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Unit 5 Summary
Numerical Methods

Description

(1) The numerical methods discussed in class are used to estimate the value y(b) of the solution
y=y(t) to a first-order IVP

y′ = f(t, y), y(a) = y0, (1)

at b, for b>a. These methods apply to IVPs involving a system of first-order ODEs,

y′ = f(t,y), y(a) = y0,

just as well. Since any ODE, or a system of ODEs, can be written as a system of first-order ODEs,
these methods can also be applied to higher-order equations and systems, but indirectly. Numerical
methods are especially useful when the explicit solution y = y(t), or y = y(t), cannot be found.
They can also be used if f , or f , is known only at a discreet grid of points (ti, yj), or (ti,yj), as
the case may well be in an experimental setting.

(2) All numerical methods encountered in this course are fixed-step methods. This means that we
break up the interval [a, b] into N segments [ti, ti+1] of equal length h=(b−a)/N , i.e.

t0 = a, t1 = t0+h = a+h, . . . tN−1 = tN−2+h = a+(N−1)h, t = tN−1+h = a+Nh = b.

We then give an estimate yi for the value of the function y at ti. More precisely, we give an estimate
y1 for y(t1), where y=y(t) is the solution to the IVP

y′ = f(t, y), y(t0) = y0.

We then use the same procedure to give an estimate y2 for ỹ1(t2), where ỹ1 = ỹ1(t) is the solution
to the IVP

y′ = f(t, y), y(t1) = y1.

Since y1 is an estimate for y(t1), y2 will also be an estimate for y(t2). At the ith step of this
construction, we give an estimate yi+1 for ỹi(ti+1), where ỹi = ỹi(t) is the solution to the IVP

y′ = f(t, y), y(ti) = yi.

After N steps, we end up with an estimate yN for ỹN (tN ) = ỹN (tN ), where ỹN = ỹN (t) is the
solution to the IVP

y′ = f(t, y), y(tN ) = yN .

This number yN will also be an estimate for y(b).



(3) The general mechanism described in (2) applies to all numerical methods of Section 6.2. What
distinguishes them is how the estimate yi+1 for ỹi(ti+1) is obtained from (ti, yi) and f . In the
simplest, first-order or Euler’s, method, we take

yi+1 = yi + sih, where si = f(ti, yi).

Since ỹi(ti)= yi and ỹ′i(ti)= f(ti, yi)= si, yi+1 estimates ỹi(ti+1) to first order in h. In particular,
this first-order method ignores second and higher-order derivatives of ỹi at ti. In the second-order
Runge-Kutta, or improved Euler’s, method, we take

yi+1 = yi +
si,1+si,2

2
h, where si,1 = f(ti, yi), si,2 = f(ti+1, yi+si,1h).

In other words, we take into account not only ỹ′i(ti), but also the change in the derivative of ỹi.
The above expression for yi+1 can be written as

yi+1 =yi+
si,1+si,2

2
h = yi+si,1h +

1
2
· si,2−si,1

h
· h2, where si,1 =f(ti, yi), si,2 =f(ti+1, yi+si,1h).

Since si = ỹ′i(ti) and si+1≈ ỹ′i(ti+1), (si,2−si,1)/h is an estimate for ỹ′′i (t). Thus, this second-order
method takes into account the first and second derivatives of ỹi, but ignores third and higher
derivatives of ỹi. On the other hand, the fourth-order Runge-Kutta takes into account the first
four derivatives by considering the slopes at even more points.

Error Estimates

(1) In the first-order numerical method, we ignore the second and higher-order derivatives, and
thus the error at each step is bounded by a multiple of h2:∣∣ỹi(ti+1)− yi+1

∣∣ ≤ Afh2.

Since the number N of steps is proportional to h−1, the total error in this case is bounded by a
multiple of h: ∣∣y(b)− yN

∣∣ =
∣∣y(tN )− yN

∣∣ ≤ Ãfh.

The constants Af and Ãf depend on the length of the interval (a, b) and on the maximum values
of the functions |f(t, y)|, |ft(t, y)|, and |fy(t, y)|, for t∈ [a, b] and y∈ (−∞,∞), as described in the
book and you derive in PS4-Problem 5. However, if one can find constants c and d such that it
can be shown that c < yi < d for all i = 1, . . . , N and c < y(t) < d for all t∈ [a, b], where y = y(t) is
the solution to (eq1), the above constants Af and Ãf will depend on the maximum values of the
functions |f(t, y)|, |ft(t, y)|, and |fy(t, y)|, for t∈ [a, b] and only for y∈(c, d).

(2) In the second-order numerical method, we ignore the third and higher-order derivatives, and
thus the error at each step is bounded by a multiple of h3:∣∣ỹi(ti+1)− yi+1

∣∣ ≤ Bfh3.

Since the number N of steps is proportional to h−1, the total error in this case is bounded by a
multiple of h2: ∣∣y(b)− yN

∣∣ =
∣∣y(tN )− yN

∣∣ ≤ B̃fh2.
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The constants Bf and B̃f depend on the length of the interval (a, b) and on the maximum values
of the norms of f(t, y) and of its first and second partial derivatives, with respect to t and y, for
t∈ [a, b] and y∈ (−∞,∞). Finally, in the fourth-order numerical method, we ignore the fifth and
higher-order derivatives, and thus∣∣ỹi(ti+1)− yi+1

∣∣ ≤ Cfh5 =⇒
∣∣y(b)− yN

∣∣ =
∣∣y(tN )− yN

∣∣ ≤ C̃fh4.

The constants Cf and C̃f depend on the length of the interval (a, b) and on the maximum values
of the norms of f(t, y) and of its first-fourth partial derivatives, with respect to t and y, for t∈ [a, b]
and y ∈ (−∞,∞). While the second- and fourth-order methods involve more complicated steps,
they require far fewer steps to get the answer with a desired precision. If we would like to estimate
y(b) with an error no larger than ε, the time required is about C1ε

−1 for the first-order method and
about C4ε

−1/4 for the fourth-order method, provided the round-off errors are insignificant. The
positive constants C1 and C4 do not depend on ε and may be very different. However, if ε is very
small, C4ε

−1/4 is much smaller than C1ε
−1.

(3) There are two types of cases when fixed-step numerical methods fail. For example, the solution
to the initial value problem

y′ = y2, y(1) = 1,

is y(t)=1/(2−t), for t∈(−∞, 2). Please check this by solving this IVP and directly. This solution
y=y(t) is not defined for t≥2. However, each of the above numerical methods will produce a finite
estimate yN for y(b), for any b. If b≥2, yN will increase rapidly as the step size h drops, and the
number N of steps increase. This rapid increase will suggest that y(b) is not defined, but in order
to see that this is happening, various step sizes have to be tried. This example does not contradict
the error bounds in (1) and (2) above, because fy = 2y has no maximum, and thus there are no
error bounds.

(4) Another possibility of failure is illustrated in Section 6.5. The solution to the initial value
problem

y′ = f(t, y) = t(y−1), y(−10) = 1,

is y(t) = 1−e(t2−100)/2, for t ∈ (−∞,∞). Please check this by solving this IVP and directly. If
b≥ 10, y(b)≤ 0. On the other hand, if t is close 0, e.g. |t|< 1, y(t) is extremely close to 1. So is
each estimate yi for y(ti) if ti is close to 1. Thus, it is very likely that for some i, the estimate
yi will be assigned the value 1, possibly because of a round-off error. If so, yj will be 1 for all
j > i, since f(t, 1)=0 for all t. In such a case, our estimate yN for y(b) will be 1, unless the step
size is extremely small. This happens because the constants in the above error estimates depend
exponentially on the length of the interval [a, b]. Furthermore, even if h is taken to be extremely
small, we may still end up with yN =1 for y(b), for all b≥0, due a round-off errors.
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