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Course Information

Course Instructor

Name: Aleksey Zinger Office: Math Tower 3-111 Phone: 632-8288
E-mail: azinger@math.sunysb.edu Office Hours: Tu 2-4 in 3-111, W 9-10 in P-143

Course Website

All updates, including schedule and references, will be posted on the course website,

http://math.sunysb.edu/∼azinger/mat620.

Please visit this website regularly.

Prerequisites

Passing the comps is required. If you are solid on Chapter 0 of Griffiths&Harris and familiar with
chern classes, you should be fine. Otherwise, please contact me before registering for the course.

Grading

Your grade will be based on class participation, in all possible forms. While there will be no formal
homework assignments, you should write up solutions to some of the exercises that will appear in the
lecture. Try to choose exercises that vary in flavor and difficulty; this should give you a better feel for
the topics covered in the course. You are welcome to hand in your solutions, but to no more than one
exercise in any given week and no more than two weeks after it appears in the lecture. The exercises
will be an essential part of this course; so please try to work out as many of them as possible, in
addition to the ones you hand in.



Course Description

This course will be a combination of classical algebraic topology and complex geometry, with a touch
of combinatorics, applied to settings in algebraic geometry.

As the name might suggest, enumerative geometry is concerned with counting various geometric ob-
jects. In this course we will deal only with counting complex curves (i.e. Riemann surfaces, but
possibly with various singularities) in complex manifolds, primarily the complex projective space P

n

and hypersurfaces in P
n of low degree. Since there are often infinitely many such curves, one imposes

enough conditions to expect a finite number, such as passing through some constraints, order of tan-
gencies to constraints, and/or singularities of the curve. For example, there is exactly 1 line through
any 2 distinct points in C

n (or Pn) and there is exactly 1 line through 2 lines and 1 point in general
position in C

3 (or P3). While enumerative geometry is a classical subject, dating back at least to the
19th century, its recent interactions with symplectic topology and string theory have led to a variety
of new developments and much progress in the subject.

Algebraic topology will play a central role in this course as counts of curves can often be expressed
as the number of zeros of a vector bundle section. The following classical, but nontrivial, topological
fact will be either used directly in or be the motivation (but not always apparent) behind much done
in the class.

Theorem: If M is a compact oriented manifold, V −→M is an oriented vector bundle, and s is a
generic section of V , then s−1(0) is a smooth oriented submanifold of M and its Poincare dual in M

is e(V ).

Following an introduction and overview on the first day, the course will tentatively have four, mostly
independent, parts.

Part I: Grassmannians, Schubert Calculus, Pseudocycles, and Counting Low-Degree Curves in Pro-
jective Hypersurfaces
Counts of lines in P

n, and more generally in projective hypersurfaces, can be expressed as intersections
of homology classes in the Grassmannian of 2-planes in C

n+1, G(2, n+1). These homology classes
are called Schubert cycles, and Schubert Calculus describes their intersections, or equivalently the
cup products of their Poincare Duals. Schubert cycles are generally not smooth manifolds, but are
complex varieties that may have singularities. These are special cases of pseudocycles, all of which
represent homology classes. Schubert calculus, along with some observations from algebraic geometry,
can also be used to count other low-degree curves in projective hypersurfaces.

This part of the course is mostly foundational, though Schubert Calculus and related topics are still
subject of much research, which often intertwines combinatorics and geometry. Some questions we
will encounter are: How many lines pass through 4 general lines in 3-space? How many lines lie on
a cubic surface in P

3? More generally, how many lines lie in a hypersurface X (or even complete
intersection) in P

n and pass through a points, b lines, etc.? How many degree-two curves pass through
4 points in P

3 that do not lie in a 2-plane? How many degree-two curves pass through 3 points and 2
lines in general position in P

3?



References:
E. Arbarello, M. Cornalba, P Griffiths, and J. Harris, Geometry of Algebraic Curves, Chapter III.
P. Griffiths and J. Harris, Principles of Algebraic Geometry, Chapter 1, Section 5.
S. Katz, Enumerative Geometry and String Theory, Chapters 1,2,4-7,9 (intended for advanced under-
graduates; you’ll likely find this quite easy to follow).
S. Katz, On the Finiteness of Rational Curves on Quintic Threefolds.
R. Vakil, slides for 2005 MAA Invited Address R. Vakil, A Geometric Littlewood-Richardson Rule.
A. Zinger, Pseudocycles and Integral Homology.

Part II: Local Excess Intersection and Counting Curves in P
2

Counts of plane curves can often be written as the (signed) cardinality of the zero set of a transverse
section s of a (complex) vector bundle V over a complex manifold M . If M is compact, the desired
number is then the euler class of V evaluated on the fundamental class of M , 〈e(V ),M〉. However, in
most cases M is not compact, but does admit a nice compactification M̄ along with extensions of V ,
still denoted by V , and s̄ of s. The latter may have additional zeros, which may not be transverse, and
s̄−1(0) may be of positive dimension. In such a case, the cardinality of s−1(0)⊂ s̄−1(0) is 〈e(V ), M̄〉
minus the contribution from s̄−1(0)−s−1(0), Cs̄−1(0)−s−1(0)(s̄). In many cases, the latter admits a
stratification by smooth manifolds

⊔
i
Zi such that

Cs̄−1(0)−s−1(0)(s̄) =
∑

i

CZi
(s̄), with CZi

(s̄) = miN(αi),

where mi∈Z and N(αi) is the number of zeros of an affine bundle map between two vector bundles
over Zi, with the linear term αi. The number N(αi) can itself be written as the number of zeros of
a vector bundle section si over a (possibly non-compact) manifold, but with the rank of the bundle
reduced by at least 1. Thus, this process eventually terminates, giving a tree of chern classes that
sum up to the cardinality of s−1(0).

While this approach may be rather laborious in specific applications, it is quite straightforward and
has a wide range of applications, including beyond counting curves in P

2. Most importantly, it works
in many cases, including some with no known alternative.

Some questions we will encounter in this part are: How many genus-zero cubic curves pass through 8
points in general position in P

2? How many cuspidal cubics pass through 7 general points in P
2? How

many genus-zero quartics pass through general 11 points in P
2?

References:
S. Katz, Enumerative Geometry and String Theory, Chapter 8.
A. Zinger, Counting Plane Rational Curves: Old and New Approaches, Sections 1,2,3,A.
A. Zinger, Enumeration of Genus-Two Curves with a Fixed Complex Structure in P

2 and P
3, Section 3.



Part III: Rudiments of Gromov-Witten Theory and Counting Genus-Zero Curves in P
n

The modern theory of GW-invariants, originating in symplectic topology and string theory, turned
out to be a powerful tool in enumerative geometry as well. The discussion in this section will focus
on genus-zero GW-invariants of projective spaces and corresponding moduli spaces of stable holomor-
phic maps. The former leads to a simple solution of the first question below (originating in the 19th
century, but not solved until the 1990s). The latter, combined with the method of Part II, can be
used to solve many other enumerative problems, especially those involving genus-zero and genus-one
curves in projective spaces.

Some questions we will encounter in this part are: How many genus-zero degree-d curves pass through
3d−1 general points in P

2? How many genus-zero cuspidal degree-d curves pass through 3d−2 general
points in P

2?

References:
A. Zinger, Counting Plane Rational Curves: Old and New Approaches, Section 4.
K. Hori, et. al., Mirror Symmetry, Chapters 21-26.
R. Vakil, The Enumerative Geometry of Rational and Elliptic Curves in Projective Space.
S. Katz, Enumerative Geometry and String Theory, Chapter 3.
A. Zinger, Pseudocycles and Integral Homology.
A. Zinger, Counting Rational Curves of Arbitrary Shape in Projective Spaces.
E. Ionel and T. Parker, The Gopakumar-Vafa formula for symplectic manifolds.

Part IV: Genus-Zero Gromov-Witten Invariants of Projective Hypersurfaces and Mirror Symmetry
There is a duality principle in string theory called mirror symmetry. It states that the A Model
potential (something involving GW-invariants of a Kahler manifold M) is related to the B Model
potential (something involving the moduli space of complex structures on the “dual” of M). This
principle led to stunning predictions for genus-zero GW-invariants of a quintic threefold and later for
higher-genus invariants of other manifolds. The former were verified about 10 years ago using the
classical Atiyah-Bott localization theorem; many similar genus-zero statements have been proved as
well. On the other hand, very few positive-genus predictions have been mathematically confirmed.
This part of the course will generally follow the reference Mirror Symmetry below in confirming the
original mirror symmetry prediction. The localization theorem will be proved as well.

Some questions we will encounter in this part are: Find the euler characteristics of Grassmannians
and other characteristic numbers of manifolds admitting groups actions. Find all genus-zero GW-
invariants of a quintic threefold and more generally of any complete intersection?

References:
A. Zinger, Notes on Mirror Symmetry.
P. Candelas, et.al., A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.
S. Katz, Enumerative Geometry and String Theory, Chapters 10-14.
M. Atiyah and R. Bott, The Moment Map and Equivariant Cohomology, Sections 1-3.
K. Hori, et. al., Mirror Symmetry, Chapters 27, 29,30.


