fo([(=0520)s (2175 20), (237, 20)1) = [(2975 20 )5 (237, 23) ]

induce the same orientation on RMO,g.

fi, fo: RMo3 — RMop, (3.3)

It is enough to check that f; and fs induce the same orientation on the tangent space at a three-
component curve C with zf and z; on the same bubble component CC, i.e. as in the first diagram
in Figure 2, but with the label 0 interchanged with 2 and the label 0 interchanged with 2. The
restrictions of f; and fy to the space I' of such curves are the same and take I' isomorphically
onto RMo 9; thus, fi and f2 induce the same orientations on T¢I The vertical tangent bundles
of f1 and f along C are canonically isomorphic to the normal bundle of I" in RM, 3. The orientation
of the fiber of the vertical tangent bundle of f; at C given by varying z; is the complex orientation
of the tangent node of the real component C® of C at the node separating C® from CC. The same
is the case for the orientation of the vertical tangent bundle of f» at C given by varying 2;". Thus,
the orientations of the normal bundle of ' in RM, 3 with respect to the orientations induced by f
and fy are the same. This implies that the orientations induced by f; and fo on RMj 3 are the
same as well. O

Fori=1,2,letI';c Rﬂqg denote the closure of the subset FZ consisting of the three-component real
curves (C, ¢) such that the marked point z;r lies on the same component as the marked point zar . Let
I'; cRMj 3 denote the closure of the subset F; consisting of the three-component real curves (C, ¢)
such that the marked point z;” lies on the same component as the marked point zar . The stability
condition implies that such a three-component curve has
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(R) a component C® preserved by ¢ and containing the conjugate pair (z?ii, z5_;) of marked points
and a conjugate pair (z, z,) of nodes, and

(C) a pair of conjugate components, with the component CC containing the marked point z(’{ also
carrying the marked point zj in the case of I'; and z; in the case of I';;

see Figures 3-5. We will take 2z € CR to be the node identified with a point 2€eC®. Thus, there
are canonical isomorphisms

I'; ~ Rﬂog X ﬂojg and I'; ~ Rﬂog X ﬂ&g, , (3.4)

where the superscript — indicates that one of the marked points (the one corresponding to z;) is
decorated with the minus sign. Following the principle introduced in [10], we define the canon-
ical orientation of ﬂ& 5 to be the opposite of the canonical (complex) orientation of Mg 3 and
then use (3.4) to orient I'; and I';. Thus, the orientation on I'; is the same as the one induced
by the natural isomorphism T'; & RMo o, while the orientation on T is the opposite of the one
induced by the natural isomorphism I'; ~ Rmo,g. The canonical orientation of Rﬂog is defined
above, but this choice of the orientation does not affect the validity of Lemma 3.2 or Proposition 3.3.
Whenever RMj 3 =ﬂ873 for a specific c=7,7, R, we will write ['S, where * =1, with i =1, 2, for ['.

With I'=T,T5;, i=1,2, as in (3.4), let
Lf — RMgz  and  Lf — Mos, M3
be the universal tangent line bundles at the marked points z} and 2C, respectively, and
Lr =il @cmiLE — T,
where 71, mo are the component projection maps.
Lemma 3.2. Let RMy 3 denote Mag, ﬂ&g, or MI[%.

(1) Fori=1,2, the automorphism of Rﬂ(),g interchanging the marked points in the i-th conjugate
pair restricts to an orientation-reversing isomorphism from I'; to I'; and canonically lifts to a
C-linear isomorphism from Lr, to L.

(2) The automorphism of RMg 3 interchanging the 1st and 2nd conjugate pairs of marked points
restricts to an orientation-preserving isomorphism from I'y to I's and canonically lifts to a
C-linear isomorphism from Ly, to Lr,.

(8) Fori=1,2, the oriented normal bundle of I = F“P; mn RHOB 18 1somorphic to Lr with its
canonical complex orientation.

Proof. (1,2) Tt is immediate that the automorphism in (1) interchanges I'; and I'; and the auto-
morphism in (2) interchanges I'y and I's. These restrictions respect the component moduli spaces
in (3.4) and induce the identity on the first component (the second component is a point). Given
our choice of orientations, the domain and target orientations of the automorphism in (1) are op-
posite, while the domain and target orientations of the automorphism in (2) are the same. This
implies the first parts of the first two statements in the lemma. Since these automorphisms respect
the component moduli spaces in (3.4), they canonically lift to all universal tangent line bundles for
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these moduli spaces and thus to Lr,. They act by the identity on the tangent spaces at z; and 2C
and thus C-linearly on Lr.

(3) The restriction of the forgetful morphism f; in (3.3) to I'y is an orientation- preserving isomor-
phism. By the definition of the orientation on RMy 3, the vertical tangent bundle along Iy is thus
oriented by the complex orientation of L(C ~ Lr,. Since the vertical tangent bundle of f; along Iy
is canonically isomorphic to the normal bundle of I'y in RMj 3, this implies the last statement
of the lemma in the I' = I'y case. The remaining three cases follow from this case, the first two
statements of the lemma, and the k=2 case of Lemma 3.1. O

Proposition 3.3. Let RMy3 denote ﬂg,g,, M&g, or ﬂﬂig,. The submanifolds I'1,I'1,I'2,T'5 of
Rﬂo,g determine relative cycles in (Rﬂo,g, &Rﬂo,g) and

[Fl] + [Fi] = [FQ] + [FQ] e Hq (Rﬂo;{, 5RM0’3; Q) (3.5)

Since JI'; and T; are contained in dRMj 3, only the second statement of this proposition remains
to be established. The relation (3.5) in fact holds over Z; though we do not need this stronger
statement, we give two separate reasons for it in Remarks 3.4 and 3.5.

Proof for Mgﬁ. The boundary of M&?’ has four components, which we denote by Si2, Si3, S19,
and Sis, which contain the two-component curves with the points {21, 25 }, {21, 25 }, {21, 25 }, and
{1, 25 }, respectively, on the same component as the base point zar ; each of them is isomorphic
to S2. The forgetful morphism

Mys — Mg, ~ 1= [0,0] (3.6)

is a singular fibration; see Figure 3. The fiber over every interior point is a sphere with four special
points corresponding to the strata where z; collides with zar ) 20 zf , or z; . The fiber over the
boundary point 0€1 consists of the spheres Si2 and S}3 joined together by the interval I'] defined
above. The fiber over the boundary point coel consists of the spheres S, and S joined together
by the interval I']. The lines I'j and I'] connect the boundary spheres in the two fibers: Sj2 with
S, and Sy3 with Siz, respectively.

Let
Hl(Mg,:a) 2=, Hl(ﬂg,aa 8/\/18,3) - HO(aMg,s)

denote the homomorphisms in the homology long exact sequence for the pair (ﬂg;ﬂ GWB). With
the canonical orientations on F? and F? described above

O[T —TJ +T7 T3] = 0;

see Figure 3. Thus, [I] —T'7+T7—TY] is the image of an element of Hi(M(3) under j,.. A
representative I'" for this class is obtained by connecting the end points of the line segments
inside each boundary sphere. This loop can be homotoped away from the fibers over 0,00 €1 by
smoothing out the nodes. The resulting loop in S2xR™* is therefore contractible and hence is trivial
in Hy(Mg ). This implies (3.5) in the n case. O
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M.

Figure 3: The moduli space ﬂ&?) as a fibration over ﬂ@z; the labels ¢ and 7 indicate the marked
points zj and z; , respectively.

Proof for ﬂ&g. In comparison with (3.6), the forgetful morphism
MS,?) — MZ)—,Q ~ 1= [0, ]

has an additional singular value: the point 1€l corresponding to the two-component curve with za'
and zf on separate invariant bubbles; see Figure 4. The fiber F} over this point consists of two
copies of RP? joined along a non-contractible circle in each copy or equivalently the quotient of S?
by the action of the antipodal map on the equator only. The complement of the common circle
in one copy of RP? consists of the two-component curves, with each component fixed by the invo-
lution, with 2 on the same component as zar ; the complement in the other copy consists of the
two-component curves, with each component fixed by the involution, with z; on the same compo-
nent as zf . The circle corresponds to the three-component curves with each component fixed by
the involution and 23 on the middle component; see Figure 4.

By the same reasoning as in the 7 case, the class [F{—F%+F{—F§] is in the image of an element
in Hy (ﬂg’?)) which can be represented by a loop in Ha?) away from the fibers over 0,00 €. This
loop can be homotoped to a loop in the special fiber Fj. Since 71 (F1)~ Zg, it still represents the
zero class in Hj (ﬂg,g) with Q-coefficients. O

Proof for ﬂ](lig. The fibers of the forgetful morphism
—R —R
Moz — Mpa ~ st (3.7)

away from the identification points of M&Q and MSQ are as described in the n, 7 cases; see Figure 5.
A fiber over either of the two identification points, 0, co€ll, consists of two spheres joined by a circle.
The submanifolds I'Y with *=1,1,2,2 form 4 loops in ﬂ]&:

rf=ri-rf, If=ri-r?, TIy=T15-T%,  TI5=I;-TI7.
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Figure 4: The moduli space HS:’ as a fibration over M&z; the labels i and i indicate the marked
points zf and z;, respectively.

Connecting the points of these loops on each of the four spheres by paths as before, we obtain the
loops I'" Cﬂgﬁ and FTCM70—73 as in the n, 7 cases above so that

[T 15 + 1% —15] = [T7] - [I].
By the 7, 7 cases above, [I'] and [['"] are zero in Hy (W:)) and H; (ﬂg’g)), respectively. O

Remark 3.4. The same argument can be used to obtain 3-term relations in H; (Rﬂog, GRMO,:S) by
going diagonally in Figures 3-5. While these relations are nominally stronger than (3.5), we do not
see any applications for them at this point and they have a less appealing appearance than (3.5).
On the other hand, they can be used to conclude that (3.5) holds over Z as follows. Let a denote
a nontrivial loop in the fiber F} in the proof of the 7 case of Proposition 3.3. The loops formed by
the upper left and lower right triangles equal to £;a and e, in homology, for some ¢;, ¢, € {0, 1}.
Pulling back the loops to %73(]}”2, 1) by (4.1), evaluating on 3 conjugate pairs of lines over Zsg, and
using Proposition 4.2, we find that each of the three segments in each of the triangles contributes
1€Zs (the number of real lines through a non-real point) to the total count for the triangle. Thus,
er,er=1 (the preimage of the loop a in fact corresponds to the number of real lines through 2 real
points in P?). This implies that the loop T =T+ —T%, which is the sum of the two triangular
loops, is contractible. Thus, (3.5) holds over Z.

Remark 3.5. A local model for (3.7) near the intersection point of an S? and S! in the same fiber
is given by

RxC— R,  (t,z) — t]z]?. (3.8)
Local models for (3.7) around S2=Cu{oo} and S'=Rui{oo} are given by
2t 2|2
S?xR — R ) — ——— S'xC—R, (tz)— . 3.9
% - (&Y) 1+|z|2° 8 o (62) t+t1 (3:9)

The remaining singular fiber of (3.7) is obtained by blowing up a point of another compact orientable
3-manifold M](Ii?). The latter is isomorphic to the orientable “double connect-sum” of two copies of
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R,

Figure 5: The moduli space Rﬂog, as a fibration over Rﬂog; the labels ¢ and 7 indicate the
marked points z;’ and z; , respectively.

S x 52, i.e. the manifold obtained by removing two disjoint three-balls from each copy of S! x 5?2
and gluing the two copies together along the common boundary so that the glued manifold is
orientable. The manifold MI& can be obtained by contracting the second copy of RP? described in
the proof of the 7 case of Proposition 3.3; the loop I'T =I'J+I'T—I'} then arises from a contractible

loop in the complement of the blowup point in M§3 and thus is contractible in ﬂg,g. This implies
that (3.5) holds over Z.

4 Proof of Theorem 2.1

The relation on RMj 3 of Proposition 3.3 induces relations between counts of real maps from
nodal domains into a real symplectic manifold (X, w, ¢); see Corollary 4.1. Proposition 4.2, which
is proved in Section 5, expresses these counts in terms of real GW-invariants and a decorated
version of complex GW-invariants via the Kunneth splitting of the diagonal Ax in X?2. Proposi-
tion 4.3, which is also proved in Section 5, relates the decorated invariants to the usual complex
GW-invariants. We conclude this section by deducing Theorem 2.1 from Corollary 4.1 and Propo-
sitions 4.2 and 4.3.

Let (X,w, ¢) be a compact real symplectic 2n-manifold, S Hy(X )4, and keZ with k>2. Let

— — — - R
f612: Mopr1 (X, B)C — Mgz, c=1,n, fora: Mop1(X, B)? — My, (4.1)

be the forgetful morphisms keeping the first three conjugate pairs of marked points only (i.e. those
indexed by 0,1,2). If c=7,7n and (O.) and (2.5) in Section 2 are satisfied, we set

Rfo12 = f5i2, ROM11(8) = Mo 11(X, B)%C, RMo 3 = ﬂg,&
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If (O,) and (O,) are satisfied, but not (2.5), we set
= = — —R
Rfor2 = foies R4 1(8) = Mo sr1(X, B), RMoz = Mgz

In all cases, we index the conjugate pairs of marked points of elements of R90.,1(3) by the set
{0,1,...,k}. For any relative cycle I' in (RMy 3, 0RMg3) and po, ..., ux€ H*(X), we define

g, - - - 7Hk>g = J - - Rf12PD([I']) evgpo - - - evifig- (4.2)
RO 11 (B)]V"

This number counts degree /3 real morphisms into (X, ¢) from domains that stabilize to elements
of ' after dropping the conjugate pairs labeled by the set {3,...,k}. From Proposition 3.3, we
immediately obtain the following corollary.

Corollary 4.1 (of Proposition 3.3). Let (X, w, ¢) be a compact real symplectic manifold, f€ Ha(X)4,
and po, ..., ux€ H*(X) for some k=2. If c=7,n and the conditions (O.) and (2.5) in Section 2
are satisfied, then

Fc I“g Fc 1"5
<M0a s /‘Lk>,31 + <,LL(], s 7;uk‘>/31 = <,U'07 s 7,U’k‘>ﬁ2 + <M07 cee /‘Lk>,32 ) (43)

where T'{,I'{, 15,15 are the relative cycles in (RHSB,@Rﬂag) defined in Section 3 and repre-
sented by the diagrams in Figures 3 and 4. If the conditions (O;) and (O,) are satisfied, but not
necessarily (2.5), then (4.3) holds with c=R.

We next express the numbers appearing in Corollary 4.1 in terms of complex and real GW-
invariants. Let (X,w,®) be a compact real symplectic 2n-manifold, 8 € Ho(X)y, and k € Z7°.
We denote by

Mi11(8) = Mo g1 (X, B)
the moduli space of stable genus 0 degree 5 maps with marked points indexed by the set {0,1,...,k}.

For any I {1,...,k}, let ﬁéﬂ(ﬁ) be the space My, 1(B) with the reverse orientation if |I] is odd
and let .
ev’: M1 (8) — XhH

be the modification of the total evaluation map
ev=evgxevy x...xevy: Mpi1(B) — XFH (4.4)

obtained by replacing ev; with ¢oev; whenever i€ I. For any ug,...,ur€H*(X), define
(o, - s i)l = j, Cev*(uox .. ox ).
[0 41 (B)]V

This setup is motivated by the introduction of sign decorations for disk maps in [10]. The next
two propositions are established in Section 5. As before, if py,...,ur€ H*(X) and I < {1,...,k},
let p; denote a tuple with the entries p; with ¢el, in some order.

Proposition 4.2. Let (X,w,¢) be a compact real symplectic manifold, e Ha(X)g, I'f, T, 15,1
be the relative cycles in (RMg s, ORMy3) defined in Section 3 and represented by the diagrams in

23



Figure 2, and {~;}i<e and {7'}i<s be dual bases for H*(X). If c=7,n and the conditions (O.)
and (2.5) in Section 2 are satisfied, then

rs
Cpos - s k)" =0y H3—js 135 - -+ 1B G

* Z Z Z o, pr+ uj—,%'>g<uj, 7i>ﬂ’; (4.5)

0(B1)+B2=B ITuJul~={l,.,k} 1<i<l
B1.B2eHa(X)—{0}  jeI+ 3—jes ~'eH>(X)?

forall j=1,2, k=2, and o, ..., u€ H*(X). The same identity also holds with (T;, pop;,j€1T)
replaced by (I', —po¢* i, j€17). If the conditions (Or) and (Oy) are satisfied, but not necessar-
ily (2.5), then the four identities hold with TS =T% and (.. )»¢={...)%.

Proposition 4.3. Let (X,w,¢) be a compact real symplectic 2n-manifold, 8 € Ho(X)y, ke Z>°,
and 1< {0,1,...,k}. For all po, ..., e H*(X)® GH*(X)?,

<:U’07 <o ’:U’k>;—3 = (71)€I(u)<:u07 s 7:U’k>é( ’
where er(p)=|{iel: pie H*(X)%}|.

Proof of Theorem 2.1. We apply Corollary 4.1 with pg = pu, 1, ..., g as in the statement of
Theorem 2.1. Since ,uieH*(X)(i5 foralli=1,...,k,

<M0, Br+ur-, %>g = <Moa Hr+ur-> %>§1

for all decompositions I Jul™ = {1,...,k} and for all four terms in (4.3); see Proposition 4.3. If
c=7,n and the conditions (O.) and (2.5) are satisfied, Proposition 4.2 thus reduces the left-hand
side of (4.3) to

9 <<uou1, RTINS A D 3 2o, i, iy Cpias 7i>2’2c>

(B1)+pe=8 TuJ={3,..,k} 1<i<l
1,826 Ha(X)—{0} yie H2#(X)?

and the right-hand side of (4.3) to

P <<u1, Hopa iz )5 Y > 372, uz,m,%ﬁkm,wmiﬂf) :

B1,B2€ Ha(X)—{0} VEeH?*(X)?

Setting the two expressions equal, we obtain the formula in Theorem 2.1. If the conditions (O;)
and (O,) are satisfied, but not necessarily (2.5), the same argument applies with {...)? replaced

by (...)%. O

5 Orientations and signs

In this section, we analyze and compare orientations of various moduli spaces of complex and real
maps. We use these comparisons to establish Proposition 4.3, Theorem 2.2, and Proposition 4.2.
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Proof of Proposition 4.3. For each cycle h : Y — X representing the Poincare dual of an
element of H*(X)‘i, let £(h)=+1, respectively. Define an involution ©7: X*k+1 — Xk+1 by

z, ifi¢ I;
(91(3:0, .. .,a:k) — (@é(a:o), A @é(mk)), where @{(m) = {¢(w), dicl

We can assume that the cohomology degrees of ug, p1, - - -, iy, satisfy
deg g + ...+ degug = dimVirﬁkH(,@’) = 2(<01(X),5> +n—2+ k:) ,

where 2n = dim X. Choose a generic collection of representatives h;: Y; — X for the Poincare
duals of g, ..., ik, respectively. The Poincare dual of ¢*pu; is then represented by the cycle

hi = ¢oh;: Y; = (-1)"Y; — X, (5.1)
with —Y; denoting Y; with the opposite orientation. Let
(h) = hox...xh: Y =Yyx...xY, — XFL
We denote by Y’ the modification of Y with the i-th factor replaced by £(h;)Y; and by
<h>I: YI N XkJrl
the modification of (h) with the i-th factor map replaced by h; whenever ie I. Thus, (h)! =©7o(h).

We set
Ty (8) = {(u,y) €My (B)x YT : v/ (u) =)l (y)},  Dn(B) =T (8).

As sets, these two objects are the same. For a generic tuple h, the restriction of the total evaluation
map (4.4) to every stratum of My,1(B) is transverse to ¢h) in X**+! and thus My(B) is a finite
collection of signed weighted points contained in the main stratum of the moduli space. Since h
and h! represent the Poincare duals of pox. ..y, the signed weighted cardinalities of 9y, () and

ﬁﬁ(ﬁ) are the numbers (uo, . .. ,uk>f§ and {po, . . . ,u;&é, respectively.

The sign of each element (u,y) of ﬁ{l(ﬁ) is determined by the orientations of ﬁé +1(8), Y1,
and X**! via the maps ev! and ¢h)!. Tt is the sign of the isomorphism

T(Xk-i-l % Xk+1)‘A
T(AXk+1)

xk+1

dfev! (WY} T4 (8)x Y] y) —

L (62)
(ev! (u) (h)I(y))

where A i1 © XF+1x X#+1 is the diagonal. By the chain rule,
d{ev! x(h)'} = d{0' x 0"} o d{evx(h)}.
The sign of the isomorphism
T(XFH1 5 XH+1) | o T(XHFH1 5 XF+1) | o
T(Axk+1) (ev(u)(h)(y)) - T(Axn+1)

xk+1 xk+1

d{e’xe’}:

(ev! (u) (b (y))

is (—=1)"l. The orientations of ﬁiﬂ(ﬁ) and 9,1 (B) differ by (—1)M|, while the orientations
of Y! and Y differ by
(_1)NII\+I{Z'€I:MGH*(X)",’}\ )

Thus, the signed weighted cardinalities of ﬁ{l(ﬁ) and My, () differ by the sign (—1)7 (), O
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We next recall how the main stratum szfl (B) of the moduli space My 1(X, B)?¢ with ¢ =1,7
is oriented if the condition (O,) in Section 2 is satisfied. We begin with the case k = —1. By
definition,

M(8) = Py°(B)/Gey,  g-u=uoyg,

where P§*“(3) is the space of parametrized (¢, c)-real degree 8 J-holomorphic maps P! — X and
G, PSLyC is the subgroup of automorphisms of P! commuting with c¢. The latter is oriented by
the short exact sequence

0 — TaS' — TG — C — 0,

where C =T, C corresponds to shifting the origin and S' < G, is the subgroup of standard rotations
of C, which we identify with S'<C*. The (virtual) tangent space of Pg’c(ﬂ) at a point ue P(B)
is the index of the linearization D¢ of the d-operator at u. If c=7, we orient this index as in the
proofs of [9, Corollary 1.8] and [10, Lemma 7.3] from a fixed spin structure on TX?®2E?, with
E asin (O;). If c¢=n, we orient the index via the pinching construction of [5, Lemma 2.5] from a
fixed spin sub-structure on (T'X, d¢); see [12, Corollary 5.10]. The orientation of img’c(ﬁ) at [u] is
then specified by
ind DS ~ T,y MG “(5) ® TiaGe -

The order of the factors on the right-hand side above is motivated by the choice of the orientation
on M(C),z in Section 3. For k>0, My, 1 (X, B)?€ is oriented using the first element in each conjugate
pair (z;, z;) to orient the general fibers of the forgetful morphism

M1 (X, B)%¢ — Mo(X, B)** (5:3)
obtained by forgetting the k pairs of conjugate marked points.

In this paper, we use a different natural construction of orientation on 9y, 1(X, 3)% in the stable
range, i.e. k> 1; in Lemma 5.1, we show that the two orientations coincide. It is obtained using
the forgetful morphism
ooy 3 4C
F M1 (X, )% — Mo gy

and the orientation on ﬂg,kﬂ defined in Section 3. For a general [u] € MMy 1(X,B)%¢ in this
case, the domain ¥, of u with its marked points is stable and thus C = [¥,] is the image of [u]
in Mg’k +1- The (virtual) vertical tangent bundle of f at such [u] is the index of Df,. The orientation
of M1 (X, B)?€ is then specified by

Tjuy M1 (X, B)€ ~ ind DY @ Ty, )Mo o1 4 (5.4)
with ind D, oriented as in the previous paragraph.

Lemma 5.1. Let c=71,n, (X,w,¢) be a compact real symplectic manifold satisfying the condi-
tion (O,) in Section 2, keZ>°, and Be Hy(X)y.

(1) For every i=0,1,...,k, the automorphism Ofﬁ07k+1(ﬁ)¢’c interchanging the marked points in
the i-th comjugate pair is orientation-reversing.

(2) For all i,j = 0,1,...,k, the automorphism of Mg +1(B)%¢ interchanging the i-th and j-th
conjugate pairs of marked points is orientation-preserving.
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(3) If k=1, the two orientations on Mg y+1(8)%¢ described above are the same.

If the conditions (O:) and (Oy) are satisfied, the three statements also apply with Mo k+1(8)%¢
replaced by Mo +1(B8)%.

Proof. (1,2) Both automorphisms take a fiber of (5.3) to the same fiber. The restriction of the
automorphism in (1) to a fiber of (5.3) is orientation-reversing, while the restriction of the auto-
morphism in (2) to a fiber of (5.3) is orientation-preserving. This implies the first two statements
of the lemma.

(3) Let u be an element of 9% x41(3)%¢ at a point u with smooth domain %, and ug be its image
of [u] under (5.3). The first orientation of 9% x41(3)%¢ described above satisfies

k
T1u Mo o11(8) % @ TlaGe ~ Tiug) Mo s+1(8)7° @ P T,+3u @ TiaGe
i=0

k k
~ T[uO]mO,k+1(5)¢7c ®TigG:. @ @ Tz;r Yu ~ind Dy, @ @ sz ..
1= 1=

The orientation of ﬂg,k+1 chosen in Section 3 at a smooth curve C = [(Zoﬂ 29 )y (le’ z )] s
described by _
TZS_C D...P Tz,:'C X TCMg,k+1 @ ﬂdGc .

Thus, the second orientation of ﬁo’k+1(ﬁ)¢’c described above satisfies
T Mo k41(8)* © TraGe ~ ind Dy @ Ty M 1 © TG ~ ind D, @ D T, 3
i=0

Thus, the two orientations of T[u]ﬁO,kJFl(,B)QS’C are the same. O

If ¢ is an orientation-reversing involution on a compact orientable surface ¥ of genus g and (X, w, ¢)
is a compact real symplectic 2n-manifold such that n is odd, X?® = ¥, and A(té)p(T X,d¢) admits
a real square root, then the moduli spaces ﬁng(X , B)¢”C are oriented via the analogue of the
morphism (5.3). Thus, the first two statements of Lemma 5.1 also hold if Mg x41(X,B)*¢ is
replaced by ﬁgkarl(X, B)®e.

Proof of Theorem 2.2. We denote by Rﬁ%k(ﬁ ) the appropriate moduli space of real morphisms,
as determined by the case of Theorem 2.2 under consideration. We can assume that the cohomology
degrees of 1, ..., ug satisfy

deg i1 + ... + deg py = dim"™ RM,, ,(8) = {e1(X), B) + (n—3)(1—g) + 2k.

Choose h;: Y;—> X as in the proof of Proposition 4.3 and define (h), (h), Rﬁhi(ﬁ), and Rﬁ{l(ﬁ),
for any subset I < {1,...,k}, as before, but starting with the moduli space RO, 1 (5) in the last
two cases. By exactly the same argument as in the proof of Proposition 4.3, the signed weighted

cardinalities of Rﬁﬂ(ﬂ) and RNy, (B) differ by the sign (—1)%7(),

If e H*(X )ﬁ, we apply the above conclusion with I = {i*}. The signed weighted cardinalities
of Rﬁ{,(ﬁ) and R, (B) are then opposite. Interchanging the points in the i*-th conjugate pair
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induces an orientation-preserving isomorphism from Rﬁi(ﬁ) to Ry (B3), where h' is the tuple
obtained by replacing h;+ with

hix = gohe  (—1)"Yix — X ;

this cycle represents the Poincare dual of ¢* ;s = p;+. Thus, the signed weighted cardinalities of
RMy, (5) and RMyy (5) are opposite. Since both of them are equal to the real invariant (uq, . .., uk>2
in question, the latter vanishes. O

In the remainder of this section, we establish Proposition 4.2. The key point in its proof is that
all orientations are chosen compatibly; in particular, the oriented normal bundle of I'y in Rﬂog,
and the oriented normal bundle of its preimage in RO, 1(3) are given by the complex line bun-
dle of smoothings of the node on the bubble containing zy. We proceed with the notation and
assumptions as in the statement of Proposition 4.2. We will also use the same notation for the
uncompactified moduli spaces (maps only from smooth domains) as we have introduced for the
compactified moduli spaces.

For B e Ho(X)y, denote by Nz < RMy.1(B) the sub-orbifold of maps from domains consisting of
precisely three components with one invariant bubble and two conjugate bubbles with the marked
point zar on one of the conjugate bubbles. For u e Ng, denote by u® the restriction of u to the
component containing zar and by zC the marked point corresponding to the node on this component;
denote by u® the restriction of u to the invariant component and by z§ the marked point on this
component corresponding to the same node as z©. If 3=0(81)+f2 and {1,..., k}=ITLJul", let

Ny posr+ 51— < N

be the subspace of the maps u so that the degrees of u® and u® are 8; and S, respectively, and
the rest of the marked points carried by the component containing z; are the first elements in the
pairs of conjugate points indexed by I and the second elements in the pairs indexed by I~. If

(B, I7,17)=(0,2,) or (B, J)=(0,9), (5.5)
N, 81.80:0+,0,1- = for stability reasons.

The restrictions u© and u® determine an isomorphism
C R I~ C/. C R

Ny poirt a— ~ L (™, u™) € Mipe 4 o) 40(B1) xR y151 (B2) s u- (27) =u (2]) ], (5.6)
with the marked points of the elements of m|l11|+|1—|+2(ﬁ1) indexed by 0, the elements of It 1™,
and the superscript C; under either of the conditions (5.5), one of the moduli spaces on the right-
hand side of (5.6) is empty for stability reasons. The inverse map is obtained by identifying the
marked point z€ of the domain of u€ with the marked point z; of the domain of «® and the marked
point ¢(z%) of the map ¢pouCoc with 27 = c(zF); the marked points of u® indexed by I™ become
the first points in the corresponding pair of the nodal map, while those indexed by I~ become the
second. As in Section 4, E)ﬁf]_ﬂ - +2(ﬂ1) is oriented by twisting the canonical complex orientation

of M1+ 411-|+2(B1) by (=171, The canonical orientation of X and the chosen orientations of

£m|11+|+|17|+2(f81) and RN 741 (B2) induce an orientation on each component of Nz via the isomor-
phism (5.5).
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Let L —>9LTI|II+|+H_‘+2(51) and LF — RN 7141(B2) be the universal tangent line bundles at the

marked points 2 and 2z, respectively, and
L=7il®c a5 LR — N,

where 71, Ty are the component projection maps. The line bundle L — N3 is the normal bundle
of N in RM11(5). There is a gluing map

$: U — RDo1(B), (5.7)

where U c L is a neighborhood of the zero set in L; it is obtained via a (¢, ¢)-equivariant version
of a standard gluing construction, such as in [24, Section 3].

If k=2 and |Jn{L1,2}|=1, N61762;I+7J717 is a topological component of the pre-image of I under the
forgetful morphism R fy12 in (4.1) for some I'=T";, I';, with i=1,2. In this case, the restriction of L
to N, g,.1+ 1 equals Rfg,Lr, where Lr — I is the complex line bundle defined in Section 3.
The gluing map ® in (5.7) can be chosen so that its restriction to each such component Ng, g,.1+ -
lifts any pre-specified gluing map on Lr., over R fy12.

Lemma 5.2. If k=2 and |Jn{1,2}| =1, the restriction of the gluing map (5.7) to a neighborhood
Of./\/'ﬂhﬁQ;Ii»’J’If in L s orientation-preserving with respect to the complex orientation on L and the
orientation on the base described above.

Proof. This follows readily from the definitions of the three orientations above; we follow the second
construction, which is described just before Lemma 5.1. Let I' be as in the preceding paragraph.
If k=2, ® can be chosen so that there is a commutative diagram

U 2 RN (53)

f012l ifmz
b —_

Ur RMo 3

with the bottom arrow being some gluing map on a neighborhood of Iin Lr. By Lemma 3.2, ®r is
orientation-preserving. Since all domains are stable in this case, the vertical tangent spaces of the
vertical arrows in the diagram are oriented by orienting the indices of the linearized 0-operators;
see [11, Section 6.

The index for the complex moduli space has a canonical orientation; see [25, p51]. The indices for
the two real moduli spaces are oriented from either the same trivialization of TX?@®2E? over a
loop in X or from the same trivialization of (T'X,d¢) over a Zg-invariant loop in X by pinching
off the relevant vector bundle onto a conjugate pair of sphere bubbles, as in the proofs of [10,
Lemma 7.3] and in [11, Theorem 1.1]; the index over the first of these bubbles, B, has a canonical
complex orientation. Thus, the index of an element of Ng, g, 1+ s is oriented by introducing
an extra pinching in B as compared to what is used to orient nearby real maps from P!. This
pinching, which is given by the inverse of ®, induces the same canonical orientation over B. Thus,
the orientation of the index for a map from P! is equivalent to the orientation obtained from the
orientation of an element of N3 by smoothing the node.
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If k=3, ® can be chosen so that there is a commutative diagram

U 2 R (B)
l l (5.8)
U’ . RM4(B)

with the vertical arrows being forgetful maps again. Since the fibers of the right arrow are oriented
by the first points in each conjugate pair and the orientation of the fibers of the left arrow is based
on the number of conjugate pairs with the second point carried by «®, Lemma 3.1 implies that

® is again orientation-preserving between the fibers and thus between the spaces on the first line
of (5.8). O

Remark 5.3. The assumption that k=2 and |Jn{1,2}| =1 in Lemma 5.2 is not necessary, but it
simplifies the argument. The general case is not needed for our purposes.

Proof of Proposition 4.2. We can assume that the cohomology degrees of ug, ..., ux satisfy
deg 1o + . .. + deg py = dim" Ry, 1(B) — 2 = {c1(X),B) + n—3 + 2k, (5.9)

where 2n = dim X. Choose a generic collection of representatives h;: Y; — X for the Poincare
duals of g, ..., ug, respectively, and define

ROy, (B) = {(u,y)eRﬁkH(ﬂ)bex...xYk: ev;(u)=h;(y;) Vi:(),...,k}.
If =0(B1)+P2 and {1,..., k}=TTuJul", let
Ny gyt 0.1~ (0) = N, g1+ 5.1~ 0 Rk (B). (5.10)

If the representatives h; for u; are generic, each set N, 8,.85:1+,.1- () is a compact zero-dimensional
suborbifold of the oriented orbifold N, g,.7+ ;- and thus has a well-defined signed weighted car-
dinality. The latter is computed by the usual Kunneth decomposition, with respect to the specified
orientations of f)ﬁ‘fllml,'”(ﬂl) and RO, jj41(B2); this gives the last sum in (4.5) if 51, B2 # &,
but without the restriction 7' € H2*(X)?. Since ;€ H2*(X) for all i, the complex GW-invariant
in (4.5) with 4;€ H?*~!(X) vanishes for dimensional reasons; the real GW-invariant in (4.5) with
= H*(X)ﬁ vanishes by Theorem 2.2. If 8y =0 and [[T Ul"| > 2 or B2 =0 and |J| > 1,
N3, g1+ 5.1~ (h) = &; otherwise, the marked points on u® (in the first case) or on u* (in the sec-
ond case) could vary while staying inside of the zero-dimensional N, g,.;+ j - (h). The case 81 =0
and |ITuwl~|=1 reduces as usual to an invariant like the first term on the right-hand side of (4.5);
as described below, there is only one decomposition {1,...,k} = It Jul™ with [[Tul-|=1
relevant to each of the four cases of Proposition 4.2.

For any I' « RM 3, define

Zp = {(w, 90, .-, yp) ER forp(T) x Yo x ... x Vit evi(u) =hi(y;) Vi=0,... k}
= (Rfyn(T)x Yo x...xYy) n RIMy(B).
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For j=1,2 and generically chosen constraints h;,

Zr; = | || Nay st - (B); (5.11)
0(B1)+B2=B ItuJul—={1,..k}
B1,82€H2(X), B2#0  jeIt 3—jeJ

this decomposition corresponds to the first two sums in (4.5) and the first term on the right-hand
side of (4.5). It also holds with (T;, jeI*) replaced by (I';,j€l™).

Let Lp.,— Zr denote the restriction of
L =LxYyx...xY, — NgxYyx...xYj. (5.12)
As in complex GW-theory, a small modification of the gluing map (5.7) gives rise to a gluing map
®ron: Urn — RML(B),

where Ur., © L., is a neighborhood of the zero section in Lr,, (a finite collection of disks in this
case). Such a modification can be chosen to be of the form

P (u, v) = @(@b(u,v),v) V (u,v) € Urn,
for some smooth function ¢ on Ur,, sending (u,0) to u. Thus, the induced map
d(R fo120®rn): 77 RffioLr — Lr

between the normal bundle of Zr in RO, (3) and of I' in RMg 3 is the identity. Since ®r.y, is
orientation-preserving by Lemma 5.2, it follows that every signed weighted element of Zr con-
tributes +1 to the number (4.2). By the last two paragraphs, the signed weighted cardinality of Zp
is given by the right-hand side of (4.5). O

6 Alternative proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1 (in effect of a combination of Corollary 4.1 and
Proposition 4.2) which bypasses the real Deligne-Mumford moduli space RMj 3 of Section 3. We
instead pull back the standard relation on My 4 by the forgetful morphism

Jo120: Rﬁkﬂ(ﬁ) - MOA’

- - _ (6.1)
[u, (zar,zo ),...,(z,:,zk )] — [Z(T,zf,z;,zo],

preserving the marked points za’ , zf , z; , %2, only (and stabilizing the domain if necessary).

As in Section 4, we either fix ¢ =7,7n and assume that the conditions (O.) and (2.5) in Section 2
are satisfied or assume that the conditions (O,) and (O)), but not necessarily (2.5), are satisfied.
In both cases, we continue with the abbreviations for moduli spaces of maps introduced in Section 4
(before Corollary 4.1 for the R-spaces and before Proposition 4.2 for the C-spaces). We can again
assume that (5.9) holds and choose generic representative h; : Y; —> X for the Poincare duals of

HO= [y (15 -+ o5 k-
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Let Qo4€ H%(My.4) be the Poincare dual of the point class and

Ng(,uo, ce ,,uk) = J . ) f;lQ(_)QOA eVS/,LO . ev}:uk . (62)
[RDe1.(8)]

For any Ae Mg 4, define

Zy\ = {(u,yo,...,yk)ef&éﬁ(A)x%x...xYk:evi(u)zhi(yi) Vi=0,...,k}
C]Rﬁ]wrl(ﬁ) X }/OX...XYk.

This subset is a compact oriented 0-dimensional suborbifold, i.e. a finite set of weighted points, if
A is generic. The number (6.2) is the signed weighted cardinality |Z|* of this set.

We prove Theorem 2.1 by explicitly describing the elements of Z; ;) and Z|; ), with notation
as in Figure 1, and determining their contribution to the number (6.2). The domain ¥, of each
element [u] of Z[; 1) and Z[; o) consists of at least two irreducible components. If (2.5) holds, ¥,
has an odd number of irreducible components; the involution ¢, associated with u restricts to c on
one of the components and interchanges the others in pairs. For dimensional reasons, the number
of irreducible components of ¥,, cannot be greater than 3 and thus must be either 2 or 3. Each
map v with its marked points is completely determined by its restriction u® to the component XX
of ¥, preserved by ¢, (if the number of irreducible components is odd) and its restriction u® to
either of the other components.

We depict all possibilities for the elements of Z; 1} and Z|; ) in Figures 6 and 7, respectively. In
each of the first three diagrams in these figures, the vertical line represents the irreducible com-
ponent XK of ¥, preserved by c,, while the two horizontal lines represent the components of 3,
interchanged by ¢,; in the last diagram in each figure, the two lines represent the components
of ¥, interchanged by c,. The homology classes next to the lines specify the degrees of u on the
corresponding components. The larger dots on the three lines indicate the locations of the marked
points za’, zf, z;; we label them by the constraints they map to, i.e. u, p1, p2, in order to make
the connection with the expression in Theorem 2.1 more apparent. If a marked point z;r lies on
the bottom component, its conjugate lies on the top component. In such a case, we indicate the
conjugate point by a small dot on the upper component and label it with f;; the restriction of u to
the upper component maps this point to the image of ¢oh;. By the definition of Z; 1, each dia-
gram in Figure 6 contains a node separating the marked points zar ,z1 (i.e. the larger dots labeled
by p, 1) from the marked points z; .72y (i.e. dots labeled by g9, ft). Similarly, each diagram in
Figure 7 contains a node separating the marked points ZO+ , 25 from the marked points 2;, 2y - We
arrange the diagrams in both cases so that the pair of marked points containing z; lies above the
other pair. The remaining marked points, 255, e ,z,;,t, are distributed between the components in
some way. In the case of the first three diagrams in each figure, such a distribution is described by
a partition of {1,...,k} into subsets I, J, I~ of plus-decorated marked points on the top, middle,
and bottom components, respectively.

Each element w of Z[; 1} and Z|; ) described by the first three diagrams in Figures 6 and 7,
respectively, is an element of the subspace

N, goir+a1-(0) © Ng, gyr+ g1- x Yox...xY @ RMpy1(B) x Yox...xY, (6.3)
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Figure 6: Domains of elements of Z|; y

defined in (5.10) for some (31,82 and I1, J, I~ with =0(51)+ 32 and {1,...,k}=ITuJul . An
element u of the first space in (6.3) has a well-defined nonzero weight w(u) with respect to the
orientation of N, 5,.1+ s - described below (5.6). The sum of these weights over all elements u
represented by a fixed diagram with fixed (81, 32) and (I, J, I7) is the signed weighted cardinality
of NV, 8,.60:1+ 0.1~ (h) computed via the usual Kunneth decomposition; see the first paragraph in the
proof of Proposition 4.2. As an isolated element of Zp; 17 or Z|; ), v has a well-defined contribu-
tion e(u)w(u) to the number (6.2), i.e. the signed number of nearby elements of Zy, with Ae Mg 4
close to [1,1] or [1,0]. By Lemma 6.1 below, e(u) =1 for all elements u represented by the first
diagrams in Figures 6 and 7, e(u) = —1 for the second diagrams in these figures, and e(u) =0 for the
third diagrams. Even if the contributions from the third diagrams were nonzero, they would have
been the same for Z|; 1) and Z[; o) by symmetry and so would have had no effect on the recursion
of Theorem 2.1. The reason behind Lemma 6.1 is that the oriented normal bundle of N, 5,1+ -
inside ROy 41(B) is given by the complex line bundle of smoothings of the top node in the first
three diagrams, which is conjugate to the complex line bundle of smoothings of the bottom node,
while the complex tangent bundle of [1,1] or [1,0] in Mg 4 corresponds to the smoothings of the
node separating {z7 , ;" } from {25, z5 } in the case of [1,1] and {z7, z5 } from {27, z; } in the case
of [1,0].

The remaining elements of Z; 1) and Z|; g}, i.e. those described by the last diagrams in Figures 6
and 7, respectively, form one-dimensional subspaces Zfl 1< Z1,1) and Zfl 0 < Z|1,0); these diagrams
appear only if (2.5) is not satisfied. By Lemma 6.2 below, no topological component of Zfl 1] or

Z/

[1,0) contributes to the number (6.2).

Lemma 6.1. Suppose w€ Z|1 1) and the domain of u contains an irreducible component YR fized
by the involution c,.

(1) If S% contains the marked point z , e(u)=1.

B2 P B2 i B2 b
e, 5 ey iy e B
Hie 2 H1 K1 2
i 2 I
_ M1 _ M1 _ _
T2 p B1 1 s B4 T B4 o B
H2 2 H2

Figure 7: Domains of elements of Z; g
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(2) If S8 contains the marked point 2, e(u)=—1.
(3) If S% contains neither of the marked points 2, 25, e(u)=0.
The same statements with 1 and 2 interchanged hold for ue Zy o).

Proof. Let Ly — Z 1 —Zfl 17> Z1.,0] —Zfl 0] be the restriction of the line bundle 7L defined
in (5.12). As in complex GW-theory, a small modification of the gluing map (5.7) gives rise to a
gluing map

p: Up — RMK(8),

where Uy C Ly, is a neighborhood of the zero section in Ly, which lifts any pre-specified family
of smoothings of the domain. Over the subsets N, 5,1+ ;- (h) corresponding to the first two
diagrams in Figures 6 and 7, ®y, is orientation-preserving by Lemma 5.2. The differential

d{ fo1200Pn}: L — {fo126°Pn} TMo.4 (6.4)
is the composition of the differential for smoothing the nodes in My, 2(B),
d(fo12509°): LOL — {f01260‘I’C}*TM0,4,
where L’ is the analogue of L for the second node, with the embedding
L—Lol, v —> (v,de(v)).

The restriction of the latter differential to the component, L or L', corresponding to the node
separating off two of the marked points {zar , zf , z; .2 } is a C-linear isomorphism, while the re-
striction to the other component is trivial. Over the subsets N, 3,.1+ - (h) corresponding to the
first diagrams in Figures 6 and 7, the former component is L and (6.4) is an orientation-preserving
map. Over the subsets N, g,.7+ j - (h) corresponding to the second diagrams in Figures 6 and 7,
the former component is L' and (6.4) is an orientation-reversing map. This establishes the first
two statements of Lemma 6.1.

Near the spaces N, g,.1+ s - corresponding to the second-to-last diagrams in Figures 6 and 7, the
morphism

Jor20: ﬁkw(ﬂ) - MOA

is locally of the form
LeL — Moy, (v,0") — avd/,

for some a dependent only on N, g,.1+ 7 7-. Thus, the restriction of fo;95 to RO, (3) is locally of
the form o
L — Moz, v —> aUU .

The image of this maps is one-dimensional, which implies the third claim of Lemma 6.1. O

Lemma 6.2. The contribution of every topological component of Zfl 1] and Zfl 0] to the num-
ber (6.2) is 0.
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Proof. 1f (X,w) is strongly semi-positive, each topological component C' of Zf1,1] and Zfl,o] is a cir-
cle. In general, C'is obtained by gluing several circles along some intervals as specified by branching
of the multi-section s used to regularize the moduli space. Along C, s can be represented by several
single-valued sections obtained by gluing together local representatives as in [6, Section 3]. Each
such section determines disjoint circles in Zf1,1] or Zfl,o]' For the purposes of studying the nearby
elements of Z) that lie in the zero set of each of these sections, it is sufficient to assume that each
topological component C' of me] and Zfl,o] is the circle S*.

There is a gluing map
0:Cx(=0,6) — |2 (6.5)
AeMo 4

for 6 € Rt sufficiently small, which restricts to the identity along C x {0}; it is obtained via a
(¢, ¢)-equivariant version of a standard gluing construction, such as in [24, Section 3], with c=7,7.
In particular, we can normalize the elements of C by setting the marked point zar =0 and the node
to o0 on one of the components of the domain and setting z5 =1, z; = o0, and the node to 0 on
the other component. For each t € R* sufficiently small, we can define a marked pregluing map
uy: P! — X with the same values at the marked points as u and with the cross-ratio fy;55 given by

A= foroo(ut) = tzf(u) eC*c Moy

in some chart on HOA. This map can then be deformed to an element u; of Zy, with the same
A€ Mga. Since C consists of two-bubble maps (no additional bubbling), the gluing construction
can be carried out on the entire space C' in this case.

Let R* =R>? and R~ =R<C. The restriction of fy;550® to C'x ((—d,5) nR*) is the composition of
the maps

Cx((=6,8)nR*Y) — {z€C: |z] <6}, (e, t) —> |t|e!?,

{zeC: |z]<é} — C, re' — +rzf (eia).

The two maps, for R* and R~, described by the first line above have opposite local degrees, while
the two maps described by the second map have the same local degrees. Thus, the local degree of
the map

for200® : Cx(—9,9) — C, (u,t) — fou(-)((b(u,t)) =tz (u),

is zero. This implies the claim. O

Proof of Theorem 2.1. We compute the number (6.2) by adding up the contributions from the
elements represented by the diagrams in Figure 6. We then compute it from the diagrams in Fig-
ure 7 and compare the two expressions for the number (6.2).

By Lemmas 6.1 and 6.2, only the first two diagrams in Figure 6 and 7 contribute. By the Kunneth
decomposition, as in the first part of the proof of Proposition 4.2, and by Proposition 4.3, the
signed cardinality of N, 5,1+ 7~ (h) is given by

N saste g O)F = 3] oy o705, (31 D (6.6)
1<i<t
71€H<22“<(X)‘f
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where (.. Y® denotes (... )?€ if (2.5) holds and {...)? otherwise. If 3; =0 and the complex invariant
in (6.6) is nonzero, then |[I™ L 7| =1 for dimensional reasons.

By Lemma 6.1(1), the contribution to the number (6.2) from the first diagram in Figure 6 equals
the sum of (6.6) over all admissible (51, 82) and (I,J) with 1€ and 2€ J and all partitions of
I—{1} into two subsets I and I~. By Lemma 6.1(2), the contribution to the number (6.2) from
the second diagram in Figure 6 equals the negative of the sum of (6.6) over all admissible (81, 82)
and (I,J) with 2€I and 1€ J and all partitions of I—{2} into two subsets I* and I~. Thus, the
number (6.2) equals

i, o s - iy — Cpins i, i, ) g + > > > 2'”(

A(B1)+B2=B IuJ={3,..k} I<ist
B1,B2€H2(X)—{0} vieH?* (X)?

s o, iy Sz i vy — s oy i vy s g 7'y |-
B1 B2 B1 B2

Considering the first two diagrams in Figure 7, we similarly find that the number (6.2) equals

(s 2, 13, - )y — pupins iz s, - kg + > > > 2'”(

B1,B26H2(X)—{0} vieH?* (X)?

{2, 1,955 (s 1,1 5, = i1, 10,7 s 1, 7i>§z) '

Setting the two expressions equal, we obtain the formula in Theorem 2.1. ]

7 Miscellaneous odds and ends

We begin this section by deducing Corollaries 1.4 and 1.5 from Corollary 1.3. We then deduce
Corollaries 2.4 and 2.6 from Theorems 2.1 and 2.2 and relate the formula of Theorem 2.1 to the
quantum product on the cohomology of the symplectic manifold (X,w). We conclude with tables
of counts of real curves in P?, P?, and P” and a discussion of their compatibility.

Proof of Corollary 1.4. (1) The claim holds for d,k = 1, since there is a unique ¢-real line
through any point in P?"~!. Modulo 2, the recursion of Corollary 1.3 becomes

(eneneseds = (ata—Ta.al+ ¥ 3 (
1

21 +do—d 2i+j—2n—
dl 7d2 =1 7/7.721

er=1,e0,20)y  Cesnoyenidl +dider—1,20)) (es,... ,ck,j>32> .
For dimensional reasons,
(-Lien2)y =0 V22, {e-1,20)8 =0 Vdi>1
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Thus, the mod 2 recursion reduces to

A P2t .
<cl,02,03, .. .,ck>$ =~ <01 +co—1,c3,.. .,ck>3 + 2 <cl—1,02,2z>1 <03, .. ,ck,]>3_2.
2i4j=2n—1
i5>1

If ci+ce—1<2n-1, {¢ +02—1,C3,...,0k>3 is odd by induction on k for a fixed d > 1 odd and
{e1—1, ¢, 20F"" " =0 for dimensional reasons. It follows that

b~

<01,CQ,63,...,Ck>d ~1 mod 2

in this case. If ¢c1+co—1>2n—1, then

d=3, <Cl+02_17037"'7ck>§:0a

and {(¢; —1, ¢y, 2i>1f2n71 =0 if ¢1 +co+2i # 4n. Since the linear span of general P2*—1-(c1=1) and
P?r—l=c2 with
1<ec,c0<2n—1 and c1+co > 2n,

in P2n—1 is a P4"~1—¢2 it intersects a general p2n—l-(dn—ci—c2) jp 4 single point. This point lies
on the unique line passing through linear subspaces of P2"~! of codimensions c¢1, ¢z, 2i whenever
c1+co+2i=4n. Thus,

<cl,62,63, .. .,ck>(§ ~ <63, e, 2n—1— (4n—cl—02)>3_2 mod 2

in this case; the last number is odd by the induction on d.

(2) The second claim of Corollary 1.4 follows from the first and [5, Theorem 1.8]; the latter is
contained in Corollary 2.6 and Theorem 2.2. ]

Proof of Corollary 1.5. The first statement follows immediately from Corollary 1.3 and im-
plies that

NE =, 1, ifdeZ*—27:
0, ifde2Z".

We use simultaneous induction on the degree d to show that

) 1, ifdeZ*—27Z or d=2;
o (1, ifdezt—2z < _
Ny =y . and Ny =412, ifd=4;
0, ifde2Z*; _
0, ifde2Z"—{2,4};

from the base case N© =1 (the number of lines through 2 points in P?). By [27, Theorem 10.4],

2d—3 2d0—3)
C _ 2 C ArC
Ni= 2, <d2 (2d1—2> i <2d1—1>> Nay Na, »

di+d2=d

di,d2>1 (7‘1)
~ 2d—2 2d—2\\ ~
C _ C 2 3 C A7C
Nd - de + Z <d1d2 <2d1_1> _d2 (2d1_2>>Nd1 da -
di+do=d
dy1,d2=>1
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By (7.1), NC, NS =1 and N = 5. Modulo 4, the summands in (7.1) with dy even vanish (by
Corollary 1.4, Nfl; €27 if dy € 2Z). Thus, by the inductive assumption only the summands with
dy = 2,4 may be nonzero in either sum in (7.1) with d =5 odd. These two summands contribute
d—2 and d—3, respectively, i.e. 1 together, to the first sum. They contribute d—1 and 0, respectively,
i.e. again 1 together with the term dNéC, to the second sum.

For de277, (7.1) and the inductive assumptions give

N Y ((221‘_32)—<d_1>(221__31)) —@-d) Y (2251__31>’

ar i odd ari odd
> Jdo>
1,42 o 1,042 o (72)
~ 2d—2 2d—2 1 2d—2
N§;4 Z <d1< >—d2< >>= Z ( >
wa \Medi—1 21-2)) ~ 2 41 \2di—1
dy1,d2>1 odd d1,d2>1 odd

By symmetry, the last expression on the first line above equals

9—d <2d3> <2d3>> 9—d (2d2>
SN (Frs X b)) Bl v
2 d1+d2—d,< 2d;—1 2dy—1 2, \edi-1

di,d2>1 odd di1,d2>=1 odd

Each of the last binomial coefficients is even. If in addition de4Z, these coefficients come in pairs:
the one for d; and d—d; are the same. This shows that Nc(lce4Z if de2Z.

By (7.2), NS ~, 1 and NE ~42. Suppose d=2(d'+1) with &' >2, d; =2d,+1, and dy = 2d},+1
(so that dj +d, = d’). By Kummer’s Theorem, the highest power of 2 that divides half of the
last binomial coefficient in (7.2) is the number cy(d},d5) of carries in the addition of dj and d,
modulo 2. The pairs (d},d,) for which ca(d}, d,) =0 are obtained from d’ by distributing the 1’s
in the binary representation of d’ between d} and dj. Thus, the number of such pairs (d},d5) is
2% where # is the number of 1’s in the binary representation of d’. Since d # d} for such pairs,
the contribution from (d}, d}) and (dj, d}) to the last expression in (7.2), including the half factor,
is 2 modulo 4. Thus, the contribution from all such pairs to the last expression in (7.2) is 27%.
The contribution from any other pair (d,d}) is divisible by 2, since ca(d, d,) =1, and such pairs
come in pairs giving the same contribution to (7.2), unless d} =d;,. If d} =d, and thus d’' € 2Z%,
co(dy,dh) =1 if and only if #=1. Thus, if d'€2Z™", the total contribution to (7.2) from the terms
with co(d}, d5) =0 and the term with d} =d} is 0 modulo 4. If d'¢2Z", # >2, since d’' >2, and so
this contribution is still 0 modulo 4. This shows that NgeélZ if de2Z and d>=6. O

Proof of Corollary 2.4. We can assume that X is connected and thus HO(X)¢_S = {0}. By
Gromov’s compactness theorem, we can rescale w so that

inf{w(B): Be He(X )y} = 1.
We prove the claim by induction on the number

Bor=w(B)+ke(l,0)  VkeZ", BeHea(X)s.
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Let {7i}i<e and {7'};<¢ be as in Theorem 2.1. By the divisor relation,

<:u17 s 7//Lk>¢’c = </L2,B><ILL1,M3, <oy Mk d)’ca
T D YmeHY(X), (7.3)
<Hla o 7Mk>5 - <H2a B><,LL]_“LL3, cee 7:uk>ﬁ

whenever these invariants are defined, 5#0, and k>2.

By the linearity of real genus 0 GW-invariants and Theorem 2.2(1), it is sufficient to construct
the maps Pg.s on the direct sum of (H?* (X)?)®* so that these maps satisfy (2.11) with H2*(X)
replaced by H2*(X)?. For 8, 8'€ Hez(X)g, define

p, if g'=p;
Pg.5: HQ*(X)(E — Hz*(X)(E’ PB’;,@(M) = {0 if B # B;

Pap=0: @ (H (X)) — H¥(X)® it G—4 ¢ Haa(X)50(0}.
k=1

These linear maps satisfy the k=1 case of (2.11) under the assumptions in (1) and of (2.11) with
(%€ replaced by (->? under the assumptions in (2).

Suppose M eZ™" and for every pair (k, ) in Z" x Heg(X), with (8) <M there exist linear maps
Py (H*(X)?)® — H*(X)?  with '€ Hoa(X)s (7.4)

that satisfy (2.11) under the assumptions in (1) and (2.11) with {-)?¢ replaced by (->* under the
assumptions in (2). Let (k,8) be a pair in Z* x Heg(X)4 such that

kE>1 and M < {(f)p < M+1.

Choose a basis By, for (H2*(X)?)®* consisting of products of homogeneous elements (each factor 1;
lies in H(X)? for some ce2Z").

Let 11 ®...Quy € By. By the divisibility assumption, there exist pe H?* (X)(fr and ph e HQ(X)‘E
such that po = ppy. For each '€ Heg(X )y such that f— "€ Heg(X)y {0}, define

PB’;ﬁ(Mlv'--auk) :</1‘/275>Pﬁ';5(,uu11:u3>'"7,uk) + 2 Z 22”'(
(B1)+P2=B8 TuJ={3,...k} 1<i<l
(1),B26Het(X) g FieH2*(X)?

<:u’7 M1, 11, VZ>2PBI762(M§7 K, ’YZ) - <:u7 M/27 K, 71>gipﬁ’,ﬁ2 (Ml? Hnr, /YZ)> .

The values of Pg.5 and Pg.5, above are well-defined because

Bor—1=Bor—1<M, (B2 =B —w(@(Br)) — Il <{Br—1<M.
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By (7.3), the equation in Theorem 2.1 with pg replaced by pf is equivalent to

</~017H27M37--w/ﬁk>§7c = <:U’/27/B><H,ul7,u37'”7,U’k>5’c+ Z Z 221<

0(B1)+B2=8 ITuJ={3,.,k} 1<i<l
0(B1),826Her(X) g yieH2* (X)?

st pirs v Yy Ctlys 11075 = gty iy ity iy iy s VY5
81 B2 B1 B2

under the assumptions in (1) and with (-)* replaced by ¢-)? under the assumptions in (2). Along
with the assumption on (7.4), this implies that the elements Pg.g(j1, ..., ux) of H2*(X)f sat-

isfy (2.11) under the assumptions in (1) and (2.11) with {(-)?€ replaced by ¢(-)* under the assump-
tions in (2). This completes the inductive step of the proof. O

Proof of Corollary 2.6. By the discussion above the statement of this corollary and immedi-
ately after (O;) and (O)) in Section 2, the real genus 0 GW-invariants (.. >§ and (.. .>3’C of (X, ¢)
are defined in all cases considered in the statement of Corollary 2.6. By the sentence below (2.15),
we can assume that the complex dimension of X is odd. By the Lefschetz Theorem on Hyper-
plane Sections [17, p156] and Poincare Duality, H**(X) is then generated by H? over Q and
H*(X) = H‘“‘(X)f. In light of Theorem 2.2, this implies that the real genus 0 degree d GW-
invariants of (X,wn|x,¢) with any insertion ;€ H**(X) vanish.

If ppn—1 =1, and c=7, the moduli spaces in (2.3) are empty for any Jejﬁ) because X?= . The
same is the case if (7,,m7) holds because the involution 7, lifts to an involution 7;, on the line bundle
Opn-1(1), a real degree d map from (P!,n) to (P"~!, 7,) pulls back (Opn-1(1),7,) to a degree d
line bundle over P! with an involution lifting 7, and only even-degree line bundles over P! admit
such lifts. This establishes the vanishing claim if either ¢pn-1 =7, and ¢=7 or (7,n) holds. The
assumption that the degrees of p; are even is not necessary in these cases.

By the real version of Quantum Lefschetz Hyperplane Theorem (as in [10, Proposition 7.7]), the
real genus 0 degree d GW-invariants of (X,wy|x,¢) with insertions u; = H% for some c; € Z>°
are equal to the real genus 0 GW-invariants of (P"~!, ¢pn-1) twisted by the Euler class of a vector
bundle. If either a; €27 for some i or d€2Z and ¢€Z™", then this bundle contains a subbundle of
odd rank and the invariants of (X, wy|x, ¢) vanish.

Suppose d€2Z and (=0, i.e. X,,.a=P" 1. If [P!] is the generator of Ho(P" 1), then

c®

min

(d[P']) = 2n > (dimpX)/2 + 1 = n.

Thus, the real genus 0 degree d GW-invariants of (P"~!, w,,, ¢pn—1) with de2Z vanish by the last
statement of Corollary 2.5. This concludes the proof of Corollary 2.6(1).

It remains to establish Corollary 2.6(2). We assume that
dimcX =n—1-4> 0.

Along with the assumption on |a|, this implies that n>|a|. By Corollary 2.6(1) and the reasoning
above, we can also assume that a; ¢ 2Z for every i, d ¢ 27, and X is odd-dimensional. The last
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assumption implies that H2*(X) is gencrated by H2(X)? as an algebra over Q, Hy(X) =H>(X)y
is one-dimensional, and (X, wy|x, @) is a real Fano symplectic manifold. Along with the middle
assumption, it implies that

c®

min (

d[P']) = n—|a| = (a), — ((dimgX)/2—-1),
¢ (d[PY]) = 3(n—|a]) > n—¢ = (dimpX)/2 + 1.

Corollary 2.6(2) thus follows from the first statement of Corollary 2.5 and the linearity of real
genus 0 GW-invariants. O

Analogously to the situation in complex GW-theory, Theorem 2.1 is related to the quantum coho-
mology of (X,w). Let (X,w, ¢) be a real symplectic manifold. Suppose that either

(C1) the conditions (O;) and (O,) in Section 2 hold or
(C2) ce{r, n} is fixed and (O,) holds.

In the first case, let
Ha(X)j, = Ha(X)y—{0}.

In the second case, let Hy(X)7 be as above if X? = and Ho(X)s—Im(0) if X? # . For each
Be Hy(X)}, denote by (.. >g the real invariant (2.8) in the case (C1) and the real invariant (2.6)

in the case (C2).
Choose bases {7;}i<¢ and {7'};<¢ for H*(X) so that

¢
PDx2(Ax) = Y 7ixy' € H*(X?),

i=1

as before. Let g denote the formal variable in the Novikov ring A on Hy(X;Z) and set

A=A[g"%), QH*(X)=H*(X)®A, QH*(X)} =H*"(X)%®A=QH(X)%[¢"*;
see [25, Section 11.1]. We define a homomorphism of modules over A by

L
Ry: QHN(X) — QH*(X)? s Rop= >, 2 w5y’ ¥ peH*(X),
BeHs (X))}, i=1

where 2n=dim X. By Theorems 2.2 and 2.1,

Rou=0 VpueQH*(X),  and  QRpus#po = p1 * Rypa Y g, p2 € QH*(X)?

respectively, where * is the quantum product. If in addition {c;(X), 5)€2Z for all € Ho(X) that
can be represented by J-holomorphic spheres for a generic J ejf , then

Rotie # e = Ry (e # py) YV po € QHY(X)?  py € QH*(X)?

this can be seen by an argument similar to the proof of Proposition 4.3.

We conclude with some counts of real curves in P2, P5, and P7; see Tables 1 and 2. These numbers
are consistent with basic algebro-geometric considerations [17, p177].
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d N7

1 1

3 1

5 5

7 85

9 1993

11 136457

13 3991693

15 1580831965

17 -129358296175

19 106335656443537

21 -39705915765949931

23 27364388694945255653

25 -19263282511829476981415
27 17458116427845844069499545
29 | -18101279473337469331178336611
31 | 22138019795038729862257691515501

Table 1: The number Nd]R of degree d real rational curves through d non-real points in P3.

Every degree 1 curve lies in a P!, every non-real point p in P?*~! determines a real P! c P?"—1,
and a real line passing through p lies in this P'. Thus, Ni¥, (51397, and (7'5°3°)7" should
equal 1, at least in the absolute value.

Every degree 3 curve lies in a P?, every two general non-real points p; and ps in P2*~! determine
areal P2cP?"~! for n>2, and a real degree 3 curve passing through p; and ps lies in this P3.
Thus, a real degree 3 curve in P° passing through two general points p; and ps and a general
plane 7 lies in the real P2 determined by these two points and passes through the point 7nP3;
so the number <5231>§5 should equal N3R, at least in the absolute value. By the same reasoning,
the number (725931)I7 should also equal NX.

Every degree 5 curve lies in a P, every three non-real points pi, po, and p3 in P7 determine
a real P?, and a real degree 5 curve passing through pi, p2, and ps lies in this P?. Thus, the
numbers (73513977 and (735°32)I" should equal (5?3°)2* and (533%)1°, respectively.
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d (iogldo (T503) T
1] 71593 1
d | cond (52307 {70513t 1
1| 5139 1
1| 795933 1
1| 5932 1
3 | 725931 -1
3| 5231 -1
3| 715230 -1
3] 5133 -3
3| 715132 -3
3| 593° -5
3| 715031 -5
5] 5%30
3| 795331 -3
5| 5332 :
3| 795233 -1
5| 523% -7
3| 795135 89
5| 5136 93
3| 795937 1155
5| 5Y3° 12417 = 3E T30 :
7] 53 23 5] 75932 1
7] 5133 -213 e 7ErgT 3
7| 533 -2679 SRR >
7| 5237 -23001 =T 2E055 =5
7| 5139 874089 T TEI30 =T
7 | 5931 90271011 = TTEge -
720 -
J 5632 21 5| 7'5%23% -239
9|53 -503 5] 715136 2181
9| 5734 -16399 08
— 5| 71593 75405
9| 513 -394863 e UEsgT =
9| 5338 -6924579 1 0=133 =19
9 | 52310 69060873 = 05335 50539
9 | 51312 | 19824606009 = 0E2gT 138481
9 | 59314 | 1811570349393 T
5| 79513 7937169
5 | 795931 | 139758309

Table 2: The numbers (53%)7 and (7%5°3°)7 of degree d real rational curves through a non-real
points and b non-real planes in P> and through a non-real points, b non-real planes, and ¢ non-real
linear P*’s in P7, respectively.
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