
Math53: Ordinary Differential Equations
Winter 2004

Unit 6 Summary

Qualitative Analysis of Autonomous Systems of ODEs

Introduction

(1) An autonomous system of ODEs is a system of the form

y′ = f(y), y = y(t), (1)

where y=y(t) is an n-vector of smooth functions of t and f(y) is an n-vector for each n-vector y.
For example,

{

x′ = f(x, y) = −x(1−y)

y′ = g(x, y) = −4y(1+x)

(

x, y
)

=
(

x(t), y(t)
)

(2)

is a two-dimensional autonomous system. The corresponding vector-valued functions are

y = y(t) =

(

x(t)
y(t)

)

, f(y) = f(x, y) =

(

f(x, y)
g(x, y)

)

=

(

−x(1−y)
−4y(1+x)

)

.

The systems (eq1) and (eq2) are called autonomous because they are not explicitly dependent on t.

(2) We are interested in knowing what happens with the vector y(t), where y=y(t) is a solution
of (eq1), as t increases. One special property of autonomous equations is that if y = y(t) is a
solution of such an ODE, e.g. of (eq1), then so is the function z = z(t) = y(t−c). As the time
parameter t increases, the points z(t) and y(t) trace the same path in R

n, but z=z(t) is delayed
by c. Thus, the behavior of a solution y =y(t) of (eq1) is well-represented by the solution curve
in R

n corresponding to y=y(t), i.e. the directed curve in R
n traced by y(t) as t increases. Such a

solution curve in R
n, the phase space for the system (eq1), shows every point in R

n the path y(t)
passes through as t increases, including what happens to y(t) as t−→∞, even though the curve
does not specify at what value of t the solution y =y(t) arrives at each given point. The phase-
space portrait for (eq1) is the space R

n with all solution curves of (eq1) shown. By the uniqueness
theorem for system of ODEs, such solution curves do not intersect, provided f = f(y) is a smooth
function.

Local Descriptions

(1) The first step in analyzing the system (eq1) is to find the equilibrium points of (eq1). These are
the points yi of R

n such that each constant function y(t)=yi is a solution of (eq1). The physical
interpretation of this is that if the system starts at an equilibrium point, it stays there forever. In
mathematical terms, this means that if the initial value y0 of a solution y=y(t) to the ODE (eq1)
is an equilibrium point, y(t)=y0 for all t∈R. Since the derivative of a constant function is zero,
the constant function y(t)=yi is a solution of (eq1) if and only if f(yi)=0. Thus,

yi ∈ R
n is an equilibrium point for y′ = f(y), y = y(t) ⇐⇒ f(yi) = 0



In order to find the equilibrium points, we only need to solve the system f(y) = 0 for y. For
example, we find the equilibrium points for (eq2) by setting x′=0 and y′=0:

{

x′=0

y′=0
⇐⇒

{

−x(1−y) = 0

−4y(1+x) = 0
⇐⇒

{

x=0 or y=1

y=0 or x=−1
(3)

Thus, the equilibrium points of the system (eq2) are (0, 0) and (−1, 1); they are indicated by large
dots on the first sketch in Figure 1. In contrast, the set of equilibrium points of the system y′=Ay,
where A is a constant n×n matrix, is always a linear subspace of R

n passing through the origin,
such as 0 by itself, or a line through the origin, or a plane through the origin, etc. What is the set
of equilibrium points for the system y′=Ay, in terms the constant n×n matrix A?

Note: While it is usually not hard to find the equilibrium points of an autonomous system of
ODEs, some care is often needed. For example, after the last step in (eq3), we need to determine
all pairs (x, y) such that one of the two conditions on the top line is satisfied, so that x′ = 0,
and one of the two conditions on the bottom line is satisfied, so that y′ = 0. This is different
from finding (x, y) such that any two of the four conditions in (eq3) are satisfied. Thus, it is es-
sential to keep the conditions for x′=0 and the condition for y′=0 separately, e.g. on separate lines.

(2) The next step is to determine the stability type of every equilibrium point yi of (eq1). An
equilibrium point yi for (eq1) is

asymptotically stable if every solution curve for (eq1) that passes sufficiently close to yi

approaches yi as t−→∞;
stable if every solution curve for (eq1) that passes very close stays very close to yi as t−→∞;
unstable if there exist solution curves that pass very close to yi and then move away from yi.

More formal, and perhaps more confusing, definitions of these notions can be found on p512 and
in the solutions to PS6-Problem 1. The equilibrium point yi is unstable if and only if it is not
stable. Since the stable-equilibrium condition requires that every solution curve that comes close
to yi stay near yi after that, yi is unstable if there is at least one solution curve that comes very
close to yi and then moves away. In particular, there may even be solution curves that approach
yi as t−→∞, as is the case for saddle points.

Note: The three stability types only describe what happens very close to an equilibrium point yi

of (eq1). They have nothing to do with what the phase-space portrait may look like away from yi.
In particular, moving ”away” does not need to mean very far. For example, 0 is an unstable equi-
librium for the system (eq10) below, even though any solution curve passing close to 0 does not
move past the circle of radius one centered at the origin.

(3) If yi is an equilibrium point for the system (eq1), we often, but not always, can determine
whether yi is asymptotically stable or unstable from the Jacobian of f at y=yi:

Jf(yi) =
∂f

∂y

∣

∣

∣

yi

.

This is the n×n matrix consisting of the partial derivatives of the n component functions of f with
respect to the n components of y, evaluated at y=yi. For example, in the case of (eq2),

Jf(x, y) =

(

fx(x, y) fy(x, y)
gx(x, y) gy(x, y)

)

=

(

y − 1 x

−4y −4 − 4x

)

. (4)
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Figure 1: Sketching the Phase-Plane Portrait for (eq2): Steps 1 and 2

The Jacobian stability test for an equilibrium point yi of (eq1) is

If the real part Reλ of every eigenvalue λ of Jf(yi) is negative,
then yi is an asymptotically stable equilibrium for (eq1).

If the real part Reλ of some eigenvalue λ of Jf(yi) is positive,
then yi is an unstable equilibrium for (eq1).

(5)

For example, by (1) above, the equilibrium points of (eq2) are (0, 0) and (−1, 1), while by (eq4),

Jf(0, 0) =

(

−1 0
0 −4

)

=⇒ λ1 = −1, λ2 = −4;

Jf(−1, 1) =

(

0 −1
−4 0

)

=⇒ λ2 + 0λ − 4 = 0 =⇒ λ1 = 2, λ2 = −2.

(6)

Since both eigenvalues of Jf(0, 0) are negative, (0, 0) is an asymptotically stable equilibrium point
of (eq2), by the first statement of the Jacobian test (eq5). On the other hand, since one of the
eigenvalues of Jf(−1, 1) is positive, (−1, 1) is an unstable equilibrium point of (eq2), by the second
statement of the Jacobian test.

The derivative test for autonomous ODEs of Section 1.9 is the one-dimensional version of the Ja-
cobian test (eq5). Do you see why? The derivative test for autonomous ODEs cannot be used in
some cases. Similarly, the Jacobian test cannot be applied in the cases not covered by (eq5), i.e. if
at least one of the eigenvalue is zero and none is positive. In such cases, a more complicated test
can be used, as described in Section 10.7 and in PS6-Problem 1.

The reason for why the Jacobian stability test (eq5) works is roughly the following. Near the
equilibrium point yi, the system (eq1) can be written as

w′ = Jf(yi)w + Ri(w), (7)
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where w = y−yi measures the shift from yi and Ri(w) is the remainder term for the first-order
Taylor expansion of f at yi. In particular, |Ri(w)|≤C|w|2 for some constant C and all small w.
Near w=0, the remainder term Ri(w) can be thought of as a tiny correction to the constant n×n

matrix Jf(yi), which in turn results in tiny changes in the eigenvalues of Jf(yi). If all eigenvalues
of Jf(yi) are negative, they’ll still be negative after tiny changes in the matrix Jf(yi), and thus
all solution curves of (eq7) that start with small w will approach w=0, i.e. y=yi.

(4) In some cases, the Jacobian Jf(yi) can be used to determine the behavior of solution curves
even more specifically than in (eq5). In the two-dimensional case of (eq1), if yi is an equilibrium:

If w = 0 is a nodal/spiral sink/source or a saddle point for w′ = Jf(yi)w,
then y = yi is the same type of equilibrium point for (eq1).

(8)

Furthermore, if Jf(yi)w has real distinct nonzero eigenvalues, i.e. w = 0 is a nodal source, a
nodal sink, or a saddle point for w′ = Jf(yi)w, and v1 and v2 are eigenvectors of Jf(yi)w with
eigenvalues λ1 and λ2, then there exist solution curves for (eq1) that approach yi as t−→−∞ or
t−→∞, depending on the signs of λ1 and λ2, such that their slope approaches that of v1 or v2 as
they approach yi. These solution curves correspond to the four half-line solutions, but need not
be half-lines themselves. Instead, each of them approximates one of the four half-lines near w=0,
i.e. y=yi. For example, continuing from (eq6) with the example of (eq2), we find

Jf(0, 0) =

(

−1 0
0 −4

)

=⇒ λ1 = −1, λ2 = −4, v1 =

(

1
0

)

, v2 =

(

0
1

)

;

Jf(−1, 1) =

(

0 −1
−4 0

)

=⇒ λ1 = 2, λ2 = −2, v1 =

(

1
−2

)

, v2 =

(

1
2

)

.

(9)

This means that (0, 0) is a nodal sink and nearly all solutions approach (0, 0) tangent to the x-axis,
since λ1 >λ2, but there is also a pair of solution curves approaching the origin tangent to the y-axis
corresponding to the two v2 half-lines. Similarly, (−1, 1) is a sink, and there is a pair of solution
curves approaching (−1, 1) tangent to the two half-lines of slope 2 through (−1, 1) and a pair of
solution curves leaving (−1, 1) tangent to the two half-lines of slope −2. These conclusions are
shown in the second sketch of Figure 1. The solution curves corresponding to the four half-lines
at each equilibrium point need not be the half-lines themselves. However, we will see in the next
section that in the case of (0, 0), they are in fact the expected half-lines, and we sketch them as such.

The reasoning behind the second Jacobian test, i.e. (eq8), is the same as behind the first one,
i.e. (eq5). The five types of equilibrium that appear in (eq8) are characterized by various conditions
on the two eigenvalues. These conditions remain satisfied if the matrix and the eigenvalues are
altered just tiny bit. While Jf(yi) does not specify what type of equilibrium yi is in other cases,
this reasoning tells us what types are possible. For example, if w=0 is a center for w′ = Jf(yi)w,
i.e. the two eigenvalues λ1 and λ2 of Jf(yi)w are complex and Re λ1 =Re λ2 =0, then yi is either a
center, a spiral source, or spiral sink for (eq1). Furthermore, the direction of rotation is as predicted
by Jf(yi). If w=0 is a degenerate nodal sink for w′ = Jf(yi)w, what can yi be, as an equilibrium
point for (eq1)?
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Figure 2: Sketching the Phase-Plane Portrait for (eq2): Steps 3 and 4

Global Descriptions

(1) From now on, we will assume that the system (eq1) is two-dimensional. Once we have found
all equilibrium points for (eq1) and described the behavior of solution curves for (eq1) near each
equilibrium point, we need to see what happens to the solution curves away from the equilibrium
points. For this purpose, it is useful to do draw the two nullclines, i.e. the curves along which the
x-component and the y-component of the two-vector f = f(y) vanish separately. The nullclines will
typically be a collection of curves, and not necessarily of lines. The x-nullclines and y-nullclines
will divide the xy-plane into several regions. Within each region, the signs of the x-component of
f and of the y-component of f will not change. Since y′ = f(y), in each such region all solution
curves must move in the same general direction. This direction can be indicated by a pair like
(+,−), showing the signs of the two components of f . We do not need to compute the signs of
both components in every region cut out by the nullclines, since the first sign can change only
after crossing the x-nullcline and the second only after crossing the y-nullcline. Furthermore, along
every x-nullcline, the vector field f has to be vertical. Similarly, along every y-nullcline, the vector
field f has to be horizontal.

In the case of (eq2), the x-nullcline is described by

x′ = f(x, y) = 0 ⇐⇒ −x(1−y) = 0 ⇐⇒ x = 0 or y = 1.

Thus, the x-nullcline consists of the lines x=0 and y =1, which are shown as dashed lines in the
first plot of Figure 2. Similarly, the y-nullcline is described by

y′ = g(x, y) = 0 ⇐⇒ −4y(1+x) = 0 ⇐⇒ y = 0 or x = −1.

Thus, the y-nullcline consists of the lines y=0 and x=−1, which are shown as dotted lines in the
first plot of Figure 2. Note the equilibrium points are the intersections of the dashed lines with the
dotted lines. We indicate the flow direction on the vertical segments of the x-nullclines and on the
horizontal segments of the y-nullcline, which in this case are the y-axis and the x-axis, respectively.
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Figure 3: Examples of a Limit Cycle and of a Limit Polygon

We then see that if y=y(t) is a solution of (eq2) and y(t0) lies on the x-axis (y-axis) for some t0,
y(t) lies on the x-axis (y-axis) for all t. Since the only equilibrium point lying on the x-axis (y-
axis) is (0, 0), it follows that y(t) approaches (0, 0), along the x-axis (y-axis), as t−→∞. Thus,
the positive and negative x-axis and y-axis are solution curves for (eq2). We next label each region
cut out by the nullclines by (±,±), indicating the flow direction in each of the nine rectangular
regions. We can determine the signs by looking at the two equations in (eq2), but for the seven
regions touching one of the equilibrium points the signs can in fact be read off from the second
sketch in Figure 1. For example, solution curves move up and left in the bottom right region; thus,
the sign pair is (−,+). This leaves only the bottom left and the top right regions, where the signs
can be determined from the signs in nearby regions and the separating nullclines. We can then
sketch solution curves away from the equilibrium points; see the second sketch in Figure 2. Note
that solution curves must be horizontal when crossing the vertical y-nullcline x=−1 and vertical
when crossing the horizontal x-nullcline y=1.

Note: It is essential not to mix the curves that constitute the x-nullcline with the curves that
constitute the y-nullcline.

(2) We also need to determine what happens to every solution y = y(t) of (eq1) as t −→ ±∞.
A solution curve can of course approach an equilibrium point for (eq1) or go off to infinity, leaving
every bounded region of the plane. However, a solution curve can also approach a limit cycle
for (eq1) or an oriented (or directed) polygon of solution curves for (eq1). A limit cycle for (eq1)
is a simple closed solution curve. Such a curve describes a solution x=x(t), which is periodic in t.
For example, the system

{

x′ = −y + x
(

1 − (x2+y2)
)

y′ = x + y
(

1 − (x2+y2)
) x = x(t), y = y(t), (10)

can be written in the standard polar coordinates (r, θ) as
{

r′ = r(1 − r2)

θ′ = 1
r = r(t), θ = θ(t). (11)

Can you check this? We can find the general solution of (eq11) and thus of (eq10). One solution is
(r(t), θ(t))= (1, t). The corresponding solution curve is r=1, i.e. the circle of radius one centered
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Figure 4: Phase-Plane Portrait for (eq2)

at the origin. It is positively oriented, since θ′=1>0. The first equation in (eq11) implies that all
other curves approach the unit circle as t−→∞. They all spiral counterclockwise, since θ′>0. The
unit circle is an attracting cycle, since solution curves approach it from both sides. The phase-plane
sketch for (eq10) is the first plot in Figure 3.

An oriented (or directed) polygon of solution curves for (eq1) is a polygon in the plane, whose
vertices are equilibrium points for (eq1) and whose edges are solution curves for (eq1). Furthermore,
the edges are oriented in the same direction. For example, the system

{

x′ = 2(x+y)(1−x2)

y′ = −(2x+y)(1−y2)
x = x(t), y = y(t), (12)

has seven equilibrium points: (0, 0), (±1,±1), (−1, 2), and (1,−2). The origin is a nodal source,
by the Jacobian test. The vertical lines x =±1 are components of the x-nullcline; thus, they are
made up of solution curves. Similarly, the horizontal lines y = ±1 are also made up of solution
curves. After determining the flow directions on various segments of the nullclines, we see that the
square with vertices at (±1,±1) forms an oriented polygon of solutions. There are no equilibrium
points, other than the origin, inside of the square. Thus, any solution curve spiraling out from the
origin approaches either the square or a cycle inside of it. If the unit square contains no cycles,
then this oriented polygon of solution curves is the limit set for all solution curves spiraling out
from the origin, as shown in the second sketch in Figure 3.

We now finish sketching the phase-plane portrait for (eq2). The first sketch in Figure 2 shows that
the system (eq2) has no cycles or oriented polygons. Thus, all solution curves must approach one
of the two equilibrium points or move off to infinity. This allows us to finish up the second sketch
in Figure 2. Figure 4 represents the phase-plane portrait for (eq2). In particular, it shows that all
solutions that start either in the first, third, or fourth quadrants and some solutions that start in
the second quadrant end up at the origin. Some solutions come very close to the other equilibrium
point, (−1, 1), and then move off to infinity.
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In the case of (eq2), we are able to rule out the existence of any cycles and directed polygons of
solution curves just by looking at its sign diagram, i.e. the first sketch in Figure 4. In other cases,
we may be able to rule out the existence of any cycles and directed polygons for the system

{

x′ = f(x, y)

y′ = g(x, y)
x = x(t), y = y(t), (13)

in a simply connected region A, i.e. one that has no holes, by using the following theorem:

If A is sc and fx(x, y)+gy(x, y)>0 for all (x, y)∈A or fx(x, y)+gy(x, y)<0 for all (x, y)∈A,
then A contains no cycles or oriented polygons for (eq13)

This theorem follows easily from Green’s Theorem, covered in Math52.

(3) Finally, one can also try to describe the behavior of solution curves (eq1) relative to the level
sets of some function V =V (y). For example, every solution for the system

{

x′ = y2

y′ = 2x + x2
x = x(t), y = y(t), (14)

satisfies 3x2 +x3−y3 = C, for some constant C. Can you verify this without solving the system?
Thus, all solution curves for (eq14) lie on the level sets of the function H(x, y)=3x2+x3−y3. In
general, if the system has the form

{

x′ = f(x, y)

y′ = g(x, y)
x = x(t), y = y(t), (15)

such a function H can be found by solving the equation

dy

dx
=

g(x, y)

f(x, y)
, y = y(x),

implicitly as H(x, y)=0. In many cases, it may be difficult to solve this ODE. We may instead be
able to find a function V =V (x, y) such that

~∇V |(x,y) · (f, g) ≥ 0 for all (x, y).

In such a case, solution curves for (eq15) can move only to higher level sets of V .
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