
Math53: Ordinary Differential Equations
Winter 2004

Unit 3 Summary
Laplace Transform and ODEs

Definitions, Key Properties, and Applications to ODEs

(1) The Laplace Transform L(f) of a function f =f(t) is the function F =F (s) defined by

F (s) =
∫ ∞

0
f(t)e−stdt, for all s > a,

where a is a nonnegative number, dependent on f . The Laplace Transform L(f) is not defined for
all functions f . However, if there exist a and C such that

|f | < Ceat for all t ≥ 0,

the Laplace Transform F = F (s) is defined for s > a. The Laplace Transforms F = F (s) of a few
functions f =f(t) can be computed directly from the definition. The transforms of three functions
are shown in the first table on the next page.
Note: The two tables that appear on the next page will be put on the second midterm and on the
final exam, if they are needed for any problem. However, you need to know how to obtain all eight
statements contained in the two tables. You also need to know how to use the two tables.

(2) The linearity of the integral implies that for all real numbers α and β and functions f =f(t) and
g=g(t),

{L(αf+βg)}(s) = α{Lf}(s) + β{Lg}(s) for all s ⇐⇒ L(αf+βg) = α{Lf}+ β{Lg}

One of the two key properties that make the Laplace Transform useful in solving ODEs is that the
transform of the derivative of a function does not involve any derivative:

{Lf ′}(s) = s · {Lf}(s)− f(0) for all s (1)

This identity can be used to express the Laplace Transform Lf 〈k〉 of the kth derivative of f in terms
of the Laplace Transform Lf of f . Please make sure you know how to do so. Due to (eq1), the
Laplace Transform takes a kth-order linear ODE with constant coefficients to a kth-order algebraic
equation, which is very easy to solve. For example,

y′′ + py′ + qy = f, y(0) = y0, y′(0) = y1 ←→ (s2Y −sy0−y1) + p(sY −y0) + qY = F

←→ Y =
F

s2 + ps + q
+

(s+p)y0 + y1

s2 + ps + q

(2)

Note that the denominator in each of the two fractions in the last expression is the characteristic
polynomial for the ODE.



f(t) F (s) = {Lf}(s)
tneat n!

(s−a)n+1 , s > a

eat cos bt s−a
(s−a)2+b2

, s > a

eat sin bt b
(s−a)2+b2

, s > a

δ 1

f(t) F (s) = {Lf}(s)
f ′ s · F (s)− f(0)

t · f(t) −F ′(s)
eatf(t) F (s− a)

H(t−a)f(t−a) e−asF (s)

Laplace Transforms

(3) The other key property of the Laplace Transform is that it is an isomorphism to the extent
possible:

f, g cont. on [0,∞) and {Lf}(s) = {Lg}(s) for all s≥a =⇒ f(t) = g(t) for all t≥0

Thus, if the function Y = Y (s) is defined by the last identity in (eq2) and y = y(t) is a continuous
function such that L(y)=Y , then y is the solution to the initial value problem on the left-hand side
of (eq2). Given a function Y =Y (s), our approach to finding its Inverse Laplace Transform y=y(t)
will be to write Y as a linear combination of the fractions in the middle three rows of the first table,
if possible. Then, y will be the corresponding linear combination of the functions in the left column
of the table. For example,

Y (s) =
1

s2−2s
=

1
s(s−2)

=
1
2
·
( 1

s−2
− 1

s

)
=⇒ y(t) =

1
2
(
e2t − 1

)
for all t≥0.

By convention, if y is the Inverse Laplace Transform of a function, y(t)=0 for all t<0.
Note: Not every function Y can be split into a linear combination of the fractions in the middle three
rows of the first table. For example, by the last row of this table, the Inverse Laplace Transform of
the function F =1 is the delta function δ, which in fact is not a function at all.

(4) By (2) and (3), the Laplace Transform can be used to solve linear ODEs with constant coefficients.
It is especially well-suited to solving initial value problems,

y〈k〉 + p1y
〈k−1〉 + . . . + pk−1y

′ + pky = f, y(0) = y0, y′(0) = y1, . . . , y〈k−1〉(0) = yk−1, (3)

with constant coefficients, i.e. p1, p2, . . . , pk:
Step 1: take the Laplace Transform of both sides of (eq3);
Step 2: solve the resulting algebraic equation, which is linear in Y , for Y ;
Step 3: use the method of partial fractions to rewrite Y as a linear combination of

the Laplace Transforms of known functions, if possible;
Step 4: take the Inverse Laplace Transform.
This method works well if f is a sum of products of polynomials, exponentials, cosines, and sines,
since in such a case the Laplace Transform of (eq3) can be computed quickly with the help of the
two tables above and the resulting function Y will be decomposable as a linear combination of the
Laplace Transforms of known functions, based on the two tables. In these cases, we could also use
the approach of Section 4:
Step 1: find the general solution of the homogeneous ODE;
Step 2: use the method of undetermined coefficients to find a particular solution

of the inhomogeneous ODE;
Step 3: form the general solution of the inhomogeneous ODE and use the initial conditions
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to solve for the constant C1, C2, . . . , Ck.
Which of the two approaches is faster will depend on the ODE. The Laplace Transform approach is
likely to be faster for higher-order ODEs and for more complicated forcing terms f . For example,
for the IVP

y′′′ + 3y′′ + 4y′ + 2y = te−t sin t, y(0) = y0, y′(0) = y1,

the Laplace Transform approach is probably faster, especially if you do not use the complex method
to find a particular solution of the ODE. In addition, the Laplace Transform approach also works well
for forcing terms that are as above, but defined piecewise. Such forcing terms arise in applications.

(5) The delta ”function” centered at p, or δp, is the ”limit” as ε−→0 of the functions

δε
p(t) = ε−1

(
Hε(t)−Hp+ε(t)

)
=

{
ε−1, if p≤ t<p+ε;
0, otherwise.

The key property of the delta function δp, for p≥0, is that∫ ∞

0
δp(t)f(t) dt = f(p), (4)

for every continuous function f . In fact, δp is not a function, but just a symbol. Instead, (eq4)
should be interpreted as the definition of the entire expression

∫∞
0 δp(t)f(t) dt. In this sense, δp is a

generalized function; see PS3-Problem 16. It is the ”limit” of the functions δε
p in the sense that

lim
ε−→0

∫ ∞

0
δε
p(t)f(t) dt =

∫ ∞

0
δp(t)f(t) dt, (5)

for every continuous function f . Equations (eq4) and (eq5) imply that

{Lδp}(s) = e−ps and limε−→0{Lδε
p}(s) = {Lδp}(s)

(6) The unit impulse response function, or Green’s function, for linear operator y−→y′′+py′+qy is
the solution e=e(t) to the initial value problem

y′′ + py′ + qy = δ0, y(0) = 0, y′(0) = 0.

Since δ0 is not a function, this ODE does not quite make sense. However, its Laplace Transform
does:

s2E + psE + qE = 1, if p, q = const,

where E is the Laplace Transform of e. In other words, e=e(t) is defined by

Le = E = 1
s2+ps+q

if p, q = const

In PS3-Problem 16, you obtain an explicit expression for e = e(t) in terms of p and q, or equiva-
lently the eigenvalues λ1 or λ2 of the characteristic polynomial for the linear operator y−→y′′+py′+qy.
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(7) The convolution f ∗ g of two functions f and g is the function defined by

{f ∗ g}(t) =
∫ t

0
f(u)g(t−u) du.

Among the important properties of the convolution product are

f ∗(αg+βh) = αf ∗g + βf ∗h, f ∗g =g∗f, (f ∗g)∗h = f ∗(g∗h);

f ∗δ0 =f, L(f ∗g) = Lf · Lg, {f ∗g}′(t) = {f ′∗g}(t) + f(0)g(t)

Note that f ∗1 is not f . The convolution product appears in applications, even without ODEs.
Perhaps, the most important relation to ODEs is that

y′′ + py′ + qy = f, y(0) = 0, y′(0) = 0 =⇒ y = e ∗ f (6)

where e=e(t) is the unit impulse response function for linear operator y−→y′′+py′+qy. The conclu-
sion in (eq6) holds for linear ODEs with constant coefficients of any order, with the corresponding
number of initial conditions. The solution to the general initial value problem is given by

y′′ + py′ + qy = f, y(0) = y0, y′(0) = y1 =⇒ y = e ∗ f + y0e
′ + (y1+py0)e

Review of Partial Functions

(1) The method of partial fractions is used to split a fraction P/Q, of polynomials P and Q, into
a sum of a polynomial P0 and fractions Pi/Qi, where Qi is a polynomial factor of Q and Pi is a
polynomial of degree less than the degree of Qi:

P

Q
= P0 +

P1

Q1
+ . . . +

Pn

Qn
. (7)

The method of partial fractions is useful in evaluating integrals, in finding Inverse Laplace Trans-
forms, and thus in solving ODEs. For these purposes, we need all the denominators Qi to be
a power of either a linear polynomial, Qi = (t+ bi)pi , or of a quadratic polynomial of the form
Qi =((t+ai)2+b2

i )
pi . If the degree of Q is at most 3, this is always possible to achieve. Otherwise,

it may be not be possible to split P/Q in this way, unless we allow the coefficients to be complex.
If the coefficients of Pi and Qi are allowed to be complex, every polynomial fraction P/Q can be
split as in (eq7), with each Qi of the form (t+ai)pi . For the purposes of evaluating integrals and of
finding Inverse Laplace Transforms, a decomposition with complex coefficients is perfectly acceptable.

(2) There are three steps in obtaining a partial fraction decomposition for P/Q:
Step 1: use the polynomial division with reminder to find P0 and R such that P =P0Q+R and the
degree of R is less than the degree of Q. This is usually the easiest step. For example,

t5 = (t−4) · (t4+4t3+7t2+6t+2) + (9t3+22t2+22t+8)

=⇒ t5

t4+4t3+7t2+6t+2
= t−4 +

9t3+22t2+22t+8
t4+4t3+7t2+6t+2

.
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Step 2: decompose the polynomial Q as much as possible. This is usually by far the hardest step.
One way of trying to find a linear factor of Q is by trying to guess an integer root of Q. In order
to do so, plug in all positive and negative integer factors of the constant term of Q into Q. For
example, if

Q = t4+4t3+7t2+6t+2,

try t = ±1,±2. Since Q(−1)=0, t+1 divides Q. Using the polynomial division, we find that

Q1 = Q/(t + 1) = t3 + 3t2 + 4t + 2.

We then apply the same procedure to Q1. Since Q1(−1)=0, t+1 divides Q1, and

Q2 = Q1/(t + 1) = t2 + 2t + 2 = (t + 1)2 + 1 =⇒ Q = (t+1)2
(
(t+1)2+1

)
.

We have now decomposed the polynomial Q into factors. There will be three denominators in this
case Q1 =(t+1), Q2 =(t+1)2, and Q3 =((t+1)2+1)
Step 3: find P1, . . . , Pn such that the degree of Pi is less than the degree of Qi and

R

Q
=

P1

Q1
+ . . . +

Pn

Qn
.

In order to do so, we solve for the coefficients of P1, . . . , Pn by putting the right-hand side above under
a common denominator, which must be Q, and comparing the coefficients in front of tk−1, . . . , t, 1
in the resulting numerator with the coefficients in R. The number of coefficients and the number of
resulting equations should be the degree of Q. For example, we would write

9t3+22t2+22t+8
t4+4t3+7t2+6t+2

=
A

t+1
+

B

(t+1)2
+

Cx + D

t2+2t+2

=
(A+C)t3 + (3A+B+2C+D)t2 + (4A+2B+C+2D)t+(2A+2B+D)

t4 + 4t3 + 7t2 + 6t + 2

Equating the coefficients on the two sides, we obtain
A + C = 9
3A+B+2C+D = 22
4A+2B+C+2D = 22
2A+2B+D = 8

⇐⇒


A = 5
B = −1
C = 4
D = 0

Putting the three steps together, we conclude that

t5

t4+4t3+7t2+6t+2
= t−4 +

5
t+1

− 1
(t+1)2

+
4t

(t+1)2+1
.

Note: Given that Step 2 of the method of partial fractions may get very complicated if the degree
of Q is high, it may appear that the Laplace Transform approach to initial value problems is nearly
always slower than that of Section 4. However, in the Laplace Transform approach, the polynomial Q
will be the characteristic polynomial for the given ODE. In order to use the approach of Section 4,
one would need to find its roots. This procedure is essentially equivalent to Step 2 of the method of
partial fractions for Q. Step 3 of this method is analogous to the last step of the Section 4 approach,
which involves solving a system of k equations with k unknowns for the constants C1, . . . , Ck, if k is
the order of the ODE and the degree of Q.
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