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COUNTING GENUS ZERO REAL CURVES
IN SYMPLECTIC MANIFOLDS

MOHAMMAD FARAJZADEH TEHRANI
PART 2 JOINT WITH ALEKSEY ZINGER

ABSTRACT. There are two types of J-holomorphic spheres in a symplectic manifold
invariant under an anti-symplectic involution: those that have a fixed point locus
and those that do not. The former are described by moduli spaces of J-holomorphic
disks, which are well studied in the literature. In this paper, we first study moduli
spaces describing the latter and then combine the two types of moduli spaces to
get a well-defined theory of counting real curves of genus 0. We use equivariant
localization to show that these invariants (unlike the disk invariants) are essentially
the same for the two (standard) involutions on P4"~1,
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1. INTRODUCTION AND MAIN RESULTS

Let (X,w,®) be a symplectic manifold, which we will assume to be connected
throughout this paper, with a real structure ¢, i.e a diffeomorphism ¢: X — X such
that ¢> = idy and ¢*w = —w. Let L = Fix(¢) C X be the fixed point locus of
¢; L is a Lagrangian submanifold of (X,w) which can be empty. In the simplest
case of (X,w) = (P!, wys), where wrg is the Fubini-Study symplectic form, there are
involutions of both types. An almost complex structure J on TX is called (w, ¢)-
compatible if ¢*J = —J and w(-,J-) is a metric. Denote the set of such almost
complex structures by J, 4 or simply Jj.

Fix a compatible almost complex structure J. Let u: P! — X be an n-marked
somewhere injective JJ-holomorphic sphere, i.e.

(1.1) du+Joduoj=0, ut(u(z)) = {z} for almost every z € P',

where j is the complex structure of P*. We call such a .J-holomorphic map real if its
image (as a marked curve) is invariant under the action of ¢. In this case, pulling
back ¢ to P!, we get an involution on P!, which may or may not have fixed points and
preserves the set of marked points. After a change of coordinates, an anti-symplectic
involution with fixed points can be written as

PP P [z wl) = [, 2],
while a fixed point free involution can be written as
(1.2) n:PL—= P n([zw]) = [@, -2

For k,1 € Z=° and A € Hy(X), we define My (X, A)»™ and M, (X, A)*" to be the
moduli spaces of degree A genus zero J-holomorphic curves u: P! — X satisfying

(1.3) u=¢ouor and u=¢ouon,

respectively, with [ disjoint ordered conjugate pairs of marked points, along with &
real (7-fixed) marked points in the first case. Similar to [21, Appendix C], these
moduli spaces have real virtual dimension

dim"™ My (X, A)*" = dime X + ¢ (A) + 20+ k — 3,

(1.4) .
dim*™ M, (X, A)?" = dime X + ¢ (A) + 21 — 3.

Every J-holomorphic map u: P! — X in M, (X, A)*7 corresponds to two J holo-
morphic disks w: (D?,S') — (X, L) with k boundary marked points and [ (&£)-
decorated! interior marked points, representing 3, —¢.3 € Ho(X, L); the j-th deco-
ration is (+) if the first point of the conjugate pair (z;,7(2;)) lies on the chosen disk
and is (—) otherwise. We define M{3*(X, L, 8)qec and M{55(X, L, B) to be the mod-
uli space of such J-holomorphic disks with and without decorations, respectively. Let

IDecorated moduli spaces are studied in [11].
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M (X, A)?" and M, (X, A)*" be the stable map compactifications of M;(X, A)®"
and M, (X, A)?7, respectively. Let

evi: My(X, A)W] — X, ev([u, X, (2, U(Zj))é':l]) = u(2),
(1'5) eVz‘B: Mk,l(‘X’ A)qsﬂ— — L, eViB<[uv 2, (wj);?:l’ (Zjv T(%))é’:l]) = u<wi)7
evit My (X, A7 = X, evi([u, %, (wj)é?:p (2, 7’(%’))2:1]) = u(2),

be the natural evaluation maps.
For the classic moduli space M,,(X, A) of J-holomorphic spheres in a homology
class A, genus 0 Gromov-Witten invariants are defined via integrals of the form

(1.6) (01, ,0,) , = / evi(B) A -+ Aevi(6,),
[My (X, A)]vie

where 0;’s are cohomology classes on X; see [7, 20, 25]. These integrals make sense
and are independent of J, because M,,(X, A) has a (virtually) orientable fundamen-
tal cycle without real codimension one boundary. One would like to define similar

invariants for the moduli spaces MZT;I{(X , L, ) and the evaluation maps in (1.5). The
existence of such invariants is predicted by physicists [4, 19, 22, 29]), but there are
obstacles to defining such invariants mathematically. In addition to the transversal-
ity issues (which are also present in the classical case), issues concerning orientability
and codimension one boundary arise.

1.1. Disk or 7-invariants. Whereas moduli spaces of closed curves have a canonical
orientation induced by J, /\/l%flsk(X , L, 5) is not necessarily orientable. Moreover, if
it is orientable, there is no canonical orientation. If L has a spin (or relative spin)

structure, then M%f?k(X , L, 8) is orientable and a choice of spin structure canonically

determines an orientation on M%f?k(X , L, B); see [8, Theorem 8.1.1].
Let v : Hy(X) — Hy(X, L) be the inclusion homomorphism. The union of moduli

spaces M:??k(){, L, B)qec over all B € Hy(X, L) such that t(A) = 8 — ¢, is an étale?
double covering of My (X, A)*7, with the deck transformation

(1.7) s [, (w51, (25 €6)5o] = [P owo e, (wy) iy, (e(z), =€) -],

where €¢; = £ is the decoration and ¢(z) = Z; see [11, Theorem 1.1.(3)], if [ > 0, and
23, Section 1.3.4], if [ = 0, for a more detailed description of this covering map. At
several points in the paper, we go back and forth between the two descriptions to
relate the known results for J-holomorphic disks with the corresponding statements
for the (¢, 7)-real maps.

For every 8 € Hy(X, L), k,l > 0, a choice of spin structure on L = Fix(¢) deter-
mines an orientation on M‘gflsk(X , L, 8) dec, with the anti-complex orientation imposed
on the tangent spaces at the (—) marked points, as in [11, Section 4]. By [9, Theorem
1.3] and [10, Corollary 5.4], 7o is orientation-preserving if and only if @ +k is even,
where p(8) € 27 is the Maslov index of 8. In particular, if L is spin and 4|c;(T'X)
(i.e. 4lci(A) for every A € Hy(X)), then Mo (X, A)®™ or simply M;(X, A)*" is
orientable, while 7, is orientation-reversing on ./\/l‘liflsk(X L,y ) dec-

2Etale double covering means that over the main stratum M%i?k(X ,L, ), it is double covering;
however, over the boundary strata it has higher degrees.
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FiGure 1. Half of the curves in the codimension one boundary strata

Of ﬂk,l (X, A)d)’T

The boundary of Mk,l(X ,A)*7 i.e. the subspace of maps with at least one node,
has two types of real (virtual) codimension one strata; see Figure 1. The first type,
called disk bubbling, consists of maps from two spheres with a real point in common.
This strata breaks into unions of components isomorphic to

(18) MliFlall (X7 A1)¢’T X(ev?,ev?) Mk2+1,lz (X, A2)¢’T/G7
where
Zo, if k1=0, A = A;

Lhi+la=1, kitko=k A+A=A4A G= )
1+t ) 1+ R 1+ A2 {{1}, otherwise.

The second type, called sphere bubbling, appears only if kK =0 and A = B — ¢.B
for some B € Hy(X). It consists of maps from nodal domain ¥ = P* U, P!, taking
the node ¢ to L. This strata is isomorphic to (Zs-quotient of)

(19) I_I (Ml-i-l(Xa B)dec Xevy L),

BeH>(X)

B—¢.B=A
where the intersection point with L, which corresponds to the first marked point
in the 1 + [ marked points, has no decoration. Note that the natural extension
of 74 preserves each component of the domain of every map in the first case and
interchanges them in the second case.

If a codimension one strata is a boundary, an integral similar to (1.6) depends on
the particular choices of the integrands (and other choices); thus, does not produce
invariants. The boundary problem is present in nearly all cases. In the disk formu-
lation, it has been overcome in a number of cases by either adding other terms to
compensate for the effect of the boundary [27, 28, 6] or by gluing boundary com-
ponents to each other to get moduli spaces without boundary [26, 11]. In the real
curve formulation, the latter approach actually shows that the disk-bubbling strata
is a hypersurface in the real moduli space across which the orientation extends; see
Proposition 3.1. None of these methods can address the issue of sphere bubbling; we
address it in this paper.

1.2. n-invariants. The moduli spaces M;(X, A)%" have mostly been ignored in the
literature. As we show, the codimension one boundary consists of maps from a
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wedge of two spheres taking the node to L. The restrictions of each map to the two
spheres determine elements of Mj;(X, B)gec and My4(X, —¢.B)gec that differ by
the involution

¢./\/l: Ml+l(X7 B)dec Xevy L — Ml—i—l(Xa _¢*B)dec Xevy L7
[U, 20, (217 61)7 ) (Zla Gl)] — [¢ ouoc, C(Z0)7 (C(Zl)a _61)7 ) (C(Zl)a _El)]7

where c: P! — P! and ¢(z) = z. Thus, the codimension one boundary breaks into
unions of components isomorphic to (Zs-quotient)

(111) M1+Z<X, B)dec ><ev1 L7

with B € Hy(X) such that A = B — ¢, B. In particular, if Fix(¢) = (), there are no
codimension one boundary components, and we obtain the following result.

(1.10)

Proposition 1.1. If (X, w, ¢) is a symplectic manifold with a real structure ¢ and
Fix(¢) = 0, My(X,A)*" has a topology with respect to which it is compact and
Hausdorff. It has a Kuranishi structure without boundary of virtual real dimension

d=c(A)+dimec X — 3+ 2I.

This proposition and Theorem 1.7 are proved in Section 2 based on [8] by providing
the adjustments to the real case.

Remark 1.2. There are many symplectic manifolds (X, w) admitting anti-symplectic
involutions without fixed points. For example, the involution 7,1 on P?"~1 defined
in (1.13) has no fixed points. Furthermore, the symplectic cut of [5, Section 2]
associates to each real symplectic manifold (X, w, ¢) with Fix(¢) = S™ RP" a real
symplectic manifold (X, ,wy, ¢, ) with Fix(¢y) = 0 by “cutting out” Fix(¢) and
replacing that with a divisor.

In order to define invariants, we also need to consider the orientation problem,
which has not been studied before. A real structure on a complex vector bundle
E — X is an anti-complex linear involution ¢g: E — E covering ¢. A real square
root of a complex line bundle £ — X with real structure ¢, is a complex line bundle
L' — X with real structure ¢, such that

(L,0c) = (L'RL, ¢ @ drr).
The involution ¢ on X canonically lifts to an involution ¢k, on the complex line
bundle Ky = A(tCOpT*X )

Theorem 1.3. Let (X,w,¢) be a symplectic manifold with a real structure. If
(Kx, ¢ry) admits a real square root, all moduli spaces M(X, A)®" are orientable.
Moreover, a choice of real isomorphism (Kx, ¢ry) = (L ® L, ¢ @ ¢r) canonically
determines the orientation.

This theorem is proved in Section 2.1. By abuse of terminology, throughout the
rest of this paper, by a real square root we mean a choice of complex line bundle £
on X with a real structure ¢,, together with a choice of real bundle isomorphism

(KX7¢K)() = (‘C ® Lv ¢E & ¢L)

Remark 1.4. If £ — P! is a holomorphic line bundle with a complex anti-linear
involution lift 7 of n: P* — P!, for all k € Z there is a decomposition

H(L® (TPHY**) = HY (L @ (TPY)**) @ H° (L @ (TP')*F)
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into the £1 eigenspaces of the endomorphism
HY (L ® (TP)*") — HY(L @ (TPY)*"), &= qofomn;

the two eigenspaces are interchanged by the action of i. Since the action of n on P!
has no fixed points and H°(L @ (TP')®*) is nonzero for k large enough, the zeros
of every element of H) (L ® (TP')®*) come in pairs and thus deg £ is even. Hence,
if M;(X,A)?" is non-empty, then 2|Kx(A). Thus, if Kx has a real square root,
then 4|K x (A) whenever M;(X, A)®" is non-empty. The last requirement can not be
removed. For example, if (X, ¢) = (P! 74,,,1), then Kx has a real square root
but 41 Kx(¢), where ¢ C Hy(P*™!) is the homology class of complex projective line.

If (X,w, @) is a Kdhler manifold with an anti-holomorphic anti-symplectic involu-
tion ¢ and £ — X is a holomorphic line bundle, then £’ ® ¢*£’ is a holomorphic
line bundle with a real structure. Hence, if £ — X is a holomorphic line bundle,
L=L®L, and ¢*L = L', then £ admits a real structure. Suppose 4|Ky, i.e. there
is a divisor D such that Kx = [4D]. Since ¢*Kyx = K, it follows that [D — ¢, D] is
torsion.

Proposition 1.5. Let (X,w,¢) be a symplectic manifold with a real structure. If

either

(1) H{(X;R) =0 and c1(TX) = 4a for some a € H*(X;Z) such that « = —¢*a, or

(2) X is compact Kihler, ¢ is anti-holomorphic, and Kx = [4D] for some divisor D
on X such that [D] = [¢,D],

then (Kx, ¢y ) admits a real square root.

We prove this proposition in Section 2.2. An example with M;(X, A)®" non-
orientable is described in Section 2.2. In the simply connected case, [12, Example
2.6] provides an example where M;(X, A)?7 is not orientable.

1.3. Real GW invariants. If L = Fix(¢) # () and the sphere bubbling is present
(k =0and A = B — ¢.B for some B € Hy(X)), we cannot define either the 7-
invariants nor the n-invariants separately. It is noted in [23, Section 1.5], that in
order to get well-defined invariants in these case, the moduli spaces M;(X, A)®™ and
M;(X, A)?" need to be combined somehow. This is achieved in this paper.

As described in Sections 1.1 and 1.2, the codimension one boundary corresponding
to sphere bubbling in M;(X, A)*" is the same as the codimension one boundary
of My(X,A)?". By attaching M;(X, A)*™ and M;(X, A)*" along their common
boundary (i.e. considering all genus 0 real curves representing class A), we obtain a
moduli space M;(X, A)? whose only possible codimension one boundary corresponds
to disk bubbling. We then use the results of [26] and [11] and observe that the
codimension one strata of M;(X, A)? corresponding to disk bubbling are in fact
hypersurfaces and therefore M;(X, A)? (virtually) does not have any codimension
one boundary.

If K x has areal square root, L is spin, and 4|c; (T'X), the moduli spaces M; (X, A)%"
and M;(X, A)® are oriented. By studying the orientation along the common bound-
ary we show that the union is also orientable.

If Kx admits a real square root, (£, ¢.), as above,

(1.12) ARPTL = L% @ L%,
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thus the Lagrangian L is orientable and the induced orientation is independent of
the choice of real square root. A spin structure on L is a trivialization L[2] x RdimzL
of TL over the 2-dimensional skeleton L[2] of a triangulation of L. Given such a
trivialization, by taking the determinant of that, we obtain a trivialization of Aﬁg’pTL
over L[2]. Therefore, if we know that L is orientable, there is a unique choice of ori-
entation on L which is equal to the one induced by the spin structure on (AgPTL)|
as above.

Definition 1.6. We say that a given real square root for Kx and a given spin
structure on L are compatible if their induced orientations on L as above are reverse
of each other.

In the situation of Definition 1.6, we would orient L with the induced orientation
of the spin structure.

Theorem 1.7. If (X, w, ¢) is a symplectic manifold with a real structure ¢, M;(X, A)?
has a topology with respect to which it is compact and Hausdorff. It has a Kuranishi
structure without boundary of virtual real dimension

d=c1(A)+dime(X) — 3+ 2l.

If in addition 4|c1 (T X), then a compatible pair of a real square root for Kx and a spin
structure on L determines an orientation on M;(X, A)?, hence a virtual fundamental

class [M(X, A)?]r.

We prove the first part of this theorem in Section 2.3 and the second part in
Section 3. We call the resulting invariants real GW invariants. The moduli space
M,(X, A)? provides a framework to define real GW invariants without any restric-
tion on the topology of the image or the involution. If M;(X, A)" or M,;(X, A)%"
is empty, the real invariants reduce to the disk invariants or n-invariants above. If
M;(X, A)? is not orientable, we may still consider invariants with twisted coefficients
(coefficients in the orientation bundle). For example, [10] shows that for some cases
where both the Deligne-Mumford space and Mj,;(X, A)®7 are not orientable, invari-
ants with twisted coefficients pulled-back from the Deligne-Mumford moduli space
exist. In our case, the Deligne-Mumford space is orientable, however, one may still
find non-orientable geometric cycles within M;(X, A)? that provide the necessary
twisting coefficients.

For example, if Fix(¢) = L =2 S%, X is a real symplectic Calabi-Yau threefold?,
and A € Hy(X) is non-trivial, then M(X, A)? is (virtually) zero-dimensional and
orientable. In fact, T'L is trivializable (hence it is spin), by Proposition 1.5 every
real symplectic Calabi-Yau threefold admits a real square root, and by Theorem 1.7
we should choose the one which is compatible with the chosen spin structure on L;
therefore, the orientation of M(X, A)? depends on the choice of spin structure on
L. In this case we cannot define disk invariants or n-invariants separately. We define
genus 0 real GW invariants of (X, ¢) by

N(X) = #[M(X, A" € Q.

3Following [16, Section 14.2], by a “symplectic Calabi-Yau” we mean a connected symplectic
manifold of vanishing first Betty number.
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By applying the degeneration technique of [5], we prove the following Theorem in
Section 4. It implies that for some J, the only contribution to N$(X) is from 7-
curves. Hence, it demonstrates that considering only J-holomorphic disks does not
suffice to get non-trivial invariants in this set of examples.

Theorem 1.8. Let (X,w, @) be a real symplectic Calabi- Yau threefold. If Fix(¢)=S3,
for every nonzero A € Hy(X,Z), there exists an almost complex structure J € T, 4
such that the T-moduli space M(X, A, J)®™ is empty.

In fact, in [5], we show that there is a natural Hamiltonian S'-action on a neigh-
borhood of L in X. Applying the symplectic cut and symplectic sum procedures to
this action, we build a symplectic fibration 7 : X — A over a disk in C, where the
smooth fibers are symplectomorphic to X and the central fiber is normal crossing,
Xo = X_Up X,. We get an induced anti-symplectic involution on X which leaves
X, invariant and restricted to X, has no fixed point. Moreover, we get a canoni-
cal inclusion of Hy(X) in Ho(X ). Via the symplectic sum procedure, every almost
complex structure Jy on Xy, i.e. a union of two almost complex structures J, and J_
on X, and X_, respectively, where both preserve D, extends to an almost complex
structure J on X which is compatible with the fibration and the symplectic structure.
We can think of Jy = J|x,, X\ = 7 *(\), as a family of almost complex structures
on X converging to a singular almost complex structure. Then, for any E > 0, we
show that there exists Jy and 0 < Ao such that M(X, A, J,)%", whenever 0 < A < )\
and w(A) < E, is empty.

1.4. Projective spaces (joint with A. Zinger). We now discuss in some detail
the case X = P?"~! The involutions 7,n: P! — P! are special cases of the anti-
holomorphic involutions

Tom—1, om—1: P*" 1 — PP
where
Tom-1([21, Za, . .., Zom—1, Zow)) = ([Z2, 21, . . ., Zoms Zam—1]),
Mom-1([21, Za, - .., Zom—1, Zow)) = ([=Z2, 21, ..., — Zom, Zom—1]).

The fixed locus of 7a,,_1 is the real projective space RP?™~! while the fixed locus
of n9;,_1 is empty. The latter implies

(1.14) M, (PPt gymm-1T — (),

The next observation is established in Section 5.1.

(1.13)

Lemma 1.9. Suppose d,meZ* and l€Z=°. Then,
MUB L dynn = ifdgoz,

(1.15) _ _
M (P2t dyer-in = if de 2.

Since Kpim-1 = [—4mP*m=2] and RP*™~! is spin, by Proposition 1.5 and Theo-
rem 1.7, M;(P*"~1 d)? is orientable for ¢ ="Ty,_1, Nam_1. In fact, Euler’s sequence of
holomorphic vector bundles

(1.16) 0 — P 'xC -5 nOpeai (1) 25 TP —5 0
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over P"~! provides a canonical compatible pair of real square root for Kpn-1 and spin

structure for RP"~!, whenever n=4m; see Section 5.5. For [,t1,...,t, € Z*, we can
then define
(1.17) N:f(tl,...,tl):/ eviH" A ... NeviH",

ml(lpélnz—l’d)d)

where H € H*(P*"~! Z) is the hyperplane class.

Theorem 1.10. For all m,d,l,ty,...,t; € Z*,

(1.18) NIy, oo t) = =Nty ..o 1),
Furthermore, these invariants vanish if d €27 or t, € 2Z for some k.

We prove this theorem in Section 6.3 using the equivariant localization theorem
of [1]. While (Kpim+1,Ngm+1) does not admit a real square root and Fix(7y,+1) does
not admit a spin structure, we show that Theorem 1.10 and its proof extend to P4"+!
with the orientations on the moduli spaces explicitly constructed in Section 5.2; see
Remark 6.9.

If d is odd,

Ml(]PAm—l’ d)mm,l _ M;(P4m_1, d>7—4m,1777
ml(]PAm—l7 d)774m—1 — —./Vl(]PAm_l, d)?’]4m—1777’

by the first statement in (1.15) and by (1.14), respectively. The sign in (1.18)
and (1.19) occurs because we reverse the orientation of M;(X, A)*" when gluing
it to M;(X, A)*" in order to make the glued moduli space oriented. In fact, the
canonical square root and spin structure described in Section 5.5 give the same orien-
tation on Fix(74,—1). Therefore, they are not compatible in the sense of Definition 1.6
and one of the orientations has to be flipped. As described in Sections 6.1 and 6.2,
the torus fixed loci in

MyPt d)y e and M (P dymeo,

(1.19)

their normal bundles, and the corresponding restrictions of the cohomology classes
being integrated are the same; this confirms (1.18) for d odd.

If d is even, NJ*" ' (t1,...,%) = 0 by (1.14) and the second statement in (1.15).
On the other hand, in this case, the fixed loci in

(1.20) M dy T and - M P d),

their normal bundles, and the corresponding restrictions of the cohomology classes
being integrated are the same. Since the canonical orientation on the second space
in (1.20) gets flipped when it is glued to the first, the contributions to N ' (¢4, ..., )
from the fixed loci cancel in pairs. This confirms (1.18) for d even and establishes
Theorem 1.10 whenever 2|d.

Whether d is odd or even, if 2|t, the contributions to Nj’(tl, ..., t;) from the fixed
loci in M;(P*™=1 d)?¢, for ¢ = 7,7 fixed, also cancel in pairs. This establishes the
remaining vanishing statement of Theorem 1.10.

In Example 6.3, we show that

(1.21) Nty t) =1
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whenever
(1.22) ty, .., L €ZLT =27 and ti+...+t; =4m—2+l.

In particular, the signed number of real lines passing through a single non-real point
in P¥"~1 with the standard conjugation is +1 with respect to the canonical spin
structure of Section 5.5. In Example 6.4, we show that

(1.23) N§4"‘_1(t1,t2,4m—1) = -1
whenever
(124) tl,t2€Z+—2Z, t1,t9 >3, and t;+ty = 4dm+2.

A similar computation shows that
NZ*(3,3,3,3,3) = 5.

Remark 1.11. All moduli spaces M;(P*"~1 d)%¢ are given explicit orientations in
Section 5.2. In the ¢ = 7 case, the orientation turns out to come from a relative
spin structure on RP?"~! and Proposition 3.1 still applies. We show directly that
so does Proposition 3.3; see Proposition 5.5. Thus, we can also define the numbers
N9(t1,...,t;) as in (1.17) using the algebraic orientations of Section 5.2. They can
be computed using the equivariant localization data of Sections 6.1 and 6.2 with
only minor changes; see Remark 6.9. The conclusions of Theorem 1.10 still apply.
The conclusions of (1.21) and (1.23) apply to the algebraic orientations on the mod-
uli spaces for P41 which agree with the orientations by a canonical relative spin
structure for d odd; see Remarks 6.5, 6.6, and 6.9.

1.5. Outline and acknowledgments. In Section 2, we investigate the boundary
and orientation problems for moduli spaces of real curves without fixed point and
define n-invariants. In Section 3, we combine the orientation problem of M (X, A)%"
and M(X, A)®" and finish the proof of Theorem 1.7. Theorem 1.8 is proved in
Section 4. In Section 5, we study the moduli spaces of real maps P! — P?m~1 in
detail. We provide equivariant localization data for them and establish Theorem 1.10,
(1.21), and (1.23) in Section 6.

I would like to thank Professor G. Tian, for his continuous encouragement and
support and for sharing his inspiring insights, and A. Zinger, for his patience and help
with the exposition of this paper. I am also grateful to P. Georgieva and J. Solomon
for many helpful discussions. Finally, I would like to thank the referee for many
valuable comments and suggestions.

Part 1. Construction of genus zero real GW invariants

2. MODULI SPACES OF REAL CURVES WITHOUT FIXED POINTS

In this section, we study the moduli space of real curves of genus 0 without real
points. As before, let

(2.1) n,7: P — P, nz)=—, 7(z)=-.

I\

Denote by G, the set of Mobius transformations (automorphisms of P'), p(z) =
az+0b

cz+d

, commuting with 7. It acts freely and transitively on the sphere bundle S(TP*)
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of TP'. Since S(TP') = RP?, G, is a compact orientable Lie group. Furthermore,

the induced orientation on S(TP') as the boundary of the unit disk bundle D(TP!)

with its complex orientation, with the convention as in (3.1), induces a canonical
orientation on G,. For this orientation on G, vi,vs,v3 € TiaG,,, where

i d | zZ+a
U1 + 10 = — o=
1 2= g 1*=0
d 9
U3 = — |p=0 €“2
3 a6 |0—0 )

1—az’

is an oriented basis.

Similarly, let G, be the set of Mobius transformations commuting with 7. The
automorphism group G, has two connected components, G2 containing the identity
and p - G2 where p(z) = 27!. The former is the automorphism group of a disk and
the latter switches the two disk components of P! \ Fix(7). Fixing one of the disk
components D as the reference disk, GO acts freely and transitively on the sphere
bundle S(TD) of TD. Since S(TD) = D x S', GY inherits an induced orientation.
Let D be the choice containing z=0€ P!, then uy, uy, uz € T}qGY, where

i d‘ z4+a

U U = T |la=0 77—

! > da 01+az
d i0

U3 = — |g=o €" 2,

3= 10 lo=0

is an oriented basis. We use these conventions in orienting the corresponding moduli
spaces and in the proof of Theorem 1.3 and Theorem 1.7.

The involution ¢ on X induces an involution ¢ on the moduli space My (X, A) of
all degree A 2l-marked somewhere injective J-holomorphic spheres:

gzﬁ([u, 21,29, -y 2901, 22[]) =[pouonn(z),nz1),...,n(zm),n(z2-1)]-

For every J-holomorphic sphere u: P! — X in the fixed point locus of ¢, there exists
at most one anti-holomorphic involution 7, such that Fix(n,) = 0 and u = ¢ ouony;
therefore, the fixed point locus of ¢ contains M(X, A)?n. Intuitively, M;(X, A)®"
has half the dimension of My (X, A).

Remark 2.1. If X @ P!, ¢ =7, A=[1] € Hy(P') 2 Z, and | = 0, Mo(P*,[1]) is
just one point on which ¢ acts as identity while M (P, [1])™" is empty; therefore,
Fix(¢) # Mo (P, [1])™".

Let M;(X, A)*" denote the stable map compactification of M;(X, A)®". This is
a closed subset of My (X, A) consisting of maps [u, ¥, 21, . . ., 2] with the property
that there exists an anti-holomorphic involution 7, on the domain ¥ of u such that

[Fix(n)| <1, u=douon,  nu(22) =2z, ..., nulza) = 22-1.
Thus, there are two possible cases for n,: 3 — 3
(1) ¥ =20 UlJ,(3: UX;), nu: o = X is an anti-holomorphic involution with-
out fixed points, and n, : ¥; — ¥; is an anti-holomorphic map with inverse
Th - 25 — Zi;
(2) ¥ = ;3 UX;), o X; — 35 is an anti-holomorphic map with inverse
Nu' 25 — 2.
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In the second case, 7, fixes a node of ¥, which must be mapped by u to Fix(¢);
M,(X, A) contains no such elements if Fix(¢) = 0.

The virtual codimension of a boundary stratum of M;(X, A)®" is the number of
nodes in the domains of the elements of the stratum. If Fix(¢) = ), M;(X, A)"
contains no elements of the second type above, and so its boundary strata have
codimension at least two. Thus, M;(X, A)*" is a moduli space without (virtual)
codimension one boundary if Fix(¢) = ), and there is a hope of defining GW-type
invariants directly from M;(X, A)®".

We study the orientation problem for M;(X, A)®" in Section 2.1 and describe a
Kuranishi structure in Section 2.3.

2.1. Orientation. Let ¢ = 7,7. In the orientation problem for M;(X, A)?¢, it is
sufficient to consider the case | = 0 because any pair of marked points (z;, Z;) increases
the tangent space by T.,P*, which has a canonical orientation. Denote by Py (X, A)%¢
the space of (parametrized) degree A J-holomorphic maps u : P! — X such that
pou=wuoc. The group G. acts on this space by

Ge x Po(X, A)?¢ — Py(X, A)?°, g-u=uog .
By definition,
Mo(X, A)? = Py(X, A)*°/G...
For example, Py(P!, 1) =G, and My(P!, 1)*¢ consists of a single point. The next

observation is used in Section 5.

Lemma 2.2. Let c=1,7n. If Po(P!,1)%¢ =G, is oriented with the canonical orien-
tation of G. as at the beginning of Section 2, then My(P',1)%¢ is a single negative
point.

Proof. The group action in this case is given by

G. x G. — G, g-h—>hog™*,

The claim is thus equivalent to the statement that the differential of the map
Gc — Gc; g—>9 717

is orientation-reversing at the identity. This differential is the multiplication by —1.
Since the dimension of G, is odd, it is orientation-reversing. [l

The orientation problem for M;(X, A)®7 has a long history. Below we focus on
the orientation problem for M;(X, A)®". In contrast to the group G, the group G,
is connected. In order to put an orientation on Mg(X, A)®7, it is thus enough to
orient Py(X, A)?". For this, we need to orient the determinant of the index bundle

detr(E) = A*PH(E)r @ A“P(HY(E)R),

where E = w*TX and H°(E)g and H'(E)g are the real elements of the kernel and
cokernel of a Cauchy-Riemann operator on E. Recall that E admits an anti-complex
linear involution Ty; see the left diagram in (2.11).
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Definition 2.3. Let £ — P! be a complex vector bundle with a real structure ¢
covering 1. We call a trivialization of E over C* C P!,

E—YCrxCn
C* id C*
admissible if the involution ¢y(2) = 1) 0 ¢ 0 ;' coincides with the standard in-

volution C': (z,v) — (n(z),v). Admissible trivializations ¢ and 9" of (E, ¢) over C*
are called homotopic if there is a family of such trivializations vy, t € [0, 1], such that

Yo =9 and ¢y =",

Lemma 2.4. For every complex vector bundle E — P! with a real structure ¢ cov-
ering m, there are two homotopy classes of admissible trivializations over C* C P!,
Moreover, for every admissible trivialization i and every map

Riy: CxC" = C" x C™, R(ei)(z,v) = (€101, , EmUp), € = 1,

R,y o1 is another admissible trivialization which is in the same homotopy class as
W if and only if [[e; = 1.

Proof. (1) As a complex vector bundle, F is trivial over C*. Therefore, we can fix a
trivialization ¢: E — C* x C™. The involution ¢ then corresponds to a map

¢y C* — GL(2m, R)

whose image lies in the set of anti-complex linear matrices. In order to obtain an
admissible trivialization, we find a change of trivialization matrix

(2.2) A: C* = GL(m,C) st. Ay o gy o ATl =0C.

Let By(2) = Cogpy(z) € GL(m, C). Since ¢y, is an involution, By, (1(2))By(2) = L.
Composing on the left by C, we can rewrite (2.2) as

(2.3) Ay 0 Byo AT =1,
Let a: H\ {0} — GL(m,C), where H is the closed upper half-plane, be a family of
matrices such that
(r) = I, if r € RY;
an= By(n(r)) ifreR.
Next define

a(n(z)) if z € H\ {0}.
It is easy to check that A is continuous and satisfies (2.3).

Az) = { a(z)By(z) if z € H\ {0};

(2) If v is an admissible trivialization, any other admissible trivialization is of the
form p o 1), where

(2.4) p: C*— GL(m,C) and  p(n(2))p(z)"! =L,

The question is whether p is homotopic to identity through a family p; of matrices
satisfying the same equation as (2.4).
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Let
G ={7:10,1] = GL(m,C) | 1(0) =3(D},  Go={y € G:9(0) =L, };

the set GG is a group under point-wise multiplication, while Gy is its subgroup. The
restriction of p to the upper semi-circle, {z = ¢™ |t € [0,1]}, determines an element
of G. In fact, the space of p satisfying (2.4) is homotopic to G. The map

(2.5) m: G — GL(m,C), ~v— ~(0),
is a fiber bundle with fiber G. From the associated long exact sequence,
-+ = m(GL(m, C)) = m(Go) — mo(G) — mo(GL(m,C)) — 0,
we conclude that mo(G) = Z/27Z. In fact, the connecting homomorphism
m1(GL(m,C)) — m(Go) = m (GL(m,C)) =2 Z
is multiplication by 2 for the following reason.

We start from the loop 7 : [0, 1] = GL(m, C) given by

e27ris 0 0 0

(s) O 1 0 O
S =

7 O 0 . 0

0O 0 0 1

This loop generates m(GL(m,C)). With the projection map 7 as in (2.5), the re-
stricted S'-family 7~!(y) C G is a non-trivial Go-bundle. For every s € [0, 1], let
asem H(v(s)) C G be the path of matrices

62#1(5(1721‘/)) 0 0 0
t) 0 1 0 O te0.1]
Qs = ) c U,
0 0O . 0
0 0 0 1
Note that ap = id and a; =2 v~2. Then
(2.6) 7 (y(s) = as - Go = {as6 | § € Gy}

Moving along the family of identifications (2.6) over [0, 1], we find that the holonomy
map of 7 !(7) is isomorphic to

h: Gy — Go, h(d) = a5 = ~%.
In other words,
(2.7) 7 (y) 2 Gy x [0,1]/8 x {0} ~ (v*-6) x {1}.
This implies that the connecting homomorphism takes v € 7 (GL(m,Z)) to
7 € mo(Go) = 1 (GL(m, Z)).

The remaining claim of the lemma is checked by chasing the maps in the long
exact sequence. For p = R(,), the corresponding path v in G is the constant path
v(t) = diag(e;). Inside G, via the path

1u(t) = diag(e1=0mH0) ¢ € (0,1, s € [0,1],
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where fi(t) = —st + %, we can deform v = 7 to the path v, € Gy given by
Y1 () = diag(et=e)m1=0),
Then [y1] € m(Go) = m(G1) = Z is equal to n, = —|{i : ¢, = —1}|. Since the
homomorphism
m(GL(m, C)) — mo(Go) = m(GL(m,C)) = Z
is multiplication by —2, v € mo(G) is trivial if and only if 2|n., i.e. if and only if
[[Je: =1 O

Lemma 2.5. Let E — P! be a complex vector bundle with a real structure ¢ lifting n.
Every admissible trivialization of (E, @) over C* C P! canonically determines an ori-
entation of A*P HY(E)g @ A*P(H(E)gr)*. The two orientations given by two different
admissible trivializations coincide if and only if they are in the same homotopy class.

Proof. The proof is analogous to that of [8, Proposition 8.1.4]. Contracting each of
the two circles

1
CO’T:{ZEC*||z|:r} and Coo,r:{ZE(C*HZ|:;}

to a point, we obtain a nodal curve ¥ = ., U X U Xy (Figure 2) with an induced
fixed point free involution 7x. We denote the quotient map by m: P! — ¥. Denote by
q and nx(q) the nodal points of ¥.. We may assume that ¢ and nx(q) are respectively
0 and oo in Xy = P!

conjugation

Ebot Z0 Etop
FIGURE 2. Nodal curve ¥ obtained by pinching Cj, and Cy ,

Via the given trivialization, the bundle (E, $) descends to a bundle (E, $) over X
so that }
FE ’Eog ]P)l x C™
and the involution ¢ |5, sends (z,v) to (7s(2),7). Over Liop U Shor, ¢ is an anti-
complex linear map of the form

gg: E’Etop—> E|Ebot .

A section of (E, ¢) is of the form & = (&op, &0, &bot), With matching conditions at the
nodes. A section ¢ is real if and only if

Ebot(12(2)) = P(€uop(2)), V2 € Trop and & € T(E | )z.

Therefore, it is determined by an arbitrary section of E |5, and a real section of

E |5, which match at g.
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The matching condition at the nodes gives a short exact sequence
0— W (E)g — WW(E |5, ) ® WYP(E |g,)r — Cr — 0.
The associated determinant of the pair (F, (}) is given by
(2.8) detg (E) = dete(E |Seop) © detg(F |5,) ® detc(Cy")".

Over Y, the determinant bundle is canonically isomorphic (after deforming the
Cauchy-Riemann operator) to

APHO(P' x C™)p = AgPR™ C AZPC™.

It inherits an orientation from the choice of trivialization. Since detc(E |s,,,) and
detc(Cy')* carry orientations induced by their complex structures, they are canoni-

cally oriented. Thus, (2.8) induces an orientation on detg(F). O

Proof of Theorem 1.3. By Lemma 2.5, a systematic way of trivializing «*T'X over
C* C P! would orient Py(X, A)?". Let Ky = AZPT*X be the canonical complex line
bundle over X. It inherits an involution Ky: Kx — Ky (covering ¢) from T},. There-
fore, it is a complex line bundle with an involution. Any admissible trivialization of
u*T'X |c+ canonically induces an admissible trivialization of u*Kx |¢c+ and changing
the homotopy class of admissible trivialization of the former changes the homotopy
class of the induced admissible trivialization. We can therefore reduce the orientation
problem to the problem of finding a canonical way of admissibly trivializing u* K x.
This is an easier problem because Kx is just a line bundle and has less structure
than T'X.

Let (L£,¢rz) — (X,¢) be any complex line bundle over X with an anti-complex
linear involution ¢, covering ¢. The line bundle £%? inherits an involution from the
one on L by

Prez(v1 @ v2) = dr(v1) @ dr(v2).

Every admissible trivialization of u*L |c« induces an admissible trivialization of
u* L% |c-. However, changing the homotopy class of trivialization of L does not
change the homotopy class of the induced trivialization on £%2, since changing the
trivialization of £ by the complex linear map R_; of Lemma 2.4 changes the homotopy
class of admissible trivialization of £#2 by R_; ® R_; = id. Thus, for the complex
line bundle (£%% ¢, ®c @) as above u*L®? has a canonical admissible trivialization.

We conclude that given a choice of real square root (Ky, Ky) = (L% ¢r Qc ¢r)
for K, it provides a choice of admissible trivialization for every u*T X |c+, hence an
orientation on Py(X, A)*". Finally, together with the choice of orientation on T'G,,
given in Section 2, we obtain an orientation on M;(X, A)®" such that

T.P(X, A)®" = Ty My(X, A)*" @ TG,

is an oriented isomorphism of vector spaces. O

2.2. Complimentary remarks and examples. Proposition 1.5, which we prove
below, provides examples of symplectic manifolds with the canonical bundle admit-
ting a real square root.

Lemma 2.6. Let L be a holomorphic line bundle over a compact Kahler manifold X
with an anti-holomorphic involution ¢. Up to multiplication by a constant number in
U(1) c C*, L admits at most one anti-holomorphic conjugation lifting ¢ of ¢.
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Proof. Assuming the existence, let gz~51 and gz;g be two anti-holomorphic conjugation

lifts of ¢. Then ) )

P2 = po g,
for some holomorphic automorphism p: X — C*. Since X is compact p = € is
constant. 0

0

Lemma 2.7. Let L be a complex line bundle over a symplectic manifold X with an
anti-symplectic involution ¢. Assuming H'(X,R) = 0, every two anti-complex linear
congugation lifts ¢ of ¢ are equivariantly isomorphic.

Proof. Assuming the existence, as in the proof of Lemma 2.6, let p: X — C* be the
resulting function. From ¢3 = id we conclude that

(2.9) p(¢(x))p(x) = id.
Since H'(X,R) = 0, for every loop v € mi(X) [, p*dd = 0; therefore, image(p(7)) C
C* is contractible. Thus, there is a well-defined square root

Vpi X =T g =
From Equation 2.9 together with the identity

VP(d(x)) o ¢1(x) o \/p(x) = /p(d(x)) o /p(x) 0 ¢1()
we conclude that 1) = /p(¢(z)) o ¢1(x) o \/p(x) is an anti-complex linear involution
isomorphic to either ¢, or —¢s. If the former happens, we conclude that (£, @) is
equivariantly isomorphic to (£, ¢1); otherwise, changing /p with i,/p we obtain the
desired isomorphism. O

Proof of Proposition 1.5. If ¢;(TX) = 4a for some « as in the statement of the
proposition, complex line bundle £ with the Chern class 2a has a real structure
given by the isomorphism
L=L ®¢ (L),
where £ is a complex line bundle with the Chern class a. From the isomorphism of
complex line bundles
Kx 2L L

and Lemma 2.7 we conclude that the canonical real structure and the one induced by
the above isomorphism on Kx are equivariantly isomorphic; thus, (K, ¢k, ) admits
a real square root.

Similarly, under the assumptions of the second part, the line bundle [2D] = [D] ®

(6. D] admits an anti-holomorphic involution. Thus, the line bundle
Ky = [2D] ® [2D]

admits an anti-holomorphic involution and a real square root. By Lemma 2.6, the
canonical real structure and the one induced by the above isomorphism on Kx are
equivariantly isomorphic; thus, (K, ¢k, ) admits a real square root. O

In particular, if either H'(X,R) = 0 and ¢;(TX) = 0 or X is a compact Kéhler
Calabi-Yau with anti-holomorphic involution ¢, then (Kx, ¢, ) admits a real square
root. Similar but weaker result can be found in [2, Lemma 2.9]. Through the isomor-
phism (1.12), we showed that the existence of a square root for (K, ¢k, ) implies
that the Lagrangian L = Fix(¢) is orientable. In the case of a Kéhler Calabi-Yau
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manifold, the orientability of the Lagrangian L can also be seen directly as follows.
It is possible to choose a holomorphic volume form €2 so that ¢*Q = Q. On the fixed
locus, it restricts to a (real-valued) volume form.

In Section 6 we consider (P~ n,,,_1); since 4| Kpim-1, it has a real square root.
If Kx is trivial as a complex line bundle and H;(X,Z) = 0 (i.e X is a symplectic
Calabi-Yau manifold), then Kx has a real square root; moreover, in this case we can
fix an admissible trivialization of Kx itself over X (independent of any map u) and
thus determine an orientation of the moduli space M;(X, A)%".

As illustrated by the two examples below, there are cases where the determinant
bundle is not orientable. The first example is similar to the non-orientable example
of [8, Section 8.1.2].

Example 2.8. Let F = S! x P! x C — S! x P!. Define a family of involutions,
bs: B |(syxp— E |{qxpt,  ¢s(z,v) = (n(z),m) Vs € St

The real line bundle F — S* given by F; = H°(E |5 xp )r is then not orientable.

Example 2.9. Let X = R?/Z? x P! x P!, A = {pt} x P! x {pt} € Ho(X,Z),

1 _—
o X — X, O(s,t, z,w) = (s, —t, ——, e2mis),
(2.10) ( ) =( > )

Y = {(s,t,w) € R?/Z* x P' : (—t, e2™sw) = (t,w)}.
The space Y is a union of two Klein bottles with double cover
RU {0} x R/Z x {0,1/2} =Y, (a,s,t) — (2s,t,ae*™).
Let m: X — R?/Z* x P! be the projection to the first and third factors. Since
fiM(X, A% =Y, [u] = m(Im(u)),

is well-defined and is a diffeomorphism, it follows that M (X, A)?" is not orientable.
If v € M(X,A)?" is the preimage of the map S' — Y, s — (s,0,0),

et (TM(X, A)*") = AP HR(v*TX) ® (A*PLie(G,))* =R ® F,
where F' is the unorientable line bundle in Example 2.8.

Remark 2.10. In [2]*, Crétois approaches the orientation problem from a different
point of view. He computes the induced sign of the action of an automorphism
of a complex vector bundle with a real structure (E,cg) on the orientations of the
determinant line bundle over the space of Cauchy-Riemann operators on (F, cg). His
method is well suited to the case where the real locus of the underlying curve is not
empty. The case related to our work is when (3, cs) = (P!, n) and the automorphism
is the lift of either the identity automorphism or ¢([z,w]) = [w,z] (with n given
by (1.2)). In this case, he uses (see [3, Section 3.2.3]) a symplectic divisor D (a
polarization), invariant under the involution, which is Poincare dual of the first Chern
class and finds an equation ([3, Theorem 7]) for the first Stiefel Whitney class of the
moduli of real maps that intersect D transversely. For example, if the canonical
bundle is the square of a complex line bundle admitting a real structure, and if one
can find a nice section of this square root, then the first Stiefel Whitney class vanishes.

4Originally published in French about the same time as this paper was first published on arXiv,
with an English summary [3] uploaded later.
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One issue with this approach is that we need to consider different polarizations to
cover the entire moduli space and this increases the complexity of the calculations. In
the cases where the ambient manifold has no real part, it is not clear how to construct
a section of the canonical bundle. Also, this approach does not provide a choice of
orientating the moduli space.

2.3. Kuranishi structure. If M;(X, A)%" is not an orbifold, in order to construct a
virtual fundamental class, we need to put a Kuranishi structure on the moduli space.
Such a construction for My (X, A)*7 is described in [26, Section 7]; we only describe
the necessary adjustments. For simplicity, we ignore the marked points until the end
of this construction.

Proof of Proposition 1.1 and the first part of Theorem 1.7. For (u, (2;,7%)\_,) €
My(X, A0 let

E,=u'TX —P', E% = (T"P"Y"! @¢ E,.

There are commutative diagrams

BE,— B, B po
(2.11) ”l ”l ’Ti ”l
P! ! P! P! i P!

where Tyv = d¢(v) and Tja = d¢ o v o dn). The deformation theory of Po(X, A)?" is
described by the linearization of the Cauchy-Riemann operator,

(2.12) Lyu: WEP(E,) — WEIP(EOY > 2 k> 1,

see [21, Chapter 3] for a similar situation. If V is the Levi-Civita connection of the
metric w(-, J-), L, can be written as

Lyu(€) = 5(VE+IVE o j) = 5T(Ve)0s(u).

There is a commutative diagram

WhD(E,) —2 o k= 1p (501
T‘ﬁi T(;i
W (E,) T Wkl (EOY

where {T4€}(2) = Ty(£(n(2))) and {T}a}(z) = T}(a(z)). Let
WP (E,)r = {€ € WFP(E,) | T4(€) = £},
WP (B0 = {a € WELP(EDY) | T) (o) = o}

denote the spaces of real sections. Let H°(E,)r and H'(E,)r be the kernel and
cokernel, respectively, of the restricted operator

Lyu: WEP(E )R = WP (ES ).

(2.13)
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If HY(E,)g = 0, then P(X, A)®" near u is a manifold U(u) of real dimension
(214) dlIIl]R HO(Eu)R = indexR(L(Lu) =C (A) + dlm(c X;

see [21, Theorem C.1.10]. In order to stabilize the domain and kill the action of the
automorphism group, we need to take an slice V' (u) of the G,-action on U(u). To
this end, we add back few conjugate pairs of special marked points {(w;, n(w;))}, fix
a corresponding set of (conjugate pairs of) slicing local divisors D;, and take V' (u) to
be the submanifold of the maps in U(u) that intersect D; at w;. Then, by restricting
the location of special marked points we will find a slice V' (u) of the G,-action such
that V(u) is a submanifold of U(u) and dimg V' (u) = dimg U(u) — 3. Each pair of
ordinary conjugate marked points increases the dimension by two and we get the
dimension formula (1.4).

If H'(E,)r # 0, we construct a Kuranishi chart around u. For this aim, we choose
finite-dimensional complex subspaces &, C W*P~1(E%!) such that

(1) every & € &, is smooth and supported away from the boundary, special, and
marked points;

(2) Tj(E) = Eu;

(3) Lj, modulo &, is surjective.

After putting enough marked points and slicing conditions to kill the automorphism

group, we choose our Kuranishi neighborhood to be V(u) = [071(&,)]r, which is a

smooth manifold of dimension

c1(A) + dime X — 3 + 21 + dim¢(&,).

The obstruction bundle £(u) at each f € V(u) is obtained by parallel translation
of &, with respect to the induced metric of J. We thus get a Kuranishi neighborhood
(V(u),E(u)). The Kuranishi map in this case is just the Cauchy-Riemann operator
f=o(f). _

In order to construct Kuranishi charts for u in the boundary strata of M;(X, A)%",
we need gluing theorems as in [8, Chapter 7]. The gluing theorems are identical to
those for J-holomorphic disks; we thus omit the details and refer the reader to [8]. O

Remark 2.11. If (X,w) is semi-positive or strongly semi-positive, [21, Definition
6.4.5] or [11, Definition 7.1], then the invariants can be defined via classical (geomet-
ric) methods of [21] or [25]. In the strongly semi-positive case, this is for example
done for the (¢, 7)-moduli space in [11, Theorem 1.4].

3. PROOF OF THEOREM 1.7 AND REAL GW INVARIANTS

We continue this section with the proof of the first part of Theorem 1.7. If

= Fix(¢) is non-empty, the codimension one boundary of M;(X, A)®" might be
non-empty; see (1.11). An element of codimension one boundary is of the form
(u, > = 31 U, ¥9), where 3; = P!, n: 31 — 3, and u(q) € L. After a suitable
reparametrization, we may assume ¢ = 0 € P! and n(z) = w. For real parameters
e # 0, we can glue ¥ into a family of smooth curves

Y = {(z,w) € C*: zw = €}.
For € € R, Y, inherits a complex conjugation from n:

T]E: 26 —> 267 T]E(’Z’w) - <w7z)'
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The fixed point set of 7, is S* if € > 0 and is empty if € < 0. Assuming regularity,
by smoothing in one direction (e negative), we get real curves without fixed points in
M, (X, A)?7: by smoothing in the other direction (e positive), we get real curves with
fixed points in M;(X, A)*". We identify the common boundary and glue the two
moduli spaces to get a new moduli space whose only possible boundary component
comes from the disk bubbling. We define M (X, A)? to be the resulted space.

Every disk-bubbling type nodal curve in (1.8) is of the form (u, ¥ = £;U,X5), where
¥ =Pl 7: 3, = 3, and ¢ € Fix(1]y,) & S'. After a suitable reparametrization, we
may assume g = (z; = 0) € C C P! and 7ic = ¢, where ¢(z;) = 2. For real € # 0, we
can glue ¥ into a family of smooth curves

Ye = {(21,22) €C? : 22y = €}.
For € € R, 3. inherits a complex conjugation from 7:
Te: Ze — Ze, 7'6(21, 22) = (?1,22).

The fixed point set of 7. is S'. By the stability condition, for each component 4,
either [; # 0 or the map u; = uls, is non-trivial. If [; # 0, we fix one of the marked
points; if u; is non-trivial and somewhere injective, we fix a somewhere injective
point of the corresponding domain. By tracking the image of the chosen points®,
we see that gluing the map in positive and negative directions produce different J-
holomorphic curves. If u; is multiple cover and [; = 0, then the obstruction bundle
near u; € My o(X, A;)®™ is non-trivial and a Kuranishi neighborhood depends on the
choice of &,, of the previous section. In this situation, the Cauchy-Riemann equation
gives a section of the obstruction bundle. Then we need to deform this section into
close by transversal multi-sections to build a virtual fundamental class; see [8, Section
7]. By choosing (the branches of) these multi-sections non-symmetric with respect to
the deck transformation of the covering map, we can assure that gluing in different
directions produce different maps. Therefore, the real codimension one strata (1.8)
and (1.11), corresponding to € = 0, are indeed hypersurfaces. This establishes the
first part of Theorem 1.7, i.e. that M(X, A)? has the structure of a closed Kuranishi
space; the real codimension one strata (1.8) and (1.11) are real codimension one
hypersurfaces in M (X, A)?. O

If 4|¢; (T'X), given a compatible choice of a real square root for Kx and a spin struc-
ture on L = Fix(¢), the next two proposition and lemma show that M;(X, A)? is
orientable (in fact, oriented). Given such a compatible choice, the spaces M; (X, A)®™
and M;(X, A)?" can be oriented; see the beginning of Section 1.1 and Theorem 1.3.
The first proposition below states that the orientation of M;(X, A)?™ extends across
the hypersurface (1.8). Then Proposition 3.3 implies that the orientations of M (X, A)%"
and M;(X, A)®" are compatible along the common boundary (1.11). In Proposi-
tion 3.3, we consider the induced orientation on the boundary OM of an oriented
manifold M to be the one given by the inward normal vector field; i.e.

(3.1) TMloy =TOM SR - vy,

5In one direction, the images of these two points lie in one half disk, and in the other direction,
they lie in different half disks.
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is an isomorphism of oriented vector spaces. Therefore, if M; and M, are oriented and
the induced orientations on OM = OM; = 0M, are reverse of each other, My Ugyr Mo
inherits an orientation.

Proof of the second part of Theorem 1.7.

Proposition 3.1. Let (X,w,¢) be a symplectic manifold with a real structure. If
4|1 (TX), then a choice of spin structure on L = Fix(¢) determines an orientation
on M(X, A)*7.

This proposition is a special case of [11, Theorem 1.4] or [9, Theorem 1.1]. We
first lift the orientation problem to the corresponding moduli spaces of decorated
J-holomorphic disks. A spin structure determines an orientation on

Ml,l(Xv L7 ﬁ)glesék and MZ(X7 L? ﬁ>diSk'

dec

This orientation induces® an orientation on

Ml,h (X7 L7 51)(diiesck X(evf,ev?) Ml,lz (Xa La ﬁ?)diSk

dec

which descends to an orientation on (1.8). Let

Mg (X, L B X (b vy M (X, L, )35 x RZO 5 M(X, L, Bk

1 dec dec

be the gluing map. With a proper convention of defining the fiber product orientation,
U is orientation preserving. Then we observe that gluing positively or negatively in
the real curve formulation corresponds to the flipping one of the disk components via
Tam (the map 7, in [9, Theorem 1.1]), i.e. gluing negatively corresponds to (uy, ug, €) —
U(uy, Tm(uz), —€); cf. (1.7). Finally, [11, Theorem 1.4] or [9, Theorem 1.1] shows
that if 4|c; (T'X), this flipping action is orientation reversing, hence the gluing map

(Mg, (X, A)P7 X o8 oy M, (X, A2) %7 /G) X R — M(X, A)*7

given by smoothing domain with respect to the corresponding gluing parameter ¢, is
an oriented isomorphism. Therefore, the orientation of M(X, A)*»™ extends across
the disk-bubbling codimension one strata. U

ev

Remark 3.2. A relative spin structure [V, o] on (X, L) also determines an orientation
on every moduli space M®IK(X L 3) are still orientable; see [8, Theorem 8.1.1].
These orientations descend to M;(X, A)®7 if

1

§<Cl (TX)a A> = <’w2(V), A> mod 2)

see [13, Corollary 5.9]. The conclusion of Proposition 3.1 is still true. For example,
(P4m+ RP4™+1) is not spin, but is relatively spin; each choice of the two homotopy
classes of relative spin structures determines an orientation on M;(X, A)®7. In the

more general setting of Pin structures, analogous sign computations are carried out
in [26, Proposition 2.12].

Proposition 3.3. Let (X,w,®) be a symplectic manifold with a real structure such
that 4|cy(TX). Given a compatible pair of a real square root for Kx and a spin
structure on L = Fix(¢), if A, B € Hy(X) are such that A = B — ¢.B, then via the
gluing maps

(3.2) (Mi(X, B) Xey, L) x R — M(X, A)*™, M(X, A)*"

6The fiber product orientation depends on the convention.
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the induced orientations on the first component of the left-hand side as the boundary
of M(X, A)*™ and M(X, A)®" are reverse of each other.

Proof. By definition, the induced orientations on L via the given spin structure and
the given real square root are inverse of each other. Without lose of generality, we
may assume that the orientation of L coincides with the induced orientation of the
given spin structure and is reverse of the one given by real square root. A curve in
the common boundary of these two moduli spaces is of the form

f = [UHE :]P)l Uquljot]?

top

with the involution ¢ over ¥ having one fixed point, the node q. We replace each
such f with the unstable map

f = [ﬂ, Y= IP)tlop U IED(1) U ]P)}laot]?
with @ restricting to the constant u(q) over the central part Py. We can view f as
an element of IM(X, A)*™ by extending the involution to P} via clp = 7 and as

an element of M (X, A)®" by extending the involution to P} via clps = 1. The real

automorphism group of f restricted to the middle component is S 1.~
First, lets consider f with c|]P(1) = 7. In this case we can divide f into two nodal
J-holomorphic disks; let
ftop — [’&, D - Pgop U Do],

be the half including JP’%OP (the final conclusion is independent of the particular choice).

For simplicity, we may assume that ftop can be glued to a J-holomorphic disk f.
over the glued domain D, = D; otherwise, we need to consider the obstruction
bundle. In order to understand the induced orientation on T;dM (X, A)*", we need to
understand the orientation on TfEMdiSk(X , L, ) and extend it to the sphere-bubbling
boundary. Following the orientation and gluing argument in [8, Section 8.3] and |8,
Section 7.4.1], in order to orient Ty MYK(X| L, 3), we orient the tangent bundle of the
parametrized J-holomorphic disks T, PU*(X, L, 3) and then consider the quotient
orientation on Ty MYK(X | I, ) for which

Tr MB(X L, B) @ TG = T, PY5(X, L, B)

is an oriented isomorphism of vector spaces. In order to orient T, PYk(X, L, 8), we
trivialize uc|p T'L via the given spin structure, and degenerate uTX into a bundle
over D, such that over the central part the induced bundle is trivial. The path
{uc}eso exactly describes such a degeneration. Over the central part u|p, is trivial
and by assumption, the orientation of 7))L coincides with the one given by the spin
structure; therefore, the space of real sections of @|p,7X is orientably isomorphic to
TugL. ) B

Now, lets consider f with C|[P% = 7. For simplicity, we may again assume that f
can be glued to an (¢, n)-real J-holomorphic map f. over the glued domain X, = P!
Following the orientation procedure of the proof of Lemma 2.5, in order to orient
Ty M(X, A)" we orient the tangent bundle of the parametrized J-holomorphic
spheres T, P(X, A)®" and then consider the quotient orientation as above. In order
to orient T,, P (X, A)?", we fixed an admissible trivialization of u*TX over P'—{0, co}
given by the real square root and degenerated u7'X into a bundle over 3, such that
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over the central part the induced bundle is admissibly trivial. The path {u}c0
exactly describes such a degeneration. Once again, over the central part l~L|]P>(1) is
trivial and by assumption, the orientation of T L is reverse of the one induced
from the real square root; therefore, the space of real sections of ﬁ|]p(1) T X is orientably
isomorphic to Ty L with the reverse orientation.

Similar to Section 2.3, for f € OM(X, A)*™ OM(X,A)?", let E; = *TX and
EY = Egip ® BN @ E)! | where top, ug, and upe are the restrictions of u to the
corresponding components, respectively. The deformation theory of P(X, A)»™ and
P(X,A)?" at f is described by the linearization of the Cauchy-Riemann operator

Lya: WEP(ER) — WHIP(EXY p>2 k> 1,

where L = L, © Liuy @ Lju,,,. Let H°(E;)r and H'(E;)r be the kernel and
cokernel, respectively, of the restricted operator,

Lya: WEP(Eg)g — WHEIP(ES)g.

Assuming H'(E;)g = 0 (otherwise we need to work modulo obstruction bundle), via
the gluing maps f — {fe}eso,

(3.3) H(E;)r = HY(E,)r 2 T, P(X, A7
and
(3.4) HY(Ey)p & HY(E, g 2T, P(X, A"

As in the proof of Lemma 2.5, the orientation of H°(FEj)g is canonically determined by
the orientation of T},;) L. By the argument of the past two paragraphs, the orientation
on the left-hand side of (3.3), via the gluing map, gives the orientation on the right-
hand side determined by the spin structure; and the orientation on the left-hand side
of (3.4) (again via the gluing map) gives the reverse orientation on the right-hand
side determined by the real square root.

Finally, in order to complete the comparison, it remains to compare the automor-
phism groups of domains before and after two different gluings. Let

Go = Auta([Pl, Uy Phy]) = Aut(PL,, q) C PSL(2,C)

be the identity component of the real automorphism group of ¥. This is a real
2-dimensional complex Lie group which has a canonical orientation (although we
do not care about its orientation; see Remark 3.4). After replacing ¥ with 3, the
real automorphism group of the domain increases by a factor of S' and the gluing
parameter of the domain takes values in C. To kill the extra S'-action in both the
automorphism group and the gluing parameter, as in the statement of the lemma,
we consider the gluing parameter to be positive real (absolute value of the complex
one) and restrict to a real 4-dimensional section of Gy x S*, given by

Gy ={(g,€%) C Gy x S*: dglre,, € Rte "},
which is canonically isomorphic to Gy. Let
C = {(2, 20, 2, €) € PL x P! x P! x R2%| 2,29 = €, 2¢(29) = ¢, € € RZ}.
This is a real one-parameter family of genus zero real curves over R=°,

(Zta 20y Zb E) — €
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with the fiber-preserving involution
(Zta 205 Zbs 6) — (2’7b7 C('ZO)u Z_t7 6)7

that describes a gluing of the singular real curve ¥ into smooth real curves.
Over C, consider the group G§ generated by the following set of maps

R.: (2, 20, 25, €) = (r24, 20,725, 7€), 1 € R close to 1,

—i6 0 0

Ro: (2, 20, 25, €) — (792, €92, €02, €), €% € S,

(3.5)
z + (=1)le%a 20 + ae 2+ (—1)lae?

1+az 1+ (=1)keaz’ 14 az

To: (¢, 20, 20, €) = ( a € C,
with |c| defined as in (5.1). This group extends the action of Gf, to the whole fam-
ily. Restricted to each fiber C., ¢ # 0, Ry and T, generate the 3-dimensional real
automorphism group of the fiber, G, or GY, depending on c. Let

d d

:_RTT’:’ =—R =0; iy = —T4|a=0-
U1 dar | 1, V2 a0 6|00 V3 + 14 da | 0

Restricted to Cy, —v1, v2, v3, v4 form an oriented basis of T34Gf. With the conventions
of Section 2, the restriction of vy, v3,v4 to Ce, € # 0, forms an oriented basis of Ti4G), or
T:qGY. Finally, v; (after some positive rescaling) is a lift of the inward normal vector
field & to the family. Let (TyM;(X, B) Xey, L)1 and (T3 M;(X, B) Xey, L)1
denote Ty M; (X, B) Xy, L, oriented as the boundary of (¢, 7)-space and (¢, n)-space,
respectively. Then for each choice of ¢ = 7,7

Tf(Ml(X> B) ><ev1 L)[ad @ R U1 = Tfﬂ(X, A)¢’C

is an oriented isomorphism of vector spaces. Adding the oriented basis vq, v3, v4 to
both sides, we find that

4 4

TH(Mi(X, B) Xer, L)? @ (PR - v; = TyM(X, A)* & PR - v; 2 Ty(P(X, A)*°)
i=1 =2

is an oriented isomorphism of vector spaces. Finally, replacing the right-hand side

by H°(Ej;)r, since the induced orientation on H°(Ej;)r via the spin structure and

the real square root are reverse of each other, we conclude that the orientations
Ti(P1(X, B) Xey, L) and Ty(P1(X, B) Xey, L) are reverse of each other. O

This finishes the proof of Theorem 1.7. U

Thus, if Kx has a real square root, L is spin, and 4|c;(T'X), choosing the spin
structure and the square root compatibly, M;(X, A)? is closed and oriented. In this
case, for 0y,...,0, € H*(X), we define real GW invariants by

Nf{(Gl,...,H;) :/ ev’{(@l)/\---/\ev?‘(@).

[MZ(X7A)¢>]Vir

Remark 3.4. In the proof of Proposition 3.3, we did not calculate the fiber product
orientation on the left-hand side of (3.2); we just showed that the induced bound-
ary orientations are reverse of each other. After fixing a fiber product orientation
convention, it is not hard to compare the induced and fiber product orientations
directly.
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4. PROOF OF THEOREM 1.8

By [5, Proposition 2.1], there exists a symplectic degeneration 7: X — A of X
with an induced real structure ¢y over a disk A C C (which we can assume to be
the unit disk) such that the central fiber X, = 77'(0) is a simple normal crossing
symplectic manifold with real structure ¢x|x,,

Xo=X_ UDX+, D~ Pp! XPI» gb:l: = ¢X|X:ﬁ:7

where (X_, ¢_) is symplectomorphic to real quadratic hypersurface in P4 given by

1
x%—Zm?zO, D = (zy = 0),
i=1

and Fix(¢, ) = 0. Moreover, the fibers over A* are smooth and symplectically isotopic
to (X, ). Note that Np X, = O(—1)|p; therefore, all curves inside D, as curves in
X, have negative intersection with D.

Via the symplectic sum procedure, every almost complex structure Jy on Xy, i.e.
a union of two almost complex structures J, and J_ on X, and X_, respectively,
such that both preserve D, extends to an almost complex structure Jy on X. If Ji
are (w4, ¢+ )-compatible, the resulting Jy is also (wx, ¢x)-compatible. Each fiber of
X over [0,1] C A is invariant under ¢y. For ¢t # (0, 1],

(X =7 '(t), w = wrlx, & = dxlx,)
is isomorphic to (X,w, ¢); therefore, we can think of {J; = Jx|x,}(,1 as a family of
compatible almost complex structures on (X, w, ¢) converging to the singular almost
complex structure Jj.

Set
(4.1) M(X, A AT o)’ = M(X, A, J)°.

te(0,1]

Let M(X, A, {Jt}te[o,l])¢ be the relative stable map compactification of (4.1), as in
[5, Section 3.2], which includes “stable” real maps into Xy. Every element (u,3)
of M(X, A, {Jt}te[o,l])¢ with image in X, belongs to a fiber product of real relative
moduli spaces over X_ and X, with matching intersections along D, i.e.

(4.2) M(X_,D,p,T_)%- X (eveeves) M(Xy,D,p,T,)%,

where M(X_, D, p,T_)%- and M(X,, D, p, T )%+ are the relative moduli spaces of
real curves, possibly with disconnected domains, with the same intersection pattern
p. Here £* are the contact points with D, evex are the evaluation maps at £+, and
[' encodes the data corresponding to the topological types of the domain and image;
see [5, Section 4] for more details on the definition.

The moduli space M(X, A, {Jt}te[m])‘Zﬁ gives a cobordism between the moduli space

of real curves M(X, J;, A)? over a smooth fiber and the moduli space of real curves
in the singular fiber. By [5, Proposition 2.1], ¢;(T'X ) = —PD(D). Therefore, if the
image of the maps in M(X,, D, p,T'.)%+ have homology class B € Hy(X,Z) with
B-D >0, then

dim"™(M(Xy, D, p, T1)*) < er(TX4)(B) < 0.
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This implies that for “generic” Jy, we should expect that the limit maps in X to lie
entirely in X, \ D or X_\ D. On the other hand, note that the degree (or symplectic
area) of every J_-holomorphic map in X_ is proportionate to its intersection number
with D, because D is the hyperplane class in X_; therefore, every non-trivial J_-
holomorphic map in X_ has non-trivial intersection with D. We conclude that for
such generic Jy, the only non-empty terms in (4.2) correspond to real J,-holomorphic
maps inside X, . Since ¢, has no fixed points, the proof then follows from the Gromov
compactness theorem.

The argument for finding such generic J; is almost identical to that of [21, Theorem
3.1.5]. We provide the necessary adjustments. Let Jp ., », be the space of almost
complex structures in 7, ¢, which preserve’ T'D. Similar to the argument in the
middle of [21, Page 47|, the tangent space

T, Ipwi s
consists of those Y € End(7'X ) where
Y, + .Y =0, wi(Yv,w)+wi(v,Yw)=0,
Y =-Y, and Y(TD)CTD.

The extra conditions in the second row correspond to compatibility with ¢, and D,
respectively. In the following argument, we consider two types of moduli spaces.
Fix some B € Hy(X,;,Z) such that B - D > 0. For every J, € Jpuw, ., let
M*(X 4, B, Jy) be the (ordinary) moduli space of somewhere injective .J, -holomorphic
spheres of degree B whose image, as a set in X, is “not” invariant under the action
of ¢,. Every element of M*(X, B, J,) intersects D in finite set of points with total
multiplicity B - D. Similarly, let M*(X,, B, J,)®+" be the moduli space of degree B
somewhere injective (¢, ,n)-maps u: (P',n) — (X,,¢,). By adjusting the proof of
[21, Theorem 3.1.5], we prove the following proposition.

Proposition 4.1. For every B € Hy(X,Z) with B - D > 0, there ezists a set of
second category Jp . 6. C Ipwy ¢, such that for every J. € Jp ., 4., the moduli

spaces M* (X, B, J,) and M*(X ., B, J,)?+" are empty.

(4.3)

Proof. In order to prove this proposition, we show that the proof of [21, Proposi-
tion 3.2.1] can be adjusted to the smaller set of almost complex structures Jp ., .
considered here.

Set

(44) M*<X+7B7K7D7’LU+,¢+) = U M*<X+,B,J+>.

J+€~7D,w+,¢+

Let u: P! — X be a Jy-holomorphic map in M*(X1, B, Jpw, . ). With notation
similar to the proof of [21, Proposition 3.2.1], we have to show that

D5U7J+: Wl’p<U*TX+) X TJ+s7D,w+,¢+ - Wo((T*Pl)O’l ® U*TX+)
is surjective. Assume, by contradiction, that there exists a non-trivial

v € LI(T"P)™ @ w'TX,),

"We can impose more regularity condition along D and it does not affect the argument below.
In fact we may even assume that J, is holomorphic in a neighborhood of D.
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with 1/p+1/q = 1, which annihilates the image of D3, ,. Then 7 is of class W' as
well. By assumption, the set of points z € P! where u is injective (i.e. (1.1) holds),
u(z) ¢ D, and

b1 (u(2)) ¢ image(u)
is an open dense subset of P!. Choose one such point z € P! such that y(z) # 0.
Then, as in the proof of [21, Proposition 3.2.1], there exists some Y € End(T X, ),
supported in a neighborhood U C X of u(z), such that

UNnD=10, ¢, (U)Nimage(u) =10, / (v,Y oduoj) >0,
u=(U)

and Y satisfies the first two conditions of (4.3); here j is the complex structure of P*'.
We replace Y over ¢, (U) by —¢*Y and denote the result by Y’. Then, Y satisfies
all the conditions in (4.3) and

/ <%Y’oduoj>=/ (7,Y oduoj) > 0.
p1 u=1(U)

Thus, Y is an element of T, Jp ., ¢, which is not annihilated by «; this is a con-
tradiction.
Next, we consider

(4.5) M* (X4, B, Ipavs 6, )07 = U M (X, B, J )%+

J+6JD,w+,¢+

Let u: (P',n) — (X4, ¢4+) be areal J;-holomorphic map in M*(X 1, B, Tpw, 4, )%+
The proof is similar, but involves the real version of Banach spaces considered above.
With notation as in Section 2.3, we have to show that

DOy, WP (W' TX g X Ty, Tpwy .0 — WO(TPH @ w'TX g

is surjective. Assume, by contradiction, that there exists some non-trivial v €
LI((T*PH)*! @ w*T X )g, which annihilates the image of Dd, .. By assumption,
the set of points z € P! where u is injective and u(z) ¢ D is an open dense subset of
P!. Choose one such point z € P! such that v(z) # 0. Then, as in the proof of [21,
Proposition 3.2.1], there exists some Y € End(T X, ), supported in a neighborhood
U C X, of u(z), such that

UnD=10, ¢ (U)NU=0, / (v,Yoduoj) >0,
u=(U)

and Y satisfies the first two conditions of (4.3). We replace Y over ¢, (U) by —¢*Y
and denote the result by Y’. Then, Y satisfies all the conditions in (4.3) and

[ ovediogy=2[ (¥odusj) >0

p1 u=1(U)

Thus, Y is an element of T;, Jp ., ¢, which is not annihilated by «; this is a con-
tradiction. O

Lemma 4.2. For some Jy € Tpa, 6., let u: P* — X be a somewhere injective J -
holomorphic map whose image, as a set, is invariant under the action of ¢,. Then
there exists an antiholomorphic involution ¢ on P!, conjugate to n, such that u is a

(¢, c)-real map.
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This lemma implies that every degree B somewhere injective J,-holomorphic
sphere u, where B - D > 0, either belongs to M*(X,, B, J;) or can be enhanced
to an element of M*(X,, B, J, )%+

Proof. By assumption, outside a finite set of points S C P!, every z € P\ S is a
somewhere injective point and u(P'\ S) is ¢ -invariant. The involution ¢, canonically
lifts to an antiholomorphic involution ¢ on P!\ S with no fixed point. Then, every such
involution has a unique extension across entire P! which, after a reparametrization,
is isomorphic to 7. U

Let us come back to the proof of Theorem 1.8. By Gromov compactness theorem
and in the light of Proposition 4.1, for every £ > 0, there exists J,. € Jpw, e,
such that for all B € Ho(X,,Z) with B- D > 0 and w(B) < E, the moduli spaces
M*(X,,B,J;) and M*(X,, B, J, )" are empty. For such J,, assume by contra-
diction that there exists a non-trivial element f in M(X,, D, p, ', )%+ with homology
class B and w(B) < E. This element should have a smooth component, i.e. a map
over some P!, which is a multiple cover of some somewhere injective map with non-
trivial homology class B’, w(B’) > 0 and B’ - D > 0. This somewhere injective
map either belongs to M*(X,, B’,J,), or it belongs to M*(X,,B’, J,)%+" or by
Lemma 4.2, it can be enhanced to an element of M*(X,, B’ J,)?+". This is a
contradiction to the assumption on .J,.

Starting from a J, as in Lemma 4.1 and extending it to Jy on X, in the light of
Gromov compactness theorem, and the fact that a limit of 7-maps has non-trivial
components in X_, the conclusion of previous paragraph implies that for some ty > 0,
all the moduli spaces {M(X, A, J;)®"} o<1y, where A is non-trivial and w(A) < E,
should be empty. This finishes the proof of Theorem 1.8. U

Part 2. Odd-dimensional projective spaces (joint with A. Zinger)
5. ORIENTATIONS FOR THE MODULI SPACES

We give an explicit description of real maps from P! to P*™~! in Section 5.1 and
use it in Section 5.2 to endow the moduli spaces of such maps with orientations. In
Section 5.3, we show that the sign of the diffeomorphism

evi: My(P*" 1 1) — PP [u, (27,27)] — u(z),

is (—1)™~! with the respect to the algebraic orientation of Section 5.2 on the domain
and the complex orientation in the target whenever

(¢7 C) - (7—2771—17 7-)7 (772m—17 77)?

otherwise, the moduli space above is empty. This is also the sign of the real line
through a pair of conjugate points with respect to these orientations. In Section 5.4,
we focus on the even-degree maps and show the conclusion of Proposition 3.3 applies
to the algebraic orientations of Section 5.2; see Proposition 5.5. In Section 5.5, we
describe the canonical real square root structure on Kpim-1 and spin structure on
RP*"~! induced by the exact sequence (1.16) and used to define the numbers (1.17).

The algebraic orientations and the orientations on the moduli spaces arising from
the structures of Section 5.5 are compared in Corollary 6.8; its conclusions are sum-
marized at the end of Section 5.2. Along with this corollary, Proposition 5.5 provides
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a direct verification of the claim of Proposition 3.3 for (P*™~! 7, ;) with the real
square root structure and spin structure of Section 5.5.
For the remainder of the paper, c=7,n and ¢="79,,_1, om_1. Define

0, ifc=m; 0, if p=mom_1;
(5.1) o] = D L

1, if c=mn; 1, if o=nom_1.
We identify 0€C and oo with [1,0]€P! and [0, 1] € P!, respectively.

5.1. Spaces of parametrized maps. For m,d € Z", the space Py(P>™1,d)%¢ of
(parametrized) (¢, c)-real degree d holomorphic maps consists of maps of the form

(52) u: Pl — ]P)Qm_17 [l’,y] — [pl(Ly),ql(x,y),. e ,pm(x,y),qm(x,y)},

where p1,qq, ..., Pm, ¢m are degree d homogeneous polynomials in two variables with-
out common factor which satisfy some compatibility properties. Suppose

d
AH Qi+ (— |C|b”y) gi(x,y) H .y T,y

The condition uoc=¢or is then equivalent to the existence of ( € C* such that
(=1 Bi(a,. bl,) = ¢ (=) A (b, azy),
Ai(dz’;ra (-1 )C‘bzr) =(- B ( zr?( 1)|C| ;7‘)

for all 7 and r. These two requirements are in turn equivalent to

(53) ’(b‘—i_’Cld € 2Z? ’<’ = 17 CBl( b, ) "le (Bi;r;ai;r) v ?:,7’.

7,1”7 ur

Proof of Lemma 1.9. For ¢ =, the first condition in (5.3) becomes |¢|+d € 2Z. If
it is not satisfied, the space Py(P?™~ 1, d)?" of parametrized maps is empty. This
immediately implies that the stratum of the moduli space M; (P21 d)?" consisting
of smooth maps is empty. The claims of Lemma 1.9 are then obtained by observing
that any map in a boundary stratum contains a real map from (P!, n) with the degree
of the same parity as d. O

From (5.3), we obtain the following observation.
Lemma 5.1. Suppose c=7,1, ="Tom_1, Nom_1, and d€Z™* are such that |p}Hc|d € 27Z.
The map (5.2) is (¢, c)-real if and only if

ZT'r+al ry

”:1“

d
pi<x7 y) = AZH (ai;rx+ (_1)‘c‘bz,ry) )
r=1

for some A;, B;€C and [a;,, bi.,] EP' such that
|A;| = |B;|Vi=1,...,m, [Ay,...,An] = [Bi,...,By € P"
i.e. (Bi,...,Bm)=C(A1,...,A,) for some (€ S'CC.
For a,beC, define
Pap: C*—C,  payle,y) = ax+by.
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Taking m=1, ¢=c, and d=1 in Lemma 5.1, we find that
{(a,)€C?: |a]#]0|}/R* — G- = Aut(P,7), [a,0] — [pap: Dsa),
{(a7 b) GCQ_O}/R* — Gn = AUt(]P)la 77)7 [CL, b] — [pa,—bapl;,d] :

are diffeomorphisms. In particular, G, has two topological components, with the
automorphism

9: Pt — P 9([r,y]) = [y, al,

contained in the non-identity component.

5.2. Algebraic orientations. For m,d€Z", let A} ;=0 and
AL g ={(bra,- - bral, - - [bma, - -, bmia]) € (Sym“C)™

St mﬂ{bi;r: r=1,...,d} # (Z)}.
i=1

We identify RP?*"~! with (C™—{0})/R*, viewing the i-th complex coordinate as the
(2i—1) and 2i-th real components.

Suppose ¢ =T,1, ¢ = Tom_1,N2m—1, and d € Z* are such that |¢|+|c|d € 2Z. By
Lemma 5.1, the map

Oc: ((SymC)"—Af, ;) x RP*™ ™ —s Po(P* ', d)**
(b1, brals - - b, b .] [A1, ..., An)

{All_[]h 1)lelby.. Aalb1 TR me1 Vel by s mHPme 1} )

is a diffeomorphism over the open subset of Py(P?™~1 d)*¢ consisting of maps u
such that u([1,0]) does not lie in any of the coordinate subspaces of P*™~1. Since
the complement of this subspace is of codimension 2, O, induces an orientation on

Po(P?™1 d)?<. The map
O.: ((Sym’C)"—As, ;) x RP*™ ™ —s Po(P* ", d)**
([al;la s 7a1;d]a ey [am;la cee 7am;d]7 [Bla s 7Bm])

d d d d
— [Blnpal;“(l)lc ’ Ball,al;M EE 7Bmeam;T,(71)\c| ) Bmel,am;Tl )
r=1 r=1 r=1 r=1

is also a diffeomorphism over this open subset of Py(P?™~! d)?<. The two diffeomor-
phisms induce the same orientation on Py(P?™~1, d)?€ if and only if (d+1)m€2Z. In
particular, the two orientations are the same if d ¢ 27Z.

The action of the automorphism o of (P!, 7) lifts over © and ©' as

((Sym?C)"—A7, ) x RP*™ ' — ((Sym’C)"—A7, ;) x RP*" !,

([bl;l,...,bl;d],...,[bml,... biidl, [A1, - .., An))
— (671, brgls - s - byl [Arbrs - bras - - At - bid]).-

m;1 ) Ymdly
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This lift is orientation-preserving. Since the group G, has two topological compo-
nents, with ¢ contained in the non-identity component, and the group G, is con-
nected, it follows that the above orientations descend to orientations on the quotient

MO(]Pmel’ d)d),c — 7)0 (P2mfl’ d)¢’c/Gc )

This implies that the moduli space M;(P?™~1 d)?¢ is orientable for all ¢, ¢ and m, d, I.
Let m: C™ —0 — RP?"~! be the projection map. The standard action of R* on
C™—0 determines an isomorphism

AGPC™ oy ~ T AET (RPP™ 1) @ R

of real line bundles over C™—0. We orient RP?™~! from the standard orientations
of C™ and R* via this isomorphism. Thus, vy,...,v9,_1 € T,,C™ descends to an
oriented basis for RP*™~1if vy, ..., v9,mm_1, w is an oriented basis for C™. For example,
an oriented pair of vectors in each of m—1 of the complex components of C™ and
the negative rotation in the remaining component determine an oriented basis on
RP?™~1, In particular, the covering projection

St —s RP'=C*/R*, ¢ —[¢],

is orientation-reversing with respect to the standard orientation on S' C C and our
orientation on RP!.

We will call the orientations on Py(P?™~1, d)?¢ and M, (P>, d)?¢ induced by O,
the algebraic orientations; they agree with the orientations induced by ©’, unless d € 2Z
and m & 27Z. By Corollary 6.8, the algebraic orientation of M;(P*™~1 d)?€ is

e the opposite of the orientation induced by the spin structure on RP?™~! described
in Section 5.5 if m€2Z, d¢27, and (¢, c)=(Tom-1,7),

e the opposite of the orientation induced by the real square root of Kp2m—1 described
in Section 5.5 if m €27, d¢ 27, and (¢, c) = (Nem—1,1),

e the same as the orientation induced by the relative spin structure on RP?™~! de-
scribed at the end of Section 6.4 if m¢ 27, d¢ 27, and (¢, ¢)=(Tom-1,T),

e the same as the orientation induced by the spin sub-structure on the real line bundle
Kp2m—1 described at the end of Section 6.4 if m 27, d¢ 27, and (¢, c) = (Nem-1,7)-

5.3. Moduli spaces of degree 1 maps. We will next note some properties of the
algebraic orientation on M;(P?™~1 1)%<,
Lemma 5.2. Let c=1,n.

(1) The algebraic orientation on G. = Po(P',1)*¢ is the opposite of the canonical
orientation specified at the beginning of Section 2.
(2) With respect to the algebraic orientation, My(P',1)%¢ is a single positive point.

Proof. For m =1 and d =1, the map O, determining the algebraic orientation re-
duces to

(C—=Af,) xRP" — Po(P*, 1),

e br+y i z+b
— =e . —
e x4 (—1)ldby 14+ (—1)lbz

(b, [eie}) —



33

At (0, [1]), the left-hand side above is oriented by the complex orientation of C and
the negative 6-direction. The right-hand side is oriented by the complex orientation
of a and the positive f-direction in

z+a )
1+ (—1)Faz '
see the beginning of Section 2. Thus, the first map above is orientation-reversing

(orientation-reversing on C and orientation-preserving on #). This establishes the
first claim. The second claim of this lemma follows from the first and Lemma 2.2. [

(a, eig) — e

With ¢, ¢, and m as above, let
evo: Po(P™1 1)?¢ — P21y — u(0),

denote the evaluation at 0 €P!. Let

TP s oy TP (P> 1, 1)%| s

TP2m—1 an - T’PO (]ID2m71, 1>¢>,c

denote the normal bundle of P?™~! in P?"*! and the normal bundle of Py(P?™~1, 1)%¢
in Py(P?m+L 1)?¢, respectively. The complex orientations on the projective spaces
induce an orientation on N™P. If |¢| =|c|, the algebraic orientations on the spaces of

parametrized maps induce an orientation on N™P. The differential of ev, descends
to an isomorphism

(5.4) devg: NP — evgN'P.

o

NP =

Lemma 5.3. Let c=7,n and ¢p="Tom_1,Nom—1- If |¢| =|c|, the isomorphism (5.4) is
orientation-reversing with respect to the algebraic orientation on the domain and the
complex orientation on the target.

Proof. 1t is sufficient to establish the claim near the image ug of
(0,...,0,[1,0,...,0]) € C"x RP*"!

under ©.. The left-hand side in (5.4) is then oriented by the complex orientations
of A,41 and b1 =byy1.1. Near ug, the map evy between the normal neighborhoods
can be written as

C? — C?, (Ami1, bims1) — (Amt1, Amgabmar)-
This map is orientation-reversing near . U
The moduli spaces
Mo(PPm=1 1)t = Mo (PP 1)™m=07 and
Mo(P21 1)mt = Mg (P21, 1)m-10

are compact manifolds. Using the algebraic orientations on these spaces, we can thus
define the numbers

Ny (2m—1) = / evyH*™ !
[Ma(P2m=1,1)7]

for ¢ ="Tom_1,Mam—1; they are signed counts of real lines in P*"~! passing through a
pair of conjugate points.
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Corollary 5.4. If ¢="7o,,_1,N2m—1, then
N?(2m—1) = (=1)",

Proof. Tt is sufficient to show that
(5.5) N’(1)=1,  NP@2m+1) = —N{(2m—1).
The map ug in the proof of Lemma 5.3 is the only element of My (P*™~1 1)¢ passing
through the point

P, =[1,0,...,0] € P> 1,
The sign of this element is the sign of the isomorphism
(5.6) Ajue 0V ¢ Tjug, M (P71, 1)? — Tp PP
The orientation on the domain of this map is obtained via the exact sequence

(5.7) 0 — ToP' — TugopMi1 (P71, 1) — T Mo(P*™ 1, 1) — 0

from the algebraic orientation of My(P?™~1 1) and the complex orientation of P!.
By the second statement of Lemma 5.2, the first arrow in (5.7) is an orientation-
preserving isomorphism if m = 1. Since its composition with (5.6) is the identity if
m=1, the first claim in (5.5) holds.

Let N™M denote the normal bundle of M;(P?*™~! 1)? in M, (P> 1)?. The
differential (5.6) induces a commutative diagram

00— T{uO’O]Ml(]Pﬁmfl, 1)¢ E— [umo}./\/ll(]P)Qerl, 1)¢ E— M%]M —0

ld[uom ld[uom ld[uom

Tpl p2m-1 Tpl p2m+i NITDYIL}P) 0.

0

The second claim in (5.5) is equivalent to the isomorphism given by the last vertical
arrow above being orientation-reversing. The projection

Po(P* 1) — My (PP 1) u— [u, 0],
pulls back this isomorphism to the isomorphism (5.4) at [ug]. The latter is orientation-
reversing by Lemma 5.3. t

5.4. Moduli spaces of even degree maps. Since Fix(1s,,_1)=0,
My (P#=L gyt — ) VdeZ.

By Lemma 1.9,
My (PP g)yrm=ti = ) YV de2Z.

On the other hand, Lemma 5.1 implies that the moduli spaces

(58) MI(Pmel, 2d)7’2m—1,‘r and Ml(]Pﬁmfl’ 2d>72m_1,q7
are both non-empty for all d€Z*. They have common codimension-one boundary
(59) alﬂl(ﬂgﬂmil, Qd)szfw' — alml(lpﬁmfl’ 2d)72"“1’77

consisting of real maps from a wedge of two copies of P! interchanged by an orientation-
reversing involution; the corresponding image curves then have an isolated real node.
The first moduli space also has a boundary component consisting of real maps from
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a wedge of two copies of P! with an involution preserving each copy; the corre-
sponding image curves then have a non-isolated real node. By the next statement,
the conclusion of Proposition 3.3 applies to the algebraic orientations on the moduli
spaces (5.8).

Proposition 5.5. For all d € Z*, the orientations on the codimension 1 bound-
ary (5.9) induced by the algebraic orientations on the moduli spaces (5.8) are the
same.

Proof. Tt is sufficient to consider the case [=1. Let
Pont = {[Z,..., Zom) €P*" 1t Zo, =01}
For c=7,7, define
M (PP 2d) ™1 = {[u, 0] € My (PP, 2d)™m =0 u(0) e P!

and let
7). (Pmelj Qd)‘rgm_l,c C PO(Pmel’ 2d)T2m_1’C
be the preimage of M,(P?"~! 2d)™=-1¢ under the projection
Po(P?m =1, 2d) ™m0 — M (P71, 2d)™m 0w — [u,0].

The action of the subgroup S' C G, of rotations around 0 restricts to an action on
Py (P2m=1 2d)m2m-1:¢ and

(5_10) M.(Eﬂmfl’ Qd)mm—1,c — fp.(IPmel’ Qd)‘l'gm_l,c/sl.

Let Po(P*™~1 d) denote the space of (parametrized) degree d holomorphic maps u
P! — P27~ Define

M'<P2m_1a d)]R = {[u7 07 OO] GMZ(]P)Qm_la d) : U(O) Gpgnml_1>

u(o0) € Fix(1am-1) }

and let
P (PP d)g C Po(P*™ 1, d)

be the preimage of M,(P>"~! d)g under the projection

(5.11) Po(P 1 d) — My(P*™ 1 d), u — [u, 0, 0.

Thus,

(5.12) O M (PP 2d) ™m0 9t M (PP 1 2d) =11 = M (PP d)g .

The actions of the subgroup S* C PSL(2, C) of rotations around 0 and the subgroup
RT CPSL(2,C) of scaling from oo restrict to actions on P,(P?"~1 d)g and

M(P*" 7 d)g = Po(P*" ', d)r /(RT x S1).
Let
L5 = Py(P* 1 d)p xg+ RT — Po(P*" ', d)r /RT,
£H(1) = {[u,e] e e<1}, £5(1) = {[u,e] €£T: e€(0,1)}.
Let
[d) ={1,....d}.
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For e €R and b € (Sym“C)?™, let ¢b be the element of (Sym“C)?™ obtained from b
by multiplying all coordinates of b by e. The group R* acts on (Sym?C)*" by
R* x (Sym?C)*™ — (Sym?C)*™™,  (¢,b) — (" 'b.
Let
L* = (Sym?C)*" xg+ RF — (Sym?C)*" /R* .
We define
R]P)%mfl — (C*)m/R* C R]Pﬁmfl 7
(SymC);" = {[(bi;T)TE[d}Le[zm} € (Sym?C)*™: bopmmi1. - -bama=0,

’bi;'r‘ <1 Vi,T, m{bi;r: (S [d]} N m{bm+i;r: re [d]} - Q)}
=1 =1

The standard action of S' C C on C and the trivial action on RP2"~! induce an
action on

W, = (Sym“C)?™ x RP?" !

Given an element (b, [A]) of W, and ¢ € Rt sufficiently close to 1 (depending on
(b, [A])), we define (-(b,[A]) to be the element obtained by multiplying the compo-
nents of b by (7. Let W/ be the quotient of W, by the resulting equivalence relation.
Define

et =t xRP2" 7, g =gt —wl,
o: &5 (1)={[b,[A],] €Li: e<1} — W,, &([b,[A],¢]) = (¢b,[A]).
For c=r,n, the S'-equivariant map
Oc: Wy —3 Po(P¥™ 1, 2d)%°
([(bi;r)re[dﬂie[zmp [(Ai)ie[M]D

d d
— |:<14inbi;T71p1’(_1)CEm+i;r’ Ainlz(_l)Clgi;rpbm-ﬁ-i;?“?l) :| ?
r=1 r=1 i=1,....,m

i=1,...,

is a diffeomorphism onto an open subset of the target and induces an orientation
on the latter from the canonical orientation of W,. The induced orientation on
the left-hand side of (5.10) is the orientation induced by the algebraic orientation
on M (P?™=1 2d)™m-1¢ and the complex orientation on P ', We will call this
orientation the algebraic orientation as well.

The smooth map

O: W, — Po(P*" ! d)g,

.....

commutes with the S'-actions and the local R*-actions. Thus, it lifts to an S!-
equivariant diffeomorphism

O: £+ — £+‘(:)(W.)
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which is a linear isometry on the fibers. For c=7,n, define

v, 28—(1)|(€)(W.) — ,P.(IPQW—17 2d)7—2m7170 by
Ve(6([b.[A]])) = Oc(®([b. [Al])).

Thus, the diagram of S'-equivariant maps

£ (1)

P (P21 og)2m-17
/ \
\ /

P.(HDQm 1 2d Tom—1,1

L5 Wl

commutes.
For each (b, [A]) € W,, the sequence of the equivalence classes of maps

(id, B.(exb, [A])) : Pt — PLx P2t
with ¢, — 0 converges to the equivalence class of the map
UP UP;,, — P! x P!

Utop JUg Ut : IP’tOp

as in the proof of Proposition 3.3. The second component of uy is mapped to the
point [A] in Fix(7am_1), while the second component of .y is the image of ©(b, [A])
under (5.11). Contracting P}, we obtain the image of O(b, [A]) under the identifica-
tion (5.12). This implies that the map

£+(1)/Sl N ﬂ.(]}ﬂm—l’ 2d)7_2m—1,()’
[u,e] N [\Ifc([u,e})}, %f €e#£0;
[u], if e=0;
is a homeomorphism onto a neighborhood of
O(WL)/S' C "M, (P> 2d)mm-1e

in M. (P2m_1, Qd)sz—Lc'
Since the boundary (5.9) is connected, it is sufficient to establish the claim of the

proposition at the boundary elements contained in the image of ©(W,) under the
identification (5.12). The substance of this claim is that the bottom diffeomorphisms
in the commutative diagram

7).<IED2m—1’ 2d)’r2m71,7' Vr P.(IEDQm—17 2d)7’2m71,7'

| i |

M(P27 1 2d)7m 07 < 88 (1) g gy /ST —— M (B2, 2d) 721
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induce the same orientation on their domain from the algebraic orientations on the
targets. The latter are induced from the orientations of the targets of ¥, and ¥,

induced by the diffeomorphisms (:)T and én' Thus, the claim is equivalent to the
orientations on the domain of ¥, and ¥, induced by these orientations of their
target being the same. This is immediate from the commutativity of the preceding
diagram. U

5.5. The canonical orientations. The first homomorphism f=(fi,..., f,)in (1.16)
is described by
{f;(6, M)} (ar, ... an) = Aa; Y(ay,...,a,)€L.
With M,:{[Zl, cey Zn] G]Pm_ll ZI#O}, let
Zj

. n —
Zi:(Zil,...,Zm).ui—}C s where ZU—7
%

The second homomorphism in (1.16) over U; is described by
0
1y 5p0) — Y (pi(=:l0) — Z’z'jpi(zz'(g)))% Vp; € Opnr(1)]e.
i K
It is straightforward to check that this homomorphism is independent of the choice

of ¢ and the sequence (1.16) is indeed exact. This short exact sequence gives rise to
a natural isomorphism

(5.13) ALP (nOpn-1 (1)) = AZP (P! xC) @ ASP(TP" ) = Kjuos.
We define C-antilinear endomorphisms c(f of C*™ by
C(:; (Il, R ,Igm) = (:l:l)M)l ((—].)‘d)lfg, T1ye.., (-1)|¢|Lf’2m, jﬁgm_l)).

The involution ¢ ="m2,,_1, Tom_1 lifts to an involution

®: Op2m—1 (—1)@011@277171(—1) — Op2m—1 (—1)@01}»277171 (—1),

(L z,y) = (6(0), ¢ (y), ¢} ().
In turn, this involution induces an involution on the dual bundle,
D Opzm—1(1)®0pzm—1(1) — OPQm—l(l)@OPQm—l(l),
{24, a1,02) }(0(0), 2, y) = { (L, a1, 2) } (2(6(0), 2,)),
and thus involutions ¢ on
Op2m-1 (2) ~ Ag)p (OIFDQm—l (1) P Op2m—1 (1)),
(5.15) 2mOpzm-1(1) &~ m(Opzm-1(1) D Opzm—1(1)),
O]pzm—l(Qm) ~ A(tCOp (QmOpzm_1(1)) ~ O]pzm—1(2)®m

lifting ¢. The last two lifts commute with the homomorphisms in (1.16) and the
isomorphism (5.13), when n=2m is even.

The isomorphisms (5.13) and (5.15) determine a real square root structure on Kpim-1,
as needed for orienting the moduli spaces M, (P*"~ d)®7. We describe it below. For

1=1,2,...,2m, we define
_ {H—l, if 2 fi:

(5.14)

"o, 2l



39

A spin structure on RPY"~! = Fix(74,,_1) is determined by a trivialization of
TRP*"™ ! =Fix(d7y,,_1) over any one of the m circles

RP} = RP} = {[Zy,..., Zun] ERP™ 12 Z;=0V j#4, i},

with i=1,2,...,2m. Via the real part (the fixed loci of the involutions) of the short
exact sequence (1.16), such a trivialization induces a trivialization of

<4mOP4m—1(1))R = Fix(®: 4mOpim-1(1) — 4mOpam-1(1))
~ 2m(20pm 1 (1))",

with the first trivializing section being f(-,1). The homotopy class of the result-
ing trivialization is independent of the lifts of the 4m — 1 trivializing sections of
TRP*™=! over the homomorphism ¢ in (1.16) and depends only on the homotopy
class of the trivialization of TRP*™~!. Furthermore, this induces a bijective corre-
spondence between the homotopy classes of trivializations of the two bundles. On
the other hand, any trivialization of (20pm-1(1))® over RP! induces a trivializa-
tion of 2(20pm-1(1))%, the homotopy class of which is independent of the choice of
the first trivialization. Therefore, there is a canonical homotopy class of trivializa-
tions of (4mOpin-1(1))® over RP!, which in turn determines a homotopy class of
trivializations of TRP*™~! over RP} and thus a spin structure on RP*™~! (which is
independent of the choice of 7). This spin structure determines an orientation on
ﬂl (Pllm—l’ d)mm,l,T.

Since we trivialize the summands (20psm-1(1))® in the same way, the orienta-
tions on

AP (TRP™ 1) = (ALPTP™ 1) & Opim1(2m)® © Opim -1 (2m)*

and thus on RP*"~! induced by the canonical square root and spin structure are
the same. The canonical square root and spin structure are therefore not compatible
in the sense of Definition 1.6. By Proposition 3.3, we must thus flip the canonical
orientation of either M;(P*™~1 d)mm-17 or M;(P*™~! d)™m-1" when orienting the
moduli spaces M;(P*™~! d)™=-1 as in Section 3. For the purposes of Sections 1.4
and 6, we flip the orientation of the » moduli space. Thus, the chosen orientation of
M (P4m=1 d)mm-1 agrees with the canonical orientation on its T-subspace and is the
reverse of the canonical orientation on its n-subspace.

6. EQUIVARIANT LOCALIZATION

In this section, we use equivariant localization to prove Theorem 1.10 by summing
over the fixed loci of a torus action on M;(P*"~1 d)?. Asin [17, Sections 7,8] and [23,
Section 3], these loci are described by graphs with one half-edge. The contribution
of the complement of the half-edge to the normal bundle of the corresponding locus
is standard. Proposition 6.2 determines the key contribution of the half-edge to the
normal bundle and is thus analogous to [17, (3)] and [23, Lemma 6], though our
arguments are rather different from [17] and [23].

We describe the fixed loci of a natural action of

T=(8)"={(G1....Cn) €C™: |G =1}
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on M;(P?>™~! d)? in Section 6.1 and their normal bundles in Section 6.2. In Sec-
tion 6.3, we prove Theorem 1.10 and compute some low-degree real invariants. Propo-
sition 6.2 is proved in Section 6.4.

6.1. Fixed loci. The m-torus T acts on P?"~! by
(Cla cee ><m) ' [Zb ) ZQm] = [Cle C;1227 cee 7CmZmel> C;LlZ2m]-

This action commutes with the involutions ¢ ="7s,,_1, M2m—1 and has 2m fixed points,
P =11,0,...,0], Py, =[0,...,1].

We note that ¢(P;) = P;. By composition on the left, T also acts on M;(P?™~1 d)*<,
where c=T1,7.

Lemma 6.1 ([24, Lemma 3.1)). The irreducible T-fized curves in P*™~1 are the lines
L;; connecting the points p; and p; with i j. Moreover, the irreducible ¢- and T-fized
curves in P>~ 1 are the lines L;.

The above T-action on P?™~! naturally lifts to the tautological line bundle
O[PQm—l(-l) — PQmil

and thus to the line bundle Opzm-1(a) for every a €Z. Let \; € Hi be the equivariant
first Chern class of Opzm-1(1)|p,. Thus,

/\g: _)\iv H’E‘ :Q[)\lv)‘37"'7)\2m—1]‘

Let [f, (2, 2 )] be an element of M, (P*"! d)?¢ fixed by the T-action. Since
there are no T-fixed points in P?™~! that are also fixed by ¢, the domain 3 of f
contains a central component ¥y, while the remaining irreducible components come
in conjugate pairs. Furthermore, fy = f|s, is a cover of some line L;; of some degree
dy € Z" which is branched only over P; and P;. Every nodal and marked point of X
and branched point of f is mapped to a fixed point P;. If dy < d or [ > 1, the
complement of ¥y in ¥ consists of two nodal curves ¥’ and X", each with [4+1 marked
points (%)ZZO so that xy corresponds to the node shared with ¥y and each of the
remaining points is decorated by a sign si, + or —, depending on whether it is the
first or the second point in the pair (2%, z;).

Similarly to [18, Section 27.3], every fixed locus of such maps can be modeled on
a labeled tree, I', symmetric about the mid-point of a distinguished edge ey, which
corresponds to the central component Yy of the T-fixed maps in the locus. Every
edge e of I' is labeled by some d, € Z™, indicating the degree of the corresponding
map; these labels are preserved by the reflection symmetry of I'. Every vertex v is
labeled by some j,=1,2,...,2m in such a way that the reflection symmetry takes a
vertex labeled j to a vertex labeled j. The graph I' also contains open edges which
correspond to the marked points of the domain ¥; we denote by v(k) the vertex to
which the k-th marked point is attached. Figure 3(a) shows one such graph describing
a T-locus in My (P21 [7])#<.

Removing e from I', we get a disconnected graph I"LI, with I obtained from I
by replacing each vertex label j by j. Choose one of the connected subgraphs, e.g. I,
and add the corresponding half-edge in place of the central edge; see Figure 3(b).
We denote the total half graph by I['h.e. All calculations below are based on this
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FIGURE 3. A decorated graph on the left and one of its halves on the right.

half-graph; it is straightforward to check that the result is independent of which half
we choose.
For each vertex v in I'ya, let

Mv = MO,V&l(’U)?

where val(v) is the valence of v, i.e. the number of edges and open edges in I leaving v.
If val(v) =1, 2, we take Mg vai(v) to be a point. Let

'/\_/lrhalf - Hmv ) Dy, = ‘AUt(Fhalfﬂ do H de,

where the products are taken over the vertices v and edges e in 'y and Aut(Iyar)
denotes the group of automorphisms of I' ;.

6.2. Normal bundles. For every flag F' = (v,e), let jr = j,. For every element
[f, (7, 27);] in the fixed locus corresponding to T', there is an exact sequence

0— Aut(E, (=, Zk_)k)]R — Def(f)r — Def(f, (=, Zk_)k)]R
— Def(%, (27, 2, Je)r — 0,
where Y is the domain of f. Thus,

e(Nr) = e(Def(f (28, 2 )k) mov)
(6.1) _ e(Def(f)E*)e(Def(X, (2, 2 Ju)E)
e(Aut(2 (Zk 26 )E)E) 7

where “mov” means the moving part (the part with the nonzero T-weights) and e(-)
denotes the equivariant Euler class. Following [18, Section 27.4], we now determine
the three terms appearing on the right-hand side of (6.1).

For each edge e of [, Aut(3, (27, 2, )i)r contains a T-fixed one-dimensional com-
plex subspace of infinitesimal automorphisms of the corresponding non-contracted
component ¥, which fix the two branch points of f. = f|s.; this subspace cancels
with a similar piece in Def(f.)g. The space Aut(X, (z;, 2 )i)r also contains a T-
fixed one-dimensional real subspace of infinitesimal automorphisms of the central
component Yy; this subspace cancels with a similar piece in Def(fy)r, up to sign
taken into account by Proposition 6.2. The remaining automorphisms, none of which
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is T-fixed, correspond to the vertices v in I'¢ of valence 1; they describe the infini-
tesimal automorphisms moving the branch point x, of f., where e is the unique edge
containing v, that lies over j,. Thus, similarly to [18, Section 27.4],

(AUt< (zk 7zk )k)]l%lov) = H Tva Hw (v,e) »

vEe vee
(6.2) val(v)=1 val(v)=1
Ajy — Aj,
where Wiy fop'}) = =
oy

A deformation of a contracted component of the domain (as a marked curve) is
T-fixed. The moving deformations come from smoothing (conjugate pairs) of nodes
of ¥. For each node z of ¥ corresponding to Dhar, Def(Z, (2,7, 2 k) B contains
the complex one-dimensional space isomorphic to the tensor product of the tangent
spaces of the two components of ¥ sharing x. There are two possibilities. Each
v € I'yay¢ shared by two edges contributes wp, +wp,, where Fy and F; are the two flags
containing v. Each flag F' = (v,e) with v € 'y, and val(v) > 3 contributes wg — g,
where 1 € H?(M,) is the first Chern class of the universal cotangent bundle on
M, corresponding to the marked point determined by F on the contracted curve
determined by the vertex v. Thus,

(Def(z (Zk s Zk: )k; mov) = H (w (v,e1) +w 1}62))
val(v)=2

(6.3) Cenden
val(v)>3 Uee
Finally, there is an exact sequence
0 — Def(f)r
— H(Se,, fi TP g @ @H (S, £,TP*" ) @ @Tpnﬂﬂm !
eeq

— @ijFIP’Qm‘l — 0,
F

where the direct sums are taken over the vertices v, edges e, and flags F' in I'y.;.

Thus,
(Def mOV H H Jv
CRNE
(6.4) 6<H0(2607 ngPQm_l)ﬁov) HG(HO(Ee,f;TPQm_l)mO")
e#eq
X

IT TT(e—A)
F j#jr

The contribution of e#eq is standard and given by
G(HO(ZQ, f:TPQm—I)mov)

(6.5) = (—1)% 32;6 I 2dEH H(MJl+ o Ak)’

r=0 k#j1,j2
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where j; and js are the two vertex labels of the edge e; see [18, Section 27.4]. The
contribution of the half-edge ey is described by the next lemma, which is proved in
Section 6.4.

Proposition 6.2. Let ¢="Tuyy—1,Nam—1, c=T,1, and

for (P1,[1,0],[0,1]) — (P™, P, F)

be the degree dy cover of a line Lg branched over only P; and P; and intertwining the

involutions ¢ and ¢. With respect to the canonical orientation of the moduli space
Mo(PA™=1 dy)? as in Section 5.5,

e (HO(EeO, fE)kT]P)4m—1)mov)

(6.6) (1 dOdO( ) H H(dodOQr L j).

1<j<4m r=0
J#4,2|(5—1)

6.3. Applications. By the classical localization theorem of [1],

l

t +1 t
s 1 1:[ ! Ji(k)
NSY(ty,...,t;) = —
d( b , l) Z ‘DFhalf /M (NF>

't Thale

(6.7)

te+1\tg

DFhalf M e(NF) ’

I'vn Phalf

where the first and second sums are taken over the graphs I' corresponding to the
fixed loci in

(6.8) M(P™ 1 )™ and M (PP d)Pn,

respectively. By Section 5.1, such graphs satisfy |¢|+|c|dy € 27 with c¢=T, 7, respec-
tively. The negative sign in (6.7) arises due to the fact that we flip the orientation of
the second moduli space above when gluing it to the first; see the last paragraph of
Section 5.5. Along with (6.1)-(6.6), (6.7) provides an explicit way of computing the
numbers (1.17).

Proof of Theorem 1.10. Suppose tj € 27 for some k. Given any graph I" corresponding
to a fixed locus in either moduli space in (6.8), let I'" be the graph obtained from I'
by changing the sign of the k-th marked point. By (6.7), the contribution of IV to
Ng(tl, ..., t;) is the negative of the contribution of I'. Thus, Nc‘f(tl, ..., t;) vanishes.

Suppose d € 2Z. The graphs I' describing the fixed loci in the spaces (6.8) with
¢ = Tam—1 are the same. By (6.7), this implies that N;*" ' (¢,...,t;) vanishes. By
Lemma 1.9, both spaces (6.8) are empty for ¢ =n4,,_1. Thus, NJ*" "' (t1,...,t) also
vanishes.

Suppose d & 27Z. By Lemma 1.9, the second space in (6.8) for ¢ = 74,1 and the
first space in (6.8) for ¢=1y,,_1 are empty. The graphs I" corresponding to the fixed
loci in the first space in (6.8) for ¢ =74,,_1 and the second space in (6.8) for ¢ =141
are the same. Along with (6.7), this implies (1.18). O
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Ifd,ty,... 1 are odd, (6.7) gives

NIty oo ty) = =Nty .o 1)
l

(6.9) L Z kH >\Jv(k)
p— 2 -

e( N
Thait Fhalf Mry e F

where the sum is taken over all half-graphs 'y, corresponding to M;(P4™—1, d)mam-1.7
containing marked points with the + sign only.

Example 6.3 (d=1). We now establish (1.21). For d=1 and ¢y,...,{; € ZT odd,
(6.9) and Proposition 6.2 give

! = A 1-1)
R T . L
1<j<2m
JF#i

after formally replacing (Ay, Ag,...) by (A1, Ag,...). Using the second condition
in (1.22) and the residue theorem on S?, we obtain

2m 2m ld 2m—1d
(6.10) NPt ZPESZ — c _fi‘?;i;w—z 1
=1 7 H(Z A?) HI(Z—A?)
: J=

Example 6.4 (d=3). We now establish (1.23) using Pandharipande’s trick of twist-
ing by the equivariant weights to reduce the number of the contributing torus fixed
loci; the restrictions of the integrand to the remaining loci vanish. Let

J={1,3,...,4m—1} — {1,3}
By the last condition in (1.24), J = JyLW, for some Jy, Jo C J with |J;|=(¢;—3)/2. Set

ap = (H+M)(H*=X3) [[(H*=X), k=12,

JE€Jk

= (H+X3)(H* =) [[(E* =),

JjeJ

We now apply the equivariant localization theorem of [1] to compute

(6.11) Nty by, 4m—1) :/ eviQy eVyQg eV Qg .
ﬂg,(ﬂ”m 13)

-1, Tdm—1

The restriction of evias to a torus fixed locus vanishes unless the marked point 3 is
sent to P3. For k=1, 2, the restriction of evjay to a fixed locus vanishes unless the
marked point i is sent to P; with j=1, or j € J—Jj, or j € R—J). Since any half-graph
has at most two vertices in this case and J C J;UJy, the restriction of the integrand
in (6.11) to a torus fixed locus vanishes unless the marked points 1 and 2 are sent
to P;. Thus, Figure 4 shows all half-graphs contributing to (6.11). From (6.9) and
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F1GURE 4. The half-graphs contributing to the localization computa-
tion of N3*™'(ty,t9,4m—1) with the constraints oy, as, as.

Proposition 6.2, we thus obtain
(BA=A3)( A1+ A3)  (BA+A3) (A1 —)3)
201(A1—A3) 221 (A14+2A3)
A1(Az+ A1) B A1(Az—A1)
A3(Az=A1)  Az(As+Ar)

N Mty b, 4m—1) =

-1

6.4. Comparisons of orientations. Most of this section is dedicated to establishing
Proposition 6.2. We then compare the orientation on M;(P*"~! d)?¢ induced by the
real square root and the spin structure of Section 5.5 with the algebraic orientation
defined in Section 5.2; see Corollary 6.8.

Proof of Proposition 6.2. For i=1,...,2m, let

]

denote the complement of the torus fixed points of the line L;. The involution ® on
Op2m-1(1)@Op2m-1(1) induced by (5.14) is given by

{®(, )} (o(0), 2@y) = —a(c, (y)@c) ().

The restriction of
Op2m-1 (1) ® Op2m-1 (1) ~ A(tCOP (O]PZm—l (1) @B Op2m—1 (1))
to L is trivialized by the homomorphism
(0, 0) = (€ iz a(z () ®2z(0))).

Via this trivialization, the above involution on Opzm-1(1)®Opzm-1(1) corresponds to
the standard involution on L% xC lifting the restriction of ¢. Thus, the trivialization
Le

O]PQm—l (2m) 3

(0, a) — (é, imzigmoz(zi(ﬁ)mm)),

— L;; X C,
(6.12)

is an admissible trivialization of (Op2m-1(2m), ®) induced by a trivialization of its
real square root via the canonical isomorphism

Opam—1 (2m) ~ OPZm—l(m) ® Op2m—1 (m)
it me2Z.
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In the case p="1o,,_1,
(20p2m 1 (1)) = {(a1, a2) €20p2m 1 (1), L€RP?™
as(x) = m Vzel}.

Thus, we can trivialize (20p2n-1(1))® over RP} by
(6.13) (0,01, 00) = (€, 1(2z;(())) € RP} x C.
Therefore, by Section 5.5, the trivialization
U: (2mOpan (1)) = RP} x CU2AG-0}

Ul ay,...,00n); = a;(zi(l)),
determines the canonical spin structure on RP?™~! if m € 27Z.

The standard coordinate vector fields on U; C P>~ ! as in Section 5.5 induce a
trivialization of TP?"~! along L. Let

O, f: Ly xCmt — L8 x C¥

be the conjugation induced by this trivialization and the lift of ¢ to the standard
conjugation, respectively. The composition

¢po®;: L% — GL(2m—1,C)

(6.14)

is given by
) (—1)lortz 2, if j1,j2 = 1
(6.15) (qboq)i(zﬁ))m — { (=)l = i gy =y £
0, otherwise.
Define
A;: L — GL(2m—1,C)
by
iCLZiEl, 1f.]17]2:ga
(616) (A(Z’)) — (_i)h—]z—l’ if jle{j27j2}72|(j2_i);

iz ot g€ {2, Ga ) 21 (2 —1);
0, otherwise.

By (6.15), the composition of the above trivialization of TP*"~! over L% with (id, A;)

intertwines d¢ with gz~5 whenever a € R*.

We order the standard coordinate vector fields along L so that % is listed first,

followed by the pairs consisting of % and % with j #14 and 2|(j—1i). The corre-
¥ 1]
sponding element of AZP(TP*"1) is then mapped to
det (Az(zzg)) — (_1)(m—1);im2m—1azigm

under the trivialization of AZP(TP?"~1) over L? induced by the composite trivial-
ization of TP*"~!. On the other hand, the image of this (2m—1)-tensor under the
canonical isomorphism (5.13) followed by the trivialization (6.12) is (—1)™i™z;™.
Thus, the two trivializations of (K}, ., ®) over L% are homotopic in the sense of
Definition 2.3 if and only if (—1)"a>0.
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In the case ¢ =79,,_1, the above composite trivialization restricts to a trivialization

of TRP*™~! over RPP}. The first trivializing section is —ia ™23, followed by
1 0 0 (=1 [ 0 0
6.17 S —i 2 d
(6.17) 2 < 18% T ﬁzij) o 2 (0% T2 8zij)

with j # 4 and 2|(j —¢). Lifting these sections over the homomorphism A in the
real part of the short exact sequence (1.16) and combining with the image of f, we
obtain a trivialization of (2mOpzm-1(1))®. The composition of this trivialization with
the trivialization (6.14) sends the two standard real basis elements in one C-factor
to 1 and i/2a and in (m—1) C-factors to —i/2 and (—1)*/2. This transformation
is orientation-preserving if and only if (—1)™ Vg > 0. If m € 2Z, the trivialization
of (2mOp2m-1(1))® over RP! just discussed thus differs from a canonical one by a
constant matrix-valued function which is orientation-preserving if and only if (—1)%a >
0. Therefore, the trivialization of TRP?™~! over RP} induced by the above composite
trivialization corresponds to the chosen spin structure on RP*"~1 if (—1)m=Yig > 0.

In summary, the orientation of H°(X, f&TP?"!)g induced by the above composite
trivialization is the orientation induced by

e the chosen square root if c=7 and (—1)'a >0, i
e the chosen spin structure if c=7 and (—1)" g >0.
By (6.15), the components of a section s € H°(X, fgTP?*™~ 1) with respect to the

trivialization of f3TP™ over P'—{0, 00} induced by the coordinate tangent vectors
along L} satisfy

do
(6.18) si(z) = 2% Z Sf;rzra Sir = (_1)1+‘C‘T35;—r;
r=—do
do
(619) SJ'(Z) = Zsj;rzrv Sjir = (_1)‘¢|(Z+])+‘C‘r85;dofr V]#Z, i.
r=0

Therefore, the complex coefficients

si_, withr=1,...,dy, and s;, with r=0,1,...,do, j#1, 2|(j—1),
and the real coefficient is;, give coordinates on H°(Zo, ffTP*™ !)g. With A; as
in (6.16),

(Ais)(z) = by,

r=—do

where b;, =1ias;, and

bj'O -9 Im(sz;do)7 lf]#za 2’(]_3)7
’ (—=1)'Re(sja,), if j#1, 2/(j—1);

oy [ L2
T 7T (—1)1(85;7”,8]';(10_0, 1f7’21,]7él> 2|(]_Z)

We note that bj,.=(—1)"b,._, for j#i, as expected.
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The weights of the T-actions on the coordinate function z; and the coordinate
vector fields % are —2)\;/dy and \; — \;, respectively. Thus, the weights of the
T-actions on the sections

d . 0

o . r
2SR
aZﬁ

d—’/‘a

Siido—r2°
jido—r
(%Z-j

with r=1,..., dp, and

with r=0,1,...,dy, j#i,1,

are given by

dO—T
(1 — d(] do d )2)\ and )\1—)\3 — d—02/\z,

respectively. Under the collapsing procedures of Lemma 2.5 and [8, Proposition
8.1.4], the parts of A;s involving negative and positive powers of z correspond to
the holomorphic sections on X,, and Xy, respectively. Since we use the complex
orientation of sections on X, these parts contribute

S fIC

1<j<2m r=1
3#4,2|(5—79)

(T

1<j<2m r=1
J74,2|(j =)

to e(HO(3e,, feTPAm—1)mov),

The parts of A;s constant in z correspond to holomorphic sections on g commuting
with the involution and constitute the direct sum of the trivial representation of T
on the space of sections {b;,0z°: b;,g€R} and of the two-dimensional representations
of weight

(D' (=N=2) = (=1)" (N =)
with j#i and 2|(j—). Combining with the previous displayed expression, we find that

e (HO(EeO ’ fO*T]PZm—l)EOV)

= (_1)(m—1)(i+do)d0!(

i)

1<j<2m r=0
371, 2|(5 1)

if the number a € R* in (6.16) has the correct sign and the space of sections {b;;ozo}
is oriented by the positive direction of b;,€R.

The characteristic vector field s for the action of S* C G, which fixes the point z =0
in CCP! is given by

= ado, (AiS)j =0 \V/] 7& Z,g

d g \d
—do —if 0
(6.20) (Ais); =iaz 0 (e7V2) o
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Combining this with the bullet points above, we conclude that
€<H0(Eeoa ng]PQm—l)EOV)

do do
6.21 _ (_1\(m=1)do+m|cfi 2\ do—2r oy
(6.21) = (-1) dol(d0> [] ||<—d0 p—l

1<j<2m r=0
J#4,2[(j—1)

Taking m € 27Z, we obtain (6.6). O

Remark 6.5. For meZ" and i=1,...,2m, let L%T C L;; denote the disk cut out by
RP} that contains P;. The projection

(20P2m—1 (1))R — OPQ'"_l (1) ‘RPQm—l

to the first component is an isomorphism. Thus, the trivialization (6.13) induces a
trivialization W] of Op2m-1(1) over RP}. It extends over L by the same formula. The
trivialization obtained from (6.13) by evaluating am, instead of ay, differs from this
trivialization by the orientation and spin:

Qo (ZZ<£)) = Q7 (C;(ZZ(€>>) = Q1 (Mz,(ﬁ)) = Zﬁ([)al (ZZ(€>)

For m ¢ 27, the reasoning of Section 5.5 determines a canonical spin structure on
TR @ Opom-1(1)| g = TRE?™ 1 @ (20p2m-1(1))"

and thus a relative spin structure on RP?™~! If i is odd, the restriction of this
trivialization to RP} is equivalent to the direct sum of the trivialization ¥ used in the
proof of Proposition 6.2 and the trivialization V.. If i is even, this restriction differs
from the direct sum by the orientation and spin.

Remark 6.6. For m,d € Z*, let M3k(P?™~1 d) denote the moduli space of holo-
morphic disk maps to P?"~! with boundary on RP?"~! that double to degree d
holomorphic maps. Thus,

(6.22) Mo (P21 d)=m=tT = MG (B d) [0

For m ¢ 27, the relative spin structure of Remark 6.5 determines an orientation on the
disk space in (6.22); see [8, Theorem 8.1.1]. By [13, Corollary 5.9], this orientation
descends to the left-hand side in (6.22). By Remark 6.5, the last orientation is the
orientation determined in the proof of Proposition 6.2 if ¢ is odd. If i is even and
do is odd, the trivialization of ffTRP?"~! over S! in this proof differs from the
trivialization induced by the relative spin structure of Remark 6.5 by the orientation
and the spin. Each of these changes by itself would reverse the induced orientation
on (6.22); the two of them together preserve it. If i and dj are even, the trivialization
of fATRP*"~1 gver S* in the proof differs from the relative spin trivialization only by
the orientation; this change reverses the induced orientation on (6.22). In summary,
(6.21) describes the orientation on the moduli space in (6.22) induced by the relative
spin structure of Remark 6.5 unless dy and ¢ are even.

Remark 6.7. Let a: S' — S! denote the antipodal involution. A spin substructure
on (Kp2m-1,d¢) in the sense of the paragraph above [13, Corollary 5.10] consists of a
trivialization of this real bundle pair over every real loop

a: (St a) — (P71 ¢)
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so that these trivializations extend over homotopies of such loops. A spin substructure
orients M(P?™~1 d)?". Tt can be specified by the trivialization over RP} viewed as
the boundary of L to be given by (6.12). If m & 2Z and ¢ = 1y,—1, the proof of
[13, Lemma 3.4] implies that the induced trivialization over RP} = RP; viewed as
the boundary of L7 is then the opposite of (6.12). Since (6.12) is invariant under
the interchange of 7 and ¢, this interchange thus changes the spin substructure used
to orient My(P?™~1 d)?" in Lemma 2.5 and the proof of Proposition 6.2. Thus,
the interchange of i and ¢ changes the orientation of the moduli space if m & 27Z,
¢ = Nom-1, and d & 27 (if d € 2Z, this moduli space is empty). If ¢ = 15,1, then
(Kpem-1, d¢) admits a real square. By [12, Corollary 2.4(2)], reversing the orientation
of a real loop a does not change the trivialization in a spin substructure. Thus, the
interchange of 7 and 7 preserves the orientation of the moduli space if ¢ =7y, and
de 27 (if d¢27Z, this moduli space is empty).

We note that the right-hand side of (6.21) has the expected behavior if 7 is replaced
by 4. This interchange changes the sign of the right-hand side of (6.21) if and only if

6, (do) = m(do+1+]c|)
is even. If the target of the fibration
(623) Ml (P2m71’ d)(;S,c — mog[ﬂmfl’ d)¢,c

is oriented at [fo] using (6.12) if c=n and (6.14) if c=7, then (6.21) describes the
corresponding orientation of the domain of (6.23) at the map f, with the positive
marked point sent to P,. Interchanging i and i reverses the orientation of the fiber
of (6.23) over [fy] and thus of the domain of (6.23). Thus, d¢,(dy) should be even if and
only if the orientation on the target in (6.23) does not change under this interchange.
If me2Z, (6.12) and (6.14) are the restrictions of a real square root over P*™~! and
of a spin structure on RP?™~1  respectively, which orient the target in (6.23); in this
case 0%, (dp) is even.

Suppose m & 27Z. 1If ¢ = 1, (6.21) corresponds to the orientation of the target
in (6.23) induced by the relative spin structure of Remark 6.5 unless dy and i are
even; see Remark 6.6. Thus, replacing i by 4 preserves its orientation if dy & 27 (when
d¢ (dp) is even) and reverses it if dy € 2Z (when 0%, (dp) is odd). If c=n and d € 27Z
(and thus ¢ = m9,,—1), (6.21) corresponds to the orientation of the target in (6.23)
induced by a spin substructure on (Kpzm-1,d¢); see Remark 6.7. In this case, §¢,(dp)
is indeed even. If c=n and d¢2Z (and thus ¢ =1, 1), replacing i by 7 changes the
spin substructure used to orient the target in (6.23) and reverses its orientation. In
this case, d¢ (dp) is indeed odd.

Let c=7,m and ¢="Tom_1,Mam—1 be such that 2|(|¢|—|c|dy). Suppose

fo: PL=3,, — P!

is as above. Along with the characteristic vector field of the S*-action on the param-
eter space, (6.21) determines an orientation on

(6.24) HO(PY, faTP?™ g = Ty, Po (PP, d)*“.
Another orientation on this space is described in Section 5.2.

Corollary 6.8. The two orientations on the vector space in (6.24) are the same if
and only if m((do+1)i+1+|c|i) ¢27Z.
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Proof. The algebraic orientation on (6.24) is induced by the diffeomorphism ©. in
Section 5.2. The orientation induced by the diffeomorphism ©/, differs from this
orientation by (—1)™d+)  Let ©; denote the first diffeomorphism if i ¢ 27 and
the second one if ¢ € 2Z. The comparison below is thus made with the algebraic
orientation multiplied by (—1)™(do+1)i,

Let 1; € C™ denote the unit coordinate vector for the component |(i+1)/2]. It is
sufficient to establish the claim near the image fy of

([0,...,0],...,[0,...,0],[1]) € (Sym®C)" x RP*""

under ©;. The deformations of the coefficients of 2" in

do
A; H (1+(=1)b;,2) /AiH(lJr(—l)'c'bi;rz)
r=1

for j #4 and 2|(j—i) correspond to the coefficients s;,, in (6.19), up to a complex

multiple. The deformations of the coefficients of z%*" in
do
r=1

with >0 correspond to the coefficients s;.4,, in (6.18). Thus, the complex orienta-
tions on (Sym?®C)™ and on A; € C with j#i and 2|(j —i) give

G(HO(E fST]P;mel)mov)

gRIN(Ces

1<j<2m r=0
374, 2|(j—1)

€0

(6.25) = (—1)%d,! (

The characteristic vector field corresponding to the S! part of the variation of A;
is —2izd0%ﬁ, i.e. a positive multiple of the characteristic vector field of the S'-action
on the parameter space. Our orientation of RP?"~! is determined by the complex
orientations on A; € C, with j # ¢ and 2|(j —4), and the negative characteristic
vector field of the S'-action on A;. Comparing (6.21) and (6.25), we then obtain the

claim. ]

The orientations on the moduli spaces (1.19) induced by the canonical spin structure
on RP*"~! and the canonical real square root of (Kpim-1,74,_1) described in Sec-
tion 5.5 are thus the opposite of the algebraic orientations of Section 5.2. This
is reflected in the opposite signs for the line counts of Example 6.3 and Corol-
lary 5.4 with m replaced by 2m. By Corollary 6.8 and Remark 6.6, the orien-
tation on M;(P4"*! d)™m+17 induced by the canonical relative spin structure of
Remark 6.5 is the same as the algebraic orientation if d ¢ 2Z and the opposite if
d € 27. The orientation on M;(P4"+1 d)™m+17 induced by the spin substructure on
(P41 74.41) of Remark 6.7 is the opposite of the algebraic orientation. The ori-
entation on M, (P*m+1 d)mm+1m induced by the spin substructure on (P4m+1, 7]4m+1)
determined by the trivialization (6.12) over RP} oriented as the boundary of L, is
the same of the algebraic orientation.
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Remark 6.9. Corollary 6.8 implies that Proposition 6.2 with the leading sign expo-
nent changed to (—1)@+D0+m) applies to the moduli spaces

(6.26) M(P* 1 )™ and M (PPt d)Pn

with the algebraic orientations of Section 5.2 for d & 27, whether m is odd or even.
The resulting half-edge contribution then changes sign when ¢ is replaced by i, as
expected. With 4m replaced by 2m in Example 6.3, this change introduces the sign
of (—1)™! in (6.10) and recovers Corollary 5.4. The remaining considerations of
Sections 6.1 and 6.2 apply to the algebraic orientations of these moduli spaces, with
one important difference if m ¢ 2Z. By [15, Lemma 3.1|, the correct orientation
for the smoothing of the disk node differs from the complex one by (—1)md+, where
dy = (d—dy)/2 is the degree of the graph I attached to the disk. This is also consistent
with the sentence preceding this remark and [14, Remark 2.6]. This introduces two
new signs into the computation Example 6.3, resulting in the same answer. The
statement and proof of Theorem 1.10 apply to the algebraic orientations of the moduli
spaces (6.26), after reversing the orientation on the second space (as needed for d € 2Z
by Proposition 5.5).
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