MAT 644: Complex Curves and Surfaces Notes for 04/27/20

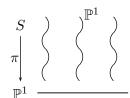
Last week: Rational Surfaces (birational to \mathbb{P}^2 , blowups/blowdowns of \mathbb{P}^2)

Prp 1: \mathbb{P}^2 and $\mathbb{F}_k \equiv \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(k))$ with k = 0, 2, 3, ... are minimal rational surfaces; $\mathbb{F}_1 = \mathrm{Bl}_{\mathrm{pt}} \mathbb{P}^2$ minimal= no exceptional curves $E \subset S$ ($E \subset S$ irred. $E \cdot K_S$, $E \cdot E < 0 \implies E \approx \mathbb{P}^1$, $E \cdot E = -1$)

Lemma 1: Let $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ be a pencil of curves on a projective surface S. If $C_{\lambda} \cap C_{\lambda'} = \emptyset \ \forall \lambda, \lambda' \in \mathbb{P}^1, \ \lambda \neq \lambda', \text{ and } C_{\lambda} \approx \mathbb{P}^1 \ \forall \lambda \in \mathbb{P}^1,$ then the map

$$\pi: S \longrightarrow \mathbb{P}^1, \qquad C_{\lambda} \in x \longrightarrow \lambda \in \mathbb{P}^1,$$

is isomorphic to the projection $\mathbb{F}_k \longrightarrow \mathbb{P}^1$ for some $k \in \mathbb{Z}^{\geq 0}$.



Lemma 2: Let $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^{1}}$ be a pencil of curves on a projective surface S. If $C_{\lambda}\cap C_{\lambda'}=\emptyset$ \forall $\lambda,\lambda'\in\mathbb{P}^{1}$, $\lambda\neq\lambda'$, and $C_{\lambda}\approx\mathbb{P}^{1}$ for some $\lambda\in\mathbb{P}^{1}$, then S is a blowup of some \mathbb{F}_{k} so that the map

$$\pi: S \longrightarrow \mathbb{P}^1, \qquad C_{\lambda} \in x \longrightarrow \lambda \in \mathbb{P}^1,$$

is the composition of the blowdown $S \longrightarrow \mathbb{F}_k$ and projection $\mathbb{F}_k \longrightarrow \mathbb{P}^1$.

Crl 1: Let $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ be a pencil of curves on a projective surface S so that $C_{\lambda}\cap C_{\lambda'}=\emptyset$ \forall λ , $\lambda'\in\mathbb{P}^1$, $\lambda\neq\lambda'$, and $C_{\lambda}\approx\mathbb{P}^1$ for some $\lambda\in\mathbb{P}^1$. If $\lambda_0\in\mathbb{P}^1$ and $C_{\lambda_0}=\sum_{i=1}^k m_iC_i$ with $m_i\in\mathbb{Z}^+$, $C_i\subset S$ irred., then $C_i\approx\mathbb{P}^1$ \forall i.

If
$$\lambda_0 \in \mathbb{P}^1$$
 and $C_{\lambda_0} = \sum_{i=1}^{\kappa} m_i C_i$ with $m_i \in \mathbb{Z}^+$, $C_i \subset S$ irred., then $C_i \approx \mathbb{P}^1 \, \forall i$.

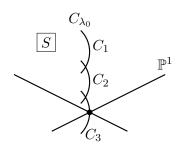
Crl 2: Let $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ be a pencil of curves on a projective surface S so that $C_{\lambda}\approx\mathbb{P}^1$ for some ${\lambda}\in\mathbb{P}^1$.

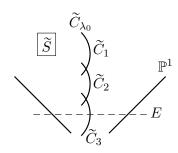
If
$$\lambda_0 \in \mathbb{P}^1$$
 and $C_{\lambda_0} = \sum_{i=1}^k m_i C_i$ with $m_i \in \mathbb{Z}^+$, $C_i \subset S$ irred., then $C_i \approx \mathbb{P}^1 \ \forall i$.

Proof. \exists blowup $\pi \colon \widetilde{S} \longrightarrow S$ and a pencil $\{\widetilde{C}_{\lambda}\}_{\lambda \in \mathbb{P}^1}$ of curves on \widetilde{S} so that $\pi(\widetilde{C}_{\lambda}) = C_{\lambda} \ \forall \ \lambda \in \mathbb{P}^1$ and $\widetilde{C}_{\lambda} \cap \widetilde{C}_{\lambda'} = \emptyset \ \forall \ \lambda, \lambda' \in \mathbb{P}^1, \ \lambda \neq \lambda'$ (blowing up at base locus and

taking proper transform of the entire pencil as in pf of Lemma 1 on 04/15/20). Crl 1 \implies claim for $\widetilde{C}_{\lambda_0} \implies$ claim for C_{λ_0}

b/c pts of the base locus are smooth points of every C_{λ} . \square





- **Prp 2:** A minimal rational surface S is isomorphic to either \mathbb{P}^2 or some \mathbb{F}_k (every rational surface is a blowup of \mathbb{P}^2 or some \mathbb{F}_k).
- **Proof.** S rational \implies (i) $\chi(\mathcal{O}_S) = h^{0,0}(S) h^{0,1}(S) + h^{0,2}(S) = 1$
 - (ii) \exists pencil $\{C_{\lambda}\}_{\lambda \in \mathbb{P}^1}$ of curves on S s.t. $C_{\lambda} \approx \mathbb{P}^1$ for some $\lambda \in \mathbb{P}^1$ (start with a pencil of lines on \mathbb{P}^2 , pull back under blowups,

push forward under blowdowns)

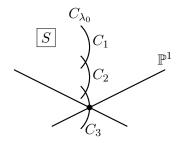
The base locus

$$B \equiv \bigcap_{\lambda \in \mathbb{P}^1} C_{\lambda} = C_{\lambda_0} \cap C_{\lambda_1} \quad \text{for any } \lambda_0, \lambda_1 \in \mathbb{P}^1, \ \lambda_0 \neq \lambda_1,$$

is finite.

$$B = \emptyset \implies \text{Lemma 2 applies}$$

$$\therefore$$
 assume $C_{\lambda} \cdot C_{\lambda} \geqslant |B| > 0$



Case 1: C_{λ} is irred. $\forall \lambda \in \mathbb{P}^1 \Longrightarrow \exists$ blowup $\pi \colon \widetilde{S} \longrightarrow S$ and a pencil $\{\widetilde{C}_{\lambda}\}_{\lambda \in \mathbb{P}^1}$ of curves on \widetilde{S} so that $\pi(\widetilde{C}_{\lambda}) = C_{\lambda} \ \forall \ \lambda \in \mathbb{P}^1, \ \widetilde{C}_{\lambda} \cap \widetilde{C}_{\lambda'} = \varnothing \ \forall \ \lambda, \lambda' \in \mathbb{P}^1, \ \lambda \neq \lambda', \ \text{and} \ \widetilde{C}_{\alpha} \ \text{is irred.} \ \forall \ \lambda \in \mathbb{P}^1$ (keep blowing up at base locus and taking proper transform of the entire pencil as in pf of Lemma 1 on 04/15/20).

Lemma $1 \Longrightarrow \widetilde{S} \approx \mathbb{F}_k$ for some $k \in \mathbb{Z}^{\geq 0}$ $k \neq 1 \Longrightarrow$ no exceptional curves in $\widetilde{S} \Longrightarrow S = \widetilde{S} \approx \mathbb{F}_k$ $k = 1 \Longrightarrow \widetilde{S} = \mathrm{Bl}_{\mathrm{pt}} \mathbb{P}^2$, unique exceptional curve in $\widetilde{S} \Longrightarrow S \approx \mathbb{P}^2$

Case 2: For some $\lambda_0 \in \mathbb{P}^1$, $C_{\lambda_0} = \sum_{i=1}^{\kappa} m_i C_i$ with $k \ge 2$, $m_i \in \mathbb{Z}^+$, and $C_i \subset S$ irred.

$$0 = a(C_{\lambda}) = a(C_{\lambda_0}) = 1 + \frac{1}{2} (K_S \cdot C_{\lambda_0} + \underbrace{C_{\lambda_0}^2}_{=C_{\lambda}^2 > 0}) \implies K_S \cdot C_{\lambda_0} < 0$$

if $C_i^2 < 0$, then can blow down C_i by Castelnuovo-Enriques Criterion II

 $S \text{ minimal } \Longrightarrow C_i^2 \geqslant 0$

Riemann-Roch $\Longrightarrow \chi(C_i) = \chi(\mathcal{O}_S) + \frac{1}{2}(C_i^2 - K_S \cdot C_i) > 1 + 0$ Kodaira-Serre $\Longrightarrow h^2(C_i) \equiv h^{0,2}(C_i) = h^{2,0}(-C_i) = h^0(K_S - C_i) \leqslant h^0(K_S) = 0$ (S rational) $\implies h^0(C_i) = \chi(C_i) + h^1(C_i) - h^2(C_i) \ge 2$

 $\operatorname{Crl} 2 \implies C_i \approx \mathbb{P}^1$

 \implies can take pencil $\{C'_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ of curves on S containing C_i

keep repeating until the base locus of the pencil is empty or C_{λ} is irred. $\forall \lambda \in \mathbb{P}^1$.

Crl of Case 1: Let $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ be a pencil of curves on a projective surface $S\not\approx\mathbb{P}^2$

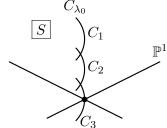
so that $C_{\lambda} \approx \mathbb{P}^1$ some $\lambda \in \mathbb{P}^1$.

If the base locus of $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ is not empty, then C_{λ_0} is reducible for some $\lambda_0\in\mathbb{P}^1$.

Lemma 3 (Noether's Lemma): Let $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ be a pencil of curves on a projective surface S. If $C_{\lambda}\approx\mathbb{P}^1$ for some ${\lambda}\in\mathbb{P}^1$, then S is birational to \mathbb{P}^2 .

Proof. \exists blowup $\pi \colon \widetilde{S} \longrightarrow S$ and a pencil $\{\widetilde{C}_{\lambda}\}_{\lambda \in \mathbb{P}^1}$ of curves on \widetilde{S} so that $\pi(\widetilde{C}_{\lambda}) = C_{\lambda} \ \forall \ \lambda \in \mathbb{P}^1$ and $\widetilde{C}_{\lambda} \cap \widetilde{C}_{\lambda'} = \emptyset \ \forall \ \lambda, \lambda' \in \mathbb{P}^1, \ \lambda \neq \lambda'$ (keep blowing up at base locus and taking proper transform of the entire pencil as in pf of Lemma 1 on 04/15/20).

Lemma 2 $\Longrightarrow \widetilde{S}$ is a blowup of \mathbb{F}_k for some $k \in \mathbb{Z}^{\geqslant 0}$ $\Longrightarrow S$ is birational to \mathbb{P}^2 .



Crl 3: Let S be a minimal projective surface with $h^1(\mathcal{O}_S), h^0(K_S) = 0$. If \exists irred. curve $C \subset S$ with a(C) = 0 and either $C^2 \ge 0$ or $C \cdot K_S < 0$, then S is rational.

Proof.
$$C \approx \mathbb{P}^1 \implies \text{enough to show } h^0(C) \geqslant 2$$

 $S \text{ minimal, } C \cdot K_S < 0 \implies C^2 \geqslant 0 \text{ (o/w can blow down } C)$
 $h^0(K_S) = 0 \implies h^2(C) = h^0(K_S - C) = 0$
 $\implies h^0(C) \geqslant \chi(C) = \chi(\mathcal{O}_S) + \frac{1}{2}(C^2 - K_S \cdot C) = 1 + \frac{1}{2}(C^2 - K_S \cdot C)$
 $0 = a(C) = 1 + \frac{1}{2}(C^2 + K_S \cdot C), C^2 \geqslant 0 \implies h^0(C) \geqslant 2 + C^2 \geqslant 2$

Castelnuovo-Enriques Thm: A projective surface S is rational (birational to \mathbb{P}^2)

iff
$$h^1(\mathcal{O}_S) = 0$$
 and $P_2(S) \equiv h^0(K_S^{\otimes 2}) = 0$.

 \Longrightarrow Trivial b/c $h^{p,q}$ with $(p,q) \neq (1,1)$ and P_n with $n \in \mathbb{Z}^+$ do not change under blowups/downs and $h^{0,1}(\mathbb{P}^2), P_2(\mathbb{P}^2) = 0$.

Proof of \Longrightarrow . $h^0(K_S^{\otimes 2}) = 0 \implies h^0(K_S) = 0, \ \chi(\mathcal{O}_S) = 1.$ Assume S is minimal. Crl $3 \implies$ enough to find irred. curve $C \subset S$ with a(C) = 0 and either $C^2 \geqslant 0$ or $C \cdot K_S < 0$.

By Riemann-Roch and Kodaira-Serre, $C \subseteq S$ irred. curve \Longrightarrow

$$0 \le a(C) \equiv 1 + \frac{1}{2} \left(C^2 + K_S \cdot C \right) = \chi(\mathcal{O}_S) + \frac{1}{2} \left((-C)^2 - K_S \cdot (-C) \right)$$

$$\stackrel{\text{RR}}{=} \chi(-C) \equiv \underbrace{h^0(-C)}_{0} - h^1(-C) + h^2(-C) \stackrel{\text{KS}}{\le} h^0(C + K_S). \tag{1}$$

Claim 1: If $L \longrightarrow S$ is a positive l.b., $h^0(L+nK_S) = 0 \ \forall n \geqslant n_L$.

Claim 2: \exists positive l.b. $L \longrightarrow S$ s.t. $L \notin \mathbb{Z}K_S$ and $h^0(L) \neq 0$.

Claim 3: If $K_S^2 \ge 0$, $-K_S$ is effective.

Proof of Claim 3. Use Riemann-Roch for $-K_S$:

$$h^{0}(-K_{S}) + \underbrace{h^{2}(-K_{S})}_{h^{0}(K_{S}+K_{S})=0} \geqslant \chi(-K_{S}) = \chi(\mathcal{O}_{S}) + \frac{1}{2}(K_{S}^{2} + K_{S}^{2}) \geqslant 1$$

Proof of Thm for $K_S^2 = 0$. Claim $3 \implies -K_S$ effective

 $\implies K_S \cdot L < 0$ for any positive l.b. $L \longrightarrow S$

Claim 1 \Longrightarrow \exists positive l.b. $L \longrightarrow S$ and $n \in \mathbb{Z}^+$ s.t.

$$h^{0}(L+nK_{S}) \ge 1$$
 and $h^{0}(L+(n+1)K_{S}) = 0$.

 \implies \exists effective divisor $C = \sum m_i C_i \sim L + nK_S$

$$K_S \cdot C = K_S \cdot L < 0 \implies K_S \cdot C_i < 0 \text{ for some } i$$

$$(1) \implies 0 \le a(C_i) \le h^0(C_i + K_S) \le h^0((L + nK_S) + K_S) = 0 \implies \text{done.}$$

Proof of Thm for
$$K_S^2 > 0$$
. $\Longrightarrow h^0(-K_S) + \underbrace{h^0(-K_S)}_{h^0(K_S + K_S)} \ge \chi(-K_S) \stackrel{\text{RR}}{=} 1 + \frac{1}{2}(K_S^2 + K_S^2) \ge 2.$

 \implies \exists effective divisor F and pencil $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ of curves on S s.t.

$$-K_S \sim F + C_\lambda \quad \forall \lambda \in \mathbb{P}^1$$
 and $\bigcap_{\lambda \in \mathbb{P}^1} C_\lambda \subset S$ is finite

 $(F = \text{curve part of base locus of a pencil in } |-K_S|).$

$$C_{\lambda} = \sum_{i=1}^{k} m_i C_{\lambda,i} \text{ for } \lambda \in \mathbb{P}^1 \text{ generic, } m_i \in \mathbb{Z}^+, C_{\lambda,i} \text{ irred.} \implies C_{\lambda,i}^2 \geqslant 0 \ \forall i$$

$$(1) \implies 0 \leqslant a(C_{\lambda,i}) \leqslant h^0(C_{\lambda,i} + K_S) \leqslant h^0(-F) \leqslant 1 \qquad \text{if } a(C_{\lambda,i}) = 0, \text{ then done.}$$

$$a(C_{\lambda,i}) = 1 \implies -K_S \sim C_{\lambda,1}$$

 $C_{\lambda,1}$ irred., $(-K_S)^2 > 0 \implies (-K_S) \cdot C \geqslant 0 \quad \forall$ effective divisors C on S

Claims 2,1 \Longrightarrow \exists positive l.b. $L \longrightarrow S$ and $n \in \mathbb{Z}^+$ s.t.

$$L \notin \mathbb{Z}K_S$$
, $h^0(L+nK_S) \geqslant 1$, and $h^0(L+(n+1)K_S) = 0$.

 \implies \exists effective divisor $C = \sum m_i C_i \sim L + nK_S$

$$K_S \cdot C_i \leq 0 \qquad (1) \Longrightarrow 0 \leq a(C_i) \leq h^0(C_i + K_S) \leq h^0((L + nK_S) + K_S) = 0$$
 if $K_S \cdot C_i < 0$, then done.

$$K_S \cdot C_i = 0, \ a(C_i) = 0 \implies C_i^2 = -2$$

$$h^{0}(-K_{S}-C_{i}) + \underbrace{h^{2}(-K_{S}-C_{i})}_{h^{0}((K_{S}+C_{i})+K_{S})} \geqslant \chi(-K_{S}-C_{i}) \stackrel{\text{RR}}{=} 1 + \frac{1}{2} ((-K_{S}-C_{i})^{2} - K_{S} \cdot (-K_{S}-C_{i}))$$

$$= 1 + \frac{1}{2} (2K_{S}^{2} + C_{i}^{2} + 3K_{S} \cdot C_{i}) = K_{S}^{2} \geqslant 1$$

$$h^{0}(C_{i}+2K_{S}) \leq h^{0}((L+nK_{S})+2K_{S}) \leq h^{0}(L+(n+1)K_{S}) = 0$$

$$\implies \exists D = \sum_{j=1}^{k} n_j D_j \sim -K_S - C_i \text{ with } n_j \in \mathbb{Z}^+, D_j \subset S \text{ irred.}$$

Proof of Thm for $K_S^2 < 0$. Claim $1 \implies \exists$ positive l.b. $L \longrightarrow S$ and $n \in \mathbb{Z}^+$ s.t.

$$h^{0}(L+nK_{S}) \ge 2$$
 and $h^{0}(L+(n+1)K_{S}) \le 1$.

 \implies \exists effective divisor F and pencil $\{C_{\lambda}\}_{{\lambda}\in\mathbb{P}^1}$ of curves on S s.t.

$$L+nK_S \sim F+C_\lambda \ \ \forall \ \lambda \in \mathbb{P}^1$$
 and $\bigcap_{\lambda \in \mathbb{P}^1} C_\lambda \subset S$ is finite

 $(F = \text{curve part of base locus of a pencil in } |L + nK_S|).$

$$C_{\lambda} = \sum_{i=1}^{k} m_i C_{\lambda,i} \text{ for } \lambda \in \mathbb{P}^1 \text{ generic, } m_i \in \mathbb{Z}^+, C_{\lambda,i} \text{ irred.} \implies C_{\lambda,i}^2 \geqslant 0 \,\,\forall \, i$$

$$(1) \implies 0 \leqslant a(C_{\lambda,i}) \leqslant h^0(C_{\lambda,i} + K_S) \leqslant h^0((L + nK_S) + K_S) \leqslant 1$$

if $a(C_{\lambda,i}) = 0$, then done.

$$a(C_{\lambda,i}) = 1 \implies \exists D = \sum n_j D_j \sim C_{\lambda,i} + K_S \text{ with } n_j \in \mathbb{Z}^+, \ D_j \subset S \text{ irred.}$$

$$\implies C_{\lambda,i} \cdot D = 2(a(C_{\lambda,i}) - 1) = 0 \implies \text{(a)} \ C_{\lambda,i} \cdot D_j = 0 \ \forall j \ \text{b/c} \ C_{\lambda,i}^2 \geqslant 0$$

$$a(C_{\lambda,i}) = 1, \ C_{\lambda,i}^2 \geqslant 0 \implies K_S \cdot C_{\lambda,i} \leqslant 0 \implies K_S \cdot D < 0 \ \text{(b/c} \ K_S^2 < 0)$$

$$\implies \text{(b)} \ K_S \cdot D_j < 0 \text{ for some } j$$

$$\text{(a)} + \text{(b)} \implies 0 > (C_{\lambda,i} + K_S) \cdot D_j = \sum_{\ell} n_{\ell} (D_{\ell} \cdot D_j) \geqslant n_j D_j^2$$

$$\therefore D_j^2, K_S \cdot D_j < 0 \implies D_j \subset S \text{ exceptional; impossible.}$$

Claim 1: If $L \longrightarrow S$ is a positive l.b., $h^0(L+nK_S) = 0 \ \forall n \geqslant n_L$.

Proof for $K_S^2 \ge 0$. Claim $3 \implies -K_S$ is effective

$$\implies L \cdot (-K_S) > 0 \implies L \cdot (L + nK_S) < 0 \ \forall n \ge n_L$$

$$\implies h^0(L + nK) = 0 \ \text{b/c } L \text{ is positive.}$$

Proof for $K_S^2 < 0$, L any. $K_S \cdot (L + nK_S) < 0 \ \forall \ n \geqslant n'_L$

Suppose $n \geqslant n'_L$ and $D = \sum m_i C_i \sim L + nK_S$ with $m_i \in \mathbb{Z}^+$ and $C_i \subset S$ irred.

 $\Longrightarrow K_S \cdot C_i < 0$ for some $i \Longrightarrow C_i^2 \geqslant 0$ (o/w could blow down C_i) \Longrightarrow (a) $C_i \cdot D' \geqslant 0 \ \forall D'$ effective \Longrightarrow (b) $C_i \cdot (L + nK_S) < 0 \ \forall n \geqslant n_L \geqslant n'_L$

(a)+(b)
$$\implies h^0(L+nK)=0 \ \forall n \geqslant n_L.$$

Claim 2: \exists positive l.b. $L \longrightarrow S$ s.t. $L \notin \mathbb{Z}K_S$ and $h^0(L) \neq 0$.

Proof. Suppose not: $L \longrightarrow S$ positive l.b. with $h^0(L) \neq 0 \implies L \in \mathbb{Z}K_S$. For any l.b. $L' \longrightarrow S$, $\exists n \in \mathbb{Z}^+$ s.t. L' + nL is positive, $h^0(L' + nL) \neq 0$ $\implies L' \in \mathbb{Z}K_S \implies H^2(S; \mathbb{Z}) \approx \operatorname{Pic}(S) = \mathbb{Z}K_S$, $K_S^2 = 1$ (by PD and $K_S^2 > 0$), $b_2(S) = 1$ Noether's Formula $\implies 1 = \chi(\mathcal{O}_S) = \frac{1}{12}(\chi(S) + K_S^2) = \frac{1}{12}(3+1)$ impossible