MAT 644: Complex Curves and Surfaces
Notes for 03/30/20

Last time: (1) a compactification M of My 1=(H,SL2Z) by adding the disk
» 1 Z
— . —27 : _ 2miT * .
D= {qeC:|g|]<e "} with ¢=e""eD", [T]E{ZGH.Imz>1}/<O 1).

(2) line bundles £y =LE* — M,
(3) sections of L are the modular forms (on H) of weight k:
at+b
ct+d

):<CT+d)kf(T) VreH, (“ Z)ESL2Z

f+H—C s.t. f(

~ 1
with f(q) = f<2i lnq> extending over ¢=0
7r

Example of modular form of weight 2k:

1
Gk:H—>(C7 Gk(T): Z m
(m,n)eZ2—{0}

Last time: Gy, satisfies (1) with k replaced by 2k (easy)
= get éktD*—HC, ék( ) Gk(lnq>

B 2%
Prp 1: Gi(g) = 20(2k)+2-om) S oua(m”, wher

(2k—1)!
R B . N
C(S):ZE if Res>1, or(n) = Zd ifneZ™.
n=1 dezZt,dn

Prp = ék extends over =0 =— G} is a modular form of weight 2k

Last time: deduced Prp 1 from

27r1
L 1: if k>2 and g=e?>™7 € H, th § j = § dF1qc.
emma 1: i and g=e en T+n) )
nez
1 1 /1 1
Claim: 7riq+ = g BT _ 2y E ( + ) (converges if T7¢7Z)
qg—1 sinwr T A~ T+n T-—n

1st equality follows from 2 cos 7 =€™" 4+e~ ™7, 2isin T =e™7 —e VT
2nd equality: LHS and RHS have same poles (all simple, at 7 €Z) and residues (all 1)
=— LHS—RHS holomorphic on C

Since it is bounded along 7=it as t — oo and vanishes at 7=1/2, LHS—RHS=0

1 o0
Claim = — + Z<T+R+T—TL> =T7i— 27riqu
d=1

leferentlate k—1 times w.r.t. 7:

(1 -1 S :—27ri(27ri)k_1§:dk_1qd

d=1

This gives Lemma 1.



Note: Gj(7=00)=Gx(q=0)=2¢(2k)#£0

9 2k
Lemma 2: if keZ™, ((2k) = (2(7;)]{;)3;{, where By, is the k-th Bernoulli number:
e 2k X 52k
xr x iy T cosz 29"By o
—1-X_S(-1)*B — —1- ,
e 1 7~ 2 (V"B (2k)! “sin 2K)!

k=1

the equivalence of the two definitions is obtained by moving § to LHS and taking z= 5

2k 4
(2m) By, e.g. Gg(T:oo):7T Gsa(T=00)= 2r°

Crl 1: Gi(t=00)=

(2k)! 45 45-21
Pf of Lemma 2: Claim with z=n7 gives
cos?
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This gives Lemma 2.

Remaining goal for Part II: M ; is the moduli space of
stable nodal genus 1 curves with 1 marked point
(1) extend the universal family from M, ; to ﬂm
(2) prove compactness
Do (1) by relating modular forms to cubic curves in P2

Define modular forms g¢o, g3: H —> C of weights 4 and 6 by
92(7) = 60G2(7),  gs3(7) = 140Gs(7) .
Crl 2: go(1=00)%—27g3(T1=00)?=0
For € H, let A, =7Z®7Z1 be the corresponding lattice.
Prp 2: V7€ H, 3 embedding EDT: S,=C/A, —P? such that

$,(0)=[0,1,0] and Im®, = {[X,V,Z]€P?: Y2Z =4X3—go(1)X 2% g3(7) 2%}

Previously: (S,p) = elliptic curves = O(3p) — S induces ¢: S——P? as a cubic
Explicitly: take x = meromorphic function on S with () =2p
y = meromorphic function on S with (y).o=3p

= p: 85— P27 (P(Z) = [x(z)7y(z)v 1]7 tp(p) = [07 170]'



(S,p)=(S, 2=0): take x = Weierstrass P-function, y=2'= La:

NOELICETEDY (1 1)

— N2 A2
e o) (z=7)* v

1
converges if z¢ A b/c / —3 does
C—-B;(0)
Pr(z+v)=P(z) VzeC, yeA; = P, is well-defined on S;

= T
1 d/ 1 =1 _ I = 1
Proof: W = & N2 = Z Zm 1‘m = 7"‘2 (m+1)2§m

N +Z< 3 @)(mﬂ)zm:;+2Gk+1(7)(2k+1)z%
k=1

1
= 27+3G2(T)z2+5G3(7')z4—|—. .
2 _ 2
= Pz)= —Z3+; Gioot (7)2k(2k+1) 221 = —;+602(7)z+20(;3(7)z3+. .

Thus, 4P, ()3 — PL(2)?—60G2(7)P,(2) —140G5(7) is holomorphic on S;, =0 at z=0 = =0

Lemma 3 = Prp 2: ®,(z) = [Pr(2), Pr(2),1]

Define U'={(q, [X,Y, Z]) eEDxP?: Y?Z=4X>—Gs(q) X Z* —G3(q) Z° }
Implicit FT = U’ is smooth; Zs acts on U’ by (—1)-(¢, [X,-Y, Z])

Since ﬂm is obtained by gluing M; ; and (D, Zg) along (H',Zy xZ) as in the bottom row below,
we get a family of curves U —» My 1 by gluing U and (U’, Zs) along (W| g, ZoXZ) as in the top row:

(T,90) ([Ii>7rr1)

U=(W,SL2Z) Wlar, Za X ) U', Zs) U=UUy|,,, 2,x2) U Lo)
l (L7¢) / i (‘:I>77T1) l - l
M 1= (H,SLsZ) (H',Zox7) —————— (D, Zy) M171:M171U(H/7Z2xz)(D,ZQ)

where H'={r€ H: Im71>1}, qﬁ(il,k):i((l] f) O(7)=e?m7

W=(HxC)/ ~, (1,2)~(1,24+m7+n) ¥ (1,2) EHXC, m,n€Z
Zo X Z acts on W by (£1,k)-[r, z]=(7+k, £2)

The fiber of Y — My 1 over [T]€ My 1 =Mj1—{g=0} is the smooth elliptic curve (S;,0)
The fiber of i/ — My 1 over ¢=0 (or T=00) is the plane cubic

C={[X.Y, Z]eP?: Y?Z=4X>—G5(q=0)X Z* - G3(¢=0)Z"}



Plane cubic Cop={[X,Y, Z]€P?: Y?Z=4X?—-aX Z*—bZ>}
contains [0, 1, 0]
near [0,1,0]: Z=4X3—aXZ%>-bZ3
= (0,1, 0] is a smooth point of C,
CasN1{[X, Y.0] €2} —{[0, 1,0]}
= [0,1,0] is a flex point of C, (order 3 contact with the line {Z=0})
on Z#0: Y?=4X3—-aX—b
= Cq is smooth iff 4X3—aX —b has simple roots iff the discriminant D(a,b) # 0:

D(a,b) = (r1—r2)?(r1—73)(ro—r3)* = 11—6(61,3—271)2)

Weight 12 modular form A: H —C, A(7) =go(7)3—27g3(7)?
{[X,Y, Z|eP?: Y2 Z =4X? — go(1) X Z* —g3(1) 2} =~ S, =C/A,
smooth cubic in P? = A(1)#0V7T€H
Crl 2 = A(¢g=0)=A(1=00)=0
= the fiber of Y — M 1 over ¢=0 is a plane cubic with one simple node, not [0, 1, 0]

[0,1,0]

node

Added after discussion: A is a modular form of weight 12 and thus a section of L£19 :ﬁ‘?u. Its
only zero is the point =0 in D; the stabilizer of this point is Zs. By Prp 1, this zero is transverse.
Thus,

1
| atee =3, @)
Mi1
By Problems 1 and 2d on HW4,
1 1
C1 ,Cl = =, (3)
/M1,1 ( ) 2 n3

where n3 is the number of plane rational cubics that pass through 8 general points in P2. By (2)
and (3), n3=12. A direct way of computing this number is suggested by the hint for Problem 2c
on HW4; see also Section 2.3 in math/0507105. Another approach is explained in

https://www.math.tamu.edu/~frank.sottile/research/pages/shapiro/real_cubics.html



