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Basic notions

Calabi-Yau 3-fold X = (cmpt) complex manifold
dimC X = 3, c1(TX ) = 0

Mirror family X̂ = family of Calabi-Yau 3-folds
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Introduction Some Formulas Geometry Analysis

What is special about CY 3-folds X?

expected # of genus-g degree-d curves in X is finite, ng,d ∈ Z
e.g. n0,1 = 2,875 # of lines on general X5

ng,1 = ng,2 = 0 ∀g ≥ 1
genus g degree d GW of X : Ng,d ∈ Q

“linear combination" of ng′,d ′ , g′ ≤ g, d ′ ≤ d

More generally: n1,d is finite if c1(TX ) = 0 (any dim X )
=⇒ genus 1 degree d GW of X : N1,d ∈ Q

Main example: X ≡ Xn ⊂ Pn−1 hypersurface of degree n

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

What is special about CY 3-folds X?

expected # of genus-g degree-d curves in X is finite, ng,d ∈ Z
e.g. n0,1 = 2,875 # of lines on general X5

ng,1 = ng,2 = 0 ∀g ≥ 1
genus g degree d GW of X : Ng,d ∈ Q

“linear combination" of ng′,d ′ , g′ ≤ g, d ′ ≤ d

More generally: n1,d is finite if c1(TX ) = 0 (any dim X )
=⇒ genus 1 degree d GW of X : N1,d ∈ Q

Main example: X ≡ Xn ⊂ Pn−1 hypersurface of degree n

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

What is special about CY 3-folds X?

expected # of genus-g degree-d curves in X is finite, ng,d ∈ Z
e.g. n0,1 = 2,875 # of lines on general X5

ng,1 = ng,2 = 0 ∀g ≥ 1
genus g degree d GW of X : Ng,d ∈ Q

“linear combination" of ng′,d ′ , g′ ≤ g, d ′ ≤ d

More generally: n1,d is finite if c1(TX ) = 0 (any dim X )
=⇒ genus 1 degree d GW of X : N1,d ∈ Q

Main example: X ≡ Xn ⊂ Pn−1 hypersurface of degree n

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

What is special about CY 3-folds X?

expected # of genus-g degree-d curves in X is finite, ng,d ∈ Z
e.g. n0,1 = 2,875 # of lines on general X5

ng,1 = ng,2 = 0 ∀g ≥ 1
genus g degree d GW of X : Ng,d ∈ Q

“linear combination" of ng′,d ′ , g′ ≤ g, d ′ ≤ d

More generally: n1,d is finite if c1(TX ) = 0 (any dim X )
=⇒ genus 1 degree d GW of X : N1,d ∈ Q

Main example: X ≡ Xn ⊂ Pn−1 hypersurface of degree n

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Mirror symmetry for X

AX
g (Q) ≡

∞∑
d=1

Ng,dQd ?
= BX

g (q), Q = Q(q), q = q(Q)

BX
g (q) = explicit function determined by mirror family of X

Mathematical verifications
g = 0: Givental’96/Lian-Liu-Yau’97/... (Xn, etc.)
g = 1: ’07 (hypersurfaces Xn ⊂ Pn−1 only)
g ≥ 2: ?

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Mirror symmetry for X

AX
g (Q) ≡

∞∑
d=1

Ng,dQd ?
= BX

g (q), Q = Q(q), q = q(Q)

BX
g (q) = explicit function determined by mirror family of X

Mathematical verifications
g = 0: Givental’96/Lian-Liu-Yau’97/... (Xn, etc.)
g = 1: ’07 (hypersurfaces Xn ⊂ Pn−1 only)
g ≥ 2: ?

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

B-model PFs for X = Xn

F0(x ,q) =
∞∑

d=0

qd
∏r=nd

r=1 (nx +r)∏r=d
r=1 (x +r)n

∈ 1 + q ·Q(x)[[q]]

I0(q) = F0(0,q), F1(x ,q) =
{

1 +
q
x
∂

∂q

}F0(x ,q)

I0(q)

I1(q) = F1(0,q), F2(x ,q) =
{

1 +
q
x
∂

∂q

}F1(x ,q)

I1(q)

I3(q), I4(q), . . . , In−1(q) ∈ 1 + q ·Q[[q]]

F0(x ,q) ≡ I0(q)
(
1 + J(q)x + O(x2)

)
=⇒ I1(q) = 1 + q

∂

∂q
J(q)
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Mirror symmetry in genus 1 for X = Xn

BX
1 (q) =

(
(n−2)(n+1)

48
+

1− (1−n)n

24n2

)
J(q)

− (3n−8)(n−1)

48
log(1−nnq)

+
n2−1 + (1−n)n

24n
log I0(q)− 1

2

n−1∑
r=0

(
r
2

)
log Ir (q)

Mirror Symmetry in genus 1 for X = Xn ⊂ Pn−1

AX
1 (Q) ≡

∞∑
d=1

N1,dQd = BX
1 (q), Q = q · eJ(q)
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Some properties of Ir(q)
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Introduction Some Formulas Geometry Analysis

Reality check, I

n = 1,2,4 : BX
1 (q) = 0

n=1 : X = ∅ ⊂ P1−1 =⇒ Ng,d =0 ∀d ∈Z+ =⇒ AX
1 (Q) = 0 X

n=2 : X = 2pts ⊂ P1 =⇒ Ng,d =0 ∀d ∈Z+ =⇒ AX
1 (Q) = 0 X

n=4 : X = K 3 ⊂ P3 =⇒ Ng,d =0 ∀d ∈Z+ =⇒ AX
1 (Q) = 0 X

Geometric reason (Junho Lee’03): there are no J-holomorphic
curves on K3 for some almost complex structure J
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Verification of physics predictions: AX
1 (Q)

?
= BX

1 (q)

n=5 : X = X5 ⊂ P4 quintic 3-fold

BX
1 (q) =

25
12

J(q)− 1
12

log(1−55q)− 31
3

log I0(q)− 1
2

log I1(q)

Bershadsky-Cecotti-Ooguri-Vafa’93 X

n=6 : X = X6 ⊂ P5 sextic 4-fold

BX
1 (q) = −35

2
J(q)− 1

24
log(1−66q)− 423

4
log I0(q)− log I1(q)

Klemm-Pandharipande’07 X
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A mystery: BPS states in higher dimensions?

Gopakumar-Vafa’98, dim X = 3: ∃ “BPS states" ng,d ∈ Z s.t.

{Ng,d} = Upper-∆ Transform({ng,d})

Klemm-Pand...’07, dim X = 4: ∃ “curve counts" ng,d ∈ Z s.t.

{Ng,d} = Upper-∆ Transform({ng,d})

Pandharipande-Z.’08, dim X = 5: same

All conjectures: true for d ≤ 100 in X7 ⊂ P6

Klemm: no physical motivation if dim X ≥ 5

Aleksey Zinger Stony Brook University
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Reality check, II: A-side

n = 3 : X ⊂ P2 cubic curve (2-torus)

N1,d = #
{

(d/3) :1 covers T 2 −→ X
}

/ |Aut |

N1,3d =
σd

d
, σd =

∑
r |d

r ⇐⇒
∞∑

d=1

σdQd =
∞∑

d=1

d
Qd

1−Qd

AX
1 (Q) =

∞∑
d=1

σd

d
Q3d = −

∞∑
d=1

ln(1−Q3d )

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Reality check, II: A-side

n = 3 : X ⊂ P2 cubic curve (2-torus)

N1,d = #
{

(d/3) :1 covers T 2 −→ X
}

/ |Aut |

N1,3d =
σd

d
, σd =

∑
r |d

r ⇐⇒
∞∑

d=1

σdQd =
∞∑

d=1

d
Qd

1−Qd

AX
1 (Q) =

∞∑
d=1

σd

d
Q3d = −

∞∑
d=1

ln(1−Q3d )

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Reality check, II: A-side

n = 3 : X ⊂ P2 cubic curve (2-torus)

N1,d = #
{

(d/3) :1 covers T 2 −→ X
}

/ |Aut |

N1,3d =
σd

d
, σd =

∑
r |d

r ⇐⇒
∞∑

d=1

σdQd =
∞∑

d=1

d
Qd

1−Qd

AX
1 (Q) =

∞∑
d=1

σd

d
Q3d = −

∞∑
d=1

ln(1−Q3d )

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Reality check, II

I0(q) ≡
∞∑

d=0

qd (3d)!

(d !)3 , J(q) ≡ 1
I0(q)

∞∑
d=1

qd
(

(3d)!

(d !)3

3d∑
r=d+1

3
r

)
BX

1 (q) =
1
8

J(q)− 1
24

log(1− 33q)− 1
2

log I0(q), Q = q · eJ(q)

Mirror Symmetry:
AX

1 (Q) = BX
1 (q) ⇐⇒ q3(1− 27q)I0(q)12 = Q3

∞∏
d=1

(1−Q3d )24

Scheidegger’09: direct proof (modular forms)

Aleksey Zinger Stony Brook University
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Approach to verifying AX
g = BX

g for X ⊂ Pn−1

(works for g =0,1)

Need to compute each Ng,d and all of them (for fixed g):
Step 1: relate Ng,d to GWs of Pn−1 ⊃ X
Step 2: use (C∗)n-action on Pn−1 to compute each Ng,d

by localization
Step 3: find some recursive feature(s) to compute Ng,d ∀d

⇐⇒ AX
g
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Introduction Some Formulas Geometry Analysis

GW-invariants of X5 ⊂ P4

Mg(X5,d) =
{

[u : Σ−→X5]| g(Σ)=g,deg u =d , ∂̄u = 0
}

Ng,d ≡ deg
[
Mg(X5,d)

]vir

≡ #
{

[u : Σ−→X5]| g(Σ)=g,deg u =d , ∂̄u = ν(u)
}

ν = small generic deformation of ∂̄-equation
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From X5 ⊂ P4 to P4

L Mg(L,d)

P4X5 ≡ s−1(0) ⊂ Mg(P4,d)
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Introduction Some Formulas Geometry Analysis

Genus 0 vs. positive genus

g = 0 everything is as expected:

Mg(P4,d) is smooth
[Mg(P4,d)]vir = [Mg(P4,d)]
V0,d −→Mg(P4,d) is vector bundle
hyperplane prop. makes sense and holds

g ≥ 1 none of these holds
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Introduction Some Formulas Geometry Analysis

Genus 1 analogue

Thm. A: HP holds for reduced genus 1 GWs[
M

0
1(X5,d)

]vir
= e(V1,d ) ∩M

0
1(P4,d).

This generalizes to complete intersections X ⊂ Pn.

M
0
1(P4,d) ⊂M1(P4,d) main irred. component

closure of
{

[u : Σ−→P4]∈M1(P4,d) : Σ is smooth
}

V1,d −→M
0
1(P4,d) not vector bundle, but

e(V1,d ) well-defined (0-set of generic section)
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Introduction Some Formulas Geometry Analysis

Standard vs. reduced GWs

Thm. A =⇒ N0
1,d ≡ deg [M

0
1(X ,d)]vir =

∫
M

0
1(P4,d)

e(V1,d )

M
0
1(X ,d) ≡M

0
1(P4,d) ∩M1(X ,d)

Thm. B: N1,d − N0
1,d = 1

12N0,d

This generalizes to all symplectic manifolds:

[standard] − [reduced genus 1 GW] = f (genus 0 GW)

∴ to check BCOV, enough to compute
∫
M

0
1(P4,d)

e(V1,d )
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Introduction Some Formulas Geometry Analysis

Torus actions

(C∗)5 acts on P4 (with 5 fixed pts)
=⇒ on Mg(P4,d) (with simple fixed loci)

and on Vg,d−→Mg(P4,d)∫
M

0
g(P4,d)

e(Vg,d ) localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces
∫

to
∑

graphs

g = 1: M
0
g(P4,d),Vg,d singular =⇒ AB does not apply

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Torus actions

(C∗)5 acts on P4 (with 5 fixed pts)
=⇒ on Mg(P4,d) (with simple fixed loci)

and on Vg,d−→Mg(P4,d)∫
M

0
g(P4,d)

e(Vg,d ) localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces
∫

to
∑

graphs

g = 1: M
0
g(P4,d),Vg,d singular =⇒ AB does not apply

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Torus actions

(C∗)5 acts on P4 (with 5 fixed pts)
=⇒ on Mg(P4,d) (with simple fixed loci)

and on Vg,d−→Mg(P4,d)∫
M

0
g(P4,d)

e(Vg,d ) localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces
∫

to
∑

graphs

g = 1: M
0
g(P4,d),Vg,d singular =⇒ AB does not apply

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Torus actions

(C∗)5 acts on P4 (with 5 fixed pts)
=⇒ on Mg(P4,d) (with simple fixed loci)

and on Vg,d−→Mg(P4,d)∫
M

0
g(P4,d)

e(Vg,d ) localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces
∫

to
∑

graphs

g = 1: M
0
g(P4,d),Vg,d singular =⇒ AB does not apply

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Torus actions

(C∗)5 acts on P4 (with 5 fixed pts)
=⇒ on Mg(P4,d) (with simple fixed loci)

and on Vg,d−→Mg(P4,d)∫
M

0
g(P4,d)

e(Vg,d ) localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces
∫

to
∑

graphs

g = 1: M
0
g(P4,d),Vg,d singular =⇒ AB does not apply

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Torus actions

(C∗)5 acts on P4 (with 5 fixed pts)
=⇒ on Mg(P4,d) (with simple fixed loci)

and on Vg,d−→Mg(P4,d)∫
M

0
g(P4,d)

e(Vg,d ) localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces
∫

to
∑

graphs

g = 1: M
0
g(P4,d),Vg,d singular =⇒ AB does not apply

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Genus 1 bypass

Thm. C: V1,d −→M
0
1(P4,d) admit natural desingularizations:

Ṽ1,d
//

��

V1,d

��

M̃0
1(P4,d) // M

0
1(P4,d)

=⇒
∫

M
0
1(P4,d)

e(V1,d ) =

∫
M̃0

1(P4,d)
e(Ṽ1,d )
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e(Ṽ1,d )

Aleksey Zinger Stony Brook University

From curve counts to hypergeometric series



Introduction Some Formulas Geometry Analysis

Genus 1 bypass

Thm. C: V1,d −→M
0
1(P4,d) admit natural desingularizations:
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Introduction Some Formulas Geometry Analysis

Computation of genus 1 GWs of CIs

Thm. C generalizes to all V1,d −→M
0
1,k (Pn,d):

L

π

��

≡ O(a) M1,k (L,d)

Pn M1,k (Pn,d)

∴ Thms A,B,C provide an algorithm for computing
genus 1 GWs of complete intersections X ⊂ Pn
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Introduction Some Formulas Geometry Analysis

Computation of N1,d for all d

split genus 1 graphs into many genus 0 graphs
at special vertex
make use of good properties of genus 0 numbers to
eliminate infinite sums
extract non-equivariant part of elements in H∗T(P4)
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Introduction Some Formulas Geometry Analysis

Key geometric foundation

A sharp Gromov’s compactness thm in genus 1

describes limits of sequences of pseudo-holomorphic
maps
describes limiting behavior for sequences of solutions of
a ∂̄-equation with limited perturbation
allows use of topological techniques to study genus 1 GWs
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Main tool

Analysis of local obstructions
study obstructions to smoothing pseudo-holomorphic maps
from singular domains
not just potential existence of obstructions
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