MAT 644: Complex Curves and Surfaces
Notes for 04/13/20

Last week: began study of cmpt conn. C-surfaces

Castelnuovo-Enriques Criterion: S = projective surface, Ec S irred. curve. Then,
S is the blowup of a proj. surface S at some pe S so that = FE, is the exceptional divisor
iff E~P'and E-E=—-1 iff E-Kz<0and E-E<0

1st = 2nd = 3rd: trivial

2nd = 1st: Monday via Kodaira Vanishing Thm for positive line bundles

3rd = 2nd: easy from Prp 1

S = cmpt C-surface, C'c S irred. curve, the arithmetic genus of C' is
1
a(C) = 1+§(C-KS+C-C)

Prp 1: g(é’) <a(C), where n: C'—> C is the normalization of C; the equality holds iff C is smooth

Prp 2: (started pf on Wed): S = cmpt C-surface, C'c S irred. curve

(a) a(C)eZ (b) ¢(C) <a(C) — Z <0ro;pC>

peC
Wed: Prp 2(b) = Prp 1

Lemma (proved on Wed): peC, U c S neighborhood of p, CnU = (f) with f: U—C holomor.,

{B;}= branches of C at p, h;: (D,0)— (B, p) normalization,
w;: (U,p)— (C,0) with T),B; =T,{w; =0}. Then,

0
;ordgﬂ(aiohi) > (ord,C)(ord,C—1) + ;(ordei—l) .

Compute g(C) from —x(C) = deg K = deg(@), &= nonzero merom. 1-form on C
Start with w= merom. 2-form on S s.t.

(w) = —C+D, D =) a;D;

with a;€ Z—{0}, D;c S irred., D; #C, D; " Csing =
<= w has simple pole along C, nothing additional on Cging

Note: S projective => K¢ has lots of meromorphic sections



Take ©=PR¢(w), the Poincare residue of w along C, merom. 1-form on C:

PR: OS(KS(C)) Testr, Os(Ks(C))’C ~r Oc(KS|C®Os(C)‘C) r Oc(KS|C®Nsc) r Oc(KC).

dz Adw ~ z
Locally: C=(f), w=g = "‘j:a?f/%lc*

independent of the coordinates (z,w) b/c dz/fy,=—dw/f, on C*

{zeros/poles of @ on C} = {zeros/poles of fw}nC* (or NC)
# = (K5~I-C)~C

Zeros/Poles of & on C o1 (C*):

P€ Csing, U < S neighborhood of p, CnU = (f) with f: U— C holomor.,
{B;}= branches of C at p, h;: (D,0)— (B;, p) normalization,
w;: (U,0)— (C,0) with T),B; =T, {w; =0}

k; =ord,B; — ?L,(E) = (5&7%(5)) = ordz_ohj® = (k;—1) — ordgg<§f ohi>
w

~—— i
d(zki)
Lemma = Zordgzoh;"& < —(ord,C)(ord,C—1)
B;
. ~ ~, 1 ord,C
" deg(@) < (Kg+C)-C— > (0rd,C)(ord,C—-1) = g(C) < 145 (C-Kg+C-C) =)
o, s 2 2
~ X peC ~ ~ - peC
2g(C)—2 deg(&] o) a(C)
This completes proof of Prp 2(b).
Normalization of Curve Cc S via Blowup of Surface S
(1) Pick p1 € Csing. Take S1=Bl,S I8 By E’]Tl_l(p1> exceptional divisor for m;
C1 = proper transform of C' in Sy, closure of C'—{p;} in S}
Last week: Ey-Ey=—1, Cy=n7C—(ord,, C)E;
— CI‘K5‘1 =C-Kg— (OrdmC) (<KE1,E1>—E1~E1) = C-KS+(Ordp10)
C1-Cy = C-C + (ordy, C)*(Ey-Ep) = C-C — (ord,, O)?
1 d,, C
a(C1) = 1+ (C1-Kis, +C1-Ch) = a(C)— <°r n ) < a(C). (1)

(2) Keep blowing up at singular points. By Prp 2(b) and (1),
1-[mo(C)] = 1=|m(Cr)| < 9(C7) < a(Cy) < a(C)—r

— process must terminate —> C,. S, smooth for some reZ>°

T

g(a) =9(Cy) = a(Cy) = CL(C)—Z<OrdeQCT_1> — a(C)eZ = Prp2(a)
s=1

Also, mo...om.: C,— C is finite:1 everywhere, 1:1 over C* = C, = C normalization of C



Prp 3: S=C-surface, Fc S discrete, CcS—F C-curve =—> Cc S is C-curve
E.g. did this for proper transform under blowup using local coordinates on Monday

w

In general: enough to consider (i) C =D?—{0}
(ii) C p{(0,w)e{0} xD*} = Cn{(0,w)} discrete ]
(ii) Cn{(O,w) : [w|=1}=F = Cn{(z,w): |w|=1,|2[<d}=F ——

Need to show: Cn(DsxD)=(g) for some g:DsxD—> C holomor.

Proof. (1) de Rham/Dolbeault Thm + 0-Poincare Lemma = ET%ID);“ xD; Z), H! (DF xD; 0)=0

0T —s O exp(2mi-)

Pic(D¥ x D) = H(D¥ xD; ©) =0

Cn (D} xD) = zero set of holomorphic section of trivial L.b. — D¥ xD
Cn (D} xD)= (f) for some feO(Ds xD)

(i) = (iv) f(z,w)#0if |w|=1,0<]|z| <o

0" — {1}

Iy

1 d
(2) (iv) = ¢p(2) = — —f(z, w) is well-defined if 0 <|z| <4
|lw|=1
(integration over vertical circle with z=const)
= # of zeros of w—> f(z,w) = d independent of z by continuity of ¢
S.Cn(Df xD)=(f) — D, (z,w) —w, is d:1
{wr(2)}r=1,.. 4= roots of w—> f(z,w) with 0<|z|<§

1
Define ¢p.: D5 — C,  ¢p(2) = o

d
fﬁwkdff(z,w) = Z:wr(z)]C = sp(wi(2), ..., wq(k))
r=1

lw|=1

where s (w1, ..., wy)

I
g

s
ol

¢1,: Dy — C bounded = extends to holomor. ¢;: Ds—C

Define pr.€Q[s1, - .., s4] by pr(s1(wi, ..., wa), ..., sa(wi, ..., wq)) =0op(wi, ..., wa)
or(wi, ..., wg)= k-th elementary symm. polyn. in wy, ..., wq

E.g. pi(s1,...,84)=51, p2(S1,--- >3d):§(3%_32)

Take g(z,w) =w?—p1(¢1(2), ..., a(2)w’ ' +...+(=1)"pa(d1(2),. ... da(2)
=wl—o1(w1(2), ..., wa(2)wt L +. . +(=1)dog(wi(2),. .., wa(2)
{zeros of w—>g(z,w)} = {wy(2)}r=1,...a = {zeros of w—> f(z,w)} if 0<|z|<?

— CA(DYxD)=(f)n (D} xD) = () (D xD)
Cn{(0,w)} discrete = C'n(DsxD)=(g) O



Crl: §=C-surface, F'c S discrete, f: S—F —P" holomor.
(1) f*Opn(1)— S—F extends to a holomor. Lb. L— S
(2) f induces homom. f*: HO(P*; Opn (1)) — H°(S; L)

Proof. H<=P" hyperplane s.t. Im(f)d H = f~1(H)cS—F isa curve
o) =[f"1(H)]—S-F
Prp3 = f~Y(H)cSisacurve = f*Opn(1) extends to Lb. L=[f~1(H)]— S

Hartog’s = every se H*(S—F; f*Opn (1)) extends to 5€ H°(S; L)
= get f*: HO(P"; Opn (1) — H°(S; L)
= L — S independent of H cP" hyperplane s.t. Im(f)d H

Note: f*s=0 for se H'(P"; Opn(1)) <= Im(f) c H=5s"1(0)cP"

Other Tools to Study Cmpt C-Surface S
(1) Adjunction Formula: If C'< S is a smooth curve,
9(C) = 145 (C-Ks+C-0) = a(C).
Follows from 2¢(C)—2=—x(C)=—{(c1(TC),C) and Og(C)|lc~NC=TS|c/TC.

(2) Noether's Formula: x(Os)=h3(S)—h(S)+h3(S) = L (x(9)+Ks-Kg).
Proved directly for S projective in Section 4.6 of G&H.

(3) Riemann-Roch for Line Bundle on a Surface: If L— S is a holomor. Lb.,
1
X(L)=h3(S; L)—h%(S; L)+h3(S; L) = X(OS)+§(L-L—L-KS).
Obtained from RR for Line Bundle on a Curve in Section 4.1 of G&H.

(4) If S is a (projective) surface with the same Hodge ¢ as P? and Kg is not positive, then S ~P?.
Obtained from (2), (3), and Kodaira Vanishing Theorem in Section 4.1 of G&H.

(3) is tautology for L= trivial holomor. L.b.
(2) and (3) are special cases of Hirzebruch-Riemann-Roch:

X(E)=... for holomor. v.b. E over projective X
HRR is special case of Atiyah-Singer Index Thm:
ind D=... for elliptic operator D on smooth cmpt X

discussed at the beginning of the semester

(3) and (4) might be discussed at the end of some lecture, time-permitting



