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0 Introduction

Enumerative geometry of algebraic varieties is a fascinating field of mathematics that dates back
to the nineteenth century. The general goal of this subject is to determine the number of geometric
objects that satisfy pre-specified geometric conditions. The objects are typically (complex) curves
in a smooth algebraic manifold. Such curves are usually required to represent the given homology
class, to have certain singularities, and to satisfy various contact conditions with respect to a
collection of subvarieties.

Example 0.1. There is precisely 1 real/complex line that passes through two distinct points in
R™/C" (or in RP"/CP").

Example 0.2. How many degree 2 curves pass through 5 points in C? or in CP?? A degree 2
curve (or conic) C in C? is the zero set of a nonzero degree 2 polynomial in 2 variables, e.g.

C= {(:c,y)EC2: :c2+2xy—xy:0}.

Each degree 2 polynomial on C? is determined by 6 complex coefficients (of 22, zy,y? z,v,1).
Two nonzero degree 2 polynomials ()1 and ()2 determine the same curve if and only if Q1 =AQ2
for some A €C*. Thus, the space of degree 2 curves in C? can be identified with

{(a20, a1, a2, a10, ao1, ago) € (C°—0) } /C* = CP.
The curve C=Q~1(0) determined by the degree 2 polynomial
Q(x,y) = a0’ + a1y + aoey” + a10z + any + aoo
passes through a point (z;,y;) if and only if
a20? + ap1Tiy; + agey? + a10x; + ag1yi + agy = 0. (0.1)

Thus, the space of degree 2 curves passing through a fixed point (z;,;) is a hyperplane Hy, ,,
in C°. If the hyperplanes Hyi yis- .., Hyy s are sufficiently general, the number of degree 2 curves
passing through the points (z1,y1),..., (z5,ys5) is

|Hay g M. . .0 Hyyg | = ((PDeps H)®,CP®) = 1,

where PD¢ps H € H2(CP; Z) is the Poincare dual of the homology class of a hyperplane in CPS.
Alternatively, the 5 points determine 5 linear equations (0.1) on the 6 coefficients of Q. If these
equations are linearly independent, the space of the solutions is one complex line CQ in the
space C8 of the coefficients, which corresponds to one curve passing through the 5 points.



Table 1: The number of conics passing through 5—r general points and tangent to r general lines

Example 0.3. How many conics pass through 5—r points and are tangent to r lines in C? or
in CP?? By Example 0.2, the 7=0 number is 1. Fairly straightforward topological computations
show that the r =1 and r =2 are 2 and 4, respectively. A direct topological computation for
r >3 turns out to be much harder, as it involves an ezcess intersection (failure of transversality).
Fortunately, there is a simple geometric reason for the r and 5—r numbers to be the same; see
Table 1 for the list of numbers and [8, Sections 2,3] for a detailed discussion of this problem.

In this course, we will apply various topological methods to enumerative problems in algebraic
geometry. We will encounter two flavors of computational setups: a fairly classical one, which
involves counting curves fairly directly, and a fairly recent one (Gromov-Witten theory), which
involves counting parametrizations of curves. We will focus on counting complex curves in complex
manifolds, as this is generally much easier than counting real curves in real manifolds. The basic
reasons for this are

(0) the number of complex roots (counted with multiplicity) of a degree d complex polynomial
in one variable is d, while the number of real roots (counted with multiplicity) of a degree d
real polynomial in one variable is at most d and is of the same parity as d;

(1) complex curves are often parametrized by complex manifolds, which have a canonical orien-
tation, while real curves are often parametrized by real manifolds, which may not be even
orientable;

(2) compactifications of spaces parameterizing complex curves often have additional strata (known
as boundary) of complex codimension one (which does not cause problems with integration
of top de Rham forms), while compactifications of spaces parameterizing real curves often
have additional strata of complex real codimension one (which does generally cause problems
with integration).

The next statement, which is a standard fact in topology, will lie behind many arguments in this
course.

Theorem 0.4. If M is a compact oriented m-manifold, V — M is a rank k real oriented vector
bundle, and s: M — V is a section transverse to the zero set, then s~1(0) C M is a smooth
oriented submanifold and

[s71(0)],;, = PDae(V) € Hpi(M; Z), (0.2)

where [s71(0)]as is the homology class on M determined by s~(0) and e(V) € H¥(M;Z) is the
euler class of V.

If k£ is odd, (0.2) may be off by sign, depending on one’s sign conventions. However, 2¢(V) =0
then, which makes such cases of little relevance to us. A proof of this theorem is outlined in
[12, Exercise 11-C], which uses a rather unusual sign convention for the pairing of homology and
cohomology elements.



Exercise 0.5. Let M be a topological space and V — M be an oriented vector bundle of odd
rank. Show that 2e(V)=0.

Exercise 0.6. Verify Theorem 0.4.

Corollary 0.7. If M is a compact oriented m-manifold, V — M is a rank m real oriented vector
bundle, and s: M —V is a section transverse to the zero set, then s~1(0) C M is a finite set of
signed points and

Hs7H0)] = (e(V), [M]) € Z, (0.3)
where Hs71(0)| is the signed cardinality of the set s~1(0).
Exercise 0.8. Deduce Corollary 0.7 from Theorem 0.4.

We will often encounter cases when a curve count can be written as *s~!(0)| for some transverse

section s of a vector bundle V' — M. The above immediate corollary of Theorem 0.4 will then
allow us to express such a curve in terms of a topological quantity, the euler class, which is often
computable.

The proof of Theorem 0.4 also leads to the following statements.

Proposition 0.9. If M is a compact oriented manifold and Y,Z C M are compact oriented
submanifolds of M intersecting transversally in M, then YNZ is a compact oriented submanifold
of M and

PDy ([YNZ)ar) = PDas([Y]ar) UPDy([Z]ar) € H*(M;Z)  and

Corollary 0.10. If M is a compact oriented manifold and Y,Z C M are compact oriented sub-
manifolds of M intersecting transversally in M such that

dimY + dim Z = dim M,
then YNZ is a finite set of signed points and
HYnZ| = (PDu([Y]ae), [Z]ar)-
Exercise 0.11. Verify Proposition 0.9 and deduce Corollary 0.10 from it.

We will typically be taking euler classes of complex vector bundles. Every complex vector bundle
V — M has a well-defined (total) chern class

c(V)=14+c1(V)+ (V) +...€e HY(M;Z)® H*(M;Z) ® HY(M;Z) & ...
e(V), ifr=rkcV,
0, if r > rkeV,

where e(V) is the euler class of V' with respect to the canonical complex orientation (given by
the real basis eq,ieq, ..., e, iex for a complex basis ey, ..., e for a fiber). If VW — M are two
complex vector bundles, so is VW — M and

c(VeW)=cV) (W) e H*(M;Z).



If f: X — M is a continuous map, then
co(f*V) = fre(V) € H*(M;Z).
A detailed construction of chern classes is contained in [12, Section 14].

The construction of the complex projective space extends to complex vector bundles. If V— M
is a complex vector bundle of (complex) rank k, the projectivization of V is the P*~!-fiber bundle

PV = (V—M)/C* — M,

where M CV is the zero section and C* acts by the usual multiplication in each fiber. We will
view each element of PV as a complex line ¢ (through the origin) in a fiber V,, of V.— M. The
tautological line bundle over PV is defined by

v ={{,v)EPV XV : velCV} — PV.

Let
Av = a(V) € H2(PV; Z)

denote the chern class of the hyperplane line bundle. The restrictions of 1, Ay, ..., )\]‘“,_1 to a fiber
generate its cohomology as a Z-module. Thus, by the generalized Thom Isomorphism Theorem
[22, Theorem 5.7.9],

H*(PV;Z) = H*(M; Z)A\v]/ (AF +er (V)N Ao (V) e (V) (0.4)
as Z-modules.

Exercise 0.12. Show that the isomorphism in (0.4) respects the ring structure.

Example 0.13. If M is a point and V — M is a complex vector bundle of (complex) rank k,
then
V=CF «V)=1, PV=P"l H*PV;Z)=Zy]/\,

and PDpy Ay = []P’(Ckil][p)v for any Ck-lcvV.



1 Schubert Calculus

1 Lines in affine/projective spaces

A (complex) line in C™ is a set of points of the form
pt + C7 = {pt + \o: \eC}

for some point pt € C" and a nonzero vector v € C"—0. A (projective) line in P" is the closure
in P" of a line contained in a chart

U, = {[Z(),...,Zn]epn: ZI%O} ~C"

as in Section B.1. The number of lines in C" passing through a general points, b general lines,
etc. is the same as the number of lines in P" passing a general points, b general lines, etc., with
the bijection given by the inclusion

Uy=C"—P", (215 oy2n) — [L,21, ..., 2n)].

Thus, enumerative problems for C" and P™ are generally the same. The latter space has the
advantage of being compact and thus is more suitable for topological computations. Instead of
thinking of points, lines, etc. in P as closures in P” of such objects in C", it is often more conve-
nient to think of them as projectivizations of linear subspaces of C". For example, a point in P" is
the projectivization of a one-dimensional linear subspace of C”, a line in P" is the projectivization
of a two-dimensional linear subspace of C”, etc.

There is a unique line passing through any 2 distinct points in C" or in P". There are no other
interesting constraints to be imposed on lines in P2. There are still two such questions left
regarding lines in P3: how many lines in P? pass through

(1) 1 point and 2 general lines;

(2) 4 general lines.

We first observe that the expected answers are finite, i.e. the dimensions of the conditions are the
same as the dimension of the space of lines in P2. Each line in P3 is determined by two distinct
points in P3; the dimension of the space of pairs of such points is 2-3=6. However, the space of
pairs of points on a fixed line is of dimension 2-1=2; thus, the dimension of the space of lines
in P3 is 6—2 =4. The dimension of the condition of passing through a point in P?3 is 2, since
each point is of codimension 3, but it can be any of the points in the one-dimensional space of
points on a line. It follows that the dimension of the condition of passing through a point in P3
is 2—1=1, since a line can now pass through any point on a fixed line. Thus, (1) and (2) impose
the expected number of conditions on the space of lines in P3.



Example 1.1. How many lines in P3 pass through 1 point and 2 general lines? The space of lines
passing through the point and one of the lines form a plane, which meets the other line in a single
point. Along with the original point, the latter determines the unique line passing through the
three constraints. Thus, the answer is 1. By the same argument, if a, b, and ¢ are non-negative
integers such that a+b+c=n—1, then the number of lines in C™ or P" meeting general subspaces
of dimensions a, b, and c is again 1.

In the remainder of this section, we will determine the number of lines in P? passing through
4 general lines. A line £ in P? corresponds to a plane (two-dimensional linear subspace) 7= C C*
by £ =P'7w. The space of all lines in P is thus the same as the space of planes in C3, which is
known as the Grassmannian

G(2,4) = GL4(C)/H = U(4)/U(2)xU(2),

where H C GL4(C) is the subgroup of matrices of the form

* % k%
* % % ok
0 0 x =%
0 0 % =x

The Grassmannian G(2,4) is a compact complex manifold of dimension 2(4—2)=4; see Section 2.
If ¢,0; CP3 are lines,
Nt #0 = dim(m Nm;) > 1.
Thus, the subspace of lines ¢ in P? meeting ¢; is
o1(m) = {m€G(2,4): dim(r Nm;) > 1}.
This is a complex subvariety of G(2,4); it determines a homology/cohomology class
o1 € He(G(2,4);Z), H*(G(2,4); Z),

which is independent of the choice of 7; (since the space of the planes 7; is path-connected). The
number we are interested in is

|01(7r1) Noi(my) Noy(mg) Noy (71'4)‘ = <0%, G(2,4));

the last equality holds if the intersection is transverse. Thus, the number of lines in P? passing
through 4 general lines is determined by the ring H*(G(2,4);Z).

If the lines ¢; and /5 intersect at a point pt=PL (which is not generically the case), they form a
plane P=PV in P3, for some 3-dimensional linear subspace V C C*. In this case, o1 (m1)Noy(72)
is the union of the sets

o2(L) = {m€G(2,4): dim(rNL)>1}  and  01,,(V) = {7r€G(2,4): dim(rNV)>2}

consisting of the lines passing through pt and of the lines contained in P, respectively. This
corresponds to the statement
o =02+ o011, (1.1)



which is a special case of (2.11) below. Thus,
0'1(71'1) N 0'1(71’2) N 01(7‘(3) N 01(71'4) = 0'2(.[/) N 0'1(71'3) N 01(71'4) U 0'171(‘/) N 01(71'3) N 0'1(7['4).

The set o9(L)Noy(m3)Noy(my) consists of the lines in P3 passing through the point pt and the
lines ¢3 and ¢4; the number of such lines is 1 by Example 1.1. The set o11(V)No1(m3)Noi(ma),
consists of the lines ¢ in P? that lie in the plane P ~P? and pass through the lines ¢3 and /4,
i.e. of the lines £ C P that pass through the points PN¢3 and PN{4; the number of such lines is 1
by Example 0.1. Thus, the number of lines in P? meeting 4 general lines is 2.

2 Grassmannians of two-planes

The set of two-dimensional linear subspaces of C", which we will denote by G(2,n), admits a
natural complex structure which can be constructed as follows. Denote by

B(2,n) C (C"—0) x (C"—0)

the open subspace consisting of pairs of linearly independent vectors in C™. Let B*(2,n) C B(2,n)
be the subset of pairs (v1,v2) such that v; and ve are orthonormal (w.r.t. the standard hermitian
inner-product on C"). Since the maps

B(2,n),B*(2,n) — G(2,n), (v1,v2) — Cuvy + Cuy,

are surjective, the topologies of B(2,n) and B*(2,n) induce quotient topologies on G(2,n); see
[15, Section 22]. The maps
GL,(C),U(n) — G(2,n)

sending each matrix to the span of the first two columns are also surjective.

Exercise 2.1. Let n€Z% be such that n>2. Show that
(1) the four quotient topologies on G(2,n) are the quotient topologies
B(2,n)/GLy(C), B*(2,n)/U(2), GLA(C)/Ga, U(n)/U(2)xU(n—2)
for certain free group actions and a for a certain subgroup Gs C GL,,C;
(2) the four quotient topologies on G(2,n) are in fact the same.

Exercise 2.2. Let n€Z" be such that n>2. Show that G(2,n) is a compact complex manifold
of dimension 2(n—2) and the projection maps

B(2,n),GL,(C) — G(2,n)
defined above are holomorphic submersions.

We will next describe a stratification of G(2,n) and its cohomology. A flag V in C" is a strictly
increasing sequence of n+1 linear subspaces of C",

{0}=Vo CVi C... Vs CV,=C".



Given such a flag on C" and nonnegative integers a and b, we define

op(V) = {P€G(2,n): dim(PNV,_14) = 1, dim(PNV;, 2 4) = 0;
dim(PNV,—p) = 2, dim(PNV1p) = 1},

Since P is a linear subspace of C" of dimension 2,

o0, (V) = {PeG(2,n): PNV,_1_q#{0}, PNVy_2_a={0};
PCVn—bu P¢Vn—1—b}'

Since a generic element of G(2,n) is not contained in V,,_; and intersects V,,_o trivially, the
numbers a and b measure the extent of the deviation of the elements of ng from a generic
element of G(2,n). Note that 6%, (V)= unless n—2>a>b. Furthermore,

G2n) = || oWV (2.1)

n—2>a>b>0
The closure of 6%, (V) in G(2,n) is given by
oab(V) = 60,(V) = {PEG(2,n): PCVy_p, PNVpo1-a#{0}}. (2.2)
These subspaces of G(2,n) are called Schubert cells. We will write 04(V) for g40(V). If
V't = (Vo, W, .., Vi)

is a flag for C"~, then
(V) = 0a_p(V'0) € G(2,n—D). (2.3)

Lemma 2.3. The decomposition (2.1) is a stratification of G(2,n) with
dimc 6% (V) =2(n—2) — (a+b)  if n—2>a>b>0. (2.4)
Proof. 1t is sufficient to prove this statement for the standard flag V given by
Vi = CF x {0} F c Cc™.

If a,b are as in (2.4), let
Bab(2a TL) - 8(27 TL)

denote the subspace of pairs (v, v2) such that vy € C?"~17% v, € C"®, the n—1—a coordinate of
v1 and the n—b coordinate of vy are both 1, and the n—1—a coordinate of vy is 0. Thus,

Bab(Qyn) ~ (Cn—l—a—l % Cn—b—Q
and the quotient projection map
Gab* Bab(Qa n) — Ugb(v)

is a bijection. Since ggp is holomorphic (being a composition of holomorphic maps), qu is bi-
holomorphic [5, p19]. This shows that ¢, (V) is bi-holomorphic to C2"~2)=(a+8)  Since

aab(V) = ogp(V) C U Tap(V)
a’+b'>a+b

by (2.2), it follows that (2.1) is indeed a stratification of G(2,n). O



Remark 2.4. The decomposition (2.1) in fact presents G(2,n) as a CW-complex; see Section 6
in [12].

Exercise 2.5. Suppose V is a flag in C" and n—2 >a >b. Using (2.2) and (2.3), show that
oap(V) is a complex variety, which is smooth if and only if a=b or a=n—2. Give a geometric
description of 04,(V) in these two cases.

Since the space of flags in C™ is path-connected, the Schubert cycles o4,(V) and o4,(V') corre-
sponding to two different flags determine the same elements in the homology of G(2,n) and via
the Poincare duality in the cohomology of G(2,n). Both of these elements will be denoted by o gp.
By Lemma 2.3,

Oab € H2(2(n72)7(a+b)) (G(27 n); Z) ) H2(a+b) (G(27 n); Z) :

Furthermore, H.(G(2,n);Z) and H*(G(2,n);Z) are the free Z-modules generated by o, with
n—2>a>b>0. The classes o4 and o, have complimentary dimensions if and only if

at+b+d +V =2n-2). (2.5)
The next lemma describes the Poincare pairing on G(2,n).

Lemma 2.6. Suppose n,a,b,a’, b/ are non-negative integers. If n—2>a>b>0, then

1, ifd=n—2-b b =n—2—a;
<Uab0a’b’7G(27n)> =  a n ’ " “ (26)
0, otherwise.
Proof 1. Let V and V' be two generic flags. By (2.2),
Uab(v) N ogy (V/) = {PGG(27 TL)I PcC (Vn—bﬂvrifb/)a (2 7)

PNVpo1-a#{0}, POV, #{0}}.

Thus, 04(V) Nogy (V') is empty unless

dim(V,—sNVy_1_p) =1, dim(V,_yNVp_1-4) > 1.
Since the flags V and V' are general, it follows that o4,(V) N oy (V') is empty unless

(n—b)+(n—1—-ad)-n>1, (n=t)+(n—-1-a)—n>1.
Since we can assume that (2.5) holds, it follows that
oa(V)Nogy (V') £ 0 = a=n—2-b,t=n—2—a.
This implies the second case in (2.6). If ¢’ =n—2—b and ¥/ =n—2—a, then
Gab(V) (100 (V') = 0%(V) N1y (V')

consists of the single element P € G(2,n) which is the span of the disjoint one-dimensional linear
subspaces V,,_,NV! | and V! _, NV, _1_, of C". This is a transverse point of the intersection
of complex sub-manifolds 02, (V) and ¢9,,,(V’) in G(2,n) and thus contributes 1 to the homology
intersection of o4,(V) and o4 (V7). O



Proof 2. By (2.2) and (2.3),

(oavoary,G(2,n)) = (04_poar,G(2,n—b)) (2.8)
= (04001, G(2,n—b=1')).

The last number above is zero unless

n—b—b—2>a—b,d b — a+b <n—-2, d+b<n-2.
In light of (2.5), the last condition is equivalent to

a+b =n—-2, d+b=n-2.
If these equalities hold, by (2.8)
<aabaa/b/,(@(2,n)> = <aa_baa_b,G(2,a—b+2)> =1,

since this is the number of two-dimensional linear subspaces of C*~**2 containing two fixed

distinct one-dimensional linear subspaces. ]
Exercise 2.7. (a) If n,aq,...,a,b1,..., b, are nonnegative integers, show that
<Ua1b1 taet Uakbk,G(2,n)> = <Ja17b1 tae. Uak,bk, G(Q, n—b1 —. . —bk>> (29)

(b) Verify the transversality statement at the end of the first proof of Lemma 2.6.

Exercise 2.8. Prove the following identities for Schubert cycles:
(a) if n,a1,az2,a3 €ZT are such that n—2>aq, az,as >0, then

1, if a14+as+taz =2n—4;
<Ua1 Oaz0a3, G(27 TL)> = {0 otherwise: (2.10)
(b) if a1,a2>0,
Oay * Oag = Z Oc,a1+az—c- (2.11)

c>ail,a2
Hint: Use (a) along with (2.6) and (2.9).

The identity (2.11) is a special case of Pieri’s formula for Schubert cycles. Along with (2.6)
and (2.9), it suffices to compute the intersection of any collection of Schubert classes on G(2,n).

Exercise 2.9. (a) The inclusion C® — C"*! induces an embedding
t:G(2,n) —G(2,n+1).
Show that the cohomology homomorphism induced by the latter is given by
o HF (G(2, n+1); Z) — H* (G(2, n); Z), Ouwp — Oap Va,b.

(b) Let ¢: P»~! — G(2,n+1) be the embedding defined by L — L @ (0" xC). Show that the
induced cohomology homomorphism is given by

CHY(G(2,n+1);Z2) — H* (P 2Z),  ow— 0w Va,b,
with o4, € H*(P"1; Z) defined to be 0 if b#£0.

10



It is often convenient to represent Schubert cycles by Young diagrams. The Schubert cycle o
then corresponds to the tableaux p with the first (bottom) row consisting of a boxes and the
second of b boxes. In order to indicate that this cycle lies in G(2,n), we draw this tableaux at
the bottom left corner of a 2x(n—2) grid and thus indicate all possibilities for p. By Lemma 2.6,
the tableaux u¢ describing the Schubert cycle o,c dual to o, is the complement of x in the grid:

p=(51) CG(2,9) ne = (6,2) C G(2,9)
By Exercise 2.5, 0,(V) is smooth if and only x¢ is a rectangle.

The projectivization of a 2-dimensional linear subspace of C"*! is a projective line in P™ and vice
versa. Thus, the set of lines in P”, which we denote by Ln(P"), can be identified with G(2,n+1).
If V is a flag on C"*! and a and b are nonnegative integers, under this identification the Schubert
cycle o4,(V) is given by

oap(V) = {LeLn(P"): LCPVyy1_p, LNPV,_q #D}. (2.12)

Thus, o4 is the space of lines in P™ that are contained in a linearly embedded projective subspace
P"~? and meet a linearly embedded projective subspace P"~1~% of P~ . The identification (2.12)
can be used along with (2.6), (2.9), and (2.11) to determine the number of lines in C" (or P™)
meeting a specified collection of affine (or linear) subspaces.

Example 2.10. The number of lines through 2 distinct points, in C™ or P, is of course 1. This
corresponds to the statement
<O'n_10'n_1, G(27 ’I’l+1)> = 17

which is a special case of (2.6).

Example 2.11. Let a, b, and ¢ be non-negative integers such that a+b+c=n—1. By Example 1.1,
the number of lines in C" or P meeting general subspaces of dimensions a, b, and ¢ is 1. This
corresponds to the statement

<O-nflfao-n—1—bo-n71707 G(27 7’L+1)> — 13
which is a special case of (2.10).

Example 2.12. By the last part of Section 1, the number of lines meeting 4 general lines in C3
or P3 is 2. This corresponds to the statement that

(01,G(2,4)) =2,
which can be deduced from (2.11) and (2.9).

The intersection arguments in Examples 2.10-2.12 rely on the assumption that general represen-
tatives for Schubert cycles intersect transversally in G(2,n+1). This follows from Exercise 2.13
below, which also implies that the numbers obtained by intersecting appropriate Schubert cycles
on G(2,n+1) are indeed actual counts of lines passing through specified linear constraints.
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o] . [ . .Gamy[u]. . [ .G

Table 2: Top intersections of Schubert classes on G(n,5). The numbers directly obtainable
from (2.6) and (2.11) are not shown.

Exercise 2.13. If VU ' V(*) are general flags on C"*!, show that for every 1=2, ..., k, then

(1) o0, (V)...Ne?

a1b; aj—1b—1

(V1) is a smooth complex submanifold of G(2,n+1);

(2) o0, (VI)N...ng?

a1by aj—1b—1

(VU=1) and 0,5, (VD) intersect transversally in G(2,n+1).
Exercise 2.14. Verify the numbers in Table 3.
Analogously to (B.3.1), let

Ty = {(P,v)€G(2,n)xC":veP C C"} — G(2,n). (2.13)

Exercise 2.15. Show that s is a complex submanifold of G(2,n)xC" and (2.13) is a holomorphic
vector bundle of rank 2.

The vector bundle 7 : 75 — G(2,n) is called the tautological two-plane bundle. It turns out
to be useful in particular for counting lines on projective hypersurfaces and more generally on
projective complete intersections.

Lemma 2.16. The total chern class of the vector bundle v5 — G(2,n) is given by
c(v3) =1+ 01 +o011 € H(G(2,n);Z).

Proof. Since the Schubert cells provide a CW-decomposition of G(2,n),
ci(nz) =aor,  c2(y3) = bon + coy,

for some a,b,c € Z. Since the tautological bundle v — G(2,n+ 1) restricts to the tautolog-
ical bundle over G(2,n) under the embedding G(2,n) — G(2,n+1) induced by the inclusion
C" — C™*!, by the naturality of chern classes and Exercise 2.9(a) the numbers a, b, and ¢ are
independent of n. Since the pull-back of 42 — G (2, n+1) by the embedding ¢: P"~! — G (2, n+1)
of Exercise 2.9(b) is v1®71, a=1 and ¢=0 by the naturality of chern classes and Exercise 2.9(b).
Finally, the pull-back of 75 — G(2,4) by the embedding

h:P'xP! — G(2,4),  (¢1,03) — £1x 0y C C*xC?
is the bundle v xy; — P! xP!. Thus, b=41 or b=—1 depending on whether
<h*011,P1 ><IP’1> =41 or <h*o’11,IP’1 ><]P’1> = —1;

since h is a holomorphic map, the latter is impossible. ]
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n A N(A) || n A N(A) || n A N()N)
4| (1,0,3) 1 6 | (0,0,1,3,1) 5 7 (0,0,2,0,0,4) 6
11 (0.2.2) 2 6] (0,0,1,23) | 7 | 7] (0,0,1,2,1,0) | 3
41 (0,14 3 |6 (001,1,5) | 10 | 7] (0,0,1,202) | 4
1 (0,06) 5 |16 (0,0,1,07) | 14 | 7] (0,0,1,1,21) | 5
51 (1,0,L,2) | 1 [ 6] (0,0050) | 6 | 7] (0,0,1,1,1,3) | 7
5| (1,0,0,4) 1 6] (0,0042) | 9 | 7] (001,105 | 10
51 (0202 | 2 |[6] (00034 | 13 ||7] (0,0,1,040) | 6
5 (01,21) | 2 || 6] (0,0026) | 19 [ 7] (001,032) | 8
5| (0,1,1,3) 3 6 | (0,0,0,1,8) 28 || 7] (0,0,1,0,2,4) 11
5| (0,1,0,5) 4 6 | (0,0,0,0,10) | 42 | 7| (0,0,1,0,1,6) 15
51 (0040) | 3 | 7](L00LL1)| 1 | 7] (0,0,1,008) | 20
51 (0032 | 4 | 7](100L03) | 1 | 7] (0,0,0400) | 4
51 (0024) | 6 | 7] (100030 | 1 | 7] (0,0031L1) | 6
51 (00,,6) | 9 | 7](1,00022) | 1 | 7] (0,00303) | 8
5] (0,008) | 14 || 71100014 1 | 7] (0,00230) | 7
6 (1,0,1,02) | 1 || 7](1,00006) | 1 | 7] (000222 | 10
6 | (1,0,0,2,1) 1 71 (0,2,0,0,0,2) 2 71 (0,0,0,2,1,4) 14
6 | (1,0,0,1,3) 1 71 (0,1,1,0,1,1) 2 7 (0,0,0,2,0,6) 20
61(1,0005) | 1 | 7] (11003 | 3 7] (0,0014,1) | 12
6 | (0,2,0,0,2) 2 7 1(0,1,0,2,0,1) 2 71 (0,0,0,1,3,3) 17
61(0L1,1,1)] 2 |7](0050120 | 2 ||7] (0000125 | 24
61(0,1,1,0,3) | 3 | 7] (01,0112 | 3 7] (0,00117) | 34
6] (0,1,030) | 2 ||7](010104) | 4 | 7] (0,00,1,09) | 48
6] (0,1,022) | 3 ||7](01,0031) ] 3 | 7] (000060 | 15
6| (0,1,01,4) | 4 ||7](01,0023) ] 4 | 7] (000052 | 21
6 | (0,1,0,0,6) 5 71 (0,1,0,0,1,5) 5 7 (0,0,0,0,4,4) 30
6 | (0,0,3,0,1) 2 71 (0,1,0,0,0,7) 6 7 (0,0,0,0,3,6) 43
6100220 | 3 |7](002L01) | 2 7] (000028 | 62
6100212 | 4 |7](002020 | 3 |7](00000L10)| 90
6100204 | 6 | 7](002012) ] 4 | 7](000,0,0012) | 132

Table 3: The number of lines N(\) in C™ or P" that meet \; general affine or linear subspaces of
dimension k, with k=0,2,...,n—2. The numbers provided by Examples 2.10-2.12 are omitted.
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Here is another way to see that e(y5)=o011. The map
o — C", (P, (c1,.. .,cn)) — Cp,
induces a holomorphic section §z, of 75— G(2,n). Since

52(0) ={(P,(c1,...,cn))EY2: cn=0V(cx,...,cn) EP}
={PeG(2,n): PCC”_I} =01

and this section is transverse to the zero set,

e(73) = PDgam) (55! 0)lg(zm)) = o115

the first equality follows from Theorem 0.4.

By Lemma B.3.3, a nonzero degree a homogeneous polynomial @) in (n+1) variables determines
a holomorphic section sg of the line bundle 4*®* — P"™. The zero set of this section,

Xna = Xo = 55"(0) = {[Z0, ..., Zn] €P": Q(Xo, ..., X)) =0}

is a degree a hypersurface. By the Lefschetz Hyperplane Theorem [5, p156, p158], the homomor-
phisms on the fundamental groups

7i(Xna) — m(P")
are isomorphisms for ¢ <n—1. Thus, the restriction isomorphisms
H (P Z) — HY (X0 Z)
are isomorphisms for i <n—1 as well.
Exercise 2.17. Let X,,., CP" be a smooth degree a hypersurface.
(1) Show that c1(Xpa)=(n+1—a)c1(v*)| X0
(2) Show that the euler characteristic of X, is given by

(1—a)"™ + (n+1)a -1
- :

X(Xn;a) —

(3) If n=2, show that the genus of the curve X, is (agl).

(4) Determine the betti numbers of X,,, (the dimensions of H*(X,.,)).
(5) For n<4, determine the Hodge diamond of X,,.q.

Exercise 2.18. Show that

(1) a degree a homogeneous polynomial @) in n+1 variables induces a holomorphic section 3¢ of
the vector bundle Sym®y* — G(2,n+1);

2) a line /=P'P CP", with P€G(2,n+1), is contained in the hypersurface Xg if and only if
Q
5Q(P)=0;

14



(3) the bundle section 3¢ is transverse to the zero set for a generic choice of @ .
If sg (5¢) is transverse to the zero set, does it follow that so is 5¢ (s@)?

By Exercise 2.18, the dimension of the space of lines lying on a generic degree a hypersurface X,.,
in P™ is given by
dim Mo (Xpsa, £) = dim G(2, n+1) — tk Sym®y; = 2(n—1) — (a+1)

2.14
=2n—a— 3. ( )

In particular, there are no lines on X, if a>2n—3. Using Exercise 2.18, we can determine the
number of lines that lie on X,,., and meet a generic collection of linear subspaces of P"”. By (2.14),
the total codimension of the subspaces minus the number of subspaces should be 2n—a—3.

Example 2.19. The number of lines on a generic conic (degree 2) surface in P3 that meet a
general line in P? is given by

(o1 - e(Sym*33),G(2,4)) = (o1 - 4e1(73)c2(15), G(2,4))
= 4(oio11,G(2,4)) = 4;

the last identity follows from (1.1) and (2.10). Since a generic line in P meets X35 at two points,
it follows that the number of lines on X3.o through a fixed point is 2. By [5, p478], every smooth
conic surface in P? is isomorphic to P! xIP!; the two lines through any point p are the horizontal
and vertical slices of this cartesian product through p.

Example 2.20. The number of lines on a generic cubic (degree 3) surface in P? is given by
(e(Sym®3),G(2,4)) = (9e2(7") (2c1(73) + 2(13)), G(2, 4))
=9(207011 + 011, G(2,4)) = 27;
the first equality above follows from Exercise A.3.4 and Lemma 2.16.

Exercise 2.21. Describe the 27 lines on the cubic surface in P? given by X8+X12+X§+X§’ =0
explicitly.

If a=(ay,...,a.) is a tuple positive integers, a complete intersection of multi-degree a in P" is
the intersection of hypersurfaces of degrees ai,...,a. in P". A generic complete intersection of
multi-degree a is the intersection of generic hypersurfaces of degrees ai, ..., ac:

i=c
Xn;a = ﬂ Xn;ai-
i=1

The above method for counting lines on a generic hypersurface extends to counting lines on X,.5:
simply replace the euler class of Sym“y* by the product of the euler classes of Sym®~; with
1=1,...,c

Exercise 2.22. Verify the numbers in Table 4.
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n| a A No(A) [ n|a A Ny (N)
il 2 11) 4 6|2 (0,120 8

i 2 (0,3) s 620,112 12

il 3 (1,0) 18 | 62](0,1,04) 16

1 3 | (02 5 || 6]2](0031) ] 16

4] 4 (0,1) 320 || 6 2] (0,023) 24

i 5 0,0) | 2875 |62 (0,0,1,5) 36

1] (2.2) 0 16 | 620007 | 56

50 2 | (1L,L,0) 4 6|3 (1,0,1,0) 13
50 2 | (1,0,2) 4 | 6]3](1,00.2) 13

50 2 | (0,2,1) 8 6|3 (0,200) 15

) 2 (0,1,3) 12 6 |3|(0,1,1,1) 63

50 2 | (0,05) | 20 | 6]3](0,030) | st

50 3 | (1,0,1) | 18 || 63](0022) | 126

) 3 (0,2,0) 45 6 |3|(00,1,4) 189

50 3 | (0,1,2) | 63 || 6]3](0,006) | 207

50 3 | (0,04) | 108 || 6 4] (1,0,01) 96

50 4 | (1,00) | 96 || 64](01,1,0)] 416

5| 4 | (0,1,1) | 416 || 6|4 (0,,0,2)| 512

51 4 | (0,03) | 736 |64 (0021) | 832

5 5 (0,1,0) 3250 6 |4|(00,1,3) 1248
5 b} (0,0,2) 6125 6|4 |(00,0,5) 1984
51 6 | (0,0,1) | 60480 | 6|5 | (1,0,0,0) | 600

5] 7 | (0,0,0) | 698005 | 6|5 | (0,1,0,1) | 3850
51(2.2) | (10) 16 || 6]5](0,020) | 6725
51 (2.2) ] (0,2) 32 [ 65](0,012) | 9975
51 23) | (0,1) 180 || 6 5] (0,004) | 16100
51 (24) | (0,00 | 1280 |66 (0,1,0,0)| 33264
51 (3.3) | (0,00 | 1053 | 66| (0,0,1,1) | 93744
6 2 |(1,L0,0)| 4 | 6]6](0,003) | 154224
6 2 (1,0,1,1) 4 6| 7]|(00,1,0) | 1009792
6 2 (1,0,0,3) 4 6|7](00,0,2) | 1707797
6| 2 [(0201)] 8 6|8 [(0,00,1) | 21518336

Table 4: The number of lines N,(\) that lie on a generic complete intersection of multi-degree
(a1,...,ac) in P™ that meet A\ general linear subspaces of P of dimension k=c,c+1,...,n—2.
The numbers provided by Examples 2.19 and 2.20 and those with a; =1 for some [ are omitted.
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3 Conic curves in affine/projective spaces

A conic (degree 2) curve C'CP™ is a complex curve, possibly with some singularities, such that
[C]=2[P!], for any linear subspace P! CPP". Every conic lies in a P2 CP" and every conic, other
than a double line, is contained in a unique P2. Thus, counting conics in P is usually equivalent
to counting pairs (7, C), where m ~ P? is a linear subspace of P* and C' C 7 is a conic lying
in 7. Since each 7 equals PV for a unique 3-dimensional linear subspace V of C"*!, the space of
two-dimensional linear subspaces of P" is G(3,n+1), the Grassmannian of 3-dimensional linear
subspaces of C"*1. Let

T3 = {(V,0) €G(3,n+1)xC" T veV c C"'} — G(3,n) (3.1)

be the tautological rank 3 vector bundle. A conic C lying in V corresponds to an element
of P(Sym?V*), i.e. a nonzero degree 2 polynomial on V determined up to multiplication by C*.
Thus, the space of conics in P" is essentially P(Sym?+3); see Example A.2.4.

The Grassmannian G(3,4) parametrizes two-dimensional linear subspaces of P3 or equivalently
three-dimensional linear subspaces of C". Every such subspace V can be identified with its
annihilator,

Ann(V) = {ne(CH*: n(v)=0VveV} C (C')* = Home(C*,C),
which is a one-dimensional linear subspace of (C*)* ~ C*. Thus, the map
G(3,4) — PP =P (CH*~ P>, V — Ann(V), (3.2)

is a bijection and thus can be used to topologize G(3,4) and give it a complex structure. With
this complex structure,

dimeG(3,4) = dimeP? = 3, dimCIP’(Smeq/g) = dimcG(3,4) + dimeSym?C3 — 1 = 8,

where 73 — G(3,4) is the tautological three-plane bundle.

Every conic curve in P2 meets a generic hyperplane, i.e. a two-dimensional linear subspace of P,
in 2 points. Thus, passing through a hyperplane does not impose a condition on the conics.
Passing through a line ¢ imposes a one-dimensional condition on the space of conics in P, since ¢
is of codimension two in P3, while a conic is of dimension one. Similarly, passing through a
point in P? imposes a two-dimensional condition on the space of conics in P3. By the last two
paragraphs, the complex dimension of the space of conics in P? is 8. Thus, we expect that there
are finitely many conics passing through a generic points and b generic lines in P? if 2a+b=8.

Example 3.1. Four generic points in P? do not lie in any two-dimensional linear subspace P? C IP3.
Since every conic lies in such a subspace, the number of conics passing through 4 general points
in P3 is 0.

Example 3.2. Three general points in P? determine a P2 CP3. Every P? meets a generic line ¢
in P? in a single point. Since every conic lies in such a P2 C P3, the number of conics passing
through 3 general points and 2 general lines in P? is the same as the number of conics in the P?
determined by the 3 points that pass through 5 points: the 3 original points and the 2 points of
the intersection of P? with the 2 original lines. By Example 0.2, this number is 1.
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Exercise 3.3. Let '}HI@’?’ denote the tautological line bundle and
a=ci(¥) € H*(P%2) = H*(G(3,4);2).

Show that

(1) 73 ®4* ~ G(3,4) xC* as complex vector bundles;

(2) e(v3) =1+a+a*+a;

(3) c(Sym?v3) = 1 +4a + 10a% + 204> .

We identify the space of conics in P3 with the elements ([5], [s]) of P(Sym?~3), consisting of a
one-dimensional linear subspace CnC (C*)* and a one-dimensional linear subspace [s] in the space
of degree 2 homogeneous polynomials on V =7"1(0) ¢ C* (or equivalently of a two-dimensional
linear subspace PV CP3 and a conic s71(0) CPV). Let

5 —P(Sym®y;)  and A =ei(5%) € H(Sym®+3;Z)

denote the tautological line bundle as in Example A.2.4 and the chern class of its dual, respectively.
A conic ([n], [s]) passes through a point [p] € P? if and only if p€n~1(0) and p€s~1(0). The first
requirement imposes a linear condition on 7, defining a section ¢, of 4* —Pp3 dependent on the
choice of the representative p for [p]; the zero set of this transverse section is a two-dimensional
linear subspace P2 c P3. The second requirement similarly imposes a linear condition on s and
defines a section (@, of ¥* — P(Sym?+%), dependent on p:

(@D} =50) ¥ 3 € Hlpguge

Thus, the subspace M, C P(Sym?73) of conics passing through a point [p] in P3 represents the
Poincare dual of A in P(Sym?~; Mp2-

Exercise 3.4. Let V be a vector space over C of dimension 3, a, 5 € V*, and s: V— C be a
homogeneous function of order 2. Show that the linear map

®ABEAs: (ARV)®? — C,
(uAvAw)®? — (a(u)B(v) — a(v)ﬂ(u))Qs(w) Vu,veV, wekerankerp,

is well-defined and is identically zero if and only if s vanishes somewhere on ker o Nker 8 — 0.

We next describe the space of conics in P? meeting a line ¢ = Pr in P3, where 7 ¢ C* is a
two-dimensional linear subspace of C*. In particular,

m = ker a N ker

for some a, 3 € (C*)*. By Exercise 3.4, the subspace My C P(Sym?+3) of conics passing through
the line ¢ in P? is described by

My = {([n], [s]) € P (Sym*73): a®AB*As =0 € (Acy™'(0))*9?}.
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Thus, Mj is the zero set of the section ¢, g of the line bundle
7* @ 7 (Acys)*®% — P(Sym?43),
where 7: P(Sym?73) — G(3,4) is the projection map, given by
{@as(n 1D} () — alZag) A B0y A 8
and so represents the Poincare dual of
e(7* ® 7 (Acv3)*®?) = e1(7) + 27fer (Acys) = A+ 27%a.

Example 3.5. By the above, the set of conics in P? passing through 2 general points and 4 general
lines is the zero set of a section of the vector bundle

27" & 47" @1 (Acys)*®? — P(Sym?~3)|p »

where P! is the intersection of the two P2 c P3 corresponding to the two points. As this section
is transverse to the zero set, the cardinality of this set is

(e((27" @ 47 @7 (Acy3)™®?), P(Sym*y3) 1) = (A2(A+2a)*, P(Sym?3) |31 )
= (A% +8a\%, P(Sym®v}) |1 )-
By Exercises A.2.6(2) and 3.3(3),
P —cl(Sym27§))\5 = —4a)\> ¢ H* (P(Sym27§)]P1;Z).
We conclude that the number of conics in P? passing through 2 general points and 4 general
lines is
(e((27" ® 47" @7 (Acys) ), B(Sym?y) 1) = (—4aX0 + 8aA%, B(Sym?95) [, ) = 4.

Exercise 3.6. Show that the number of conics in P? passing through

(1) 1 point and 6 general lines is 18;

(2) 8 general lines is 92.

4 Grassmannians of three-planes

In order to count conics in P" with n >3, we need to describe a topology and a complex structure
on G(3,n+1), the space of three linear subspace of C". Denote by

B(3,n) C (C"—0) x (C"—0) x (C"—0)

the open subspace consisting of triples of linearly independent vectors in C™. Let B*(3,n) C B(3,n)
be the subset of orthonormal triples (w.r.t. the standard hermitian inner-product on C"). Since
the maps

B(3,n),B*(3,n) — G(3,n), (v1,v2,v3) — Cvy + Cvg + Cus,

are surjective, the topologies of B(3,n) and B*(3,7n) induce quotient topologies on G(3,n); see
[15, Section 22]. The maps
GL,(C),U(n) — G(3,n)

sending each matrix to the span of the first three columns are also surjective. As with G(2,n) in
Section 2, there are at least four ways to describe the topology on G(3,n).

19



Exercise 4.1. Let n€Z% be such that n>3. Show that
(1) the four quotient topologies on G(3,n) are the quotient topologies
B(3,n)/GL3(C), B*(3,n)/U(3), GLn(C)/Gs, U(n)/U(3)xU(n—3)

for certain free group actions and for a certain subgroup GsC GL,(C);
(2) the four quotient topologies on G(3,n) are in fact the same.
Exercise 4.2. Let n€Z™ be such that n>3. Show that
(1) G(3,n) is a compact complex manifold of dimension 3(n—3) and the projection maps

B(3,n),GL,(C) — G(3,n)
defined above are holomorphic submersions;

(2) the bijections
G(k,n) — G(n—k,n), V — Ann(V), (4.1)
are holomorphic if k,n—k <3 (this is true in general).

A stratification of G(3,n) and its cohomology are also described similarly to those of G(2,n).

Given a flag V be in C" as in Section 2 and nonnegative integers a, b, ¢, we define
ooe(V) = {VeG(3,n): dm(VNV;,_9-4) =1, dim(VNV;_3_4) =0
dim(VNV,_1-p) = 2, dim(VNVp_op) =1
dim(VNV,—) = 3, dim(VNV,_1—c) = 2

)
)

Since V is a linear subspace of C™ of dimension 3,

U‘(l)bC(V) = {VGG(S,n): Vﬂvn—?—a#{o}p VﬂVn—S—a:{O};
dim(VﬂVn_l_b) = 2, dim(VﬂVn_Q_b) = 1;
VcC Vn—ca |4 §Z Vn—l—c}-

Since a generic element of G(3,n) is not contained in V,,_1, meets V,,_o in a one-dimensional
subspace, and intersects V,,_o trivially, the numbers a, b, and ¢ measure the extent of the deviation
of the elements of ¢, from a generic element of G(3,n). Note that

0% (V) # 0 - n-3>a>b>c.

Furthermore,

G(3,n) = L] o (V). (4.2)

n—3>a>b>c>0

The closure of 6%, (V) in G(3,n) is given by

Oabe(V) = 69,.(V) = {VEG(3,n): VC Ve, dim(VNV,_1-p) > 2, VNV,0o #{0}}.  (4.3)

These subspaces of G(3,n) are called Schubert cells. We will write o,(V) for 0400(V) and o44(V)
for oapo(V). If
Vil = (Vo, Vi, oo, Vi)

20



is a flag for C" ¢, then
Tabe(V) = 0g—cp—c(V"°) C G(3,n—c). (4.4)

These Schubert cycles can also be represented by Young diagrams, this time with 3 rows and
(n—3) columns:

p=(5,21) C G(3,9) ue = (5,4,1) C G(3,9)

For every Young diagram p, we denote by u'* the transposed diagram, obtained by interchanging
the rows and columns of p. The first part of the next exercise is the G(3, n) analogue of Lemma 2.3
and Exercise 2.5.

Exercise 4.3. Let n€Z% be such that n>3. Show

(1) the decomposition (4.2) is a stratification of G(3,n) with
dimc 6%,.(V) = 3(n—3) — (a+b+c) if n-=3>a>b>c¢>0; (4.5)
(2) the subvariety o,(V) of G(3,n) represented by a 3x(n—3) Young diagram p is smooth if and
only if u€ is a rectangle.

Similar to the G(2,n) case, the Schubert cycles o.p.(V) and o44.(V’) corresponding to two dif-
ferent flags determine the same elements in the homology of G(3,n) and via the Poincare duality
in the cohomology of G(3,n). Both of these elements will be denoted by o44.. By Exercise 4.3,

Oabe € H2(3(n—3)—(a+b+c)) (G(3, n); Z) ) HQ(G—HH—C) (G(3, n); Z)

Furthermore, H.(G(3,n);Z) and H*(G(3,n);Z) are the free Z-modules generated by o4 with
n—3>a>b>c>0. The next lemma is the G(3,n) analogue of Lemma 2.16.

Exercise 4.4. Let n€Z™" be such that n>3. Show that

(1) the total chern class of the vector bundle v — G(3,n) is given by
c(y3) =1+ 01 +on+ o € H(G(3,n); Z);

(2) Ann*o, = 0, whenever n <6 (this is true in general).

Similarly to Lemma 2.6, if n—3>a>b>¢>0, then

1, ifd=n-3—c, b/=n—-3-b, /=n—-3—aq;
(TabeOaer, G(3,n)) = {0 otherwise (4.6)
Similarly to (2.9),
<0’alblcl o Oagbpens G(3, n)> = <0’a1,clyb1,cl e Ogp—cpibp—cs G(3,m—c1—.. .—ck)>. (4.7)
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Exercise 4.5. Let n€Z% be such that n>3.
(1) Verify (4.6) and (4.7).
(2) Suppose 0 <aq,as,as, ba, b3 <n—3. Show that

if bo+b3<n—3<as+bs,az+bs,
<Ga10a2620a3b3, G(3,n)> =<7 a1+ag+ag = 3(n—3); (4.8)
0, otherwise.

(3) Suppose 0 <aq,az, by <n—3. Show that

Oay - o-a2b2 — E Oa'b ¢ - (49)
a'>a2>b'>ba>c'>0
a'+b'+c'=a1+az+bs

Exercise 4.6. Let n€Z™ be such that n>3.
(1) Show that (4.6), (4.7), and (4.9) suffice to compute all intersection numbers

<O-a1blc1 -+ Oapbpcrs G(?), TL)> S ZZO

(2) Confirm the intersection numbers in Table 5.

To be added: constraints other than points and codimension 2, conics on complete intersection,
genus 1 conics on complete intersections, twisted cubics

The number of conics on the quintic threefold, X45 C P4, is computed in [6, Section 3|, by
evaluating the euler class of a suitable bundle over the total space of the fibration

P(Sym2y3) — G(3,5).
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(...G(3,6)) (...G(3,6)) (....G(3,6))

01011033 0 0':1)’0'20'22 3 0'110'%0‘21 2
0‘%0‘33 1 0':130'110'22 3 0'%10’20'21 2
031032 0 07099 6 031091 2
0%02032 2 01020§ 1 0%03021 4
0%011032 1 01011(7% 0 01201102021 4
ofoss 3 ojo3 1 020} 091 4
0%03031 1 0102092103 1 o1 O'% 3
011021031 1 0101102103 1 0101103 3
0%021 031 2 ai’agl o3 2 o1 0%10% 2
0105031 2 o3, 2 010309 3
0101102031 1 0'10'20‘%1 3 010’4111 3
010%,031 1 0101105, 3 otos 6
0309031 3 ojo3, 6 0301105 5
o3011031 2 o303 1 oot o9 5
oYos 5 01105073 1 ooy, 6
0203092 1 03,0903 0 oYo3 11
0110210922 1 0%10'3 1 0'?0'110'2 10
02091092 2 0?0303 2 otod 11
0'10'30'22 1 0'%0'11020'3 1 0‘{0‘2 21
0101102092 2 U%O’%l o3 1 O’IO’H 21
010%1022 1 05’021 2 J? 42

Table 5: Top intersections of Schubert classes on G(3,6).
from (4.6) and (4.9) are not shown (except for the first one).

The numbers directly obtainable
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2 Pseudocycles

5 Overview

A compact oriented k-manifold M carries a fundamental class [M ] € Hy(M;Z). If X is a topological
space and M C X, let
[M]x = vx,m+([M]) € Hi(X; Z)

denote the image of [M] under the homomorphism induced by the inclusion ¢x @ M — X.
More generally, if f: M — X is a continuous map from a compact oriented k-manifold, let

/1= fi([M]) € Hy(X;2Z).

If —M is the same manifold with the reverse orientation and — f denotes the same map as f, but
with the domain — M,

[=f] = —[f] € Hy(X;Z).

Two maps f1: M1 — X and fo: My — X from;ompaet oriented k-manifolds are cobordant if
there exists a compact oriented (k+1)-manifold M with boundary

8M = (—Ml) L My

and a continuous map f: M —s X such that f|MZ =f; for i=1,2. For example, let f: M — X
be a continuous map from a compact oriented k-manifold M, I=10,1], and mo: Ix M — M be
the projection onto the second component. The continuous map

fomy:IxM — X
is then a cobordism between f and itself, as well as between
FU(=f): MU(=M) — X
as the empty set (viewed as a k manifold).

The set of equivalence classes of continuous maps f: M — X from compact oriented k-manifolds
forms an abelian group under the disjoint union with the inverse given by reversing the orientation
of the domain. This group, denoted Q(X), is called the k-th oriented cobordism group of X.
Since two cobordant maps f; : M; — X from compact oriented k-manifolds define the same
homology class, the group homomorphism

Q(X) — Hi(X;7Z), [f: M—X]| — f*([M]), (5.1)
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is well-defined. If X is a smooth manifold, Q(X) can be defined using smooth manifolds and
smooth maps. This point of view provides a geometric way of representing homology cycles in a
smooth manifold which is convenient especially when defining or computing specific geometrically
meaningful counts. The homomorphism (5.1) tensored with Q, i.e.

Qk(X)@)ZQ—>Hk(X;Z)®ZQ:Hk(X;Q), [f:M—>X]®q—>qf*([M]), (52)

is surjective, as a nonzero multiple of every homology class in an orientable manifold can be
represented by an embedded submanifold; see [23, Théoreme I1.29]. By [12, Corollary 18.9],

Q.(pt) ®z Q =~ Q[P P4, .. ];

thus (5.2) is never injective. The homomorphism (5.1) need not be even surjective in general.
These deficiencies of the oriented cobordism ring can be resolved by relaxing the compactness
assumption on the domain of the maps to an assumption regarding the image of the points away
from compact subsets of the domain.

Definition 5.1. Let X be a topological space. The boundary of a continuous map f: M — X
from a topological space is the subspace

Bdf= ()] f(M-K)cCX.

KCM cmpt

Definition 5.2. Let X be a smooth manifold. A subset Z C X is of dimension at most & if there
exists a k-dimensional manifold Y and a smooth map h: Y — X such that Z Ch(Y").

Definition 5.3. Let X be a smooth manifold.

(1) A smooth map f: M — X from a smooth oriented k-manifold M is a k-pseudocycle if
f(M)CX is compact and dimBd f < k—2.

(2) Two k-pseudocycles fi: My — X and fy: My — X are equivalent if there exists a smooth
map f: M — X from a smooth oriented (k+1)-manifold M with boundary OM = My— M,

such that f(M)C X is compact, dimBd f < k—1, and f|y, = f; for i=1,2.

For example, the standard inclusion tg2 ¢c: C— S 2 is a 2-pseudocycle, since the boundary of ¢ s2.C
consists of the single point co. On the other hand, the standard inclusion of the open unit disk
into S? is not a 2-pseudocycle, since the boundary of this map is S', which is one-dimensional.
If f: M — X is a k-pseudocycle,

fom:IxM — X

is an equivalence between f and itself, as well as between
ful=fH):Mu(-M)— X

as the empty set (viewed as a k-pseudocycle). The set of equivalence classes of k-pseudocycles,
which we denote by Hy(X), forms an abelian group under the disjoint union with the inverse
given by reversing the orientation of the domain.

The boundary of every smooth map f: M — X from a compact manifold is empty. Thus, every
smooth map f: M — X from a compact oriented k-manifold is a k-pseudocycle and every two
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such maps equivalent in 2 (X) are also equivalent as elements of Hy(X). Thus, there is a natural
group homomorphism

Qp(X) — Hi(X), [f: M—X]| —[f: M —X]. (5.3)

Since the homomorphism (5.1) is neither injective nor surjective in general, the first part of The-
orem 5.4 below implies that neither is the homomorphism (5.3).

If X is oriented, H.(X;Z) carries a ring structure,
Hkl (Xa Z) ® Hk:Q (X7 Z) — Hk:1+k2—n(X; Z)a

given by
AR B — PD(PDX(A) U PDX(B))

where
PD: H.(X;Z) — H]! *(X;Z) and H!(X;Z) — H,—«(X;2)

are the Poincare Duality isomorphisms and n =dim X. In this case, H.(X) also carries a ring
structure,
Hkl (X) ® HkQ (X) — Hk1+k2—n(X)7

defined as follows. Suppose i=1,2, f;: M; — X is a k;-pseudocycle, and h;: Y; — X is a smooth
map from a (k; —2)-manifold such that

(1) Bd f1 € Imhy and Bd fo C Im hy;
(2) fifix fo, fifixhe, folxhi, and hifixho.
Since X, My, and My are oriented and fiMx fo,
Mg % g, My = {(x1,22): fi(x1)= fala2)}
is a smooth oriented manifold of dimension ki +k9—n and
foxarfor Myg X g My — X, (z1,22) — fi(21) = fa(z2).

The remaining assumptions insure that fi x s fo has sufficiently small boundary. By Propo-
sition 11.2, every pair of equivalence classes in H.(X) admits representatives f; : M; — X
satisfying (1) and (2).

Theorem 5.4. Let X be a smooth manifold.

(1) There exist natural homomorphisms of graded Z-modules
O H(X) — Hi(X;Z) and U: H(X;Z) — Ho(X), (5.4)

such that ® o W=1d, ¥ o ®=1d, and the composition of ® with the homomorphism (5.3) is
the homomorphism (5.1).

(2) If in addition X is oriented, the isomorphisms (5.4) intertwine the ring structures on H.(X)
and H(X;7Z).
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A smooth map ¢g: X — X’ between smooth manifolds induces homomorphisms
gx: Ho(X;Z) — H(X';7) and Gx: Ha(X) — Hao(X)

by composition on the left. The naturality statement of Theorem 5.4 means that these maps
commute with the isomorphisms ® and ¥ corresponding to X and X’.

For the purposes of the first part of Theorem 5.4, it is sufficient to require that pseudocycle
maps be continuous, as long as the same condition is imposed on pseudocycle equivalences. All
arguments in this chapter concerning the first part of Theorem 5.4 go through for continuous
pseudocycles; in fact, Lemma 7.2 would no longer be necessary. However, smooth pseudocycles
are useful, including in algebraic geometry and symplectic topology, for describing intersections of
cycles geometrically. In [16] and [18], pseudocycles are used to define Gromov-Witten invariants
of compact semi-positive symplectic manifolds; they are then used to obtain a recursion for counts
of rational curves in projective spaces.

Theorem 5.4 is the main subject of this chapter; its proof is outlined starting with the next
paragraph. The proof of the first part of this theorem follows [25, 27]. Alternative treatments of
this part of Theorem 5.4 appear in [7] and [20]. The latter is restricted to compact target mani-
folds X and considers only k-pseudocycles for which the boundary itself has vanishing homology
in dimensions k—1 and k; see Remark 8.5. While non-compact manifolds are considered in [7],
pseudocycles in [7] are not required to have compact closures. By [7, Proposition 1], there is then
no surjective homomorphism from H,(X;Z) to H.(X) for a non-compact manifold X, and so
Theorem 5.4 fails for non-compact manifolds if pseudocycles are not required to have compact
closures. The relevant target manifolds in [16, Section 7.1] and [18, Section 1] are compact, and
a pseudocycle is not explicitly required to have a compact closure; the closure condition is made
explicit in [17, Section 6.5].

Exercise 5.5. Let f: M — X be a continuous map between topological spaces and U be an
open neighborhood of Bd f.

(1) Show that the subspace f~1(X—U)C M is compact if f(M)CX is.

(2) Give an example showing that the compactness requirement on f(M) cannot be dropped.

If f: M — X is a k-pseudocycle, one can choose a compact k-submanifold with boundary,
V C M, so that f(M—V) lies in an arbitrary small neighborhood U of Bd f. In particular, f|y
determines the homology class

f«[V,0V] € Hy(X,U; 7).

By Corollary 8.4, U can be chosen so that Hy(X,U;Z) is naturally isomorphic to Hy(X;Z). In
order to show that the resulting cycle in Hy(X;Z) depends only on f (and not V or U), we use
Proposition 6.4 to replace the singular chain complex S,(X) by a quotient complex S, (X). The
advantage of the latter complex is that cycles and boundaries between chains can be constructed
more easily; see Remark 6.5.

In an analogous way, a pseudocycle equivalence f : M — X between two pseudocycles

fi:Mi—>X, i:O,l,
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gives rise to a chain equivalence between the corresponding cycles in Si(X, W), for a small
neighborhood W of Bd f. In particular, the homology cycles determined by fo and f; are equal
in H,(X,W;Z). On the other hand, by Corollary 8.4, W can be chosen so that Hy(X;Z) naturally
injects into Hy (X, W;Z). Therefore, fo and f; determine the same elements of Hy(X;Z) and the
homomorphism ® is well-defined. Its construction is described in detail in Section 8.

Remark 5.6. The homomorphism ® of Section 8 induces the linear map
Hi(X) — H*(X;Z)/Tor(H*(X;Z))

described in [16] and [18]. However, the construction of ® in Section 8 differs from that of the
induced map in [16] and [18]; the latter is in fact constructed via the homomorphism ¥ and the
natural intersection pairing on H.(X) defined whenever X is oriented. The construction of ® in
Section 8 is more direct.

Remark 5.7. The construction of ® in Section 8 implies the following. Suppose M is an oriented
k-manifold and f: M — X is a continuous map with a pre-compact image. If R is a ring and
Bd f has an arbitrary small neighborhood U so that H;(U; R)=0 for all [ >k—2, then f defines
an element in Hi(X; R). The analogous statement holds for equivalences between maps. It is
not necessary for X to be a smooth manifold. These observations have a variety of applications.
For example, the first statement implies that a compact complex algebraic variety carries a
fundamental class. For essentially the same reason, (generalized) pseudocycles figure prominently
in the approach in [24] to a large class of problems in enumerative geometry. Pseudocycles can
also be used to give a more geometric interpretation of the virtual fundamental class construction
of [4] and [10] and are used to define new symplectic invariants in [26]. This is a different type
of generalization, as the ambient space X in these settings is a topological space stratified by
infinite-dimensional orbifolds.

In order to construct the homomorphism ¥, we show that a singular cycle gives rise to a pseudocy-
cle and a chain equivalence between two cycles gives rise to a pseudocycle equivalence between the
corresponding pseudocycles. The former works out precisely as outlined in [16, Section 7.1], with
a reinterpretation for the complex S,(X); this reinterpretation is not necessary to construct ¥
in Section 7, but is needed in Section 9 to show that the maps ® and ¥ are isomorphisms. If s
is a k-cycle, all codimension-one simplices of its k-simplices must cancel in pairs. By gluing
the k-simplices along the codimension-one faces paired in this way, we obtain a continuous map
from a compact topological space M’ to X. The complement of the codimension-two simplices
is a smooth manifold and the continuous map can be smoothed out in a fixed manner using
Lemma 7.2. We thus obtain a pseudocycle from the cycle s.

On the other hand, turning a chain equivalence § between two k-cycles, sg and s1, into a pseudo-
cycle equivalence between the corresponding pseudocycles,

fo:Mo—)X and fliMl—)X,

turns out to be less straightforward. Similarly to the previous paragraph, § gives rise to a smooth
map from a smooth (k+1)-manifold with boundary,

f:M*— X.
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However, if all codimension-two simplices (including those of dimension k—1) are dropped, the
boundary of M* will be the complement in MyLIM; of a subset of dimension k— 1 (instead of
being MoLIM). One way to fix this is to keep the (k—1)-simplices that would lie on the boundary.
In such a case, the entire space may no longer be a smooth manifold and its boundary may not
be MoUM;, because the (k—1)-simplices of the (k+1)-simplices of § may be identified differently
from the way the (k—1)-simplices of the k-simplices of sy and s; are identified. It is possible to
modify 5 so that all identifications are consistent. However, the required modification turns out
to be quite laborious. We instead implement a less direct, but far simpler, construction suggested
by D. McDuff. Instead of trying to reinsert (k—1)-simplices into the boundary of M*, we attach
to M* two collars,
My C [0,1]xMy  and  M; C[0,1]x M;.

The boundary of M; has two pieces, M; and the complement in M; of the (k—1)-simplices. We
attach the latter to the piece of the boundary of M* corresponding to s;. In this way, we obtain
a smooth manifold M with boundary M; — My and a pseudocycle equivalence from fy to fi; see
Section 8 for details.

In Section 9, we verify that the homomorphisms ¥ and ® are mutual inverses. It is fairly straight-
forward to see that the map ®oWV is the identity on H,(X;Z). However, showing the injectivity
of ® requires more care. The desired pseudocycle equivalence f: M — X, is constructed by
taking a limit of the corresponding construction in Section 7. In particular, the smooth manifold
M is obtained as a subspace of a non-compact space.

6 Oriented homology groups

If X is a simplicial complex, the standard singular chain complex S,(X) most naturally corre-
sponds to the ordered simplicial chain complex of X; see [14, Section 13]. In this section, we define
a singular chain complex S,(X) which corresponds to the standard, or oriented, simplicial chain
complex. In particular, its homology is the same as the homology of the ordinary singular chain
complex; see Proposition 6.4. On the other hand, it is much easier to construct cycles in S, (X)
than in S,(X); see Remark 6.5.

If A is a finite subset of R¥, we denote by CH(A) and CH’(A) the (closed) convex hull of A and
the open convex hull of A, respectively, i.e.

C’H(A):{Ztvv:tve[o,l], Ztvzl} and

vEA vEA
CHO(A) = {th: t,€(0,1), Ztyzl}.
vEA vEA

For each p=1,...,k, let e, be the p-th coordinate vector in R*. Put eg=0€R¥. Denote by
Ak:CH(eo,el,...,ek) and IntAk:CHO(eo,el,...,ek)
the standard k-simplex and its interior. Let
=k
1 /% 1 1
b= () e
k k+1<q:0€q> k1 k1
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be the barycenter of AF.

A map f: A¥ —R™ is linear if

fltoeo+. . +trer) =tof(eo) + ...+ fuler) ¥ (to,-...tx) € [0,1]F st > teeq = 1.
q=0
For each k€Z™ and p=0,...,k—1, define the linear map
; if ¢ <p;
thpt AP AEC AR by e =00
€q+1, if CIZP
For any element 7 in the group Sj of permutations of the set {0, ..., k}, we define the linear map

r: AP — AF by T(eq) =erq Vqg=0,...,k
We embed Sy into Siy1 by setting 7(k+1)=k+1 for any 7€ S.

If X is a topological space, let (S* (X), 8X) denote its singular chain complex, i.e. the free abelian
group on the set

G C(AF, X)
k=0

of all continuous maps from standard simplices to X, along with a map Ox of degree —1. Let
S;.(X) denote the free subgroup of S,(X) spanned by the set

{f—(SignT)fOTifEC(Ak,X>, T8, kzO,l,...}.

If 7€ 8, put
7 =Tdar — (signT)7 € Sj(AF). (6.1)

Thus, S, (X) is the subgroup of S,(X) spanned by
{faT: fEC(AF, X), TES), keZZ0).
If h: X —Y is a continuous map, the homomorphism
hy: S (X) — Su(Y)

maps S, (X) into S,(Y).
Lemma 6.1. The free abelian group S,(X) is a subcomplex of (S.(X),0x), i.e. dxSL(X)C SL(X).
Proof. Suppose 7€ Sy,. For any p=0,...,k, let 7,€S;_1 be such that

T O Lkp=lkr(p) ©Tp' AR A]T“(p) C AF, (6.2)

Let 73, € Sk be defined by

p(q), ifg<k;
Tk,p(Q) = { kp( ) .
D, if g=k.
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Since 7Tk, = T ()0 Tp € Sk,
sign 7, = (—1)*FPFE=T@)gion 7 = (—1)PT"Psign 7 vV 7eS;. (6.3)

By (6.2) and (6.3),

k k k
OArT = Z(—l)pTOLk,p = Z(—l)kaJ(p)OTp = (signT) Z(—I)T(p) (sign 7). r(p) O Tp

p=0 p=0 p=0

k
= (signT) Z(—l)p(sign Tr=1(p) ) ke pOTr—1(p)-
p=0
Thus,
k
OprT = Z(—l)p(%p — (Sign Ty —1(p) )bk p OTr—1(p)) € Si L (AF).
p=0

It follows that for any f€Si(X),
Ox (f47) = f4#(0arT) € Sj_1(X).
This establishes the claim. ]

Lemma 6.2. There exists a natural transformation of functors Dx : Sy — S«y1 such that

(1) if f: A™ — A* is a linear map, Dx f is a linear combination of linear maps A™T!1 — AF
for all k,me Z29;

(2) DxS.(X) C S,.(X) for all topological spaces X ;
(3) OxDx = (—1)k+11d + Dx0x on SIIC(X)
Proof. (1) Suppose k€ Z*t. If f: A™ — AF is a linear map, define a new linear map

if g=0,...,m;
rq ) » TS (64)

P :Am-f—l N Ak b P — f(eQ)7
wf Y ef (eq) by, if g=m+1.

The transformation Py induces a homomorphism on the sub-chain complex of S,(A*) spanned
by the linear maps. If 7 €S, CSpy1 and f €S, (AF) is a linear map, then
Py(for) = Pyfor. (6.5)

Thus, P, maps the subgroup of S.(A*) spanned by the linear maps into itself. Similarly,

T#(Pkf) =TO Pkf = Pk(’]'of) = Pk(T#f) (66)
if TeSy and f is a linear map as above. Furthermore,
OprPrf = (=D)L f + P90 f) (6.7)

for every linear map f and thus for linear combinations of linear maps.
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(2) Let Dx|g,(x) =0 if k <1; then Dx satisfies (1)-(3). Suppose k> 1 and we have defined
Dx|s, ,(x) so that the three requirements are satisfied wherever Dy is defined. Put

Dar(Idar) = Pe(Idpas + (—1)* ™ DardparIdar) € Spr1(AF). (6.8)

By the inductive assumption (1) and (6.4), Dax(Idax) is a well-defined linear combination of
linear maps. For any f€C(AF, X), let

Dxf = fuDarldas. (6.9)

This construction defines a natural transformation Sy — Ski1. Since Dax(Idax) is a linear
combination of linear maps, it is clear that the requirement (1) above is satisfied; it remains to
check (2) and (3).

(3) Given feC(AF, X) and 7 €Sy, let s= fu7€ S)(X), with 7 as in (6.1). By (6.9), (6.8), (6.6),
and the naturality of Dx|s, ,,
Dx(for) = furpDarldar = furpPp(Idar + (=1)" T DardxIdar)

6.10
= f#Pk (7’ + (—1)k+1T#DAkaAkIdAk) = f#Pk(T + (—1)’““DM8MT). ( )

Thus,
Dxs = f#Pk (7: + (—1)k+1DAk8Ak’/~'). (6.11)

By Lemma 6.1, the induction assumption (2), and (6.6), S;(AF) is mapped into S.(AF) by
DarOpr and by Py. Thus, by (6.11), Dy maps S;(X) into Sj,(X). Finally, by (6.11), (6.7),
and the inductive assumption (3),

OxDxs = 0x fu Py (F+(—=1)" ™ DpkOpr7) = frOpan 7 + (= 1) f20nr PeD Ak Opr ™
= Fa ()P 4 Pooart) + (= 1) o (1) DakOarT + PoOpr DarOr7)
= ((—1)k+1s+DX8Xs) + f#PkaAk% =+ (—1)k+1f#Pk((—l)kaAk%—kDMaik%)
= (_1)k+15 + Dx0xs.
Thus, Dx|g, satisfies the induction assumptions (2) and (3). O
Corollary 6.3. All homology groups of the complex (SL(X),ax\s;(x)) are zero.
Let S.(X)=S.(X)/S.(X) and denote by
70 Sx(X) — Si(X) (6.12)

the projection map. Let dx be boundary map on S,(X) induced by dx. We denote by H,(X;Z)
the homology groups of (S*(X), 5X)~

Proposition 6.4. If X is a topological space, the projection map 7: Si(X) — S, (X) induces a
natural isomorphism H,(X;Z)— H.(X;7Z). This isomorphism extends to relative homologies to
give an isomorphism of homology theories.
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Proof. The first statement follows from the long exact sequence in homology for the short exact
sequence of chain complexes

0— SL(X) — S (X) 5 S.(X)—0

and Corollary 6.3. The second statement follows from the first and the Five Lemma; see [14,
Lemma 24.3]. O

For a simplicial complex K, let |K| C RY denote its geometric realization; see [14, Section 3.
There is a natural chain map from the ordered simplicial complex C,(K) to the singular chain
complex S, (|K|), which induces an isomorphism in homology. If the vertices of K are ordered,
there is also a chain map from C.(K) to the oriented chain complex Ci(K), which induces a
natural isomorphism in homology. However, the chain map itself depends on the ordering of the
vertices; see [14, Section 34]. The advantage of the complex S,(K) is that there is a natural
chain map from C,(K) to S,(K), which induces an isomorphism in homology; this chain map is
induced by the natural chain map from C(K) to S.(]K|) described in [14, Section 34].

If |[K|CRY is a geometric realization of a simplicial complex K, for each [-simplex o of K there
is an injective linear map ¢, : Al — |K| taking Al to |o|. If M is an oriented n-manifold with
boundary, an oriented triangulation of (M,0M) is a triple T'= (K, K',n) consisting of a simplicial
complex K, simplicial sub-complex K’, and a homeomorphism

n: (|K], [K') — (M,0M)
such that for every n-simplex A and every =€ Int A* the homeomorphism
No =Notg: A" — M (6.13)
takes the oriented generator of H, (A, A¥ —z;7) to the oriented generator of H,(M,M —x;Z).

Remark 6.5. Let M be a compact oriented n-manifold with boundary M and T'= (K, K',n)
be an oriented triangulation of (M,dM). The fundamental homology class

[M,dM] € Hy,(M,0M;Z)
is represented in Sy (M, M) by
dodmet= Y 7o),
ceK,dimo=n ceK,dimo=n
where 7 is as before in (6.12). On the other hand,
D o
ceK,dimo=n

may not even be a cycle in S, (M,0M). Tt is definitely not a cycle if 9M ={) and n is an even
positive integer, as the boundary of each term 7, contains one more term with coefficient +1
than —1. Similarly, if h: (M,0M)— (X, U) is a continuous map, h.([M,0M]) € H,(X,U;Z) is
represented in Si (X, U) by

Z {hons};

ceK,dimo=n

the obvious preimage under 7 of the above chain in S, (X, U;Z) may not be even a cycle.
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We next characterize cycles and boundaries in S, (X) in a manner suitable for converting them to
pseudocycles and pseudocycle equivalences in Section 7. We use the statements of Exercises 6.6
and 6.7 below to glue maps from standard simplices together to construct smooth maps from
smooth manifolds.

The homology groups of a smooth manifolds X can be defined with the space C(A*, X) of con-
tinuous maps from A* to X replaced by the space C°(AF, X) of smooth maps; this is a standard
fact in differential topology. The operator Dx of Lemma 6.2 maps smooth maps into linear
combinations of smooth maps. Thus, all constructions of this section go through for the chain
complexes based on elements in C*(AF, X) instead of C(A*, X). Below S.(X) refers to the
quotient complex based on such maps.

N
If s= ) fj, where f;: A¥ — X is a continuous map for each j, let

J=1

Cs={(.p):j=1,...,N, p=0,....k}.

J=N _

Exercise 6.6. Suppose k>1 and s = ) f; is a cycle in Si(X). Show that there exist a subset
j=1

D; CCsxCs disjoint from the diagonal and a map

7:Ds — Sp-1, ((jl’pl)’ (j27p2)) T T(j1.p1),(j2.p2)

such that

(1) if ((j1,p1), (j2, p2)) €Ds, then ((j2,p2), (j1,p1)) €Ds;

(2) the projection Dy — Cs on either coordinate is a bijection;

(3) for all ((j1,p1), (jo2,p2)) €Ds,

— -1 ) — f. ) )
72:02)5(71:01) = T(j1,p1),(G2.p2) Fiz © thepn = f1 © thpr © T(1,p1),(Gop2)» (6.14)

J1.p1),(J2,p2) = —(=1)PriPe, (6.15)
(6.16)

(

and sign 7(

The above claim follows from the assumption that d{s} =0 and from the definition of S,(X)
above. The terms appearing in the boundary of s are indexed by the set Cs, and the coefficient
of the (j,p)-th term is (—1)P. Since s is a cycle in S,(X), these terms cancel in pairs, possibly
after composition with an element 7 € S;_1 and multiplying by sign 7. This operation does not
change the equivalence class of a (k—1)-simplex in Sg_1(X).

Exercise 6.7. Suppose k>1,

i
>

j=No Jj=N1 J

so= Y {fog},  s1=> {hs}, 3
s i=1

G and 5{5} = {81} — {80} S Sk(X)

.
I
-
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Show that there exist a subset Dz C C; x C; disjoint from the diagonal, subsets Céo),Cél) C Cs,
and maps
7:Ds — Sk, ((J1,1), (J2,P2)) — T(1.p1),(asps)
Gidi): {1, Ni} — €9 and 7 {1,...,Ni} — Sk, j— 7y, 0= 0,1,

such that
(1) if ((j1,p1), (j2,p2)) €Ds, then ((j2, p2), (j1,p1)) € Ds;

(2) the projection Dz — C; on either coordinate is a bijection onto the complement of Céo) chl);

(3) for all ((j1,p1), (j2,p2)) € Ds,

- .| 3 _ 7 -
T(j2,p2),(j1.p1) = T(jl,p1)7(j2’p2)7 f]2 Olk+1,pp = fh O lk+1,p1 © T(j1,p1),(j2,p2)> (6'17)

and sign 7( = —(=1)PrtP2, (6.18)

J1,01),(32,p2)

(4) for all i=0,1 and j=1,..., N,

Fi.) © U1 u) © Ty = fig and sign ) = —(=1)"PU); (6.19)

(5) (ji,Ps) is a bijection onto et for 1=0,1.

5

This lemma follows from the assumption that

0{s} = {s1} — {s0}-

The terms making up 95 are indexed by the set Cs. By definition of S,(X), there exist disjoint

subsets Céo) and Cél) of Cz such that for each (j,p) € Cél) the (j,p)-th term of 95 equals one of
the terms of s;, after a composition with some 7 € S, and multiplying by —(—1)’sign 7. The
remaining terms of Cs must cancel in pairs, as in the case of Exercise 6.6.

7 From homology to pseudocycles

This section establishes Proposition 7.1 below. In the proof of Lemma 7.3, we construct a ho-
momorphism from the subgroup of cycles in S,(X) to H.(X). We show that every Z-homology
cycle gives rise to a pseudocycle and every boundary between cycles gives rise to a pseudocycle
equivalence. We use the conclusions of Exercises 6.6 and 6.7 to glue maps from standard simpli-
cies into a continuous map from a manifold-like space. We then use Lemma 7.2 below to smooth
out the map across the codimension 1 simplicies.

Proposition 7.1. If X is a smooth manifold, there exists a homomorphism
U: H(X;Z)—H(X),

which is natural with respect to smooth maps.
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Starting with a cycle {s} as in Exercise 6.6, we glue the functions fjoyy, together, where ¢, is
the self-map of AF provided by Lemma 7.2 below. These functions continue to satisfy the second
equation in (6.14), i.e.

J3200k © tkpy = 190k © Lkpy © T(j1 p1),(a.p2) V ((j1,p1), (j2, p2)) € Ds, (7.1)

because @), =id on AF—Int A* by the first equation in (7.5). Using these modified functions in-
sures that the glued map is smooth across the codimension 1 simplicies. The proof of Lemma 7.3
implements a construction suggested in [16, Section 7.1].

Starting with a chain {5} as in Exercise 6.7, we glue the functions fjo@kﬂocpkﬂ together, where
@Pr41 and @pq are the self-maps of A¥! provided by Lemma 7.2. If i=0,1 and j=1,..., N;, by
the third equation in (7.6), the second equation in (7.5), and the first equation in (6.19)

Fu() 0 Ph1 © ey 15,5) ©T(ij) = J.(5) © bt 15:() ©PROT (i) = J,(5) © bt 1,5i(5) OT (i) O Pk
= fi,joPk-

Since @p41 =id on A¥1 —Int AFF1 it follows that

J3:() O PrA10Ph+1 © b1 5, () ©T(0,j) = Jigopr YV j=1,...,N;, i=0,1. (7.2)

Similarly, if ((j1,p1), (j2,p2)) € Ds, by the third equation in (7.6) used twice, the second equation
in (6.17), and the second equation in (7.5),

fj2 OPk+1© lk+1,p2 = fj2 Olk+1,p, OPk = fjl Olk+1,p1 o7~—(j17p1)7(j27p2) O Pk
= fi1 © Ut Lp1 0Pk © T p1),Gzp2) = Fin OPh1 © Lt 1,py OT (51 p1 ), (j,pa)
Since p41 =id on AF —Int AFL it follows that
Ji20Pk+10Pk+1 © Lit1,py = Jj1 OPk+19Pk+1 © Lk+17p107~—(j1,p1),(j2,p2) v ((j1,p1), (j2,p2)) €Ds. (7.3)

Thus, the functions fjocﬁkﬂowkﬂ are the analogues (in the sense of Exercise 6.7) of the func-
tions f; for the maps fo jopr and fi j0¢k.

We continue with the notation set up at the beginning of Section 6. Define

q=k

- - 1

W;f: AP —{e,} — A]; by TrS( E tqeq) = §< E tqeq).
q=0 P g

Put )
bk)p = Lkvp(bk—1)7 b2;7p - m (bk +Z¢: €q> .
q7p

The points by, , and b, , are the barycenters of the (k—1)-simplex A’; and of the k-simplex spanned
by bx and the vertices of A’;; see Figure 2.1. Define a neighborhood of Int A’; in A* by

q=k
Uj = {tpb p+ theq: tp>0, t,>0 VYg#p, thzl}.
0<q<k =0

q#p
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€2

@l A W al A W
Figure 2.1: The standard 2-simplex and some of its distinguished subsets

If p,gq=0,1,...,k and p#q, let
Ak = AFNAL

P,q —

be the corresponding codimension 2 simplex. Define neighborhoods of Int A’;q in AF by

r=k

Upy = {tpbrpttobegt > trerity,tg>0, t,>0Vr#p,q, > t,=1},
0<q<k r=0
T#pq
r=k
U;];q = {tpbk,p(b%:—l,Lk 1 ))+thk,q(b;€—1,Lk 1 ))+ Z tre,: tpv tq >0, t.> OVT#p, q, Z tr= 1};
e p(@ g P 0<g<k —0
a#p
see Figure 2.2. If
k
> tecUp, AP with 1, >0,
r=0
then t,,t, <t, for all r#p,q. Thus,
Uhas N0 =0 if {p1,a1} # {p2, @2} (7.4)

Define a projection map

r==k
1
~k . Ak k ~k § _ E
ﬂ'p,q  AY — CH(ep, eq) — Apﬂ by Wp’q( tr€r> == ]W( tre7-> .
r=0 T#DPq

Lemma 7.2. Ifk>1,Y is the (k—2)-skeleton of AF, and Y is the (k—2)-skeleton of A1, there
exist continuous functions

or: AF — AP and @y AR AR
such that
(1) @y is smooth outside of Y and @y 1 is smooth outside of Y ;
(2) for all p=0,...,k and T €Sy,

g0k3|U]£c = ﬁg‘U;; and YR OT =T O Pg; (7.5)
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€0 €1

Figure 2.2: Open neighborhoods of codimension 2 simplicies

(3) for all p,q=0,...,k+1 with p#q and 7€ Sk41,
@kJrl’UI’j;;l = ﬁlﬁzl‘Uﬁl, Q10T =TO0Ppy1, and @py10 bgp1p = Lht1,p © Pk (7.6)

Proof. (1) Choose a smooth function

70,1 c AR Algjlﬂ)} — [0, 1]
such that 7jp,1 =1 on Uéﬁrl, 70,1 =0 outside of U(]fJ{l, and 7jo,1 is invariant under any permutation
7 € Sk41 that preserves the set {0,1}. If 7€Si41 is any permutation, let

Lo AR+ _ AR+

0 Ny — [0, 1].

N7(0),7(1) = 70,107
By the assumptions on 7 1, 74 is a well-defined smooth function such that 7,,=1 on U, k+1

Pa
ilp,q="0 outside of UF+!, and
Me(p).ra) = Tpa ©T (7.7)

for all 7€ k41 and distinct p,¢q=0, ..., k+1.

(2) Define
Grer: AT AR by g (@) =2+ Y () - (FEE () —x).
0<p<g<k+1
Since 775‘51 restricts to the identity on Ak‘H and 7), , vanishes on a neighborhood of CH (ep,€q), the

function 77 is well-defined, continuous everywhere and smooth on AF1—y . By (7.4), py1= k+1
on UK. By (7.7), for every 7 €Sg41

~ ~ o~ ~ ~ k]l ~ o~
Prpl 0T =T+ Z MpqOT - (TpttoT—7)
0<p<g<k+1
_ = - ) (o =kt -
=T+ Z N7=1(p),7=(q) (Toﬂ—f'*l(p),?*l(q) 7)
0<p<q<k+1
=T+ Z Mp,g * TO’]T ?):%ogék_H
0<p<g<k+1

Thus, @r+1 satisfies the first two conditions in (7.6), as well as (1) above.
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(3) We define ¢y, by the third condition in (7.6). The function ¢y is independent of the choice
of p and satisfies the second condition in (7.5) for the following reason. Suppose p,¢=0, ..., k+1,
TSk, and T € Sk is defined by

TOLlgtlp = lk41,g© T

If ¢, and ¢y, are the functions corresponding to p and ¢ via the third equation in (7.6), then
by the second equation in (7.6)

Lk41,qOT O Pkp = TOLkt1p O Php =T O Ppt1 0 Lktlp = Pk41°T O Lkt1p
= Pk+1 0 lk+1,gOT = k1,4 © Ph,g O T-

We conclude that
TOWkp = PkqgOT YV p,q=0,...,k+1, T€S.

The function ¢y, satisfies the first condition in (7.5) because

kY _ 77k+1 k+1
terp(Up) = Uppt1 N Appi and
_ o~ _ ~k+1 _ ~k k
Lk41,p © Pk = Pht1 O Lkl,p = Tpp 11 O lkp1p = Lh1,p 0T, 00 Up.
Finally, o satisfies (1) because @1 does. O

Lemma 7.3. If X is a smooth manifold, every integral k-cycle in X, based on C®(AF;X),
determines an element of Hy(X).

Proof. If k=0, this is obvious. Suppose k>1 and

j:
S = f]
=1

determines a cycle in S,(X). Let D, be the set provided by Exercise 6.6 and let 7: Dy — Sp_1
be the corresponding map. Let

j=N
M = ( |_| {j}xAk)/ ~, where
j=1

(jl’ Lk,p1 (T(j1,271)7(j2,p2)(t))) ~ (an Lk, po (t)) v ((jlvpl)’ (jz,pg)) €Ds, te AL

Let m be the quotient map. Define
F:M' — X by F([j,t]) = fi(ex)). (7.8)

This map is well-defined by (7.1) and continuous by the universal property of the quotient topol-
ogy; see [13, Theorem 22.2]. Let M be the complement in M’ of the set

j=N
(L =y),

j=1
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where Y is the (k—2)-skeleton of A*. By continuity of F, compactness of M’, and the first
equation in (7.5),

: ]7
Bd F|y = F(M'—M) U ) = |J ). (7.9)
Since fj|mt o is smooth for all j=1,..., N and all simplices o C AF Bd F|ps has dimension at
most k—2 by (7.9). Thus, F|js is a k-pseudocycle, provided M is a smooth oriented manifold
and F|ps is a smooth map. O

Exercise 7.4. Complete the proof of Lemma 7.3.

The pseudocycle F|p; constructed above depends on the choice of Dy and 7. However, as the
next lemma shows, the image of F|ps in Hy(X) depends only on [{s}].

Lemma 7.5. Under the construction of Lemma 7.3, homologous k-cycles determine the same
equivalence class of pseudocycles in Hy(X).

Proof. (1) If k=0, this is obvious. Suppose k>0 and

Jj=No Jj=MN1
S0 = E f(],j and S1 = E ij
Jj=1 Jj=1

determine two homologous k-cycles in S (X). Let Dy, and Ds, be the sets provided by Exercise 6.6
and let 79 and 71 be the corresponding maps into Si_;. Denote by (M}, My, Fy) and (M7, My, F})
the triples constructed in the proof of Lemma 7.3 corresponding to sg and s;. Choose

5= fieSn(X) st {5} ={s1} — {50} € Sp(X).

Denote by Céo), Cél), Ds, (32-,]5@-, 7i), and 7 the corresponding objects of Exercise 6.7.

(2) Let I=]0, 1] as before. Put

_ (]|_|~{j}><Ak“ 0 i x1xa) [~ where

(715 1.1 (TG ). (Gope) (D)) ~ (25 th1,p5 (1) Y (515 21); (G2, p2)) €D;, teAF,
(i, 1=, 7(j, 1)) ~ (Ji(3): tht1,5:0) (Fi (1)) VteAr, j=1,...,N;, i=0,1.
Let

j=N
m: | | Gy x ARt o | i xIx M — M
j=1 i=0,1
be the quotient map. Define
_ F([5,1) = fi(¢ t VieAM j=1 ... N;
Fodl -5 X by ~([J 1) = fi (Grr1(eri1(t))) J
F([i,s,x]):Fi(:L‘) Vsel, zeM], i=0,1.
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This map is well-defined by (7.2), (7.3), and (7.8) and is continuous by the universal property of
the quotient topology. Let M be the complement in M’ of the set

j=N
ALy u [ xaxag-),
j=1 i=0,1

where Y is the (k—1)-skeleton of A*1. By continuity of F, compactness of M’, and the first
equation in (7.6),

j=N j=N
Bd F|y = F(M'=M) = | fij(@enilern(V) U U fis(en(¥) = [ (V). (7.10)
j=1 1=0,1 j=1
Since fjhnt » is smooth for all j=1,..., N and all simplices o C A¥*1 Bd ﬁ'|]\;[ has dimension at

most k—1 by (7.10). Thus, F| 47 is a pseudocycle equivalence between Fy|y, and Fi|az,, provided
M is a smooth oriented manifold, F|M is a smooth map, and 8(F|M) Fila, — Fola,- O

Exercise 7.6. Complete the proof of Lemma 7.5.

Proceeding as in the proof of Lemma 7.3, we can turn § into a pseudocycle equivalence (M * F )
between some pseudocycles (M, Fy) and (M, Fy) by gluing across codimension 1 faces. Unfortu-
nately, M and M are not the entire manifolds My and M;; they are missing the (k—1)-simplices
of My and Mj. This issue is resolved in (2) of the proof of Lemma 7.5 by adding collars to M*:
(n+1)-manifolds that begin with M} and end with M}.

8 From pseudocycles to homology

This section establishes Proposition 8.1 below. In the proofs of Lemmas 8.6 and 8.7, we construct
a cycle and a boundary in the oriented singular complex S.(X) out of a pseudocycle and a
pseudocycle equivalence, respectively. In both cases, we use arbitrary small neighborhoods of the
boundaries of these maps provided by Corollary 8.4 below; in a sense, these neighborhoods are
analogous to tubular neighborhoods of embedded submanifolds.

Proposition 8.1. If X is a smooth manifold, there exists a homomorphism
O: H(X)— Ho(X;Z),
which is natural with respect to smooth maps.

If K is a simplicial complex and o is a simplex in K, the star of ¢ in K is the union of the subsets
Int ¢’ taken over the simplices ¢’ € K such that o C ¢'; see [14, Section 62]. The barycentric
subdivision of K is the simplicial complex sd K obtained from K by subdividing each simplex o
of K into simplicies with vertices at the barycenters b, of all simplicies o’ C o; see [14, Section 17].

If X is a smooth manifold, a topological embedding p: Al — X is a smooth embedding if there
exist an open neighborhood AL of Al in R! and a smooth embedding /i : AL — X so that
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f|ar = p. A smooth triangulation of a smooth manifold X is a pair T = (K, 7n) consisting of a
simplicial complex and a homeomorphism 7: |K|— X such that

Ne = notg: Al — X
is a smooth embedding for every [-simplex ¢ in K and [ €Z=9.

If h: Y — X is a smooth map and k is a nonnegative integer, put
Ni(h) = {yeY :rtkd,h<k}.

Lemma 8.2. Let h: Y — X be a smooth map. For every k€720, there exists a neighborhood U
of h(Ng(h)) in X such that
H\(U;Z) =0 Vi>k.

Proof. By Proposition 10.1, there exists a smooth triangulation T'= (K, 7n) of X such that the
smooth map h is transverse to 7, |mt » for all o € K. In particular,

h(Ny(R)) C Un(nto) = L n(St(bs,sd K)), (8.1)

ceK,dimo>n—k ceK,dimo>n—k

where n=dim X. Note that
St(by,sd K) N St(byr,sd K) = ()

unless o Co’ or o/ Co. Furthermore, if o1 C...Coy,,
St(bs,,sd K)N...NSt(bs,,,sd K) = St(bs, .. .bs,,,sd K);
the last set is contractible. Put

U, = | St(bs,sd K).

m
ceK,dimo=m

Thus, U; N.. .OU,/n]_ is a disjoint union of contractible open sets in |K|. Let
n
Un=nUy), m=n—k,...,n; U= U Un.
m=n—k

Since 7: |[K|— X is a homeomorphism, Up,, N...NU,y, is a disjoint union of contractible open

subsets of X. By (8.1), h(Ny(h)) CU. By Exercise 8.3 below, H;(U)=0 for all I > k. O

Exercise 8.3. Let {Um}Zi]g be an open cover of topological space X such that
Hi(Up, N .NUp s Z) =0 YV 1>0, my,...,m;=0,... k.

Use the Mayer-Vietoris Theorem [14, p186] to show that H;(U)=0 for all [ > k.

Corollary 8.4. If h: Y — X is a smooth map and W is an open neighborhood of a subset A of
Imh in X, there exists a neighborhood U of A in W such that

H\(U;Z)=0 Vi>dimY.
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Proof. In Lemma 8.2, take X =W, Y =h"Y(W), and k=dim Y. O

Remark 8.5. It may not be true that H;(A;Z)=0 if [>dimY. For example, let A be the subset
of X =R" consisting of countably many k-spheres of radii tending to 0 and having a single point
in common. If k£>2, the set A has infinitely many nonzero homology groups; see [2].

Lemma 8.6. Every k-pseudocycle determines a class in Hi(X;Z).
Proof. (1) Suppose h: M — X is a k-pseudocycle and f: N — X a smooth map such that
dimN = k-2 and Bdh C Imf.
By Corollary 8.4, there exists an open neighborhood U of Bd h in X such that
H(U;Z)=0 Vi>k-2.

Let K=M—h~1(U). Since the closure of h(M) is compact in X, K is a compact subset of M by
definition of Bd h. Let V be an open neighborhood of K in M such that V is a compact manifold
with boundary. It inherits an orientation from the orientation of M and thus defines a homology

V,0V] € Hy(V,0V:7).

Put
[h] = hi([V,0V]) € Hi(X,U; Z) = Hy(X; Z), (8.2)

where

hy: Hp,(V,0V;Z) — Hp(X,U; Z) (8.3)

is the homology homomorphism induced by h. The isomorphism in (8.2) is induced by inclusion.
It is an isomorphism by the assumption on the homology of U as follows from the long exact
sequence in homology for the pair (X, U).

(2) The homology class [h] is independent of the choice of V. Suppose V' is another choice such
that V' C V. Choose a triangulation of V' extending some triangulation of OV U 0V’; such a
triangulation exists by Section 16 in [14]. The cycles

hi([V,0V]), hi([V',0V"]) € Hp(X,U; Z)

then differ by singular simplices lying in U and thus are the same; see Remark 6.5.

(3) The cycle [h] is also independent of the choice of U. Suppose U’ C U is another choice. By (2),
it can be assumed that V' and V' chosen as in (1) are the same. Since the isomorphism in (8.2)
is the composite of isomorphisms

Hy(X;7Z) — Hp(X,U;Z) — Hp(X,U;7Z)
induced by inclusions and the homomorphism (8.3) is the composition
Hy(V,0V;Z) — Hy(X,U';Z) — Hp(X,U;7Z),
the homology classes obtained in Hy(X;Z) from U and U’ are equal. Finally, if U and U’ are two

arbitrary choices of open sets in (1), by Corollary 8.4 there exists a third choice U” cUNU'. O
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Lemma 8.7. Equivalent k-pseudocycles determine the same class in Hi(X,Z).

Proof. Suppose h;: M; — X, i=0,1, are two equivalent k-pseudocycles and h: M — X is an
equivalence between them. In particular, M is oriented,

OM =M, —My,  and  hly, = hs.
Let U be an open neighborhood of Bd & in X such that
H(U;Z)=0 YI>k-1.
Let U; be an open neighborhood of Bd h; CBdh in U such that
H\(Uy;Z) =0 Vi>k-2,

as provided by Corollary 8.4. Let V; C M; be a choice of an open set as in (1) of the proof of
Lemma 8.6. For i =0, 1, choose a triangulation of M; that extends a triangulation of OV;. Extend
these two triangulations to a triangulation T= (R’ ,7) of M. Let K be a finite sub-complex of K
such that

Voo C(IKl)  and M —hN(0) C (Int |K).

Such a subcomplex exists because h(M) is a pre-compact subset of X and thus M —h~1(U) is a
compact subset of M. Put

K;={oceK:n(o)CV;} for 1 =0,1.

By the proof of Lemma 8.6, (K;, fzoﬁ“m‘) determines the homology class [h;]| € Hi(X,U;; Z). Let
[h}] denote its image in Hy(X,U;Z) under the homomorphism induced by inclusion. The above
assumptions on K imply that

3(K;]~1°77|K) = (Klvho ﬁ’KI) - (K07FLO77|K0)

in S(M,U). Thus, .

and this class lies in the image of the homomorphism
Hy(X;Z) — Hy(X,U; Z) (8.4)
induced by inclusion. This map is equal to the composites

H(X;Z) — Hy(X,Up; Z) — Hp(X,U;7Z),
Hi(X;7) — Hy(X,U1;Z) — Hp(X,U;Z).

Since Hy(U;Z)=0, the homomorphism (8.4) is injective. Thus, [ho] and [h;] come from the same
element of Hy(X;Z). O
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9 Isomorphism of homology theories

This section concludes the proof of the first part of Theorem 5.4. We show that ®oWV is an
isomorphism and W is injective; see Lemmas 9.1 and 9.2, respectively.

Lemma 9.1. If X is a smooth manifold, the composition

PoV: H(X;Z) — Hio(X) — H(X;Z)
is the identity map on H.(X;Z).
Proof. Suppose

N
{s}=> {fi} € Sk(X)
j=1

is a cycle and F': M — X is a pseudocycle corresponding to s via the construction of Lemma 7.3.
Recall that M is the complement of the (k—2)-simplices in a compact space M’ and F is the
restriction of a continuous map F’: M’ — X induced by the maps

fiopr: AF — X, j=1,...,N.
Since ¢y, is homotopic to the identity on A¥, with boundary fixed,
fjowor—fj €081 (X)  Vj=1,...,N. (9.1)
Let U be a neighborhood of Bd F' such that
H\(U;Z) =0 ViIi>k-2.

Put K:M—f_l(go,;l(U)). Let V be a pre-compact neighborhood of K such that (V,0V) is a
smooth manifold with boundary. Choose a triangulation T'= (K,7n) of (V,dV) such that every
k-simplex of T is contained in a set of the form 7({j} x A¥) for some j=1,..., N, where 7 is as
in the proof of Lemma 7.3. For each j=1,..., N, put

K;={oeK: n(a)Cw({j}xAk)}, K;Op = {0€K;:dimo = k}.

Let TJ =(K ;,m;) be a triangulation of a subset of A* that along with K; gives a triangulation
of A¥. Put . .
K = {o€K;: dimo = k}.

By definition of T, .
fiovr(nj(0)) C U Vo e K™ (9.2)

Furthermore, by (9.1)

{s}= > {fjovxonols}

ocEKtop

N N o (9.3)
=Y > Afjopronolsl+> Y {fjoenoijolyst  mod dSkii(X),

I=loeK P I=loeK P
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since subdivisions of cycles do not change the homology class. By the proof of Lemma 8.6, the
first sum on the right-hand side of (9.3) represents [F] in Sk(X,U). By (9.2), the second sum lies
in Sp(U). Since the sum of the two terms is a cycle in Si(X), it must represent [F] in Si(X).
Thus,

{F} = {s} € H(X;2),

and the claim follows. O

Lemma 9.2. If X is a smooth manifold, the homomorphism ®: H.(X) — H.(X;Z) is injective.

Proof. Suppose a k-pseudocycle h: M’ —s X determines the zero homology class via the con-
struction of Lemma 8.6. We show that a modification of h is the boundary of a smooth map
F: M — X in the sense of pseudocycles. Since M’ need not be compact, M may need to be
constructed from infinitely many (k+1)-simplices. This is achieved as the limit of finite stages M;,
so that as i€ Z* increases M’ is the pseudocycle boundary of M; “modulo” smaller and smaller
neighborhoods U; of Bd h. As in the proof of Lemma 7.5, we also need to attach a collar to the
(k+1)-manifold M* obtained directly from a bounding chain.

(1) It can be assumed that k> 1; otherwise, there is nothing to prove. Let {Ui}zl be a sequence
of open neighborhoods of Bd h in X such that U; C X is compact,

Ui-i—l cu, ﬂUi:Bdh, and HZ<UZ‘;Z):O Vi>k-2.
i=1

Existence of such a collection follows from Corollary 8.4 and metrizability of any manifold. Let
{V} .—; be a corresponding collection of open sets in M "as in (1) of the proof of Lemma 8.6.
It can be assumed that V; C Viy1. Choose a triangulation T = (K,7n) of M’ that extends a

triangulation of U AV;. Let
i=1

K'P = {UEK: dima:k}, Cp = {(a,p): oge K%P, sz,...,k}.

For each o € K*P, let
lo: AF — o C |K| C R®

be a linear map such that n, =no, is orientation-preserving. Put
fo=hon, V o€ KtoP and
Dﬁ = {((017])1), (02,]?2)) ECnXCn : (017p1)7é(0'27p2)’ loy (Aﬁl):LUQ(AI;Q)}'
For each ((o1,p1), (02,p2)) €D,;, define
T(o1,p1),(02,p2) € Sk-1 by Loy Olk,pys = Loy Olk,p1 © T(o1,p1),(02,p2)"
Since K is an oriented simplicial complex,
D, C C,xCy and 7: Dy — Sp1

satisfy (1)-(3) of Exercise 6.6. Furthermore, M’ is the topological space corresponding to (C,, Dy, )
via the construction of Lemma 7.3 and A is the continuous map described by

hlroxaky = fo-
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As in the proof of Lemma 7.3, let M be the complement of the (k—2)-simplices in M’; the
pseudocycles h and h|ys are equivalent. Since ¢y, is homotopic to the identity on A* with boundary
fixed, the pseudocycle k| is in turn equivalent to the pseudocycle F'|ys, where as in the proof of
Lemma 7.3

F:M — X, Fon, = foopg.

(2) For each i>1, let
Kimp = {aGKtOp: n(J)CVi}, Cpii = {(J,p)ECn : JGK:OP}, Dy.i = DyN(Cpii X Cpsi).

By construction of ®(h), for every i>1 there exists a singular chain

N;
8 = me € Sk(Uy) s.t. Z {hons}+{si}
j=1

oEK[P
is a cycle in Sg(X) representing ®(h). Similarly to Exercise 6.6, there exist a symmetric subset
D; C (CpyiUCs,) % (CpiiUCs;)
disjoint from the diagonal and a map 7;: D; — Si_1 such that
(1) Dy, CD; and TZ'|'D7W. :T]DW.;
(2) the projection map D; — C,;;LICs; on either coordinate is a bijection;

(3) for all ((j1,p1), (j2,p2)) €Ds,

_ -1 . _f . .
T(j2:p2),(71:21) = T(j1,p1),(josp2)’ figa © tkps = fig1 © Uepr © T(j1,p1), (2 p2)»
+
_(_1)?1 p27

and  SIgNT(j, py),(ja,p2)

where f; » = fo for all aEKitOp.

(3) By (2), for each i>2

> {hone}+ {si} — {si1} € Sp(Uirn)

top _ g -top
oeK; K75

is a cycle. Since Hy(U;—1;7Z) =0, it is a boundary. If i =1, this conclusion is still true with
Up=X, K =0, and s9=0, since ®(h)=0 by assumption. Choose

N;
S = Z f@j S Sk+1(Ui_1) s.t. Z{h o 770} + {S,} — {Si—l} = 5{§z} S Sk(Ui—l)-
Jj=1 oEKP— K}

Similarly to Exercise 6.7, there exist



a symmetric subset D; C C; xC; disjoint from the diagonal, and maps

such that
(1) D; CDiy1, Tit1lp, =Ti, and (5i+17ﬁz‘+1,7~'i+1)\;{fop = (;iaﬁiv%i)‘l(zoﬁ

(2) the projection D; —C; on either coordinate is a bijection onto the complement of C~i(0);

(3) for all ((j1,p1), (j2,p2)) €DiN(Cs,, XCs,)),

. S N ~ i
Ti((j2,02),(1:01)) = Ti((Gr,p1),(Gaopa)? Jinja © Ukt1ps = fir,j1 © Lht1,py © Fid(Grp1)s(ap2))
and sign 7~-iy((jl7101)7(j27pz)) = _(_1)p1+p2§
t 1
(4) for all ce K;*P— K1,
Fi5i(0) © thiino) © Flio) = fo - and  sign( o) = —(=1)P();

(5) (ji,Ps) is a bijection onto (?1-(0).

(4) Put

M’:(Gﬁ{i}x{j}xMHuHxM')/w, where

i=1j=1
(ilvjh Lk,py (%i,((j1,p1),(j2,p2))(t))) ~ (i27j27 Lk,PZ(t)) v ((j17p1)7 (j?ap?)) Eblm(C§Ll XC§i2)7 tEAk’
(1,71'(0’, t)) ~ (ivji(a—)vLk+1,ﬁi(0')(7~—(i,0')(t))) v teAka Jerop_K;gli’ i€Z+'

Let

o N;
o |_| |_|{i}><{j}><AkJrl UIxM — M’
i=1j=1
be the quotient map. Define
5 F([i,4,1]) = fij(Bri(pria(®))  VEeAM j=1,.. N;, i€Z";

F:ll'— X by
F([s,z]) = F(x) Vsel, zeM’,

where @1 and @1 are the self-maps of A¥*! provided by Lemma 7.2. Similarly to Exercise 7.6,
this map is well-defined and continuous. Since the image of

o N;
|_||_|{i}><{j}><Ak+1|_|]I><7r< u{U}XAkl)
=2t UEKSOP
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under Fof is contained U; and Uy C X is compact, F(M’)C X is compact as well.

Let M be the complement in M’ of the set

gl

where Y € A#*1is the (k—1)-skeleton. Similarly to the proof of Lemma 7.5, Bd F|M is of dimension
at most k—1, M is a smooth oriented manifold boundary OM =—-M, F |7 is a smooth map, and
Flpyr=F|y. Since 8(F|M) =—F|um, F|p and h represent the zero element in Hy(M). O

[ 8

i=Ni
| {i}x{j}x?uﬂx(M’—M)),
i=1 j=1

Exercise 9.3. Let F': M’ — X and M C M’ be as in the proof of Lemma 9.2. Show that
(1) the map F' is well-defined and continuous;

(2) dimBd F|M < k—1, M is a smooth oriented manifold boundary M = —M, F‘M is a smooth
map, and F|y=F|y.

10 Existence of transverse triangulations

In this section, we show that every smooth manifold admits a smooth triangulation transverse to
a given smooth map. Proposition 10.1 below is a key step in the proof of Theorem 5.4, as it is
used in the proof of Lemma 8.6 via Corollary 8.4.

Proposition 10.1. If X,Y are smooth manifolds and h: Y — X is a smooth map, there exists
a triangulation T'=(K,n) of X such that h is transverse to n|mg o for every simplex o € K.

This claim appears clear and completely classical. It is established in [19] under the assumption
that the smooth map h is proper (preimages of compact subsets are compact); the argument
in [19] makes use of this assumption in an essential way. For our purposes, a transverse C'-
triangulation would suffice, and the existence of a such triangulation is fairly evident from the
(infinite-dimensional) Sard-Smale Theorem [21, (1.3)]. On the other hand, according to M. Kreck,
the existence of smooth transverse triangulations without the properness assumption is related to
subtle issues arising in the topology of stratifolds [9]. A complete proof of Proposition 10.1, using
only (the finite-dimensional) Sard’s theorem [11, Section 2], is given in the rest of this section.

If T=(K,n) is a smooth triangulation of X, as defined in Section 8, and ¢: X — X is a diffeo-
morphism, then (K, on) is also a smooth triangulation of X. By the proof of Proposition 10.1
below, (K,1on) is transverse to h: Y — X for a generic diffeomorphism v of X.

For a simplicial complex K and [ € Z=°, let K; be the I-th skeleton of K, i.e. the subcomplex
of K consisting of the simplices in K of dimension at most [. The main step in the proof of
Proposition 10.1 is the following observation.

Lemma 10.2. Let h : Y — X be a smooth map between smooth manifolds. If (K,n) is a
triangulation of X and o is an l-simplex in K, there exists a diffeomorphism ¢, : X — X
restricting to the identity outside of n(St(by,sd K)) so that 1s0n|mt » is transverse to h.
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Corollary 10.3. Let h: Y — X be a smooth map between smooth manifolds. If (K,n) is a
triangulation of X, for every [ =0,1,...,dim X, there exists a diffeomorphism ¢, : X — X
restricting to the identity on n(|K;_1|) so that Yyon|mt » is transverse to h for every l-simplex o
m K.

Proof. For each [-simplex o € K, let ¢, : X — X be a diffeomorphism provided by Lemma 10.2.
Since the collection

{St(by,sd K): c€ K, dimo=1}
is locally finite, 1, is the identity outside of n(St(bs,sd K)), and
St(by,sd K) N St(byr,sd K) =0

for any two Il-simplicies o and ¢’ in K, the composition 1; : X — X of the diffeomorphisms
Yo @ X —> X taken over all [-simplices ¢ in K is a well-defined diffeomorphism of X. Since
Yron|s = Yon|| for every l-simplex o in K, 9; has the desired property. O

Proof of Proposition 10.1. By [13, Chapter II], X admits a triangulation (K,n_1). By in-
duction and Corollary 10.3, for each [ = 0,1,..., dimX —1 there exists a triangulation

(Ka 77l) = (Ka ¢lonl—1)
of X which is transverse to h on every open simplex in K of dimension at most . O

In the remainder of this section, we establish Lemma 10.2.

Lemma 10.4. For everyl € Z7, there exists a smooth function p;: Rt — RT such that
p; L(RT) = Int AL,

Proof. Let p: R — R be the smooth function given by

) e ifr>0;
)=
P 0, if r <0.

The smooth function p;: R' — R given by

i=l i=l
pi(te, ... tn) = p<1 - th> : Hp(ti)

then has the desired property. O

Lemma 10.5. Let (K,n) be a triangulation of a smooth n-manifold X and o be an l-simplex
in K. If AL CR! is an open neighborhood of Al, U, C X is an open neighborhood of n(|o|), and

fio: AL xR — U, c X
is a diffeomorphism such that fi,(t,0) = n(1y(t)) for all t€ Al, there exists c, ERY such that

{(t,v) € (Int A xR | <cop(t)} C figt (n(St(by,sd K))).
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Proof. If K’ is the subdivision of K obtained by adding the vertices b, with ¢’ 2 o, then
St(by,sd K)=St(o, K’). Thus, it is sufficient to show that there exists ¢, >0 such that

{(t,v) € (Int A xR o] <copi(t)} C [L;l(n(St(a, K))).

We assume that 0<!< n. Suppose (t,,v,) € (Int Al)x (R*~!—0) is a sequence such that

(bprvp) € 15 ((St(0, K)))s [op] < ;mtp). (10.1)

Since n(St(o, K)) is an open neighborhood of n(Int ¢) in X, by shrinking v, and passing to a
subsequence we can assume that

(tpvp) € g (n(I7'1)) € fig* (n(I7]) (10.2)

for an n-simplex 7 in K and a face 7/ of 7 so that o 7/, 7' ¢ o, and 0 C 7. Let ¢,: A" — | K|
be an injective linear map taking A™ to |7| so that

o)) = APNRIx0 c RIXR™, Y|P ) = AP NOox R c RExRP L. (10.3)

Choose a smooth embedding p,: A? — X from an open neighborhood of A™ in R™ such that
pr|lan =notr. Let ¢ be the first component of the diffeomorphism

N;loﬂa : /2;1 (/LT(AZ)) — ,U;l (ﬁU(Afr XRn_l)) CR!xR" 1.
By (10.2), the second assumption in (10.3), the continuity of d¢, and the compactness of Al,
6(tp,0)| = [0t 0) = 9ty vp)| < Cloyl ¥, (10.4)

for some C'>0. On the other hand, by the first assumption in (10.3), the vanishing of p; on Bd A,
the continuity of dp;, and the compactness of A,

|u(tp)| < Clo(tp, 0)] Vp, (10.5)
for some C' > 0. The second assumption in (10.1), (10.4), and (10.5) give a contradiction for
p>C?. This establishes the claim. O

Lemma 10.6. Suppose h: Y — X is a smooth map between smooth manifolds, (K,n) is a
triangulation of X, and o is an l-simplex in K. Let Ai, C R! be an open neighborhood of A,
U, C X be an open neighborhood of n(|o|), and

fio: AL xR U, c X

be a diffeomorphism such that jiy(t,0) = n(is(t)) for all t € Al. For every ¢ > 0, there exists
55 €C®(Int AL R s0 that the map

fio 0 (id, s5): Int Al — Int Al x R*™! — X (10.6)
1s transverse to h,
|so(t)| < E€p(t) VteInt AL, lim (1) Vs (t)| =0 Vi, j € Z2°, (10.7)
t—Bd Al

where Vs, is the multi-linear functional determined by the j-th partial derivatives of s,.
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Proof. The smooth map
oIt A xR — X, g(t,v) = fig (t,e P 0y),

is a diffeomorphism onto an open neighborhood U’ of n(Int ¢) in X. The smooth map (10.6)
with s, =e~ /P10y is transverse to h if and only if v € R is a regular value of the smooth map

mo¢ toh: KTHUL) — R,

where m : Int Al x R*™" — R™! is the projection onto the second component. By Sard’s
Theorem [11, Section 2], the set of such regular values is dense in R"~!. Thus, the map (10.6)

with s, = e /Py is transverse to h for some v € R" ! with |v] < €. The second statement

in (10.7) follows from p;|gq ot =0. O

Corollary 10.7. Let X, Y, h, (K,n), I, and fi, be as in the statement of Lemma 10.6. For
every € >0, there exists a diffeomorphism V! of Af, xR restricting to the identity outside of

{(t,v) € (Int A xR o] <epr(t) }

so that the map fiyo VL Alxo 8 transverse to h.

Proof. Choose € C*(R;[0,1]) so that

1, ifr<i;
T =
b {O, ifr>1.

Let Cg=sup,cg |6(r)| and s, be as provided by Lemma 10.6. Define

wg- Afy R™ ! — Al Rnil by
t,v+/3<5,lf‘ )sg(t)), if t € Int Al
(t,v) if t  Int AL

The restriction of this map to (Int A') x R"~! is smooth and its Jacobian is

I 0
NETA TS =< [v] ol \ ol se(t) o]\ so(t) vt ) (10.8)
w0 =\ 8 (i) Voo lt) = 8 (o) e g Vo Tnt+ 8 (i) ey

By the first property in (10.7), this matrix is non-singular if e <1/Cp. If W is any linear subspace
of R~ containing s, (t),

PLEXW) Ctx W, YL (t,v) = (t,v) VveW s.t. [v] > ep(t).
Thus, 1. is a bijection on txW, a diffeomorphism on (Int AN xR™! and a bijection on AZXR”_Z.

Since B(r)=0 for r>1, ¢! (t,v) = (t,v) unless t € Int A’ and |v| <epy(t). It remains to show that
Y’ is smooth along

{(t,v) € (Int Al) xR~ |p| <epy(t)} — (Int Ay xR = (Bd Al) x

52



Since |sq (t)| — 0 as t — Bd Al by the first property in (10.7), ¢, is continuous along (Bd A!)x0.
By the first property in (10.7), 1, is also differentiable along (Bd A')x0, with the Jacobian equal
to I,. By (10.8) and the compactness of Al,

!j@/}é](m) - ]In‘ < C(|Vso(t)| + e_lp(t)_l\sg(t)\) Y (t,v) € (Int Al) x R?!

for some C' > 0. So J/ is continuous at (¢,0) by the second statement in (10.7), as well as
differentiable, with the differential of J1. at (¢,0) equal to 0. For ¢ >1, the i-th derivatives of
the second component of 1/ at (¢,v) € (Int A!) x R"~! are linear combinations of the terms

5 (i) (af(’t))le il:] () g vset

where i1, 19, j1, jo €Z29 and p1, ... ,pj; €EZ* are such that

p1L+pe+...+pi + g2 <i, 11 < J1+J2,

and vy is a product of | J| < jo components of v. Such a term is nonzero only if ep;(t) /2 < |v| < epy(t)
or i3 =0 and |v| <ep;(t). Thus, the i-th derivatives of ¢, at (¢,v) € (Int A!)xR"~! are bounded by

Ci > plt) | VP2se(t)]

11+12<i

for some constant C; >0. By the second statement in (10.7), the last expression approaches 0 as
t—Bd Al and does so faster than p;. Tt follows that ¢/ is smooth at all (¢,0) € (Bd AY)x0. O

Proof of Lemma 10.2. Let AL CR! be a contractible open neighborhood of Al and 1o : AL — X
a smooth embedding so that p,|x1 =n0ts. By the Tubular Neighborhood Theorem [3, (12.11)],
there exist an open neighborhood U, of y,(AL) in X and a diffeomorphism

fio: ALXR™ — U, st jig(t,0) = pe(t) YieAL.
Let ¢, >0 be as in Lemma 10.5 and v/, be as in Corollary 10.7 with e=c,. The diffeomorphism
Yo = fig 0 Yy 0 fiy " Uy — Uy
is then the identity on U, — St(b,,sd K). Since v, is also the identity outside of a compact subset
of U,, it extends by identity to a diffeomorphism on all of X. O
11 The ring isomorphism

remains to be written; proof of Proposition 11.1 is not quite complete

Proposition 11.1. If X is a smooth oriented manifold, the homomorphism ¥ of Proposition 7.1
commutes with the ring structures.

Proof. We need to show that

U(an[X]) - ¥(B)=¥(anB) VYaecH(X;Z), Be Hy(X;Z),
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with [ <k <n, where n=dim X. Let Lf:k, Lfl,k : A¥ — A" denote the natural inclusions as the
front and back k-faces, i.e. the linear maps defined by

Li;k(ei) = e, quk(ei) = €n—_ktis i=0,1,... k.
Let (T,n) be a smooth oriented triangulation of X as in Sections 6 and 8. Similarly to Remark 6.5,
(X]= ) {m} € Su(X),
ceK,dimo=n

where n=dim X and 7, is as in (6.13). It can be assumed that B is a linear combination of the
front [-simplicies of the singular simplicies 7,, i.e.

N
B = Zai{ngimf;k} € Sp(X),
i=1

for some a; €7Z and o; € K. Under these assumptions,

an[X]= Z a(ngod;l) {T]UOLZ;H_Z} € S, 1(X),

ceK,dimo=n

N
anB= Z @i O‘(naiOL{L;kOLg;z) {UaiOLz;kOLi;k—z}
i—1
N

= Za’i a(nUz‘oLn;l) {nUiOL’rfL;k‘oLz;k—l} € g’f—l(X) .
=1

Thus, o N B consists of the middle £—1 faces of the singular n-simplices 7,,; the same is the case
for (aN[X]) N B. More formally, these intersections need to be made into transverse pseudo-cycles
and the signs need to be checked. O

An alternative argument should follow from a pseudo-cycle version of [12, Exercise 11C].

Proposition 11.2. Let X be a smooth manifold and A; € Hy,(X) for i = 1,2. There exist
representatives f;: M; — X for A;, with i=1,2, and smooth maps h;: Y; — X from (k;—2)-
manifolds such that

(]) Bdf1 C Imhy and Bde C Imhz;
(2) fiMx fa, filixhe, fofixhi, and hifxhs.

Lemma 11.3. Let X be a smooth manifold and f;: Y;— X, with i=1,2, be smooth maps. For
a generic diffeomorphism ¢: X — X

The diffeomorphism 1) might perhaps be just C¥, for a fixed arbitrary large k, as happens in [17,
Lemma 6.5.5].
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A Review of Topology

A.1 Poincare Duality

A.2 Some topology

Proposition A.2.1. Let v, —> GiC denote the tautological k-plane bundle over the infinite
Grassmannian of k-dimensional linear subspaces of C°. If f: (CP®)* — G,C is a continuous

map such that
j=k

Fe=n)F =@ — (CP)F,
j=1

where m;: (CP>)F — CP™ is the projection onto the j-th component, then
f*: H*(GC; Z) — H*((CP>)*;Z)
1 an injective homomorphism.

Proof. Since the Schubert cells provide CW-decompositions of finite Grassmannians, they gen-
erate H*(G;C;Z). Based on intersection formulas for Schubert cycles, H*(G,C;Z) is in fact
generated by

o1 =c1(Vg)s on=c(v), - o1.1=ck(V)

as an algebra over Z; see [12, Theorem 14.5]. By the product formula for chern classes,

freilw) = si € H*((CP®)¥) = R[rfei(n), ..., mher(n))]

is the i-th elementary symmetric polynomials in 7ic1(y1),...,7jc1(y%). Since the k elementary
symmetric polynomials s1, ..., s, are algebraically independent [1, Corollary 14-(3.11)], it follows
that f* is injective. O

Exercise A.2.2. Let v — G;R denote the tautological k-plane bundle over the infinite Grass-
mannian of k-dimensional linear subspaces of R® and f: (RP*)* — G.R be a continuous map

such that
j=k

Fw=m)r =P mm — RP=)F,
j=1

where 7;: (RP)¥ — CP* is the projection onto the j-th component. Show that
f*: H*(GC; Z) — H*((CP>®)*;Z)

is an injective homomorphism.
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Definition A.2.3. Let p: E — B be an F-fiber bundle, 1, : E, — E be the inclusion of the
fiber for each b € B, and R be a ring. A cohomology extension of the fiber for p over R is a
homomorphism

0: H(F;R) — H"(E; R)
of R-modules such that (jof: H*(F; R) — H*(Ey; R) is an isomorphism for every be B.

Example A.2.4. Let V— B be a complex vector bundle of rank k. The projectivization of V,
p: PV — B,

is the CP*~!-fiber bundle obtained by replacing each fiber of V' by its projectivization over C and
the transition maps between trivializations of V' by the induced diffeomorphisms between their
projectivizations. Let

w={{l,v)eEPVXV:vel CV} — PV

denote the tautological line bundle and
\v = c1(yy) € HA(PV; Z).

Since the restrictions of )\9, =1, /\%,, ey /\"“/_1 to each fiber PV; form a basis for the R-module
H*(PV}; Z)~ H*(CP*~'; Z). Thus, the homomorphism

9: H*(CP* 1. 2) — H*(PV;Z), No— AL, i=0,1,...,k—1,
where \ = ¢1(7*) € H*(CP*~1;Z), is a cohomology extension of the fiber for p over R.

Theorem A.2.5 (][22, Theorem 5.7.9]). Let p: E — B be an F-fiber bundle and R be a ring.
If 0. H(F;R) — H*(E;R) is a cohomology extension of the fiber for p over R, then the
homomorphism

H*(B;R)®r H*(F;R) — H*(E; R), a®fB— paxi(p),
is an isomorphism of R-modules.

Exercise A.2.6. Let V — B be a complex vector bundle of rank k and p: PV — B be its
projectivization of V. Show that

(1) the vector bundle y*®p*V — PV admits a non-vanishing section;
(2) the homomorphism
H*(B;Z)A\v]/ A +a (VAN +. (V) — HYPVSZ), ad, — praUN,,
is an isomorphism of Z-algebras (preserves the product structure).

Corollary A.2.7. Let B be a paracompact space. For every complex vector bundle V. — B,
there exists a topological space B and a continuous map w: B— B such that the homomorphism

7 H*(B;Z) — H*(B;7)

1s tnjective and the vector bundle ™V — B splits as a direct sum of line bundles.
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Proof. Let k=rkcV >2 and assume that the statement holds for all vector bundles of rank less
than k. Let p: PV — B be the projectivization of V. Since B is paracompact and ~y Cp*V is a
vector subbundle,

PV RV @y,

for some vector subbundle V' Cp*V of rank k—1. By Theorem A.2.5, the homomorphism
p*: H(B;Z) — H*(PV;Z)

is injective. By the induction assumption, there exists a topological space B and a continuous
map 7': B—PV such that the homomorphism

7" H*(PV;Z) — H*(B;7Z)
is injective and the vector bundle 7*V’ — B splits as a direct sum of line bundles. The projection
T = por’: B-—B
then has the desired properties. ]

Exercise A.2.8. Let V— B be a real vector bundle of rank k. Show that

(1) there is a natural RP*~!-fiber bundle p: PV — B obtained by projectivizing each fiber of
V — B over R.

(2) the fiber bundle p: PV — B admits a cohomology extension of the fiber over Zy;
(3) there is an isomorphism
H*(B; Za) M|/ O\ +wi (VA +. 4w (V) — HY(PV;Z2), aX, — pra UM,
of Zo-algebras.

Exercise A.2.9. Let B be a paracompact space. Show that for every real vector bundle £ — V'
there exists a topological space B and a continuous map n: B — B such that the homomorphism

7 H*(B; Zy) — H*(B;Zs)

is injective and the vector bundle 7*V — B splits as a direct sum of real line bundles.

A.3 The splitting principle

Throughout this section, assume either

C case: all vector bundles are complex, all cohomology rings are with Z-coefficients, P! is the
infinite complex projective space CP*°, and G, is the infinite complex Grassmannian Gr,,C*, or

R case: all vector bundles are real, all cohomology rings are with Zs-coefficients, P! is the infinite
real projective space RP*°, and G, is the infinite real Grassmannian Gr,, R,
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unless explicitly stated otherwise. Base spaces B are assumed to be paracompact. Let H H(B)
be the product (rather than just sum) of all cohomology groups of B. So, an element of H H(B)
is a possibly infinite series

ap+ar+..., where a; € H'(B).
A vector bundle V — B is split if it is isomorphic to a direct sum of line bundles L1, ..., Ly — B.

Definition A.3.1. Let R ring. A rule assigning to every r-tuple of vector bundles (V1,..., V)
of ranks (ki,...,k,) over every base B a class p(Vi,...,V,) EHH(B; R) is natural if

p(f*Vi,....f*Vo) = f'p(Vh,..., V) € HH(B’;R)

for every continuous map f: B’ — B and r-tuple of vector bundles Vi,...,V, — B of ranks
ki,..., k.

For example, in the complex case the rule assigning to each complex vector bundle V — B the
class
c(VeV) e HY(B;7)

is natural. So, is the rule assigning to each triple of complex vector bundles V;, V5, Vs — B
the class
w3(Vi@Vh@Vh®Vs) € H(B; Zs).

Theorem A.3.2 (The Splitting Principle). Let p, q be two natural rules assigning to every r-tuple
of vector bundles (Vi,...,V,) of ranks (ki,...,k,) over every base B classes

p(Vi,....Va), a(Va,.... ;) € H'(B).

If p(Er, ..., Ey) =q(Er, ..., E.) for every r-tuple of split vector bundles Ei,...,E, over every
base B, then
PV, Vo) =q(Vi,.., Vi)

for every r-tuple of vector bundles V1, ..., V, over every base B.

Proof 1. By Corollary A.2.7 in the C case and Exercise A.2.9 in the R case, there exists a
topological space B and a continuous map 7: B— B such that the homomorphism

7*: H*(B) — H*(B) (A.3.1)

is injective and the vector bundle 7*V; — B splits for every i=1,...,r. Since p and ¢ are natural
and agree on split vector bundles,

Tp(Viy.. ., Vi) = p(m* Vi, ..., 0 V,) = (7 VA, ..., 7 V,) = 7°q(Wh,..., V;) € H' (B; R).
Since the homomorphism (A.3.1) is injective, it follows that p(V1,...,V;)=q(Vi,..., V,). O
Proof 2. Let v, — Gy, be the tautological k-plane bundle and

TG+ lex...kar —)sz
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be the projection to the i-th factor. For eachi=1,...,r, choose a continuous map f;: (P!)* — Gy,
such that

J=Fk;
fi*’ykz' = (’Vl)ki = @ 7;71 - (P)ki’
j=1
where 7; : (P)¥ — P is the projection onto the j-th component; such a map exists by [12,
Theorem 14.6] in the C case and by [12, Theorem 5.6] in the R case. Let
f=fix. . X fr: (PYrTFhr 5 Gpox.. . xGy, .

By Proposition A.2.1 in the C case and Exercise A.2.2 in the R case, along with the Kunneth
formula [14, Theorem 60.3], the homomorphism

5 H* (G, x.. . x Gy, ) — H*((PH)krtthr) (A.3.2)

is injective. Since p and ¢ are natural with respect to continuous maps and agree on split vector
bundles,

f*p(ﬂé;ﬂ’kl, PN ﬂa;r%r) = p(f*ﬂ(?};l’Ykla o f*ﬂé;r'Ykr)
= q(f*ﬂ-(a;l’yk’lv ‘e ,f*’ﬂ'(a;,,,"ykr)
= f*Q(TF?;;ﬂkl, e ,W&;T’Ykr) € it ((]}Dl)k1+...+kr)'

Since the homomorphism (A.3.2) is injective, it follows that
IT
P(TEaVers - TG Vhe) = A(TEVhis - - > T k) € H (Giy X .. X Gy, ).

If Vi,...,V, — B are vector bundles of ranks ki, ..., k., respectively, over a paracompact base,
for each i there exists a continuous map g¢;: B — Gy, such that V;=g v;,. Let

g=g1X...Xgr: B— Gp, x...xXGy,.
Since g; =7mg;09, Vi=g"7g.; k- Thus, by the naturality of p and g,
p(Vi,- - V2) = (0" T Vhrs - > 9 TG0 k) = 9P (TG Vo - > T Vi)

= g*Q(Wé;17k17 oo aﬁz:;r%,-) = q(g*ﬁé;17k17 oo ,g*ﬂé;ﬂk,.)
—qW,...,V,) e H'(B),

as needed. O

This second proof of Theorem A.3.2 shows that it is sufficient to check only that

p(ﬁ’yfl, . ,W:f’yfr) = q(ﬁ’yfl, e Tr;f’yfr) € g ((IP’l)k1 X. .. X (Pl)kr).

Example A.3.3. Let B be a paracompact space and V — B be a complex vector bundle of
rank k. We use Theorem A.3.2 to show that

1 (AFPV) = c1 (AEV) = e (V).
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For every complex vector bundle V' — B over every paracompact base B, let
p(V) =ci(ASPV) € HX(B;Z)  and  q(V)=c1(V) € HY(B;Z).
If f: B'— B is any continuous map and V — B is a complex vector bundle of rank &, then
p(fV) = a(ASP(fV)) = a1 (f*(AL™V)) = frel(ASPV) = f*p(V) € H*(B'; 2);
a(fV)=a(fV)=falV)=fqV)e H(BZ).

Thus, p and ¢ are natural with respect to smooth maps. If V=L ®...® L is a sum of line
bundles, then

APV = L1®..0L, = p(V)=c1(l1®...®9L;) = c1(L1) +.. .+ e1(Ly);
C(V) = (1+61(L1)) A (1+01(Lk)) — q(V) 61<V) = 61<L1) +...4+ Cl(Lk).

Thus, p(V) = ¢q(V) for every split vector bundle V' of rank k. Since p and ¢ are natural with
respect to continuous maps, it follows that p(V')=¢q(V') for every vector bundle V' of rank k.

Exercise A.3.4. Let B be a paracompact space and V — B be a complex vector bundle of
rank 2. Show that
e(Sym®V) = 9¢ca (V) (¢ (V) + ca(V)).
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B Complex projective spaces

B.1 Definition and basic properties

The n-dimensional complex projective space, P, is the quotient of C"*!—0 by the standard action
of C*=C-0:

P" = (C"1—0)/ ~, (Xo,...,X,) ~ (cXo,...,cX,) VeceC*

This space is a complex n-manifold; it can be covered by n+1 coordinate charts as follows. For
1=0,...,n, let

U; = {[Xo, ..., Xn]€P": X; #0},
¢i: C" — U, di(wi, ..., wy) = [wl,...,wi,l,wiﬂ,...,wn}.

If i<y, then

¢ (U)) = {(wr, ..., wy) EC": w; £0},
(ﬁj_l(Ul) = {(wl, .. ,wn)E(C": wi+17é0}.

The corresponding overlap map
$ij = 6 o 5 b5 (Ui) — ¢ (U))

is given by

w1 Wi Wi42 Wi -1 Wj+1 wn)

Wi, e (B.1.1)
T i Wit1

(wl,...,wn)—>( s ) ey
Wi+1 Wi+1 Wi+1 Wi+1

Since each of the maps ¢;; is bi-holomorphic, {(Ui,qﬁi,((:")} is an atlas of holomorphic charts
on P". We will call the chart (U;, ¢;, C") the i-th standard coordinate chart on P". By the next
exercise, P" is compact.

Exercise B.1.1. Show that the inclusions of the unit sphere S?"*! into C**! and of S! into C*
induce a homeomorphism

S2n+1/sl SN (Cn—i-l _ O)/(C*
with respect to the quotient topologies.

If V is any vector space over C, the projectivization of V, PV, is the quotient of V —0 by the
standard C*-action. An invertible linear transformation A of V gives rise to a bijection on PV:

AP — P, [v] — [Av] Vv e V-0.
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If V. =C", this bijection is a biholomorphism. Thus, if V' is any (n+1)-dimensional vector space
over C, PV is a complex manifold bi-holomorphic to P”.

If V is a linear subspace of C*! of dimension k+1, PV ~P* is a complex submanifold of P". We

will call such a submanifold of P a linear k-dimensional subspace. If k=n—1 (k=1), PV is called
a hyperplane in P" (line in P™).

B.2 CW-structure

The n-dimensional complex projective space is a CW-complex with one cell in dimensions 0, 2, . . ., 2n,
described as follows. For each k=0,...,n, let
op(Va) = {[Xos -, Xnp, 0,...,0]€P™: X,,_j,#0}. (B.2.1)

This is a smooth submanifold of P* diffeomorphic to the open unit ball B2"~%) around 0 in C*~*;
in particular, the map

v B2k o?(Vga) C P,
) (B.2.2)
w=(wy, ..., Wy_k) — [wl,...,wn_k,l—\w\ ,...,0},

is a diffeomorphism. It extends continuously (in fact, smoothly) over the closed ball B2(n=k): the
image of the boundary S2("—k)—1 of B2("—k) ig contained in

{(Xo,..., X]€P": X; =0V i>n—k} = | | o] (Vsra)-
1>k

We conclude that

k=n

Pn = |_| O'g(vstd)
k=0

is a CW-decomposition, o9 (Va) is an open cell of dimension 2(n—k), and ¢ is an attaching map
for 09(Vsta). The closure of 0 (Vga) in P™ is

ok(Vstd) = {[Xos- .., Xn] €P": X; =0V i>n—k} =P~ (B.2.3)
Since all cells are of even dimension,

Z, ifk=0,2,...,2n;

0, otherwise.

Hy,(P"; Z), H*(P"; Z) ~ { (B.2.4)

We denote by
[0k(Vita)] €Hapnpy(P5Z)  and  [04(Via)]" € B2 R (P Z)
the generators corresponding to the attaching map . Since the diffeomorphism

e B2k pn
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is orientation-preserving with respect to the standard orientations on B2"~%) and P", [o4(Va)]
is the image of [P"*] under the homology homomorphism induced by the standard embedding

g L (Xo,..., Xnr] — [Xo,--., Xn_k,0,...,0].

In particular, [og] and [0g]* are the fundamental and orientation classes of P", [o,,] is the homol-
ogy class of a point in P", and [o,]*=1.

By (B.2.3), the standard embedding P"~¥ —P" induces isomorphisms
H,(P"*,2) — H;(P%:Z) and  H{(P"Z) — H' (P" % 2)

for [ <2(n—k). Since GLy,4+1C is connected, it follows that the same is the case for any linear
embedding P" ¥ —P", i.e. an embedding given by

P**F — P, ] — [Av] VveCMM-p,

for some injective homomorphism A: C*~*+1 — Cn+l,

A (complete) flag on C"*! is a sequence of n+2 linear subspaces of C*1,
V=W={0}EViC...C Vo & Vo =C""). (B.2.5)
The standard flag Vgq on C**! is given by
Vi, = CF x {0}k ¢ cn
For any flag V on C"*! as in (B.2.5), let

op(V) = {[v]€P": vE Vi1 —Vik };

or(V) = {[7}] eP*.ve Vn+1—k} =PVi1_s. (B.2.6)

If V=Vgq, these definitions agree with (B.2.1) and (B.2.3). As in the V.=Vq case, 0;(V) is

the closure of ¢2(V) in P* and
k=n

P"=| | oR(V)

k=0

is a CW-decomposition. The attaching map ¢ for o%(V) can be defined as before, but with
B2("=k) replaced by the unit ball in Vj,_j. Since GL,C is connected, the generators

Oh(V)] € Hy y(P5Z)  and  [ox(V)]" € HR) (77
are then independent of the choice of V. We denote them by [oy] and [ox]*, respectively. Let
o, € H2K(P", 7))
be the Poincare dual of [o].
Exercise B.2.1. Using Poincare duality, show by induction on n that

H*(P",Z) ~ Z[oy] /o™
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We next show that o,Uo; = o4 if k,1>0 and k+1<n. Choose flags V and V' on C"! such
that Vi, 414 and V,_,_; intersect in a subspace V,/ ,_, ; of C"*1 of codimension k4. Then,
0x(V)=PV,41-k and oy(V') =PV, 41— intersect transversally in P", and their intersection is the
complex manifold ]P’VTQ’H_,C_Z with its standard orientation. Since PVLA_ w1 =0k+1 (V") for some
flag V” on C"!, we conclude from Proposition 0.9 that

orUJo; = PDpn ([IP’VnH,k]pn) U PDpn ([IP’V,;H_l]pn)
= PDpn ([PVs 1 g —iJpn) = 0kt
Since o, is the orientation class of P", we find that
1= <UkUUn—k:, [IP’"]> = <0k,0n_kﬁﬂ?’"}> = <Uk7 [O‘n_k]>.
Thus, by (B.2.4),
op=lon_i]* € H*(P"; 7). (B.2.7)
Since O"If:O'k by the above, it follows that
<L*0]f, [Pk]> =1
for any linear embedding ¢: P¥ — P".

Exercise B.2.2. Using local coordinates on P, show that PV, ;;_x and IP’VW{ 41— intersect
transversally in P” as claimed above.

B.3 Tautological line bundle

We will usually view P" as the space of one-dimensional linear subspaces of C"*!. With this
understanding, let
v={(,v)eP"xC" 1 vel c C". (B.3.1)

Exercise B.3.1. Show that 7 is a complex submanifold of P" x C**+!

In fact, the projection 7 : v — P™ defines a holomorphic line bundle, which we will call the
tautological line bundle over P™. A trivialization f; of v over the open subset U; of P" is given by

fi:'7|Ui —)UiXC, fz([XOaaXn]v(ZOavzn)) = ([Xoa"'7Xn]7Zi)' (B32)
The corresponding overlap data is given by
X,
gi;: UinU; — C*,  gii([Xo, ..., Xy]) = Y (B.3.3)
J

ie. mafi(l,v) = gij(O)mafi(L,v) ¥V (4,v) € Vv,
where my: U; xC,U; xC— C are the projections onto the second component. We will call f; the
standard trivialization of ~ over the i-th coordinate chart on P™.
If a>0, a holomorphic section s of v*®% corresponds to a holomorphic map
siy— C s.t. s(l,cv) = cs(l,v) Y (Lv) €y, ceC.
Thus, any degree a homogeneous polynomial @ in Xy, ..., X, induces a section sg of v*®* by
sg:v7 — C, sQ(l,v) = Q) Y (L) €n.

By Lemma B.3.3 below, all holomorphic sections of v*®?, for any a €Z, are of this form.
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Exercise B.3.2. If @ is linear function of Xj,..., X,, show that the induced section sg of
v* — P™ is transverse to the zero set.

By this exercise and Theorem 0.4, the first chern class of the line bundle v* over P™ is the Poincare
dual of a hyperplane P*~! Cc P™:

c1(y*) = oy € HA (P Z). (B.3.4)

Lemma B.3.3. If acZ", the line bundle v* —P™ admits no nonzero holomorphic section. If
a € Z2Y, every holomorphic section of v*®% is of the form sq for some degree a homogeneous
polynomial Q in Xo, ..., X,.

Proof. (1) It is sufficient to prove the first claim for n=1. If s is a nonzero holomorphic section
of the line bundle v* — P!, s71(0) is a finite set. By Corollary 0.7 and (B.3.4), its cardinality
counted with some positive multiplicities is

(e(v*), [P1]> = —a(e(y"), [P1]> = —a(oy, [P1]> =—-a<0.
However, this is impossible if a > 0.

*Qa

(2) Suppose a >0 and s is a holomorphic sections of the line bundle ~ over P". Since the

projection map
oy — P — crtl_o

is a biholomorphism, s induces a holomorphic function
5:C"M1 -0 —C st. 5(cv) = ¢*3(v) YveC" -0, ceC*.
By Hartog’s Theorem [5, p7], § extends to a holomorphic function
Q:C"!' —C s.t. Q(cv) = *Q(v) YveC'! ceC.
Thus, @ is a degree a homogeneous polynomial as claimed. ]

to be added: Castelnuovo bound, every degree d curves lies in a P?, in a P41 if at least of
genus 1
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