
Math53: Ordinary Differential Equations
Winter 2004

Solutions to Problem Set 1

Problem 1 (20pts)

(a; 2pts) State the two Fundamental Theorems of Calculus.
(a-i) If F is a continuously differentiable function on the interval (a, b) and t0∈(a, b), then

F (t) = F (t0) +

∫ t

t0

F ′(s)ds for all t ∈ (a, b). (1)

(a-ii) If f is a continuous function on the interval (a, b), t0∈(a, b),

and F (t) ≡
∫ t

t0

f(s)ds for all t ∈ (a, b),

then F ′(t) = f(t) for all t ∈ (a, b).

(b; 2pts) State the chain rule for the one-variable differentiation.
If f and g are continuously differentiable functions on (a, b) and (c, d), respectively, and a<g(t)<b
for all t∈(c, d), then the function

h(t) ≡ f(g(t)), t ∈ (c, d),

is defined and continuously differentiable on (c, d) and

h′(t) = f ′(g(t)) · g′(t) for all t ∈ (c, d).

(c; 2pts) State the product rule for the one-variable differentiation.
If f and g are continuously differentiable functions on (a, b), then the function

h(t) ≡ f(t) · g(t), t ∈ (a, b),

is also continuously differentiable and

h′(t) = f ′(t) · g(t) + f(t) · g′(t) for all t ∈ (a, b). (2)

(d; 1pt) If a is a real number and f(x)=xa, what is f ′(x)? (no proof necessary)

f ′(x) = a · xa−1.

(e; 1pt) If f(x)=ex, what is f ′(x)? (no proof necessary)

f ′(x) = ex.



(f; 3pts) State the quotient rule for the one-variable differentiation. Deduce it from (b)-(d).
If f and g are continuously differentiable functions on (a, b) and g(t) 6=0 for all t∈ (a, b), then the
function

h(t) ≡ f(t)
/

g(t), t ∈ (a, b),

is also continuously differentiable and

h′(t) =
f ′(t)

g(t)
− f(t) · g′(t)

g(t)2
for all t ∈ (a, b). (3)

In order to prove (3), we apply (c) to the functions f and G(t)=1/g(t). Since h=f ·G,

h′(t) = f ′(t) · G(t) + f(t) · G′(t) =
f ′(t)

g(t)
+ f(t) · G′(t). (4)

In order to compute G′(t), we apply (b) to the functions y(x)=x−1 and g and use (d) with a=−1.
Since G(t)=y(g(t)),

G′(t) = y′(g(t)) · g′(t) = (−1) · g(t)−2 · g′(t) = − g′(t)

g(t)2
. (5)

The quotient rule, i.e. (3), is obtained by plugging (5) into (4).

(g; 3pts) State the change-of-variables formula for the one-variable integration. Deduce it from (a)
and (b).
If f is a continuous function on (a, b), g is a continuously differentiable function on (c, d) such that
a<g(t)<b for all t∈(c, d), t0∈(c, d),

and F (x) ≡
∫ x

g(t0)
f(y)dy for all x ∈ (a, b), (6)

then

∫ t

t0

f(g(s)) · g′(s)ds = F (g(t)) for all t ∈ (c, d). (7)

By (c) applied to F , g, and h(t)=F (g(t)),

h′(t) = F ′(g(t)) · g′(t). (8)

Since h(t0)=0 by (6), the change-of-variables formula, i.e. (7), follows from (1) and (8).

(h; 2pts) State the integration-by-parts formula for the one-variable integration. Deduce it from
(a) and (c).
If f and g are continuously differentiable functions on (a, b) and t0∈(c, d),

∫ t

t0

f(s) · g′(s)ds =
(

f(t)g(t)−f(t0)g(t0)
)

−
∫ t

t0

f ′(s) · g(s)ds for all t ∈ (a, b). (9)

Rearranging (2) with h(s)=f(s)g(s), we obtain

f(s) · g′(s) = h′(s) −f ′(s) · g(s) for all s ∈ (a, b). (10)
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The integration-by-parts formula, i.e. (9), is obtained by integrating both sides of (10) and apply-
ing (1) to the middle term.

(i; 3pts) Suppose a=a(t) is a smooth function, c is a real number,

f(t) =

∫ t

c
a(s)ds, and h(t)=ef(t).

Compute h′(t), using (a), (b), and (e).
We apply (b) to the functions F (x)=ex and G(t)=f(t). Since h(t)=F (G(t)),

h′(t) = F ′(G(t)) · G′(t) = eG(t) · G′(t) = ef(t) · f ′(t) = f ′(t) · ef(t). (11)

The second equality in (11) is a consequence of (e). Since f ′(t)=a(t) by (a-ii),

h′(t) = a(t) · ef(t). (12)

(j; 1pt) Find a nontrivial first-order differential equation which is solved by the function h= h(t)
of (i).
Since h=ef , by (12),

h′(t) = a(t) · h(t) or h′ = a · h, h=h(t).

This is the simplest possible nontrivial ODE satisfied by h.

Note: There are a number of ways of phrasing (a)-(c) and (f)-(h).

Section 1.3, Problems 4 and 23 (14pts)

1.3: 4; 6pts: Find the general solution of the differential equation

y′ = 2 sin 3t − cos 5t.

Indicate the interval of existence and sketch at least two members of the family of solution curves.
By FTC, e.g. (a-i) of Problem 1,

y(t) =

∫

(

2 sin 3t−cos 5t
)

dt = −2
3 cos 3t − 1

5 sin 5t + C

Since y is defined for all t, the interval of existence is (−∞,∞) Three solution curves are shown

in Figure 1. The most important feature here is that the three graphs differ by vertical shifts.

1.3: 23; 8pts: Find the solution the initial value problem

y′ =
t + 1

t(t + 4)
, y(−1) = 0.
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Figure 1: Plots for Problems 1.3:4 and 1.3:23

Indicate the interval of existence and sketch the solution. By FTC, e.g. (a-i) of Problem 1,

y(t) = y(−1) +

∫ t

−1

s+1

s(s+4)
ds = 0 +

∫ t

−1

1

4

(1

s
+

3

s+4

)

ds

=
1

4

(

ln |s|+3 ln |s+4|
)∣

∣

s=t

s=−1
=

1

4
ln |t| + 3

4
ln |t+4| − 3

4
ln 3.

The last expression is defined on the intervals (−∞,−4), (−4, 0), and (0,−∞). Since the initial
value of the parameter lies in the middle interval, the solution to the initial value problem is

y(t) = 1
4 ln |t| + 3

4 ln(t+4) − 3
4 ln 3, t ∈ (−4, 0)

The solution curve is shown in Figure 1. Note that y approaches −∞ as t tends to −4 and 0, and
the curve passes through the point (−1, 0), as required by the initial condition.

Section 2.1, Problems 8 and 18 (12pts)

2.1: 8 (a; 2pts) Use implicit differentiation to show that t2+y2 = C2 implicitly defines solutions
of the differential equation t+yy′=1.
We differentiate both sides of t2+y2 = C2 with respect to t. The derivative of RHS is 0. On the
other hand, by the chain rule, i.e. (b) of Problem 1,

d

dt

(

t2+y2
)

= 2t + 2y · y′ = 2(t+yy′).

Comparing the derivatives of the two sides, we obtain t+yy′=0, as needed.
(b; 2pts) Solve t2+y2 =C2 for y in terms of t to find explicit solutions. Show that these functions
are also solutions of t+yy′=0.
Solving for y, we obtain y(t)=±

√
C2−t2. By the chain rule,

y′(t) = ± d

dt
(C2−t2)1/2 = ±1

2
(C2−t2)1/2−1 · (−2t) = ± −t√

C2−t2

=⇒ t + yy′ = t +
(

±
√

C2−t2
)

(

± −t√
C2−t2

)

= 0.
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Figure 2: Plots for Problems 2.1:8 and 2.1:18

(c; 2pts) Discuss the interval of existence of each solution in part (b).
We need C2−t2≥0. Thus, t∈(−C,C) for C >0.
(d; 1pt) Sketch the solutions in part (b) for C =1, 2, 3, 4.
The solution curves are circles of radii 1, 2, 3, 4 centered at the origin as in the first diagram in
Figure 2.

2.1: 18; 5pts: Plot the direction field for the ODE y′=y2−t by drawing short lines of the appro-
priate slope centered at the integer valued coordinates (t, y), where −2≤ t≤2 and −1≤y≤1.
The second plot in Figure 2 shows short lines of the slope y′=y2 − t at fifteen points. Notice that
the top and bottom row look the same.

Section 2.2, Problems 4,12,14,18 (26pts)

2.2: 4; 5pts: Find the general solution of the equation y′=(1+y2)ex.
Write y′= dy

dx and split the variables:

y′=(1+y2)ex ⇐⇒ dy

1+y2
= exdx ⇐⇒

∫

dy

1+y2
=

∫

exdx

⇐⇒ tan−1 y = ex + C ⇐⇒ y = tan(ex+C)

2.2: 12; 5pts: Find the general solution of the equation y′=(2xy+2x)/(x2−1).
Write y′= dy

dx and split the variables:

y′ =
2x(y+1)

x2−1
⇐⇒ dy

y+1
=

2xdx

x2−1
⇐⇒

∫

dy

y+1
=

∫

2x

x2−1
dx

⇐⇒ ln |y+1| = ln
∣

∣x2−1| + C

⇐⇒ |y+1| = eC |x2−1| ⇐⇒ y = −1 + C(x2 − 1), x 6= ±1

2.2: 14; 8pts: Find the exact solution, including the interval of existence, to the initial value
problem

y′ = −2t(1 + y2)

y
, y(0) = 1.
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Write y′= dy
dx and split the variables:

y′ = −2t(1 + y2)

y
⇐⇒ ydy

1+y2
= −2tdt ⇐⇒

∫

ydy

1+y2
=−

∫

2tdt

⇐⇒ 1

2
ln(1+y2) = −t2+C ⇐⇒ 1+y2 = e2Ce−2t2

Since y(0)=1, 1+1=e2C · 1, e2C =2. Thus,

y =
√

2e−2t2−1, t∈(−
√

(ln 2)/2,
√

(ln 2)/2)

We must take the positive square root in order to satisfy the initial condition.

2.2: 18; 8pts: Find the exact solution, including the interval of existence, to the initial value
problem

y′ =
x

1 + 2y
, y(−1) = 0.

Write y′= dy
dx and split the variables:

y′ =
x

1 + 2y
⇐⇒ (1+2y)dy = xdx ⇐⇒

∫

(1+2y)dy =

∫

x dx

⇐⇒ y + y2 =
1

2
x2 + C.

Since y(−1)=0, 0+0=(1/2)+C, C =−1/2. Thus,

y = 1
2

(

− 1 +
√

2x2−1
)

, x∈(−∞,−1/
√

2)

In order to satisfy the initial condition, we must take the positive square root.

Section 2.3, Problem 4 (8pts)

A rocket ascends vertically with constant acceleration a=100m/s2 for t1 =1min. The rocket motor
is then shut-off and the rocket continues upward under the influence of gravity. Find the maximum
altitude ym reached by the rocket and the total time T elapsed from the take-off until the rocket
returns to the ground.
The upward velocity v=v(t) is described by

v′(t)=a if t∈(0, t1), v′(t)= −g if t∈(t1, T ).

Integrating the two equations, we obtain

v(t) = v(0) +

∫ t

0
a ds = at if t∈(0, t1),

v(t) = v(t1) +

∫ t

t1

(−g) ds = at1 − g · (t−t1) = (a+g)t1 − gt if t∈(t1, T ).
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Since y′(t)=v(t), integrating again, we obtain y(t)= 1
2at2 if t∈(0, t1), and

y(t) = y(t1) +

∫ t

t1

v(t1) ds =
1

2
at21 + (a+g)t1 · (t−t1) −

1

2
g · (t2−t21)

= −1

2
(a+g)t21 + (a+g)t1t −

1

2
gt2 if t∈(t1, T ).

The maximum altitude is reached at the time t2∈ (t1, T ) such that

v(t2) = 0 ⇐⇒ (a+g)t1 − gt2 = 0 ⇐⇒ t2 =
a+g

g
t1 =⇒ ym = y(t2) =

a2+ag

2g
t21.

The rocket returns to the ground at the time T >t1 such that

y(T ) = −1

2
(a+g)t21 + (a+g)t1T − 1

2
gT 2 = 0 =⇒ T =

a + g +
√

a(a + g)

g
t1.

In order to satisfy the condition T >t1, we must take the positive square root. Can you check that
the smaller root does not satisfy this inequality, if a>0? Plugging in a=100, g =9.8, and t1 =60
into the above expressions for ym and T , we conclude that

ym ≈ 2, 016, 735 m., T ≈ 1, 314 sec.

Section 2.4, Problems 2,6,13,14,18 (32pts)

2.4: 2; 5pts: Find the general solution of the first-order linear ODE y′−3y= 5.
The integrating factor P (t) is given by

P (t) = e
∫

(−3)dt = e−3t; =⇒ y′−3y= 5 ⇐⇒ e−3ty′−3e−3ty= 5e−3t ⇐⇒ (e−3ty)′ = 5e−3t

⇐⇒ e−3ty(t) = 5

∫

e−3tdt = −5

3
e−3t + C ⇐⇒ y(t) = −5

3 + Ce3t

2.4: 6; 5pts: Find the general solution of the first-order linear ODE tx′=4x + t4.
First, rewrite this equation as x′−4t−1x= t3. The integrating factor P (t) is given by

P (t)=e
∫

(−4t−1)dt =e−4 ln t = t−4; =⇒ x′−4t−1x= t3 ⇐⇒ t−4x′−4t−5x= t−1 ⇐⇒
(

t−4x
)′

= t−1

⇐⇒ t−4x(t) =

∫

t−1dt = ln |t| + C ⇐⇒ x(t) = t4 ln |t| + Ct4
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2.4: 13 (a; 4pts) Solve the ODE y′+y cos t=cos t, using the integrating factor approach.
The integrating factor P (t) is given by

P (t)=e
∫

cos tdt =esin t; =⇒ y′+y cos t=cos t ⇐⇒ esin t(y′ + y cos t) = esin t cos t

⇐⇒ (esin ty)′=esin t cos t ⇐⇒ esin ty =

∫

esin t cos tdt

⇐⇒ y(t) = 1 + Ce− sin t

(b; 4pts) Solve the ODE y′+y cos t=cos t, using the separation of variables approach. Discuss any
discrepancies between this solution and the solution found in part (a).

y′+y cos t=cos t ⇐⇒ dy

dt
=(1 − y) cos t

dy

1 − y
=cos xdx ⇐⇒ − ln |1 − y|=sin x + C

⇐⇒ |1 − y|=e− sinx−C ⇐⇒ 1 − y=±e−Ce− sin x

Now let A = ±e−C vary over all real numbers except zero, and note that after separating the
variables we divided by y − 1, which hints that y = 1 (the constant function) is another solution.
Check it! So we can let A vary over all real numbers, including zero, to get the solution in closed
form:

y(t)=1 − Ae− sin t

Note that this is the same result as the one in part (a), since A and C vary over the set of reals.

2.4: 14; 6pts: Find the solution to the initial value problem y′=y+2te2t, y(0)=3.
First, rewrite the ODE as y′−y=2te2t. The integrating factor P (t) is given by

P (t) = e
∫

(−1)dt = e−t; =⇒ y′−y= 2tet ⇐⇒ e−ty′−e−ty= 2tet ⇐⇒ (e−ty)′ = 2t

⇐⇒ e−ty(t) = 2

∫

tetdt = 2
(

tet −
∫

etdt
)

= 2tet − 2et + C.

Since y(0)=3, 1 · 3 = −2+C, and C =5. Thus, y(t) = 2te2t − 2e2t + 5et

2.4: 18; 8pts: Find the solution, including the interval of existence, to the initial value problem
ty′+2y=sin t, y(π/2)=0, and sketch it.
Rewrite the ODE as y′+2t−1y= t−1 sin t. The integrating factor P (t) is given by

P (t)=e
∫

2t−1dt =e2 ln |t|= t2 =⇒ y′+2t−1y= t−1 sin t ⇐⇒ t2y′+2ty= t2 sin t ⇐⇒ (t2y)′ = t sin t

⇐⇒ t2y(t) =

∫

t sin t dt = −t cos t +

∫

cos t dt = −t cos t + sin t + C.

Since y(π/2)=0, (−π/2) · 0+1+C =0, and C =−1. Thus,

y(t) = sin t−t cos t−1
t2
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Figure 3: Solution Curve for Problem 2.4:18

Since the solution cannot be extended to zero, the interval of existence is (0,∞) Figure 3 shows

the solution curve. Its main features are that the curve approaches −∞ as t tends to 0, passes
through the point (π/2, 0), as required by the initial condition, and is close to the x-axis for large
values of t.

Section 2.5, Problem 4 (8pts)

A tank contains V = 500 Gls of a salt-water solution at the concentration ρ0 = .05 lbs/Gl. Pure
water is poured into the tank, and a drain at the bottom is adjusted so as to keep the volume of
solution constant. At what rate r should the water be poured into the tank to lower the concentration
to ρ1 = .01 lbs/Gl in t1 =1 Hr.
Let y(t) be the amount of salt at time t and ρ(t)=y(t)/V be the salt concentration. Then,

y′(t) = 0 − ρ(t) · r,

since no salt is coming in, while it is leaving at the rate of ρ(t) · r. Thus,

ρ′ = − r

V
ρ.

Since r/V is constant, the general solution to this equation is

ρ(t) = Ce−(r/V )t.

Since ρ(0)=ρ0 and ρ(t1)=ρ1,

C = ρ0 =⇒ ρ1 = ρ0e
−(r/V )t1 =⇒ r =

V

t1
ln(ρ0/ρ1).

Plugging in t1 =60, ρ0 = .05, V =500, we obtain r ≈ 13.4 Gls/min
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Section 2.6, Problems 10,14,26,36 (25pts)

2.6: 10; 6pts: Determine whether the equation (1 − y sin x)dx + (cos x)dy =0 is exact, and, if it
is, solve it.
For P (x, y) = 1 − y sin x and Q(x, y) = cos x, we get:

∂P

∂y
=− sinx =

∂Q

∂x

so the equation is exact. We solve it by setting

F (x, y)=

∫

P (x)dx=

∫

(1 − y sinx)dx=x + y cos x + φ(y)

Q(x, y)=
∂F

∂y
=cos x + φ′(y)

so that φ′ = 0, φ is constant, and the solution is F (x, y)=x + y cos x = C

2.6: 14; 3pts: Determine whether the equation dy/dx = x/(x − y) is exact, and, if it is, solve it.
Rewrite the equation as (x)dx + (y − x)dy = 0, so that P (x, y) = x and Q(x, y) = y − x. Then:

∂P

∂y
=0 6=−1=

∂Q

∂x

so the given equation is not exact.

2.6: 26; 8pts: The equation y dx + (x2y − x) dy = 0 is not exact. Suppose it has an integrating
factor that is a function of x alone. Find the integrating factor and use it to solve the equation.
Let µ(x) be the integrating factor, so the equation becomes

µ(x)y dx + µ(x)(x2y − x) dy=0

In order for this equation to be exact, we need:

∂

∂y
(µ(x)y)=

∂

∂x
(µ(x)(x2y − x))

=⇒ µ(x)=µ′(x)(x2y − x) + µ(x)(2xy − 1)

=⇒ 2µ(x)(1 − xy) = xµ′(x)(xy − 1)

=⇒ µ(x) = −1

2
xµ′(x)

so µ(x) = 1/x2 is an integrating factor. After multiplying the equation by µ(x), we get the exact
equation

y

x2
dx +

(

y − 1

x

)

dy=0

=⇒ F (x, y)=

∫

y

x2
dx + φ(y)=−y

x
+ φ(y)
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To find φ, differentiate F with respect to y:

∂F

∂y
(x, y)=y − 1

x
= −1

x
+ φ′(y)

=⇒ φ′(y) = y =⇒ φ(y) =
y2

2
+ C

=⇒ F (x, y)=−y

x
+

y2

2
=⇒ − y

x + y2

2 + C = 0

2.6: 36; 8pts: Solve the homogeneous equation (x + y)dx + (y − x)dy=0
After making the substitution y = xv we get

(x + y)dx + (y − x)dy=0 ⇐⇒ (1 + v)x dx + (v − 1)x(v dx + x dv)=0

⇐⇒ (1 + v2)x dx + (v − 1)x2 dv=0 ⇐⇒ dx

x
+

(v − 1)dv

1 + v2
=0

⇐⇒
∫

dx

x
+

∫

v dv

1 + v2
−

∫

dv

1 + v2
=0

=⇒ ln |x| + 1

2
ln |1 + v2| − arctan v=C

=⇒ ln |x| + 1

2
ln

(

x2 + y2

x2

)

− arctan
(y

x

)

+ C =0

Section 2.7, Problems 2,4,6,26 (16pts)

2.7: 2; 4pts: Does the initial value problem y′ =
√

y, y(4) = 0 satisfy the conditions of the
Theorem on the uniqueness of solutions (Theorem 7.16 in the textbook)?
The equation is of the form y′ = f(t, y) =

√
y. f is defined only on the half-plane {(t, y) : y ≥ 0}

and it is continuous there. But ∂f/∂y = 1/(2
√

y) is continuous only on the open half-plane
{(t, y) : y > 0}. Hence, any rectangle in the (y, t)-plane containing the initial point (4, 0) contains
points where ∂f/∂y is discontinuous, so the conditions of the theorem are not satisfied.

2.7: 4; 4pts: Does the initial value problem ω′ = ω sin ω + s, ω(0) = −1 satisfy the conditions of
the Theorem on the uniqueness of solutions (Theorem 7.16 in the textbook)?
The equation is of the form ω′ = f(s, ω) = ω sin ω+s. Function f is continuous in the whole plane,
and so is its partial ∂f/∂ω = sin ω + ω cos ω. In particular, any rectangle around the initial value
point will satisfy the conditions of the theorem.

2.7: 6; 4pts: Does the initial value problem y′ = (y/x) + 2, y(0) = 1 satisfy the conditions of the
Theorem on the uniqueness of solutions (Theorem 7.16 in the textbook)?
The equation is of the form y′ = f(x, y) = (y/x) + 2. Function f is continuous outside the line
x = 0. The initial value point is (0, 1), so there is no rectangle containing it in which f is continu-
ous, and the conditions for uniqueness of solution are not satisfied.
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Figure 4: Plots for Problem 2.9:20: (i),(ii),(iii)

2.7: 26; 4pts: Is it possible to find a function f(t, x) that is continuous and has continuous par-
tial derivatives such that the functions x1(t) = cos t and x2(t) = 1 − sin t are both solutions to the
equation x′ = f(t, x) near t = π/2?
Since f is continuous and has continuous partial derivatives in the entire (t, x)-plane, the equation
x′ = f(t, x) satisfies the conditions of the uniqueness theorem. Notice that x1(π/2) = x2(π/2) = 0,
so the curves x1(t) = cos t and x2(t) = 1− sin t have a common point (π/2, 0), so if they were both
solutions of our equation, by the uniqueness theorem they would have to agree on any rectangle
containing (π/2, 0). Since they do not, they cannot both be solutions of the equation x′ = f(t, x).

Section 2.9, Problems 20,26,28 (23pts)

2.9: 20; 9pts: For the autonomous differential equation y′ = f(y) = (y+1)(y2−9), sketch a graph
of f(y) and use it to develop a phase line and classify each equilibrium point as either unstable or
asymptotically stable. Sketch the equilibrium solutions in the (t, y)-plane and at least one solution
trajectory in each plane region bounded by these equilibrium solutions.
Function f(y) factors as f(y) = (y +3)(y +1)(y−3), so the equilibrium solutions are y = −3,
y = −1 and y = 3, and the phase line is sketched by looking at the graph of f ; see Figure 4. Since
f ′(−3) = 12 > 0, f ′(−1) = −8 < 0, f ′(3) = 24 > 0, the middle equilibrium is stable, and the other
two are unstable. Solution trajectories in each of the four regions are sketched below.

2.9: 26; 9pts: Solve the initial value problem y′ = (3 + y)(1 − y), y(0) = 2 and describe the
behavior of the solution when t → ∞.
What is the long-term behavior of the solution?

y′ = (3 + y)(1 − y) ⇐⇒ dy

(3 + y)(1 − y)
=dt ⇐⇒ 1

4

(

1

3 + y
+

1

1 − y

)

dy=dt

⇐⇒ ln
|3 + y|
|1 − y| =4t + C ⇐⇒ 3 + y

1 − y
=Ae4t

From y(0) = 2 we get that A = Ae4·0 = (3 + 2)/(1 − 2) = −5, and we continue solving for y:

3 + y=−5(1 − y)e4t ⇐⇒ y=
3 + 5e4t

5e4t − 1
=

3e−4t + 5

5 − e−4t

It follows that limt→∞ y = (0 + 5)/(5 − 0) = 1. Note that of the two equilibrium points, namely
zeros −3 and 1 of f(y) = (3 + y)(1 − y), 1 is asymptotically stable, which provides with another
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method of concluding that as t−→∞, y−→1.

2.9: 28; 5pts: Determine the stability of the equilibrium solutions of x′ = x(x − 1)(x + 2).
The equilibrium points for x′ = f(x) = x(x − 1)(x + 2) are zeros of f , so they are −2, 0 and 1.
Since f ′(x) = 3x2 + 2x − 2, we have that:

f ′(−2) = 6 > 0 =⇒ x = −2 is unstable.

f ′(0) = −2 < 0 =⇒ x = 0 is asymptotically stable.

f ′(1) = 3 > 0 =⇒ x = 1 is unstable.

Section 3.1, Problem 12 (8pts)

A population is observed to obey the logistic equation with eventual population 20, 000. The initial
population is 1000, and 8 hours later, the observed population is 1200. Find the reproductive rate
and the time required for the population to reach three quarters of its carrying capacity.
In the logistic model of population growth, we assume that the death and birth rates vary with
population P according to formulas d = d0 + aP and b = b0 − cP . Then we get:

P (t + ∆t) − P (t) ≈ (b − cP (t)P (t)∆t − (d + aP (t))P (t)∆t = (b − d − (a + c)P (t))P (t)∆t

P ′(t) = lim
∆t→0

P (t + ∆t) − P (t)

∆t
= (b − d − (a + c)P (t))P (t)

Set r = b − d and a + c = r/K where K is a new constant, to get the logistic equation

P ′ = r(1 − P/K)P

This equation is autonomous, with equilibrium points P1 = 0 and P2 = K. Since P ′ = f(P ) > 0 if
0 < P < K and P ′ = f(P ) < 0 if P > K or P < 0, P1 is an unstable, and P2 a stable equilibrium.
If P (t) is any solution with positive population, then the population must stay positive.
To solve the logistic equation, note that it is autonomous, hence separable.

dP

dt
=rP

(

1 − P

K

)

⇐⇒ K dP

P (K − P )
= r dt

⇐⇒
(

1

P
+

1

K − P

)

dP =r dt ⇐⇒ ln |P | − ln |K − P | = rt + C

⇐⇒ P

K − P
= Aert ⇐⇒ P (t) =

KAert

1 + Aert

If P0 is population at time t0, then

Aert0 =
P0

K − P0

enables us to eliminate A, and we get:

P (t) =
KP0

P0 + (K − P0)e−r(t−t0)
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Note that when t → ∞, e−r(t−t0) → 0, so that limt→∞ P (t) = K and K is called the carrying
capacity.
In this particular problem, we have that the carrying capacity is K = 20, 000, P0 = 1000 and
P (8) = 1200, where time is expressed in hours. We want to find t such that P (t) = 15, 000.
Applying the derived formula gives:

1200 =
20, 000 · 1000

1000 + 18, 000 · e−8r
=⇒ r ≈ 0.0241

Time t at which the population is P (t) = 15, 000 then satisfies:

15, 000 =
20, 000 · 1000

1000 + 18, 000 · e−rt
=⇒ e−rt =

1

57
=⇒ t ≈ 167.671

Section 3.4, Problem 14 (8pts)

Solve the general IVP modeling the LR circuit,

L
dI

dt
+ RI = E, I(0) = I0,

where L, R, and E are constants.
Rewrite the ODE as I ′+(R/L)I =(E/L). The integrating factor P (t) is given by

P (t)=e
∫

(R/L)dt =e(R/L)t; =⇒ I ′ +
R

L
I =

E

L
⇐⇒ e(R/L)tI ′ +

R

L
e(R/L)tI =

E

L
· e(R/L)t

=⇒
(

e(R/L)tI
)′

=
E

L
· e(R/L)t

=⇒ e(R/L)tI(t) =
E

L

∫

e(R/L)tdt =
E

R
e(R/L)t + C.

Since I(0)=I0, 1 · I0 = E
R · 1 + C, and C =I0−E

R . Thus,

I(t) = E
R +

(

I0−E
R

)

e−(R/L)t

14


