
Math53: Ordinary Differential Equations
Autumn 2004

Unit 1 Summary
First-Order Ordinary Differential Equations

Extremely Important: what it means for a function to solve an ODE/IVP and how to check
this; implicitly defined solutions.

Very Important: finding solutions to linear and first-order ODEs and IVPs; geometric im-
plications of the existence and uniqueness theorem; descriptive analysis of first-order ODEs, in-
cluding sketches as in Figure 1 below; structure of solutions of inhomogeneous linear equations,
i.e. y=yp+yh; solution curves and direction fields.

Important: interval of existence; solving exact ODEs, including exactness check and sketches of
solution curves; reducing other ODEs to linear, separable, or exact ODEs by substitution or by
multiplying by an integrating factor; application problems.

Finding Solutions of Special First-Order ODEs

(1) The simplest first-order ODEs to solve are those of the form

y′ = f(t), y = y(t). (1)

These ODEs are solved by taking the indefinite integral of both sides:

y′ = f(t), y = y(t) =⇒ y =
∫
f(t)dt

The solution curves of (1) differ by vertical shifts. An initial-value problem for (1) is solved by

y′ = f(t), y(t0) = y0 =⇒ y(t) = y0 +
∫ t
t0

f(s)ds

(2) Linear first-order ODEs are the equations of the form

y′ + a(t) · y = f(t), y = y(t). (2)

Note that only the first powers of the function y and its t-derivative appear in (2). For example,
there are no terms y2, yy′, sin y, etc. Equation (2) can be reduced to (1) by multiplying by an
integrating factor

Pa = Pa(t) = e
∫

a(t)dt.

We need only one such integrating factor. Its key property is that

P ′
a(t) = a(t) · Pa(t) =⇒ (Pay)′ = Pay

′ + a · Pay. (3)



Equation (2) is solved by multiplying both sides by Pa and using the second identity in (3):

Pa =Pa(t)=e
∫

a(t)dt y′ + a(t) · y = f(t), y = y(t) =⇒ (Pay)′ = Pa(t)f(t)

The last equation above is solved by integrating both sides with respect to t. An initial-value
problem for (2) is solved by

Pa(t)=e
∫ t

t0
a(s)ds

y′ + a(t)y = f(t), y(t0) = y0 =⇒ Pa(t)y(t) = y0 +
∫ t
t0

Pa(s)f(s)ds

For this choice of Pa, Pa(t0)=1. Alternatively, one can first find the general solution and then find
the constant C by plugging in the initial conditions.
Caution: Before computing the integrating factor, you need to put the ODE into the form (2),
which is not its normal form; see (19) below.

(3) Separable first-order ODEs are the equations of the form

y′ = f(y) · g(t), y = y(t). (4)

Equation (4) is solved by writing y′ = dy
dt , moving all expressions involving y to LHS and all

expressions involving t to RHS, and integrating both sides:

dy
dt = f(y) · g(t), y = y(t) =⇒ dy

f(y) = g(t)dt =⇒
∫ dy

f(y) =
∫
g(t)dt

Once the two integrals are computed, one obtains a relation between y and t of the form

F (y) = G(t) + C ⇐⇒ F (y)−G(t) = C. (5)

These relations define solutions y =y(t) of (4) implicitly. In some cases, it is possible to solve (5)
for y=y(t). An initial-value problem for (4) is solved by

dy
dt = f(y) · g(t), y(t0) = y0 =⇒ dy

f(y) = g(t)dt =⇒
∫ y
y0

dz
f(z) =

∫ t
t0

g(s)ds

Alternatively, one can first find the general solution and then find the constant C by plugging in the
initial conditions. It is the easiest to find C as soon as it appears, i.e. plug in the initial conditions
into (5) and then solve for y=y(t), instead of first solving (5) for y=y(t) and then solving for C.

Caution: (i) This separation-of-variables method involves division by f =f(y) and may miss some
of the constant solutions of (4). Such solutions are necessarily of the form y=y∗, where y∗ is a real
number such that f(y∗)=0.
(ii) If you are solving an IVP and it is possible to solve for y=y(t) explicitly, make sure you take
the correct branch, if there is more than one, of the appropriate level curve of H =F−G, e.g. the
positive or negative square root, and not both. The correct branch is the one satisfying the initial
condition y(t0)=y0.

(4) The first-order ODE

P (t, y) + Q(t, y)y′ = 0 or P (t, y)dx + Q(t, y)dy = 0, y = y(t), (6)
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is exact if there exists a smooth function H =H(t, y) such that

Ht≡
∂H

∂t
= P and Hy≡

∂H

∂y
= Q, or ~∇H = P î + Qĵ, or dH≡Htdt+Hydy = Pdt+Qdy.

These three conditions are exactly the same. The equality of mixed partial derivatives, Hyt =Hty,
implies that

If P (t, y) + Q(t, y)y′ = 0 is exact, then Py =Qt (7)

In particular, if Py 6= Qt, (6) is not exact. On the other hand, if P and Q are defined on a
rectangle R, the converse of (7) is true as well:

Py =Qt and H(t, y) =
∫ t
t0

P (s, y0)ds +
∫ y
y0

Q(t, z)dz =⇒ Ht = P and Hy = Q (8)

If (6) is exact, it is implicitly solved by

P (t, y) + Q(t, y)y′ = 0, y = y(t) =⇒ H(t, y) = C if Ht = P and Hy =Q

An initial-value problem for (6) is solved implicitly by

P (t, y)+Q(t, y)y′=0, y(t0)=y0 =⇒ H(t, y)≡
∫ t
t0

P (s, y0)ds+
∫ y
y0

Q(t, z)dz = 0 if Py =Qt

Alternatively, one can first find the general solution and then find the constant C by plugging in
the initial conditions. As above, it is the easiest to find C as soon as it appears.

Caution: (i) While we are looking for H such that Ht = P and Hy = Q, the derivative test for
exactness is Py =Qt, i.e. the derivatives are taken in the “opposite” way.
(ii) Check the conclusion in (8). You’ll see that the assumption Py =Qt is critical.
(iii) The assumption that P and Q are defined on a rectangle is essential for the validity of (8),
though it is also true for some other domains as well.
(iv) Note that in the constructions of H above, the two integrands are P (s, y0) and Q(t, z), and
not Q(t0, z). If you have taken Math52, you might recognize H(t, y) as the line integral of Pdt+Qdy
along the horizontal line s−→ (s, y0), with t0≤s≤ t, followed by the vertical line z−→ (t, z), with
y0≤z≤y. Due to our assumptions on P and Q, the line integral of Pdt+Qdy depends only on the
end points, (t0, y0) and (t, y), and not the path between them.
(v) The method for finding the function H = H(t, y) described above is different from the one
described in lecture and in the text. The method described above is more direct and quicker, but
it is also less safe, as it defines H whether or not Py = Qt. However, if Py 6= Qt, we will not have
Ht =P . If you use the method described previously to find H, you will get an equation of the form

φ′(y) = f(t, y),

with f depending on t if Py 6=Qt. In such a case, this equation has no solution.

(5) While many first-order ODEs are neither linear, separable, nor exact, it may be possible to
reduce some of them to linear, separable, or exact ODEs by making a change of variables or by
multiplying by a nonzero function. For example, the ODE

y′ =
y

t + y
, y = y(t), (9)
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is neither linear, separable, nor exact. However, if we set z=z(t)=y(t)/t or y= t · z, (9) becomes

z′ = − z2

1 + z
t−1, z = z(t). (10)

Please check this! Equation (10) is separable and can be solved implicitly as H(t, z)=0, for some
function H. Plugging in z=y/t, we obtain implicit solutions y=y(t) of (9). Another example is

ty + (t2+y2)y′ = 0, y = y(t). (11)

This equation is again neither linear, separable, nor exact. However, multiplying both sides of (11)
by y, we obtain

ty2 + (t2y+y3)y′ = 0, y = y(t).

This equation is equivalent to (11) and is exact. Please check this!

Autonomous First-Order ODEs

(1) An autonomous first-order ODE is an ODE of the form

y′ = f(y), y = y(t). (12)

This equation is of course separable. Thus, we can solve it implicitly for y = y(t) as F (y)= t+C.
However, a lot of descriptive information about (12) can be obtained without solving it. First of
all, since RHS of (12) does not involve t, the direction field of (12) does not change under horizontal
shifts. Thus, a horizontal shift of a solution curve is again a solution curve. Furthermore, if y∗

is a real number such that f(y∗) = 0, the constant function y(t) = y∗ is a solution of (12). Such
a number y∗ is an equilibrium point for (12) and y(t)= y∗ is an equilibrium solution of (12). The
corresponding solution curve is the horizontal line y =y∗ in (t, y)-plane. The horizontal graphs of
the equilibrium solutions of (12) partition the (t, y)-plane into horizontal bands y∗1 < y < y∗2. In
each band, the function f(y) does not change sign. Thus, in each single band, all solution curves
of (12) either descend and approach the line y=y∗1 or ascend and approach the line y=y∗2 as t ap-
proaches ∞. The equilibrium point y∗ and the equilibrium solution y=y∗ are stable if the solution
curves in the two bands surrounding the horizontal line y=y∗ approach y=y∗ as t approaches ∞.
Otherwise, they are unstable.

(2) Here is an example. The equilibrium solutions of

y′ = (y + 3)2(y + 1)(y − 3) (13)

are y=−3, y=−1, and y=3. The graphs of these solutions are the horizontal lines y=−3, y=−1,
and y =3, shown in the third plot above. These lines partition the ty-plane into horizontal bands
y∗1 < y < y∗2. Since solution curves of the ODE (13) do not intersect, no solution curve can cross
the graphs of the equilibrium solutions. For example, if y = y(t) is a solution of (13) such that
y(t0)∈ (−1,−3) for some t0, then y(t)∈ (−1,−3) for all t. In each band, the function f(y) does
not change sign. Thus, in each single band, all solution curves of (13) either descend or ascend.
Furthermore, each solution curve must approach either an equilibrium solution curve or ±∞ as
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Figure 1: Plots for ODE y′ = f(y) = (y + 3)2(y + 1)(y − 3)

t−→±∞. The best way to tell whether the solution curves in the given band descend or ascend is
by sketching the graph of the function f =f(y), as done for the ODE (13) in the first plot above.
Note that the y-intercepts of this graph correspond to the equilibrium solutions of the ODE. The
equilibrium point y∗ and the equilibrium solution y = y∗ are stable if the solution curves in the
two bands surrounding the horizontal line y = y∗ approach y = y∗ as t approaches ∞. Otherwise,
they are unstable. The (first-) derivative test can often, but not always, be used to determine the
type of an equilibrium solution. However, it is usually simpler to first draw the phase line for the
ODE by looking at the graph of f = f(y), as done in the middle plot above for the ODE (13).
The phase line shows the equilibrium points for the ODE (13), or the y-intercepts of the graph
of f . It also indicates, using arrows, whether the solution curves in each band cut out by the
horizontal equilibrium-solution lines ascend and descend. The arrow corresponding to a segment
of the phase line points up (down) if f(y) is positive (negative) on the this segment. An equilib-
rium point y∗ of (13) is stable if on the phase line both arrows surrounding y∗ point toward y∗ and
is unstable otherwise. In this case, y=−1 is a stable solution of (13), while y=−3 and y=3 are not.

Qualitative Descriptions

(1) There is no problem with existence and uniqueness of solutions for initial value problems
involving first-order linear ODEs. In other words, every IVP

y′ = a(t) · y + f(t), y(t0) = y0, (14)

has a unique solution, provided that a and f are defined and continuous near t0. Furthermore, the
interval of existence for the solution of (14) is the largest interval containing t0 on which a and f
are defined and continuous.

(2) More generally, the Existence and Uniqueness Theorem for first-order ODEs guarantees a solu-
tion to IVP

y′ = Q(t, y), y(t0) = y0, (15)

if the function Q is continuous near (t0, y0). If in addition ∂Q/∂y is defined and continuous
near (t0, y0), this theorem guarantees that there is only one solution to this IVP near t0. Thus,
this theorem’s applicability depends on the ODE and the initial condition. The most important
implication of this theorem is that no two solutions curves of

y′ = Q(t, y), y = y(t),
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intersect and there is a solution curve through every point in the (t, y)-plane provided that Q is
smooth. This means that if a system starts in a certain state, it can be in only one possible state
at a later time.

Here is an example. IVP
y′ =

√
|y|/|t|, y(0) = 0,

is not guaranteed to have a solution at all, because
√
|y|/|t| is not continuous near (0, 0), but it

may have a solution or even lots of solutions. We have to determine this in some other way, e.g. by
trying to solve this IVP. On the other hand, IVP

y′ =
√
|y|/|t|, y(2) = 0,

is guaranteed to have a solution, because
√
|y|/|t| continuous near (2, 0). However, this IVP may

have many solutions, because ∂(
√
|y|/|t|)/∂y is not continuous near (2, 0). On the other hand, IVP

y′ =
√
|y|/|t|, y(2) = 1,

is guaranteed to have a unique solution because ∂(
√
|y|/|t|)/∂y is continuous near (2, 1).

Caution: (i) It makes sense to talk about existence and uniqueness of solutions only for IVPs, such
as (15). Otherwise, there will be lots of solutions, which we usually describe by the constant C.
(ii) Note that the uniqueness statement involves only the partial ∂Q/∂y.

(2) A homogeneous linear first-order ODE is an ODE of the form

y′ = a(t)y, y = y(t). (16)

If y1 and y2 are solutions of (16), so is C1y1+C2y2, for any real numbers C1 and C2. Please check
this directly, without solving the equation! This property of the set of all solutions of homogeneous
linear ODEs, of any order, makes it a vector space, i.e. the sum of two solutions is again a solution
and any multiple of a solution is also solution. This is not the case for other ODEs. The general
solution of any linear equation

y′ = a(t)y + f(t), y = y(t), (17)

has the form y=yh+yp, where yp is a fixed particular solution of (17) and yh is the general solution
of the corresponding homogeneous equation, i.e. (16) with the same a=a(t) as in (17). In order to
check this claim, you need to show two things. The first one is that if yp is a solution of (17) and
yh is a solution of (16), then yh+yp is a solution of (17). The second statement is that if yp and y
are solutions of (17), then y−yp is a solution of (16). Please check these two statements directly,
without solving the two equations!

Terminology

(1) A first-order ordinary differential equation is a relation of the form

R(t, y, y′) = 0, y = y(t), (18)
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that cannot be simplified, through algebraic means, to a relation R̃(t, y)=0. In (18), R is a function
of three variables. The normal form of a first-order ODE is an expression

y′ = Q(t, y), y = y(t), (19)

where Q is a function of two variables. Most first-order ODEs arising in applications can be put
into the normal form. An initial-value problem, for a first-order ODE, is a set of conditions:

R(t, y, y′) = 0 or y′ = Q(t, y), y = y(t), y(t0) = y0. (20)

The last condition in (20) is the initial-value requirement for (20).

(2) A solution of (18), or of (19), is a function y = y(t) that satisfies (18), or (19). A solution of
the initial-value problem (20) is a function y = y(t) that satisfies the ODE and the initial-value
requirement in (20). Typically, but not always, (20) will have a unique solution. A solution curve
for the first-order ODE (18), or for (19), is the graph, in ty-plane, of a solution y=y(t) of (18), or
of (19). Typically, but not always, solution curves for the same first-order ODE will not intersect.
A solution curve for the initial-value problem (20) is the graph of a solution y=y(t) of (20). Such a
graph must pass through the point (t0, y0). The direction field for the ODE (19) is usually thought
of as a diagram, in the ty-plane, consisting of short line segments of slope y′ = Q(t, y) through a
number of points (t, y). Since the derivative of a function y=y(t) is the slope of the tangent line to
the graph of y, a solution curve for (19) is everywhere tangent to the direction field. In particular,
if the direction field is drawn at sufficiently many points, one can pretty much see solution curves.
Caution: While the solution curves for the simplest ODEs, i.e. (1), differ by vertical shifts, this is
not the case for other ODEs.

(3) The interval of existence of a solution of an ODE is the largest interval on which the solution
is defined. If you are asked to find all solution of an ODE, you may end up with several intervals
of existence for the same expression for y=y(t). For example,

y′ = 2
t(t+2) =⇒ y(t) = ln |t| − ln |t+2|+ C, t ∈ (−∞,−2), (−2, 0), (0,∞)

Please check this! In this case, there are three solutions, and thus three intervals of existence, for
each constant C. In some cases, if the range for C is not all real numbers, you should be specify it.
For example,

t + yy′ = 0 =⇒ y(t) = ±
√

C − t2, t ∈ (−
√

C,
√

C), C > 0

Please check this! For an initial value problem, the interval of existence must contain the initial
value of the parameter. For example,

y′ = 2
t(t+2) , y(−1) = 1 =⇒ y(t) = ln |t| − ln |t+2|+ 1, t ∈ (−2, 0)

In some cases, you may need to pick the correct branch of an implicitly defined solution. For
example,

t + yy′ = 0, y(0) = −2 =⇒ y(t) = −
√

4− t2, t ∈ (−2, 2)
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