
MAT 644: Complex Curves and Surfaces
Notes for 04/06/20

Part I: study C = cmpt conn. C-curves
(dimCC=1)

Hodge diamond 1
g g

g≡h0(KC) 1

g=0: P1 ⇐⇒ h0(mKC)=0 ∀m∈Z+

g=1: C/Λ ⇐⇒ h0(mKC)=1 ∀m∈Z+

g≥2: less clear
dim Im

(
ιKC

: C−→P(H0(KC))
)
=dim C

Part III: study S = cmpt conn. C-surfaces
(dimCS=2)

1
Hodge diamond q q

pg h1,1 pg
pg≡h0(KS) q q

1

κ(S)=−∞ ⇐⇒ h0(mKS)=0 ∀m∈Z+

(easiest)
κ(S)=0⇐⇒ lim sup

{
h0(mKS) : m∈Z

+
}
∈R+

(easy) ⇐⇒
{
h0(mKS) : m∈Z

+
}
={0, 1}

κ(S)=1⇐⇒ lim sup
{
h0(mKS)/m : m∈Z+

}
∈R+

κ(S)=2⇐⇒ lim sup
{
h0(mKS)/m

2 : m∈Z+
}
∈R+

(general type)

S = surface =⇒ can get a new surface S̃≡BlpS by blowing up S at p∈S:

replace p∈S by Ep≡P(TpS)≈P
1 ⊂ S̃, exceptional divisor

replace C
2⊂S with C2∋0=p∈S by γ={(ℓ, v)∈P1×C2 : v∈ℓ}⊂ S̃

normal bundle N
S̃
Ep of Ep in S̃ is γ−→P

1, tautological line bundle

=⇒ Ep ·Ep=〈e(NS̃
Ep), Ep〉=−1, homology self-intersection number of Ep in S̃

∴ if π : S̃−→S is the blowup of S at some p∈S,
then S̃ contains a smooth curve E s.t. E≈P

1 and E·E=−1 (exceptional curve)

Want to ignore blown up surfaces! consider only minimal surfaces

Castelnuovo-Enriques Criterion

If S̃ is a projective surface and E⊂ S̃ is a smooth curve s.t. E≈P
1 and E ·E=−1,

then S̃ is the blowup of a projective surface S at some p∈S so that E=Ep is the exceptional divisor.

Idea of proof: Find line bundle L̃−→ S̃ s.t. ι
L̃
: S̃−→P(H0(L̃)∗)

is well-defined, embedding on S̃−E, and
maps E to a smooth point of S≡ ι

L̃
(S̃).

Proof. S̃ projective =⇒ ∃ l.b. L−→ S̃ s.t. ιL : S̃−→P(H0(L)∗) is embedding
=⇒ L is positive
=⇒ (1) m≡deg(L|E)>0 =⇒ L|E=OE(m) with m∈Z+

(2)H1(S̃;Lµ)=0 ∀µ>>0 (Kodaira Vanishing) =⇒ can assumeH1(S̃;L)=0



[E]|E=OE(−1)
(1)
=⇒ H1(E;L(kE)|E)=0 ∀ k≤m+1

0 −→ O
S̃

(
L(kE−E)

)
−→ O

S̃

(
L(kE)

)
−→ O

S̃

(
L(kE)

)∣∣
E
−→ 0

=⇒ H1(S̃;L((k−1)E)) −→ H1(S̃;L(kE)) is onto ∀ k≤m+1
(2)
=⇒ (3) H1(S̃;L(kE))=0 ∀ k≤m+1. Use k=m−2,m−1 below.

Take L̃=L(mE)
(3)
=⇒ (4) restriction H0(S̃; L̃(−E))−→H0(E;OE(1)) onto

(5) restriction H0(S̃; L̃)−→H0(E;O) onto
(5)
=⇒ ι

L̃
: S̃−→P(H0(S̃; L̃)∗) is well-defined on E

ι
L̃
|E≡const: ι

L̃
(x)≡

{
s∈H0(S̃; L̃) : s(x)=0

}
is independent of x∈E

=H0(S̃; L̃(−E))
ιL : S̃−→P(H0(S̃;L)∗) is embedding =⇒ ι

L̃
: S̃−E−→P(H0(S̃; L̃)∗) is embedding, ι

L̃
|E≡const

ι
L̃
(S̃−E) 6∋ ι

L̃
(E)=H0(S̃; L̃(−E))

Remains to show ι
L̃
(E)∈ ι

L̃
(S̃)⊂P

N is a smooth point of S≡ ι
L̃
(S̃).

If ξ0, . . . , ξN ∈H
0(S̃; L̃) is basis, ι

L̃
(p)=[ξ0(p), . . . , ξN (p)] for all p∈ S̃.

Choose ξ0 s.t. ξ0|E does not vanish ⇐⇒ basis for H0(E;O)
ξ1, ξ2∈H

0(S̃; L̃(−E))⊂H0(S̃; L̃) s.t. ξ1|E , ξ2|E is a basis for H0(E;OE(1))
ξ3, . . . , ξN ∈H

0(S̃; L̃(−2E))⊂H0(S̃; L̃) is a basis

=⇒ Near E, ι
L̃
=

(
z1≡

ξ1
ξ0
, . . . , zN ≡

ξN
ξ0

)
: S̃−→C

N , E={ξ1, ξ2=0}−→(0, . . . , 0)

Let {p1}=ξ−1
1 (0)∩E, {p2}=ξ−1

2 (0)∩E

U1= neighborhood of E−{p2} in S̃, U2= neighborhood of E−{p1} in S̃

E
U1 U1

p1 p2

S̃

Claim. (w1, w2)≡

(
ξ1
ξ2
, z2=

ξ2
ξ0

)
is a chart on U1 if U1 is sufficiently small

=⇒ ι
L̃
: U1−→C

N , (w1w2, w2, f1(w1, w2)) for some f1 : U1−→C
N−2 vanishing on w2=0

similarly for U2

Claim =⇒ (z1, z2) is a chart on ι
L̃
(S̃) around ι

L̃
(E)=(0, . . . , 0)∈CN

=⇒ ι
L̃
(E)∈ ι

L̃
(S̃) is a smooth point, ι

L̃
: U1∪U2−→C

2 is blowdown map, ι
L̃
(E)=(0, 0).

Pf of Claim. ξ1/ξ2 is defined on E−{p2} =⇒ on U1 if U1 is sufficiently small
d(ξ1/ξ2) 6=0 on TE b/c ξ1|E , ξ2|E∈H

0(E;O(1)) is a basis
d(ξ2/ξ0)

∣∣
N

S̃
E
=(dξ2)/ξ0

∣∣
N

S̃
E
does not vanish on E−{p2}

=⇒ Jac(ξ1/ξ0, ξ2/ξ0) has full rank along E−{p2}.
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Changes under Blowups

S= cmpt conn. C-surface, p∈S, S̃≡BlpS: replace p∈D4⊂S by γ−→P
1⊂ S̃

Ep≡P
1 exceptional divisor, π : S̃−→S blowdown map, π−1(p)=Ep, π : S̃−E−→S−{p} biholom.

(1) π∗ : π1(S̃)−→π1(S) is an isomorphism:
any loop in S can be homotoped off p; any loop in S̃ can be homotoped off E

(2) Mayer-Vietoris for S̃=(S−{p})∪γ and S=(S−{p})∪D4 give

. . . // Hi(S
3) //

π∗

��

Hi(S−{p})⊕Hi(Ep) //

π∗

��

Hi(S̃) //

π∗

��

. . .

. . . // Hi(S
3) // Hi(S−{p})⊕Hi({p}) // Hi(S) // . . .

=⇒ 0−→Hi(Ep)−→Hi(S̃)
π∗−→Hi(S)−→0 is exact for all i≥1

=⇒ Hi(S̃) =

{
Hi(S), if i 6=2;

H2(S)⊕Z{[Ep]}, if i=2;
hp,q(S̃) =

{
hp,q(S), if (p, q) 6=(1, 1);

h1,1(S)+1 if (p, q)=(1, 1).
only the center of the Hodge diamond changes

(3) Divisors on S vs. S̃: Div(S̃)=Div(S)⊕Z{Ep}

divisor =
k∑

i=1

aiCi with ai∈Z, Ci⊂S, S̃ irred. curve

{
irred. curve C⊂S−{p}

} π−1

≈
{
irred. curve C̃⊂ S̃−Ep

}

What if irred. curve C⊂S passes thr. p?
Take a chart (z1, z2) : (U, p)−→(C2, 0)

=⇒ C∩U=(f) with f(z1, z2)=
∞∑

k=m

fk(z1, z2), fk= homogen. of degree k, fm 6≡0, m=ordpC≥1

charts on Ũ≡{(ℓ, z)∈P1×C2 : z∈ℓ}⊂ S̃: Ũi≡{([u1, u2], z)∈ Ũ : ui 6=0}
C
2←→ Ũ1, (z1, w2=u2/u1)←→([1, w2], (z1, w2z1))

π−1(C)∩Ũ1=(f◦π|
Ũ1

)≡ f̃1, f̃1(z1, w2z1)=
∞∑

k=m

zk1fk(1, w2)=zm1 g1(z1, w2) with g1|P1∩Ũ1

6≡0

∴ π−1(C)∩Ũ1=
{
zm1 g1(z1, w2)=0

}
=m(Ep∩Ũ1)+C∩Ũ1

π−1(C)∩Ũ2=
{
zm2 g2(z2, w1)=0

}
=m(Ep∩Ũ2)+C∩Ũ2

C≡ the closure of C−{p} in S̃ ≡ the proper transform of C under π (or in S̃)
Crl. If C⊂S is a curve, then π∗C=C+mEp, where m=ordpC =⇒ C ·Ep=m

∴ irred. curve C⊂S  C+mEp⊂ S̃ with C and Ep irred.

=⇒ if C̃⊂ S̃ is irred. curve, then either C̃=Ep

or C̃ 6⊃Ep =⇒ C̃ ·E≡m≥0 =⇒ C̃=π(C)=π∗(π(C))−mEp

=⇒ Div(S̃)=Div(S)⊕Z{Ep}

3



Side Note 1. As smooth manifolds, BlpS=S#P2 and Ep=P
1 linearly embedded into P

2.
Since the normal bundle of P

1 in P
2 with the standard complex orientation is γ∗, the normal

bundle of P1 in P2 is γ (which is isomorphic to γ∗ as a smooth vector bundle, but has the opposite
orientation). By definition, BlpS is obtained by gluing the complement S−D4 of the open ball D4

around p in S with the disk bundle of γ; the latter is the complement of the open ball D4 around
a point in P

2−P1. This implies the claim above.

Side Note 2. The blowup of S at p separates curves intersecting transversally at p:

p

C1

C2

C1

C2

Ep=P(TpS)

TpC1

TpC2

S S̃

If (z1, z2) : (U, p)−→(C2, 0) is a coordinate chart, we could take C1=(z1) and C2=(z2).
The holomorphic functions w1≡z1◦π,w2≡z2◦π : π

−1(U)−→C then satisfy (wi)=Ep+Ci.

More generally, blowing up S at p reduces the order of contact of two curves at p and the extent
of the singularity of a curve at p. For example, if C1 and C2 have contact of order 2 at p, then C1

and C2 intersect transversely at the point TpC1=TpC2 of Ep=P(TpS):

p

C1 C2 C1 C2Ep=P(TpS)

TpC1=TpC2S S̃

Side Note 3. The Castelnuovo-Enriques Criterion holds in the complex category.
The key needed statement is the following.
Prp. If S̃ is a cmpt C-surface, E⊂ S̃ is a smooth curve s.t. E≈P

1 and E ·E=−1, and p̃∈E,
then there exists a holomorphic function w : W −→C on a neighborhood of E in S̃

so that w|E≡0 and (dw : N
S̃
E−→C)=(p̃).

A pair of such functions (w1, w2) : Ũ−→U⊂C
2, with p̃1 6= p̃2, defines a contraction of E.

More details in Chapter III of Barth-Hulek-Peters-van de Ven and references cited there,
or just try to sort this out yourself.
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