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Abstract

We give an alternative argument for the classification of real bundle pairs over smooth sym-
metric surfaces and extend this classification to nodal symmetric surfaces. We also classify the
homotopy classes of automorphisms of real bundle pairs over symmetric surfaces. The two state-
ments together describe the isomorphisms between real bundle pairs over symmetric surfaces
up to deformation.

1 Introduction

The study of symmetric surfaces goes back to at least [10]. They have since played important
roles in different areas of mathematics, as indicated by [1] and its citations. Real bundle pairs, or
Real vector bundles in the sense of [2], over smooth symmetric surfaces are classified in [3]. In this
paper, we give an alternative proof of this core result of [3], obtain its analogue for nodal symmet-
ric surfaces, and classify the automorphisms of real bundle pairs over symmetric surfaces. Special
cases of the main results of this paper, Theorems 1.1 and 1.2 below, are one of the ingredients in
the construction of positive-genus real Gromov-Witten invariants in [8] and in the study of their
properties in [9].

An involution on a topological space X is a homeomorphism φ : XÝÑX such that φ˝φ“ idX . A
symmetric surface pΣ, σq is a closed oriented (possibly nodal) surface Σ with an orientation-reversing
involution σ. If Σ is smooth, the fixed locus Σσ of σ is a disjoint union of circles. In general, Σσ

consists of isolated points (called E nodes in [11, Section 3.2]) and circles identified at pairs of
points (called H nodes in [11, Section 3.2]).

Let pX,φq be a topological space with an involution. A conjugation on a complex vector bundle
V ÝÑX lifting φ is a vector bundle homomorphism ϕ : V ÝÑV covering φ (or equivalently a vector
bundle homomorphism ϕ : V ÝÑφ˚V covering idX) such that the restriction of ϕ to each fiber is
anti-complex linear and ϕ˝ϕ“ idV . A real bundle pair pV, ϕqÝÑpX,φq consists of a complex vector
bundle V ÝÑX and a conjugation ϕ on V lifting φ. For example,

pXˆCn, φˆcq ÝÑ pX,φq,
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where c : CnÝÑCn is the standard conjugation on Cn, is a real bundle pair; we call it the trivial
rank n real bundle pair over pX,φq. For any real bundle pair pV, ϕq over pX,φq, the fixed locus

V ϕ ”
 

vPV : ϕpvq“v
(

of ϕ is a real vector bundle over the fixed locus Xφ of φ with rkRV
ϕ“rkCV .

If pV1, ϕ1q and pV2, ϕ2q are real vector bundle pairs over pX,φq, an isomorphism

Φ: pV1, ϕ1q ÝÑ pV2, ϕ2q (1.1)

of real bundle pairs over pX,φq is a C-linear isomorphism Φ : V1 ÝÑ V2 covering the identity idX
such that Φ˝ϕ1“ϕ2˝Φ. We call two real bundle pairs pV1, ϕ1q and pV2, ϕ2q over pX,φq isomorphic if
there exists an isomorphism of real bundle pairs as in (1.1). Our first theorem classifies real bundle
pairs over symmetric surfaces up to isomorphism.

Theorem 1.1. Suppose pΣ, σq is a (possibly nodal) symmetric surface. Two real bundle pairs
pV1, ϕ1q and pV2, ϕ2q over pΣ, σq are isomorphic if and only if

rkCV1 “ rkCV2, w1

`

V ϕ1
1

˘

“ w1

`

V ϕ2
2

˘

P H1pΣσ;Z2q,

and degpV1|Σ1q“degpV2|Σ1q for each irreducible component Σ1ĂΣ.

Let X be a topological space. We denote by CpX;R˚q and CpX;C˚q the topological groups of
R˚-valued and C˚-valued, respectively, continuous functions on X. For a real vector bundle V
over X, let GLpV q be the topological group of vector bundle isomorphisms of V with itself cover-
ing idX and SLpV qĂGLpV q be the subgroup of isomorphisms ψ so that the induced isomorphism

Λtop
R ψ : Λtop

R V ÝÑ Λtop
R V

is the identity. If V is a line bundle, then GLpV q is naturally identified with CpX;R˚q and
SLpV q ĂGLpV q is the one-point set consisting of the constant function 1. For an arbitrary real
vector bundle V over X and ψ PGLpV q, we denote by detRψ the continuous function on X corre-
sponding to the isomorphism Λtop

R ψ of Λtop
R V .

Let pX,φq be a topological space with an involution. Denote by

C
`

X,φ;C˚
˘

Ă C
`

X;C˚
˘

the subgroup of continuous maps f such that fpφpzqq“fpzq for all z PX. The restriction of such
a function to the fixed locus XφĂΣ takes values in R˚, i.e. gives rise to a homomorphism

C
`

X,φ;C˚
˘

ÝÑ C
`

X;R˚
˘

, f ÝÑ f
ˇ

ˇ

Xφ .

For a real bundle pair pV, ϕq over pX,φq, let GLpV, ϕq be the topological group of real bundle
isomorphisms of pV, ϕq with itself over pX,φq and SLpV, ϕqĂGLpV, ϕq be the subgroup of isomor-
phisms Ψ so that the induced isomorphism

Λtop
C Ψ: Λtop

C pV, ϕq ÝÑ Λtop
C pV, ϕq
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is the identity. If pV, ϕq is a rank 1 real bundle pair, GLpV, ϕq is naturally identified with CpX,φ;C˚q
and SLpV, ϕq is the one-point set consisting of the constant function 1. For an arbitrary real vector
bundle pair pV, ϕq and ΨPGLpV, ϕq, we denote by detCΨ the element of CpX,φ;C˚q corresponding
to the isomorphism Λtop

C Ψ of Λtop
C pV, ϕq. Let

GL1pV, ϕq “
 

pf, ψqPCpX,φ;C˚qˆGLpV ϕq : f |Xφ“detRψ
(

.

Our second theorem describes the topological components of GLpV, ϕq and SLpV, ϕq for real bundle
pairs over symmetric surfaces.

Theorem 1.2. Let pΣ, σq be a (possibly nodal) symmetric surface and pV, ϕq be a real bundle pair
over pΣ, σq. Then the homomorphisms

GLpV, ϕq ÝÑ GL1pV, ϕq ÝÑ CpΣ, σ;C˚q,GLpV ϕq,

Ψ ÝÑ
`

det Ψ,Ψ|V ϕ
˘

, pf, ψq ÝÑ f, ψ,
(1.2)

are surjective. Two automorphisms of pV, ϕq lie in the same path component of GLpV, ϕq if and only
if their images in CpΣ, σ;C˚q and in GLpV ϕq lie in the same path components of the two spaces.
Furthermore, every path pft, ψtq in GL1pV, ϕq passing through the images of some Ψ,ΦPGLpV, ϕq
lifts to a path in GLpV, ϕq passing through Ψ and Φ. The analogous statements hold for the homo-
morphism

SLpV, ϕq ÝÑ SLpV ϕq, Ψ ÝÑ Ψ|V ϕ , (1.3)

in place of (1.2).

For a smooth symmetric surface pΣ, σq, Theorem 1.1 reduces to [3, Propositions 4.1,4.2]. We give
a completely different proof of this result in Section 2; see Proposition 2.1 and its proof. The
portion of Theorem 1.2 concerning the surjectivity of the homomorphism (1.3) and its analogue
for GLpV, ϕq is established in Section 3; see Proposition 3.1. We use this proposition to complete
the proof of Theorem 1.1 by induction from the base case of Proposition 2.1 in Section 4. Propo-
sition 5.1 is the crucial step needed for the lifting of homotopies in Theorem 1.2; it is obtained
in Section 5. This theorem is then proved in Section 6. Section 7 describes connections of Theo-
rems 1.1 and 1.2 with recent advances in real Gromov-Witten theory made in [7, 8, 9].

The second author would like to thank Max-Planck-Institut für Mathematik for the hospitality
during the preparation of this paper.

2 The smooth case of Theorem 1.1

We begin by establishing the smooth case of Theorem 1.1.

Proposition 2.1 ([3, Propositions 4.1,4.2]). Theorem 1.1 holds if pΣ, σq is a smooth symmetric
surface.

Let pΣ, σq be a smooth genus g symmetric surface. We denote by |σ|0 PZě0 the number of con-
nected components of Σσ; each of them is a circle. Let xσy “ 0 if the quotient Σ{σ is orientable,

i.e. Σ´Σσ is disconnected, and xσy“1 otherwise. There are
Y

3g`4
2

]

different topological types of
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Figure 1: Doubling an oriented sh-surface

orientation-reversing involutions σ on Σ classified by the triples pg, |σ|0, xσyq; see [12, Corollary 1.1].

An oriented symmetric half-surface (or simply oriented sh-surface) is a pair pΣb, cq consisting of an
oriented bordered smooth surface Σb and an involution c : BΣbÝÑBΣb preserving each component
and the orientation of BΣb. The restriction of c to a boundary component is either the identity or
the antipodal map

a : S1 ÝÑ S1, z ÝÑ ´z,

for a suitable identification of pBΣbqi with S1ĂC; the latter type of boundary structure is called
crosscap in the string theory literature. We define

ci “ c|pBΣbqi , |ci| “

#

0, if ci “ id;

1, otherwise;
|c|k “

ˇ

ˇtpBΣbqiĂΣb : |ci|“ku
ˇ

ˇ k “ 0, 1.

Thus, |c|0 is the number of standard boundary components of pΣb, BΣbq and |c|1 is the number of
crosscaps. Up to isomorphism, each oriented sh-surface pΣb, cq is determined by the genus g of Σb,
the number |c|0 of ordinary boundary components, and the number |c|1 of crosscaps.

An oriented sh-surface pΣb, cq of type pg,m0,m1q doubles to a symmetric surface pΣ, σq of type

pgpΣq, |σ|0, xσyq “

#

p2g`m0`m1´1,m0, 0q, if m1 “ 0;

p2g`m0`m1´1,m0, 1q, if m1 ‰ 0;

so that σ restricts to c on the cutting circles (the boundary of Σb); see [6, (1.6)] and Figure 1. Since
this doubling construction covers all topological types of orientation-reversing involutions σ on Σ,
for every symmetric surface pΣ, σq there is an oriented sh-surface pΣb, cq which doubles to pΣ, σq.
In general, the topological type of such an sh-surface is not unique.

Let pΣ, σq be a smooth symmetric surface and pΣb, cq be an oriented sh-surface doubling to pΣ, σq.
For each i, let

pBΣbqiˆp´2, 2q ÝÑ Σ
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Figure 2: A smooth symmetric surface pΣ, σq and its associated pinched surface pΣ1, σ1q

be a parametrization of a neighborhood Ui of pBΣbqi such that pBΣbqiˆ0 corresponds to pBΣbqi and

σpx, τq “ px,´τq @ px, τqPpBΣbqiˆp´2, 2q.

We assume that these neighborhoods are disjoint. Let pΣ1, σ1q be the nodal symmetric surface
obtained from pΣ, σq by collapsing the circles τ “ ˘1 in each Ui. Since pBΣbqi is a separating
collection, the surface Σ1 consists of two closed surfaces, Σ1` and Σ1´, interchanged by σ1 and
attached to a collection tS2

i u of σ1-invariant spheres with pBΣbqi Ă S
2
i ; see Figure 2. We will call

the latter the central components of Σ1. Let

qΣ : Σ ÝÑ Σ1

be the quotient map. In particular, qΣ˝σ“σ
1˝qΣ.

For each cutting circle pBΣbqi with |ci|“0, let

D`i “ qΣ

`

pBΣbqiˆr0, 1s
˘

, D´i “ qΣ

`

pBΣbqiˆr´1, 0s
˘

.

Choose a homeomorphism fi : pBΣ
bqiÝÑS1 and define a rank 1 real bundle pair pγi, rσ

1
iq over pS2

i , σ
1q by

γi ”
`

D`i ˆC\D´i ˆC
˘

{„, D`i ˆC Q px, 0, vq „
`

x, 0, fipxqv
˘

P D´i ˆC,
rσ1i
`

rqΣpx, τq, vs
˘

“
“

qΣpx,´τq, v̄
‰

.

We will call the restriction of a rank n real bundle pair pV 1, ϕ1q over pΣ1, σ1q to a central compo-
nent S2

i standard if it equals either

`

S2
i ˆCn, σ1ˆc

˘

or
`

γi, rσ
1
i

˘

‘
`

S2
i ˆCn´1, σ1ˆc

˘

;

the latter is a possibility only if |ci|“0.

Lemma 2.2. Let pΣ, σq be a smooth symmetric surface. For every real bundle pair pV, ϕq over pΣ, σq,
there exists a real bundle pair pV 1, ϕ1q over pΣ1, σ1q such that pV, ϕq is isomorphic to q˚ΣpV

1, ϕ1q and
the restriction of pV 1, ϕ1q to each central component pS2

i , σiq is a standard real bundle pair.
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Proof. Let n“rkCV . If |ci|“0, define a rank 1 real bundle pair prγi, rσiq over pUi, σq by

rγi ”
`

pBΣbqiˆr0, 2qˆC\ pBΣbqiˆp´2, 0sˆC
˘

{„,

pBΣbqiˆr0, 2qˆC Q px, 0, vq „
`

x, 0, fipxqv
˘

P pBΣbqiˆp´2, 0sˆC,
rσipx, τ, vq “

`

x,´τ, v̄
˘

.

If in addition the restriction of V ϕ to pBΣbqi is not orientable, then

V ϕ «
 

px, vqPpBΣbqiˆC : fipxqv“ v̄
(

‘ pBΣbqiˆRn´1

and thus
pV, ϕq

ˇ

ˇ

Ui
« prγi, rσiq‘

`

UiˆCn´1, idˆc
˘

as real bundle pairs over pUi, σq. If the restriction of V ϕ to pBΣbqi is instead orientable, then
V ϕ|pBΣbqi«pBΣ

bqiˆRn and thus

pV, ϕq
ˇ

ˇ

pBΣbqi
«

`

pBΣbqiˆCn, idˆc
˘

“
`

pBΣbqiˆCn, σ1ˆc
˘

. (2.1)

as real bundle pairs over ppBΣbqi, σq. If |ci|“1, then

pV, ϕq
ˇ

ˇ

pBΣbqi
«

`

pBΣbqiˆCn, σˆc
˘

(2.2)

as real bundle pairs over ppBΣbqi, σq “ ppBΣ
bqi, aq; see [4, Lemma 2.4]. The isomorphisms (2.1)

and (2.2) extend to isomorphisms

pV, ϕq
ˇ

ˇ

Ui
«

`

UiˆCn, σˆc
˘

of real bundle pairs over pUi, σq. In all three cases, the restriction pV, ϕq to the union of small
neighborhoods of the pinching circles τ“˘1 in each Ui is trivialized as a real bundle pair. Therefore,
pV, ϕq descends to a real bundle pair pV 1, ϕ1q over pΣ1, σ1q such that pV, ϕq is isomorphic to q˚ΣpV

1, ϕ1q.
By construction, the restriction of pV 1, ϕ1q to each central component pS2

i , σiq is a standard real
bundle pair.

Proof of Proposition 2.1. The necessity of the conditions is clear. By Lemma 2.2, it thus
remains to show that real bundle pairs pV 11 , ϕ

1
1q and pV 12 , ϕ

1
2q over pΣ1, σ1q that restrict to the same

standard real bundle pair on each central component S2
i and to bundles of the same degree over Σ1`

are isomorphic as real bundle pairs over pΣ1, σ1q. The identifications of pV 11 , ϕ
1
1q and pV 12 , ϕ

1
2q over

the central components determine identifications of the restrictions of V 11 |Σ1˘ and V 12 |Σ1˘ at the nodes

carried by Σ1˘ that commute with ϕ11 and ϕ12. Since V 11 |Σ1` and V 12 |Σ1` are complex bundles of the

same degree and rank and GLnC is connected, we can choose an isomorphism Ψ1` between them
that respects the identifications at the nodal points. Let

Ψ1´ “ ϕ2˝Ψ1`˝ϕ1 : V 11 |Σ1´ ÝÑ V 12 |Σ1´ .

This isomorphism again respects the identifications at the nodal points. We take

Ψ1 : pV 11 , ϕ
1
1q ÝÑ pV 12 , ϕ

1
2q

to be the identity on the central components of Σ1 and Ψ1˘ on Σ1`. This is a well-defined isomorphism
of real bundle pairs.
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3 Construction of automorphisms

In this section, we establish the surjectivity of the homomorphism (1.3) and its GLpV, ϕq version
and show that there is no obstruction to lifting paths with basepoints.

Proposition 3.1. Let pΣ, σq be a symmetric surface and pV, ϕq be a real bundle pair over pΣ, σq.
Then the homomorphism (1.3) is surjective. Furthermore, every path ψt in SLpV ϕq passing through
Ψ|V ϕ for some Ψ P SLpV, ϕq lifts to a path in SLpV, ϕq passing through Ψ. The same is the case
with SLpV ϕq and SLpV, ϕq replaced by GLpV ϕq and GLpV, ϕq, respectively. In all cases, the lifts
can be chosen to restrict to the identity outside of an arbitrary small neighborhood of Σσ.

Lemma 3.2. Let pΣ, σq be a smooth symmetric surface with fixed components Σσ
1 , . . . ,Σ

σ
m and

pV, ϕq be a real bundle pair over pΣ, σq. For every i “ 1, . . . ,m and a path ψt in SLpV ϕ|Σσi q,
there exists a path Ψt in SLpV, ϕq such that each Ψt is the identity outside of an arbitrarily small
neighborhood of Σσ

i and restricts to ψt on V ϕ|Σσi . The same is the case with SLpV ϕ|Σσi q and SLpV, ϕq
replaced by GLpV ϕ|Σσi q and GLpV, ϕq, respectively.

Proof. Let n“rkCV and I“r0, 1s. Since every complex vector bundle over Σσ
i is trivial,

ψt P SL
`

V ϕ|Σσi

˘

Ă SL
`

V |Σσi
˘

determines a path of loops in SLnC. Since π1pSLnCq is trivial, there exists a continuous map

H : I2 ÝÑ SL
`

V |Σσi
˘

, pt, τq ÝÑ Ht,τ , s.t. Ht,0 “ ψt, Ht,1“ IdV |Σσ
i
@ tPI.

Let Σσ
iˆp´2, 2qÝÑΣ be a parametrization of a neighborhood U of Σσ

i such that Σσ
iˆ0 corresponds

to Σσ
i and

σpx, τq “ px,´τq @ px, τqPΣσ
i ˆp´2, 2q.

Identifying pV, ϕq|U with V |Σσi ˆp´2, 2q, we define Ψt on U by

Ψt|px,τq “

$

’

’

&

’

’

%

Ht,τ |x, if τ Pr0, 1s;

IdV |Σσ
i
, if τ Pr1, 2q;

ϕ˝Ht,´τ |x˝ϕ, if τ Pp´2, 0s;

and extend it as the identity over Σ´U .

A similar argument applies with SLpV ϕ|Σσi q and SLpV, ϕq replaced by GLpV ϕ|Σσi q and GLpV, ϕq,
respectively. A path ψt in GLpV ϕ|Σσi q determines a path of loops in

 

ψPGLnC : detCψPR˚
(

.

These loops are again contractible, and the remainder of the above reasoning still applies.

Corollary 3.3. The first statement Proposition 3.1, its analogue as in the third statement, and its
sharpening as in the fourth statement hold if pΣ, σq is a smooth symmetric surface.
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Proof. Let Σσ
1 , . . . ,Σ

σ
m be the connected components of the fixed locus ΣσĂΣ. If ψ PSLpV ϕq, let

ΨiPSLpV, ϕq be an automorphism as in Lemma 3.2 corresponding to the restriction of ψ to V ϕ|Σσi
and define

Ψ “ Ψ1 ˝ . . . ˝Ψm P SLpV, ϕq.

Since each Ψi is the identity outside of a small neighborhood of Σσ
i , Ψ|V ϕ“ψ.

The same arguments apply with SLpV ϕq and SLpV, ϕq replaced by GLpV ϕq and GLpV, ϕq, respec-
tively.

A nodal oriented surface Σ is obtained from a smooth oriented surface rΣ by identifying the two
points in each of finitely many disjoint pairs of points of rΣ; the images of these pairs in Σ are the
nodes of Σ. The surface rΣ is called the normalization of Σ; it is unique up to a diffeomorphism
respecting the distinguished pairs of points. An orientation-reversing involution σ on Σ lifts to an
orientation-reversing involution rσ on rΣ. There are three distinct types of nodes a nodal symmetric
surface pΣ, σq may have

(H) a non-isolated real node xij , i.e. xij is not an isolated point of Σσ and is obtained by identifying

distinct points rxi, rxj P rΣ
rσ;

(E) an isolated real node xi, i.e. xi is an isolated point of Σσ and is obtained by identifying a point
rx`i P

rΣ´rΣrσ with rx´i “rσprx`i q;

(C) a pair tx`ij , x
´
iju of conjugate nodes, i.e. x˘ij RΣσ and x´ij“σpx

`
ijq, with x˘ij obtained by identifying

distinct points rx˘i , rx
˘
j P

rΣ´rΣrσ such that rx´i “rσprx`i q and rx´j “rσprx`j q.

Proof of Proposition 3.1. Let rΣ Ă Σ be the normalization of Σ and SH , SE , SC Ă rΣ be the
preimages of the H, E, and C nodes of Σ, respectively. Choose disjoint subsets S1, S2Ă rΣ consisting
of one point from the preimage of each node of Σ. Let rV ÝÑ rΣ be a complex vector bundle and

ϑ : rV
ˇ

ˇ

S1
ÝÑ rV

ˇ

ˇ

S2

be an isomorphism of complex vector bundles such that

V “ rV
L

„, v„ϑpvq @ vP rV
ˇ

ˇ

S1
.

Denote by rϕ the lift of ϕ to rV . Thus, prV , rϕq is a real bundle pair over prΣ, rσq that descends to the
real bundle pair pV, ϕq. An automorphism rΨ of prV , rϕq descends to an automorphism of pV, ϕq if
and only if

rΨ ˝ ϑ “ ϑ ˝ rΨ
ˇ

ˇ

rV |S1
. (3.1)

An automorphism ψPSLpV ϕq induces automorphisms

rψR P SL
`

rV rϕ
˘

s.t. rψR ˝ ϑ “ ϑ ˝ rψR on rV
ˇ

ˇ

S1XSH
, (3.2)

rψE P SL
`

rV |SE
˘

s.t. rψE ˝ ϑ “ ϑ ˝ rψE , rψE ˝ rϕ “ rϕ ˝ rψE on rV
ˇ

ˇ

S1XSE
. (3.3)
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By Corollary 3.3, there exists rΨ1 PSLprV , rϕq such that rΨ1|
rV ϕ
“ rψR and rΨ1 restricts to the identity

outside of an arbitrarily small neighborhood of rΣrσ. By the second condition on rΨ1, we can assume
that rΨ1 restricts to the identity over SC and over a collection of small disjoint neighborhoods U

rx

of the elements rxPSE not intersecting SC . By (3.2) and the first condition on rΨ1,

rΨ1 ˝ ϑ “ ϑ ˝ rΨ1
ˇ

ˇ

rV |S1
. (3.4)

By Lemma 3.4 below, for each rx P S1XSE there exists rΨ
rx P SLprV , rϕq such that rΨ

rx|rx “
rψE and

rΨ
rx“ Id

rV
outside of U

rxYUrσprxq. By (3.3) and the two conditions on rΨ
rx,

rΨ
rx ˝ ϑ “ ϑ ˝ rΨ

rx

ˇ

ˇ

rV |S1
. (3.5)

Let rΨ be the composition of the automorphisms rΨ1 and rΨ
rx with rx P S1XSE . Since the subsets

of rΣ where these automorphisms differ from the identity are disjoint, rΨ does not depend on their
ordering in this composition and satisfies

rΨ
ˇ

ˇ

rV ϕ
“ rψR , rΨ

ˇ

ˇ

rV |S1XSE

“ rψE . (3.6)

By (3.1), (3.4), and (3.5), rΨ descends to an element Ψ P SLpV, ϕq. By (3.6), the latter satisfies
Ψ|V ϕ“ψ.

Suppose ΨPSLpV, ϕq and ψt is a path in SLpV ϕq such that Ψ|V ϕ“ψ0. Let ΦtPSLpV, ϕq be a path
of automorphisms with Φt|V ϕ“ψt constructed as above and define

Ψt “ Ψ˝Φ´1
0 ˝Φt.

Since Ψ|V ϕ“ψ0 and Φt|V ϕ“ψt, Ψt|V ϕ“ψt.

The same arguments apply with SLpV ϕq and SLpV, ϕq replaced by GLpV ϕq and GLpV, ϕq, respec-
tively.

Lemma 3.4. Let pΣ, σq be a symmetric surface and pV, ϕq be a real bundle pair over pΣ, σq. For
every x PΣ´Σσ, an open neighborhood U ĂΣ of x, and a path ψt;x P SLpVxq, there exists a path
Ψt PSLpV, ϕq such that Ψt|x“ψt;x and Ψt“ Id on Σ´UYσpUq. The same is the case with SLpVxq
and SLpV, ϕq replaced by GLpVxq and GLpV, ϕq, respectively.

Proof. By shrinking U , we can assume that UXσpUq“H and that V |U “UˆVx. Let ρ : ΣÝÑr0, 1s
be a smooth σ-invariant function such that ρpxq “ 0 and ρ“ 1 on Σ´UYσpUq. Since SLpVxq is
connected, there exists a continuous map

H : I2 ÝÑ SLpVxq, pt, τq ÝÑ Ht,τ , s.t. Ht,0 “ ψt;x, Ht,1“ IdVx @ tPI.

The path ΨtPSLpV, ϕq given by

Ψtpzq “

$

’

&

’

%

Ht,ρpzq, if zPU ;

ϕ˝Ht,ρpzq˝ϕ, if zPσpUq;

IdVx , if zRUYσpUq;

has the desired properties. The same arguments apply with SLpVxq and SLpV, ϕq replaced by
GLpVxq and GLpV, ϕq, respectively.
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4 Construction of isomorphisms

We will next establish Theorem 1.1 by induction on the number of nodes from the base case of
Proposition 2.1. We will need the following lemma.

Lemma 4.1. Let pV, iq be a finite-dimensional complex vector space and A,B : V ÝÑ V be
C-antilinear isomorphisms such that A2, B2 “ IdV . Then there exists a C-linear isomorphism
ψ : V ÝÑV such that ψ“A˝ψ˝B. If

 

Λtop
C A

(

˝
 

Λtop
C B

(

“
 

Λtop
C B

(

˝
 

Λtop
C A

(

: Λtop
C V ÝÑ Λtop

C V, (4.1)

then ψ can be chosen so that Λtop
C ψ“ Id.

Proof. Since A2, B2“ IdV , the isomorphisms A,B are diagonalizable with all eigenvalues ˘1. Since
A,B are C-antilinear, we can choose C-bases tviu and twiu for V such that

Apviq “ vi, Apiviq “ ´ivi, Bpwiq “ wi, Bpiwiq “ ´iwi.

The C-linear isomorphism ψ : V ÝÑV defined by ψpwiq“vi then has the first desired property.

The automorphisms Λtop
C A and Λtop

C B are C-antilinear and have one eigenvalue of `1 and one

of ´1. If (4.1) holds, the eigenspaces of Λtop
C A and Λtop

C B are the same and so

v1^C . . .^Cvn “ r ¨ w1^C . . .^Cwn P Λtop
C V

for some rPR˚. Replacing w1 by rw1 in the previous paragraph, we obtain an isomorphism ψ that
also satisfies the second property.

Proof of Theorem 1.1. By Proposition 2.1, we can assume that pΣ, σq is singular and that The-
orem 1.1 holds for all symmetric surfaces prΣ, rσq with fewer nodes than pΣ, σq.

If pΣ, σq contains a real node x, i.e. an H or E node as described on page 8, let prΣ, rσq be the (pos-
sibly nodal) symmetric surface obtained from pΣ, σq by desingularizing a small neighborhood of x.
The preimage of x under the natural projection rΣÝÑΣ is then two distinct points rx1, rx2; pΣ, σq
is obtained from prΣ, rσq by identifying rx1 with rx2 to form the additional node x. Let S1“trx1u and
S2“trx2u in this case. If pΣ, σq does not contain a real node, let tx`, x´u be a pair of conjugate
nodes and prΣ, rσq be the (possibly nodal) symmetric surface obtained from pΣ, σq by desingularizing
small neighborhoods of x` and x´. The preimage of each point x˘ under the natural projection
rΣÝÑΣ is then two distinct points rx˘1 , rx

˘
2 ; pΣ, σq is obtained from prΣ, rσq by identifying rx`1 with rx`2

and rx´1 with rx´2 to form the additional nodes x` and x´, respectively. Let S1 “ trx
`
1 , rx

´
1 u and

S2“trx
`
2 , rx

´
2 u in this case.

Let rV1, rV2ÝÑ rΣ be complex vector bundles and

ϑ1 : rV1

ˇ

ˇ

S1
ÝÑ rV1

ˇ

ˇ

S2
and ϑ2 : rV2

ˇ

ˇ

S1
ÝÑ rV2

ˇ

ˇ

S2

be isomorphisms of complex vector bundles such that

V1 “ rV1

L

„, v„ϑ1pvq @ vP rV1

ˇ

ˇ

S1
, and V2 “ rV2

L

„, v„ϑ2pvq @ vP rV2

ˇ

ˇ

S1
.

10



Denote by rϕ1 and rϕ2 the lift of ϕ1 to rV1 and the lift of ϕ2 to rV2, respectively. Thus, prV1, rϕ1q and
prV2, rϕ2q are real bundle pairs over prΣ, rσq that descend to the real bundle pairs pV1, ϕ1q and pV2, ϕ2q

over pΣ, σq. Furthermore,

ϑipvq “

#

rϕipϑ
´1
i prϕipvqqq, if |S1|“1 and x is E node;

rϕipϑiprϕipvqqq, otherwise;
(4.2)

for all vP rVi
ˇ

ˇ

S1
.

Since prΣ, rσq satisfies Theorem 1.1, there exists an isomorphism

rΦ: prV1, rϕ1q ÝÑ prV2, rϕ2q

of real bundle pairs over prΣ, rσq. We show below that there exists rΨPGLprV1, rϕ1q so that

rΦ˝ rΨ ˝ ϑ1 “ ϑ2 ˝ rΦ˝ rΨ: rV1|S1 ÝÑ
rV2|S2 . (4.3)

This implies that rΦ˝ rΨ descends to an isomorphism of real bundles as in (1.1).

Suppose |S1|“1 and x is an E node. By the first case in (4.2), the C-linear isomorphisms

rΦ´1˝ϑ´1
2 ˝rΦ˝ rϕ1“ rΦ´1˝ϑ´1

2 ˝ rϕ2˝rΦ, rϕ1˝ϑ1 : rV1

ˇ

ˇ

rx1
ÝÑ rV1

ˇ

ˇ

rx1

square to the identity. By Lemma 4.1, there thus exists ψPGLprV1|
rx1
q such that

ψ “ rΦ´1˝ϑ´1
2 ˝rΦ˝ rϕ1 ˝ ψ ˝ rϕ1˝ϑ1 : rV1|

rx1
ÝÑ rV1|

rx1
. (4.4)

By Lemma 3.4, there exist rΨPGLprV1, rϕ1q and a neighborhood U of rx1 in rΣ such that

rΨ|z “

#

ψ, if z“rx1;

id, if zRUYσpUq;
UXσpUq “ H. (4.5)

By (4.4) and (4.5), rΨ satisfies (4.3).

In the two remaining cases, let

ψ“ rΦ´1˝ϑ´1
2 ˝rΦ˝ϑ1 : rV1

ˇ

ˇ

S1
ÝÑ rV1

ˇ

ˇ

S1
.

This C-linear automorphism satisfies

rΦ
`

ϑ1pvq
˘

“ ϑ2

`

rΦpψpvqq
˘

@ vP rV1

ˇ

ˇ

S1
. (4.6)

By the second case in (4.2), ψ˝ rϕ1“ rϕ1˝ψ.

Suppose |S1|“1 and x is an H node. If rx1 and rx2 lie on different topological components rΣrσ
1 ,
rΣrσ

2

of rΣrσ, extend ψ to some rψ P GLprV rϕ1
1 |

rΣrσ
1
q. If rx1 and rx2 lie on the same topological component

rΣrσ
1 of rΣrσ, the w1-assumption applied to either of the two circles in the connected component

of Σσ containing x implies that ψ is orientation-preserving. Therefore, it can be extended to some

11



rψPSLprV rϕ1
1 |

rΣrσ
1
q such that rψ is the identity over rx2. In both cases, there exist rΨPGLprV1, rϕ1q and a

neighborhood U of rΣrσ
1 in rΣ such that

rΨ|z “

#

ψ, if z“rx1;

id, if zRU ;
UX

`

rΣrσ´rΣrσ
1

˘

“ H; (4.7)

see Proposition 3.1. By (4.6) and (4.7), rΨ satisfies (4.3).

Suppose |S1|“2. Since ψ˝ rϕ1“ rϕ1˝ψ, there exist rΨPAutprV , rϕ1q and a neighborhood U of S1 in rΣ
such that

rΨ|z “

#

ψ|S1 , if zPS1;

Id
rV1
, if zRU ;

UXS2 “ H; (4.8)

see Lemma 3.4. By (4.6) and (4.8), rΨ satisfies (4.3).

5 Homotopies between automorphisms

In this section, we establish the main statement needed to lift homotopies in Theorem 1.2.

Proposition 5.1. Let pΣ, σq be a symmetric surface, pV, ϕq be a real bundle pair over pΣ, σq, and
Ψ P SLpV, ϕq. If Ψ|V ϕ “ IdV ϕ, then Ψ is homotopic to IdV through automorphisms Ψt P SLpV, ϕq
such that Ψt|V ϕ“ IdV ϕ.

Proof. Let n“rkCV . By Lemma 5.2 below, we can assume that Ψ|x“ IdVx for every C node xPΣ.
Let

`

rΣ, rσ
˘

ÝÑ pΣ, σq, SE , SC Ă rΣ, and rΨ P SLprV , rϕq

be as in the proof of Proposition 3.1. Let prΣb,rcq be an oriented sh-surface which doubles to prΣ, rσq
so that the boundary BrΣb of rΣb is disjoint from SEYSC and set

S` “
`

SEYSCq X rΣb .

Since Ψ|x“ IdVx for every node xPΣ, rΨ|
rx“ Id

rV
rx

for every rxPS`.

Let B1
rΣb be the union of the boundary components of prΣb,rcq with |ci|“1. Since det rΨ“1, the re-

striction of rΨ to prV , rϕq|
B1 rΣb

is homotopic to the identity through automorphisms rΦtPSLpprV , rϕq|
B1 rΣb

q;

see [4, Lemma 2.4]. We extend rΦt over rΣb as follows. Let B1
rΣbˆIÝÑU be a parametrization of a

(closed) neighborhood U of B1
rΣbĂ rΣb´S` with coordinates px, sq. Identifying rV |U with rV |

B1 rΣb
ˆI,

define

rΨt P SL
`

rV |
rΣb

˘

by rΨt|z “

#

rΦp1´sqt|x ˝ rΨ|
´1
x , if z “ px, sq P U « B1

rΣbˆI;
Id

rVz
, if z P rΣb´U.

Since rΨt|px,1q is the identity for all t, this map is continuous. Moreover, rΨ0|z is the identity for all

zP rΣb and
rΨt|px,0q “

rΦt|x ˝ rΨ|
´1
x

12
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Figure 3: The paths C1, . . . , C4 cut rΣb to a disk.

is a homotopy between the identity and rΨ´1 on rV |
B1 rΣb

. Thus, rΨt˝rΨ is a homotopy from rΨ over rΣb

extending rΦt.

Choose embedded non-intersecting paths tCiu in rΣb´S` with endpoints on BrΣb which cut rΣb into
a disk D2

0; see Figure 3. Choose an embedded path γ
rx in D2

0 from each point rxPS` to BD2
0 so that

these curves are pairwise disjoint and cut D2
0 into another disk D2. Thus, BD2 is subdivided into

arcs each of which was contained in BrΣb before the two cuttings, or had precisely the two endpoints
in common with BrΣb, or had one endpoint on BrΣb and the other in S`. Furthermore, every point
in S` is an endpoint of some arc in BD2.

By the assumption Ψ|V ϕ“ IdV ϕ and the first two paragraphs, we may assume that rΨ is the identity
over BrΣb and S`. Since the restriction of rV to each Ci is trivial, the restriction of rΨ to Ci defines
an element of

π1

`

SLnC, In
˘

« π1

`

SUn, In
˘

“ 0. (5.1)

Thus, we can homotope rΨ to the identity over Ci while keeping it fixed at the endpoints. Similarly
to the second paragraph, this homotopy extends over rΣb without changing rΨ over BrΣb, over Cj for

any Cj ‰Ci, or over S`. In particular, this homotopy descends to rΣb restricting to the identity

over BrΣb and S`.

By the previous paragraph, we may assume that rΨ restricts to the identity over BD2
0. Since the

restriction of rV to γ
rx is trivial for each rxPS`, the restriction of rΨ to γ

rx defines an element of

π1

`

SLnC, In
˘

« π1

`

SUn, In
˘

“ 0.

Thus, we can homotope rΨ to the identity over γ
rx while keeping it fixed at the endpoints. Similarly

to the second paragraph, this homotopy extends over D2
0 without changing rΨ over BD2

0 or over

γ
rx1 for any rx1PS` different from rx. In particular, this homotopy descends to rΣb restricting to the

identity over BrΣb and S`.

13



By the previous paragraph, we may assume that rΨ restricts to the identity over the boundary S1

of D2. Since every vector bundle over D2 is trivial and

π2

`

SLnC, In
˘

« π2

`

SUn, In
˘

“ 0,

the map rΨ: pD2, S1qÝÑpSLnC, Inq can be homotoped to the identity as a relative map. Doubling
such a homotopy rΨt by the requirement that rΨt˝ϕ“ϕ˝rΨt, we obtain a homotopy rΨt from rΨ to Id

rV

through automorphisms rΨtPSLprV , rϕq such that rΨt restricts to the identity over rΣrσ and S`. Thus,
they descend to automorphisms ΨtPSLpV, ϕq with the required properties.

Lemma 5.2. Let pΣ, σq be a symmetric surface and pV, ϕq be a real bundle pair over pΣ, σq. For
every xP Σ́ Σσ, an open neighborhood UĂΣ of x, and ΨPSLpV, ϕq, there exists a path ΨtPSLpV, ϕq
such that Ψ0“Ψ, Ψ1|x“ IdVx, and Ψt“Ψ on Σ´UYσpUq. The same is the case with SLpV, ϕq
replaced by GLpV, ϕq.

Proof. Since SLpVxq is connected, there exists a path

ψx;t P SLpVxq s.t. ψx;0 “ IdVx , ψx;1 “ Ψ´1|Vx .

By Lemma 3.4, there exists a path ΦtPSLpV, ϕq such that Φt|x“ψx;t and Φt“ Id on Σ´UYσpUq.
The path Ψt“Φt˝Φ´1

0 ˝Ψ then has the desired properties.

6 Classification of automorphisms

By the next lemma, the first composite homomorphism in (1.2) is surjective. We use it to complete
the proof of Theorem 1.2 in this section.

Lemma 6.1. Let pΣ, σq be a symmetric surface and pV, ϕq be a real bundle pair over pΣ, σq. Then
the homomorphism

GLpV, ϕq ÝÑ CpΣ, σ;C˚q, Ψ ÝÑ det Ψ,

is surjective. Furthermore, every path ft in CpΣ, σ;C˚q passing through det Ψ for some ΨPGLpV, ϕq
lifts to a path in GLpV, ϕq passing through Ψ.

Proof. Let n“rkCV . By Theorem 1.1, we can assume that

pV, ϕq “ Λtop
C pV, ϕq ‘

`

ΣˆCn´1, σˆcCn´1

˘

.

If f PCpΣ, σ;C˚q, then
Ψ ” fIdΛtop

C V ‘ IdΣˆCn´1 : pV, ϕq ÝÑ pV, ϕq

is an element of GLpV, ϕq such that det Ψ“f . If

Ψ ” fIdΛtop
C V ‘ Φ

is an arbitrarily element of GLpV, ϕq and ft is a path in CpΣ, σ;C˚q such that det Ψ“f0, then

Ψt ”
ft

det Φ
IdΛtop

C V ‘ Φ

is a path in GLpV, ϕq such that Ψ0“Ψ and det Ψt“ft.

14



Proof of Theorem 1.2. By Lemma 6.1 and Proposition 3.1, the compositions

GLpV, ϕq ÝÑ GL1pV, ϕq ÝÑ CpΣ, σ;C˚q, Ψ ÝÑ det Ψ,

GLpV, ϕq ÝÑ GL1pV, ϕq ÝÑ GLpV ϕq, Ψ ÝÑ Ψ|V ϕ ,

are surjective. This implies that the projection homomorphisms

GL1pV, ϕq ÝÑ CpΣ, σ;C˚q,GLpV ϕq

are surjective.

Suppose Ψ,ΦPGLpV, ϕq are such that det Ψ and det Φ lie in the same path component of CpΣ, σ;C˚q
and Ψ|V ϕ and Φ|V ϕ lie in the same path component of GLpV ϕq. We will show that Ψ and Φ lie in
the same path component of GLpV, ϕq. By the second statement of Lemma 6.1, we may assume that
det Ψ“det Φ and thus

Θ ” Φ˝Ψ´1 P SLpV, ϕq, ψ”Θ|V ϕ P SLpV ϕq.

Since Ψ|V ϕ and Φ|V ϕ lie in the same path component of GLpV ϕq, there exists a path ψt in SLpV ϕq

from ψ0 ” IdV ϕ to ψ1 ” ψ. By Proposition 3.1, there exists a path Θt in SLpV, ϕq such that
Θt|V ϕ“ψt and Θ1“Θ. In particular, Φ and Θ0˝Ψ lie in the same path component of GLpV, ϕq,

detpΘ0˝Ψq “ det Ψ, and pΘ0˝Ψq
ˇ

ˇ

V ϕ
“ Ψ|V φ .

By Proposition 5.1, Ψ lies in the same path component of GLpV, ϕq as Θ0˝Ψ and Φ.

Suppose Ψ,ΦPGLpV, ϕq and pft, ψtq is a path in GL1pV, ϕq such that

pf0, ψ0q “
`

det Ψ,Ψ|V ϕ
˘

, pf1, ψ1q “
`

det Φ,Φ|V ϕ
˘

.

By the second statement of Lemma 6.1, there exists a path Φt PGLpV, ϕq such that Φ0 “Ψ and
det Φt“ft. Let

pψt “ ψt ˝ tΦtu
´1|V ϕ P GLpV ϕq.

Since detψt“ft|Σσ , pψtPSLpV ϕq. Furthermore, pψ0“ Id|V ϕ . By Proposition 3.1, pψt thus extends to
a path pΨt in SLpV, ϕq such that pΨ0“ IdV . Let rΨt“ pΨt˝Φt. In particular,

rΨ0 “ Ψ, det rΨt “ ft, rΨt

ˇ

ˇ

V ϕ
“ ψt, det

`

Φ˝ rΨ´1
1

˘

“ IdV ,
`

Φ˝ rΨ´1
1

˘

|V ϕ “ IdV ϕ .

By Proposition 5.1, the last two properties imply that there exists a path Θt in SLpV, ϕq from IdV
to Φ˝ rΨ´1

1 such that Θt|V ϕ “ IdV ϕ . The path Ψt ” Θt ˝ rΨt in GLpV, ϕq runs from Ψ to Φ and
lifts pft, ψtq.

7 Connections with real Gromov-Witten theory

Let X be a topological space. For real vector bundles V1, V2ÝÑX of the same rank, let IsompV1, V2q

be the space of vector bundle isomorphisms

ψ : V1 ÝÑ V2

15



covering idX . For any such isomorphism, let

Λtop
R ψ : Λtop

R V1 ÝÑ Λtop
R V2

be the induced element of IsompΛtop
R V1,Λ

top
R V2q.

Let pX,φq be a topological space with an involution. For real bundle pairs pV1, ϕ1q and pV2, ϕ2q

over pX,φq satisfying the conditions of Theorem 1.1, let IsomppV1, ϕ1q, pV2, ϕ2qq be the space of
isomorphisms

Ψ: pV1, ϕ1q ÝÑ pV2, ϕ2q

of real bundle pairs covering idX . For any such isomorphism, let

Λtop
C Ψ: Λtop

C pV1, ϕ1q ÝÑ Λtop
C pV2, ϕ2q

be the induced element of IsompΛtop
C pV1, ϕ1q,Λ

top
C pV2, ϕ2qq. Define

Isom1
`

pV1, ϕ1q, pV2, ϕ2q
˘

“
 

pf, ψqP Isom
`

Λtop
C pV1, ϕ1q,Λ

top
C pV2, ϕ2q

˘

ˆIsom
`

V ϕ1
1 , V ϕ2

2

˘

:

f |Λtop
R V ϕ1 “Λtop

R ψ
(

.

The next statement is an immediate consequence of Theorems 1.1 and 1.2.

Corollary 7.1 (of Theorems 1.1,1.2). Let pΣ, σq be a (possibly nodal) symmetric surface and
pV1, ϕ1q and pV2, ϕ2q over pX,φq such that

rkCV1 “ rkCV2, w1

`

V ϕ1
1

˘

“ w1

`

V ϕ2
2

˘

P H1pΣσ;Z2q,

and degpV1|Σ1q“degpV2|Σ1q for each irreducible component Σ1ĂΣ. Then the maps

Isom
`

pV1, ϕ1q, pV2, ϕ2q
˘

ÝÑ Isom1
`

pV1, ϕ1q, pV2, ϕ2q
˘

, Ψ ÝÑ
`

Λtop
C Ψ,Ψ|V ϕ1

1

˘

,

Isom1
`

pV1, ϕ1q, pV2, ϕ2q
˘

ÝÑ Isom
`

Λtop
C pV1, ϕ1q,Λ

top
C pV2, ϕ2q

˘

, pf, ψq ÝÑ f,

Isom1
`

pV1, ϕ1q, pV2, ϕ2q
˘

ÝÑ Isom
`

V ϕ1
1 , V ϕ2

2

˘

, pf, ψq ÝÑ ψ,

are surjective. Two isomorphisms from pV1, ϕ1q to pV2, ϕ2q lie in the same path component of
IsomppV1, ϕ1q, pV2, ϕ2qq if and only if their images in

Isom
`

Λtop
C pV1, ϕ1q,Λ

top
C pV2, ϕ2q

˘

and Isom
`

V ϕ1
1 , V ϕ2

2

˘

lie in the same path components of the two spaces. Furthermore, every path pft, ψtq in the space
Isom1ppV1, ϕ1q, pV2, ϕ2qq passing through the images of some Ψ,ΦP IsomppV1, ϕ1q, pV2, ϕ2qq lifts to a
path in IsomppV1, ϕ1q, pV2, ϕ2qq passing through Ψ and Φ.

A special case of this corollary underpins the perspective on orientability in real Gromov-Witten
theory and for orienting naturally twisted determinants of Fredholm operators on real bundle pairs
over symmetric surfaces introduced in [7] and built upon in [8, 9]. This perspective motivated the
following definition.

Definition 7.2 ([8, Definition 5.1]). Let pX,φq be a topological space with an involution and pV, ϕq
be a real bundle pair over pX,φq. A real orientation on pV, ϕq consists of
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(RO1) a rank 1 real bundle pair pL, rφq over pX,φq such that

w2pV
ϕq “ w1pL

rφq2 and Λtop
C pV, ϕq « pL, rφqb2, (7.1)

(RO2) a homotopy class of isomorphisms of real bundle pairs in (7.1), and

(RO3) a spin structure on the real vector bundle V ϕ‘2pL˚q
rφ˚ over Xφ compatible with the ori-

entation induced by (RO2).

We recall that a spin structure on a rank n oriented real vector bundle W ÝÑXφ with a Riemannian
metric is a Spinn principal bundle rFrpW qÝÑXφ factoring through a double cover rFrpW qÝÑFrpW q
equivariant with respect to the canonical homomorphism SpinnÝÑSOn. Since SOn is a deforma-
tion retract of the identity component GL`nR of GLnR, this notion is independent of the choice of
the metric on W . If Xφ is a CW-complex, a spin structure on W is equivalent to a trivialization
of W over the 2-skeleton of Xφ.

An isomorphism Θ in (7.1) restricts to an isomorphism

Λtop
R V ϕ « pL

rφqb2 (7.2)

of real line bundles over Xφ. Since the vector bundles pL
rφqb2 and 2pL˚q

rφ˚ are canonically oriented,

Θ determines orientations on V ϕ and V ϕ‘2pL˚q
rφ˚ . We will call them the orientations determined

by (RO2) if Θ lies in the chosen homotopy class. An isomorphism Θ in (7.1) also induces an
isomorphism

Λtop
C

`

V ‘2L˚, ϕ‘2rφ˚
˘

« Λtop
C pV, ϕq b pL˚, rφ˚qb2

« pL, rφqb2 b pL˚, rφ˚qb2 «
`

ΣˆC, σˆc
˘

,
(7.3)

where the last isomorphism is the canonical pairing. We will call the homotopy class of isomor-
phisms (7.3) induced by the isomorphisms Θ in (RO2) the homotopy class determined by (RO2).

By the above, a real orientation on a rank n real bundle pair pV, ϕq over a symmetric surface pΣ, σq
determines a topological component of the space

Isom1
`

pV ‘2L˚, ϕ‘2rφ˚q, pΣˆCn`2, σˆcq
˘

Ă Isom1
`

Λtop
C pV ‘2L˚, ϕ‘2rφ˚q,Λtop

C pΣˆCn`2, σˆcq
˘

ˆ Isom1
`

pV ‘2L˚qϕ‘2rφ˚ , pΣˆCn`2qσˆc
˘

.

The next proposition, established for smooth and one-nodal symmetric surfaces in [8] and for
symmetric surfaces with one pair of conjugate nodes in [9], is thus a special case of Corollary 7.1.

Proposition 7.3. Let pΣ, σq be a symmetric surface and pV, ϕq be a rank n real bundle pair over
pΣ, σq. A real orientation on pV, ϕq determines a homotopy class of isomorphisms

Ψ:
`

V ‘2L˚, ϕ‘2rφ˚
˘

«
`

ΣˆCn`2, σˆc
˘

of real bundle pairs over pΣ, σq. An isomorphism Ψ belongs to this homotopy class if and only if
the restriction of Ψ to the real locus induces the chosen spin structure (RO3) and the isomorphism

Λtop
C Ψ: Λtop

C
`

V ‘2L˚, ϕ‘2rφ˚
˘

ÝÑ Λtop
C

`

ΣˆCn`2, σˆc
˘

“
`

ΣˆC, σˆc
˘

lies in the homotopy class determined by (RO2).
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A symmetric Riemann surface pΣ, σ, jq is a symmetric surface with a complex structure j on Σ such
that σ˚j“´j. A real Cauchy-Riemann operator on a real bundle pair pV, ϕq over such a surface is a
linear map of the form

D “ B̄V `A : ΓpΣ;V qϕ ”
 

ξPΓpΣ;V q : ξ˝σ“ϕ˝ξ
(

ÝÑ Γ0,1
j pΣ;V qϕ ”

 

ζ PΓpΣ; pT ˚Σ, jq0,1bCV q : ζ˝dσ “ ϕ˝ζ
(

,

where B̄V is the holomorphic B̄-operator for some holomorphic structure in V and

A P Γ
`

Σ; HomRpV, pT
˚Σ, jq0,1bCV q

˘ϕ

is a zeroth-order deformation term. Let B̄Σ;C denote the real Cauchy-Riemann operator on the
trivial rank 1 real bundle pΣˆC, σˆ cq with the standard holomorphic structure and A“ 0. Any
real Cauchy-Riemann operator D on a real bundle pair is Fredholm in the appropriate completions.
We denote by

detD ” Λtop
R pkerDq b

`

Λtop
R pcokDq

˘˚

its determinant line.

If pX,φq is a topological space with an involution, a real map u : pΣ, σqÝÑpX,φq is a continuous
map u : ΣÝÑX such that u˝σ“φ˝u. Such a map pulls back a real bundle pair pV, ϕq over pX,φq
to a real bundle u˚pV, ϕq over pΣ, σq and a real orientation on the former to a real orientation on
the latter. By Proposition 7.3, a real orientation on a rank n real bundle pair pV, ϕq over pX,φq
thus determines an orientation on the relative determinant

xdetDu ”
`

detDu

˘

b
`

det B̄Σ;C
˘bn

(7.4)

for every real Cauchy-Riemann operator Du on the real bundle pair u˚pV, ϕq over pΣ, σq for every
real map u : pΣ, σqÝÑpX,φq. This observation plays a central role in the construction of positive-
genus real Gromov-Witten invariants in [8]. If Σ is of genus 0, det B̄Σ;C has a canonical orientation

and an orientation on xdetDu is canonically equivalent to an orientation on detDu. In particular,
[4, Theorem 1.3] is essentially equivalent to the case of this observation with Σ“P1 and σ being
an involution without fixed points.

The analogue of the last factor in (7.4) in the case of bordered surfaces is canonically oriented.
Thus, the role of the real orientations of Definition 7.2 for Cauchy-Riemann operators in real
Gromov-Witten theory is analogous to that of the relative spin structures of [5, Definition 8.1.2]
in open Gromov-Witten theory.
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