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0 Introduction

Enumerative geometry of algebraic varieties is a fascinating field of mathematics that dates back
to the nineteenth century. The general goal of this subject is to determine the number of geometric
objects that satisfy pre-specified geometric conditions. The objects are typically (complex) curves
in a smooth algebraic manifold. Such curves are usually required to represent the given homology
class, to have certain singularities, and to satisfy various contact conditions with respect to a
collection of subvarieties.

Example 0.1. There is precisely 1 real/complex line that passes through two distinct points in
Rn/Cn (or in RPn/CPn).

Example 0.2. How many degree 2 curves pass through 5 points in C2 or in CP2? A degree 2

curve (or conic) C in C2 is the zero set of a nonzero degree 2 polynomial in 2 variables, e.g.

C =
{

(x, y)∈C2 : x2+2xy−xy=0
}

.

Each degree 2 polynomial on C2 is determined by 6 complex coefficients (of x2, xy, y2, x, y, 1).
Two nonzero degree 2 polynomials Q1 and Q2 determine the same curve if and only if Q1=λQ2

for some λ∈C∗. Thus, the space of degree 2 curves in C2 can be identified with

{

(a20, a11, a02, a10, a01, a00)∈(C6−0)
}

/C∗ = CP5 .

The curve C=Q−1(0) determined by the degree 2 polynomial

Q(x, y) = a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00

passes through a point (xi, yi) if and only if

a20x
2
i + a11xiyi + a02y

2
i + a10xi + a01yi + a00 = 0. (0.1)

Thus, the space of degree 2 curves passing through a fixed point (xi, yi) is a hyperplane Hxi,yi

in C5. If the hyperplanes Hx1,y1 , . . . , Hx5,y5 are sufficiently general, the number of degree 2 curves
passing through the points (x1, y1), . . . , (x5, y5) is

∣

∣Hx1,y1∩. . .∩Hx5,y5

∣

∣ =
〈

(PDCP5H)5,CP5
〉

= 1,

where PDCP5H ∈H2(CP5;Z) is the Poincare dual of the homology class of a hyperplane in CP5.
Alternatively, the 5 points determine 5 linear equations (0.1) on the 6 coefficients of Q. If these
equations are linearly independent, the space of the solutions is one complex line CQ in the
space C6 of the coefficients, which corresponds to one curve passing through the 5 points.
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r 0 1 2 3 4 5

# 1 2 4 4 2 1

Table 1: The number of conics passing through 5−r general points and tangent to r general lines

Example 0.3. How many conics pass through 5−r points and are tangent to r lines in C2 or
in CP2? By Example 0.2, the r=0 number is 1. Fairly straightforward topological computations
show that the r = 1 and r = 2 are 2 and 4, respectively. A direct topological computation for
r≥3 turns out to be much harder, as it involves an excess intersection (failure of transversality).
Fortunately, there is a simple geometric reason for the r and 5−r numbers to be the same; see
Table 1 for the list of numbers and [8, Sections 2,3] for a detailed discussion of this problem.

In this course, we will apply various topological methods to enumerative problems in algebraic
geometry. We will encounter two flavors of computational setups: a fairly classical one, which
involves counting curves fairly directly, and a fairly recent one (Gromov-Witten theory), which
involves counting parametrizations of curves. We will focus on counting complex curves in complex
manifolds, as this is generally much easier than counting real curves in real manifolds. The basic
reasons for this are

(0) the number of complex roots (counted with multiplicity) of a degree d complex polynomial
in one variable is d, while the number of real roots (counted with multiplicity) of a degree d
real polynomial in one variable is at most d and is of the same parity as d;

(1) complex curves are often parametrized by complex manifolds, which have a canonical orien-
tation, while real curves are often parametrized by real manifolds, which may not be even
orientable;

(2) compactifications of spaces parameterizing complex curves often have additional strata (known
as boundary) of complex codimension one (which does not cause problems with integration
of top de Rham forms), while compactifications of spaces parameterizing real curves often
have additional strata of complex real codimension one (which does generally cause problems
with integration).

The next statement, which is a standard fact in topology, will lie behind many arguments in this
course.

Theorem 0.4. If M is a compact oriented m-manifold, V −→M is a rank k real oriented vector
bundle, and s : M −→ V is a section transverse to the zero set, then s−1(0) ⊂M is a smooth
oriented submanifold and

[

s−1(0)
]

M
= PDMe(V ) ∈ Hm−k(M ;Z), (0.2)

where [s−1(0)]M is the homology class on M determined by s−1(0) and e(V )∈Hk(M ;Z) is the
euler class of V .

If k is odd, (0.2) may be off by sign, depending on one’s sign conventions. However, 2e(V ) = 0
then, which makes such cases of little relevance to us. A proof of this theorem is outlined in
[12, Exercise 11-C], which uses a rather unusual sign convention for the pairing of homology and
cohomology elements.
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Exercise 0.5. Let M be a topological space and V −→M be an oriented vector bundle of odd
rank. Show that 2e(V )=0.

Exercise 0.6. Verify Theorem 0.4.

Corollary 0.7. If M is a compact oriented m-manifold, V −→M is a rank m real oriented vector
bundle, and s : M −→V is a section transverse to the zero set, then s−1(0)⊂M is a finite set of
signed points and

±
∣

∣s−1(0)
∣

∣ =
〈

e(V ), [M ]
〉

∈ Z, (0.3)

where ±|s−1(0)| is the signed cardinality of the set s−1(0).

Exercise 0.8. Deduce Corollary 0.7 from Theorem 0.4.

We will often encounter cases when a curve count can be written as ±|s−1(0)| for some transverse
section s of a vector bundle V −→M . The above immediate corollary of Theorem 0.4 will then
allow us to express such a curve in terms of a topological quantity, the euler class, which is often
computable.

The proof of Theorem 0.4 also leads to the following statements.

Proposition 0.9. If M is a compact oriented manifold and Y, Z ⊂ M are compact oriented
submanifolds of M intersecting transversally in M , then Y ∩Z is a compact oriented submanifold
of M and

PDM

(

[Y ∩Z]M
)

= PDM ([Y ]M ) ∪ PDM ([Z]M ) ∈ H∗(M ;Z) and
(

PDM ([Z]M )
)

|Y = PDY ([Y ∩Z]Y ) ∈ H∗(Y ;Z).

Corollary 0.10. If M is a compact oriented manifold and Y, Z⊂M are compact oriented sub-
manifolds of M intersecting transversally in M such that

dimY + dimZ = dimM,

then Y ∩Z is a finite set of signed points and

±
∣

∣Y ∩Z
∣

∣ =
〈

PDM ([Y ]M ), [Z]M
〉

.

Exercise 0.11. Verify Proposition 0.9 and deduce Corollary 0.10 from it.

We will typically be taking euler classes of complex vector bundles. Every complex vector bundle
V −→M has a well-defined (total) chern class

c(V ) = 1 + c1(V ) + c2(V ) + . . . ∈ H0(M ;Z)⊕H2(M ;Z)⊕H4(M ;Z)⊕ . . .

s.t. cr(V ) =

{

e(V ), if r = rkCV,

0, if r > rkCV,

where e(V ) is the euler class of V with respect to the canonical complex orientation (given by
the real basis e1, ie1, . . . , ek, iek for a complex basis e1, . . . , ek for a fiber). If V,W −→M are two
complex vector bundles, so is V ⊕W −→M and

c(V ⊕W ) = c(V ) · c(W ) ∈ H2∗(M ;Z).
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If f : X−→M is a continuous map, then

c(f∗V ) = f∗c(V ) ∈ H2∗(M ;Z).

A detailed construction of chern classes is contained in [12, Section 14].

The construction of the complex projective space extends to complex vector bundles. If V −→M
is a complex vector bundle of (complex) rank k, the projectivization of V is the Pk−1-fiber bundle

PV ≡ (V −M)/C∗ −→M,

where M ⊂V is the zero section and C∗ acts by the usual multiplication in each fiber. We will
view each element of PV as a complex line ℓ (through the origin) in a fiber Vx of V −→M . The

tautological line bundle over PV is defined by

γV =
{

(ℓ, v)∈PV ×V : v∈ℓ⊂V
}

−→ PV.

Let
λV = c1(γ

∗
V ) ∈ H2(PV ;Z)

denote the chern class of the hyperplane line bundle. The restrictions of 1, λV , . . . , λ
k−1
V to a fiber

generate its cohomology as a Z-module. Thus, by the generalized Thom Isomorphism Theorem
[22, Theorem 5.7.9],

H∗(PV ;Z) ≈ H∗(M ;Z)[λV ]
/(

λkV +c1(V )λk−1+. . .λV ck−1(V )+ck(V )
)

(0.4)

as Z-modules.

Exercise 0.12. Show that the isomorphism in (0.4) respects the ring structure.

Example 0.13. If M is a point and V −→M is a complex vector bundle of (complex) rank k,
then

V = Ck, c(V ) = 1, PV =Pk−1, H∗(PV ;Z) ≈ Z[λV ]/λ
k
V ,

and PDPV λV =[PCk−1]PV for any Ck−1⊂V .
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1 Schubert Calculus

1 Lines in affine/projective spaces

A (complex) line in Cn is a set of points of the form

pt + C~v ≡
{

pt + λ~v : λ∈C
}

for some point pt ∈Cn and a nonzero vector ~v ∈Cn−0. A (projective) line in Pn is the closure
in Pn of a line contained in a chart

Ui =
{

[Z0, . . . , Zn]∈Pn : Zi 6=0
}

≈ Cn

as in Section B.1. The number of lines in Cn passing through a general points, b general lines,
etc. is the same as the number of lines in Pn passing a general points, b general lines, etc., with
the bijection given by the inclusion

U0 = Cn −→ Pn, (z1, . . . , zn) −→ [1, z1, . . . , zn].

Thus, enumerative problems for Cn and Pn are generally the same. The latter space has the
advantage of being compact and thus is more suitable for topological computations. Instead of
thinking of points, lines, etc. in Pn as closures in Pn of such objects in Cn, it is often more conve-
nient to think of them as projectivizations of linear subspaces of Cn. For example, a point in Pn is
the projectivization of a one-dimensional linear subspace of Cn, a line in Pn is the projectivization
of a two-dimensional linear subspace of Cn, etc.

There is a unique line passing through any 2 distinct points in Cn or in Pn. There are no other
interesting constraints to be imposed on lines in P2. There are still two such questions left
regarding lines in P3: how many lines in P3 pass through

(1) 1 point and 2 general lines;

(2) 4 general lines.

We first observe that the expected answers are finite, i.e. the dimensions of the conditions are the
same as the dimension of the space of lines in P3. Each line in P3 is determined by two distinct
points in P3; the dimension of the space of pairs of such points is 2·3=6. However, the space of
pairs of points on a fixed line is of dimension 2 ·1= 2; thus, the dimension of the space of lines
in P3 is 6−2 = 4. The dimension of the condition of passing through a point in P3 is 2, since
each point is of codimension 3, but it can be any of the points in the one-dimensional space of
points on a line. It follows that the dimension of the condition of passing through a point in P3

is 2−1=1, since a line can now pass through any point on a fixed line. Thus, (1) and (2) impose
the expected number of conditions on the space of lines in P3.
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Example 1.1. How many lines in P3 pass through 1 point and 2 general lines? The space of lines
passing through the point and one of the lines form a plane, which meets the other line in a single
point. Along with the original point, the latter determines the unique line passing through the
three constraints. Thus, the answer is 1. By the same argument, if a, b, and c are non-negative
integers such that a+b+c=n−1, then the number of lines in Cn or Pn meeting general subspaces
of dimensions a, b, and c is again 1.

In the remainder of this section, we will determine the number of lines in P3 passing through
4 general lines. A line ℓ in P3 corresponds to a plane (two-dimensional linear subspace) π⊂C4

by ℓ= P1π. The space of all lines in P3 is thus the same as the space of planes in C3, which is
known as the Grassmannian

G(2, 4) = GL4(C)/H = U(4)/U(2)×U(2),

where H⊂GL4(C) is the subgroup of matrices of the form









∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗









.

The Grassmannian G(2, 4) is a compact complex manifold of dimension 2(4−2)=4; see Section 2.

If ℓ, ℓi⊂P3 are lines,
ℓ ∩ ℓi 6= ∅ ⇐⇒ dim(π ∩ πi) ≥ 1.

Thus, the subspace of lines ℓ in P3 meeting ℓi is

σ1(πi) ≡
{

π∈G(2, 4) : dim(π ∩ πi) ≥ 1
}

.

This is a complex subvariety of G(2, 4); it determines a homology/cohomology class

σ1 ∈ H6

(

G(2, 4);Z
)

, H2
(

G(2, 4);Z
)

,

which is independent of the choice of πi (since the space of the planes πi is path-connected). The
number we are interested in is

∣

∣σ1(π1) ∩ σ1(π2) ∩ σ1(π3) ∩ σ1(π4)
∣

∣ =
〈

σ41,G(2, 4)
〉

;

the last equality holds if the intersection is transverse. Thus, the number of lines in P3 passing
through 4 general lines is determined by the ring H∗(G(2, 4);Z).

If the lines ℓ1 and ℓ2 intersect at a point pt=PL (which is not generically the case), they form a
plane P =PV in P3, for some 3-dimensional linear subspace V ⊂C4. In this case, σ1(π1)∩σ1(π2)
is the union of the sets

σ2(L) =
{

π∈G(2, 4) : dim(π∩L)≥1
}

and σ1,1(V ) =
{

π∈G(2, 4) : dim(π∩V )≥2
}

consisting of the lines passing through pt and of the lines contained in P , respectively. This
corresponds to the statement

σ21 = σ2 + σ11, (1.1)
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which is a special case of (2.11) below. Thus,

σ1(π1) ∩ σ1(π2) ∩ σ1(π3) ∩ σ1(π4) = σ2(L) ∩ σ1(π3) ∩ σ1(π4) ∪ σ1,1(V ) ∩ σ1(π3) ∩ σ1(π4).

The set σ2(L)∩σ1(π3)∩σ1(π4) consists of the lines in P3 passing through the point pt and the
lines ℓ3 and ℓ4; the number of such lines is 1 by Example 1.1. The set σ1,1(V )∩σ1(π3)∩σ1(π4),
consists of the lines ℓ in P3 that lie in the plane P ≈ P2 and pass through the lines ℓ3 and ℓ4,
i.e. of the lines ℓ⊂P that pass through the points P∩ℓ3 and P∩ℓ4; the number of such lines is 1
by Example 0.1. Thus, the number of lines in P3 meeting 4 general lines is 2.

2 Grassmannians of two-planes

The set of two-dimensional linear subspaces of Cn, which we will denote by G(2, n), admits a
natural complex structure which can be constructed as follows. Denote by

B(2, n) ⊂ (Cn−0)× (Cn−0)

the open subspace consisting of pairs of linearly independent vectors in Cn. Let B∗(2, n)⊂B(2, n)
be the subset of pairs (v1, v2) such that v1 and v2 are orthonormal (w.r.t. the standard hermitian
inner-product on Cn). Since the maps

B(2, n),B∗(2, n) −→ G(2, n), (v1, v2) −→ Cv1 + Cv2,

are surjective, the topologies of B(2, n) and B∗(2, n) induce quotient topologies on G(2, n); see
[15, Section 22]. The maps

GLn(C), U(n) −→ G(2, n)

sending each matrix to the span of the first two columns are also surjective.

Exercise 2.1. Let n∈Z+ be such that n≥2. Show that

(1) the four quotient topologies on G(2, n) are the quotient topologies

B(2, n)/GL2(C), B∗(2, n)/U(2), GLn(C)
/

G2, U(n)
/

U(2)×U(n−2)

for certain free group actions and a for a certain subgroup G2⊂GLnC;

(2) the four quotient topologies on G(2, n) are in fact the same.

Exercise 2.2. Let n∈Z+ be such that n≥2. Show that G(2, n) is a compact complex manifold
of dimension 2(n−2) and the projection maps

B(2, n),GLn(C) −→ G(2, n)

defined above are holomorphic submersions.

We will next describe a stratification of G(2, n) and its cohomology. A flag V in Cn is a strictly
increasing sequence of n+1 linear subspaces of Cn,

{0}=V0 ( V1 ( . . . Vn−1 ( Vn=Cn.
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Given such a flag on Cn and nonnegative integers a and b, we define

σ0ab(V) =
{

P ∈G(2, n) : dim(P∩Vn−1−a) = 1, dim(P∩Vn−2−a) = 0;

dim(P∩Vn−b) = 2, dim(P∩Vn−1−b

)

= 1
}

.

Since P is a linear subspace of Cn of dimension 2,

σ0ab(V) =
{

P ∈G(2, n) : P∩Vn−1−a 6={0}, P∩Vn−2−a={0};

P ⊂Vn−b, P 6⊂Vn−1−b

}

.

Since a generic element of G(2, n) is not contained in Vn−1 and intersects Vn−2 trivially, the
numbers a and b measure the extent of the deviation of the elements of σ0ab from a generic
element of G(2, n). Note that σ0ab(V)=∅ unless n−2≥a≥b. Furthermore,

G(2, n) =
⊔

n−2≥a≥b≥0

σ0ab(V). (2.1)

The closure of σ0ab(V) in G(2, n) is given by

σab(V) ≡ σ̄0ab(V) =
{

P ∈G(2, n) : P ⊂Vn−b, P∩Vn−1−a 6={0}
}

. (2.2)

These subspaces of G(2, n) are called Schubert cells. We will write σa(V) for σa0(V). If

Vn−b ≡ (V0, V1, . . . , Vn−b)

is a flag for Cn−b, then
σab(V) = σa−b(V

n−b) ⊂ G(2, n−b). (2.3)

Lemma 2.3. The decomposition (2.1) is a stratification of G(2, n) with

dimC σ
0
ab(V) = 2(n−2)− (a+b) if n−2 ≥ a ≥ b≥ 0. (2.4)

Proof. It is sufficient to prove this statement for the standard flag V given by

Vk = Ck × {0}n−k ⊂ Cn.

If a, b are as in (2.4), let
Bab(2, n) ⊂ B(2, n)

denote the subspace of pairs (v1, v2) such that v1∈Cn−1−a, v2∈Cn−b, the n−1−a coordinate of
v1 and the n−b coordinate of v2 are both 1, and the n−1−a coordinate of v2 is 0. Thus,

Bab(2, n) ≈ Cn−1−a−1 × Cn−b−2

and the quotient projection map

qab : Bab(2, n) −→ σ0ab(V)

is a bijection. Since qab is holomorphic (being a composition of holomorphic maps), qab is bi-
holomorphic [5, p19]. This shows that σ0ab(V) is bi-holomorphic to C2(n−2)−(a+b). Since

σab(V)− σ0ab(V) ⊂
⋃

a′+b′>a+b

σ0ab(V)

by (2.2), it follows that (2.1) is indeed a stratification of G(2, n).
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Remark 2.4. The decomposition (2.1) in fact presents G(2, n) as a CW-complex; see Section 6
in [12].

Exercise 2.5. Suppose V is a flag in Cn and n−2 ≥ a ≥ b. Using (2.2) and (2.3), show that
σab(V) is a complex variety, which is smooth if and only if a= b or a=n−2. Give a geometric
description of σab(V) in these two cases.

Since the space of flags in Cn is path-connected, the Schubert cycles σab(V) and σab(V
′) corre-

sponding to two different flags determine the same elements in the homology of G(2, n) and via
the Poincare duality in the cohomology of G(2, n). Both of these elements will be denoted by σab.
By Lemma 2.3,

σab ∈ H2(2(n−2)−(a+b))

(

G(2, n);Z
)

, H2(a+b)
(

G(2, n);Z
)

.

Furthermore, H∗(G(2, n);Z) and H∗(G(2, n);Z) are the free Z-modules generated by σab with
n−2≥a≥b≥0. The classes σab and σa′b′ have complimentary dimensions if and only if

a+ b+ a′ + b′ = 2(n− 2). (2.5)

The next lemma describes the Poincare pairing on G(2, n).

Lemma 2.6. Suppose n, a, b, a′, b′ are non-negative integers. If n−2≥a≥b≥0, then

〈

σabσa′b′ ,G(2, n)
〉

=

{

1, if a′=n−2−b, b′=n−2−a;

0, otherwise.
(2.6)

Proof 1. Let V and V′ be two generic flags. By (2.2),

σab(V) ∩ σa′b′(V
′) =

{

P ∈G(2, n) : P ⊂(Vn−b∩V
′
n−b′),

P∩Vn−1−a 6={0}, P∩V ′
n−1−a′ 6={0}

}

.
(2.7)

Thus, σab(V) ∩ σa′b′(V
′) is empty unless

dim
(

Vn−b∩V
′
n−1−a′

)

≥ 1, dim
(

V ′
n−b′∩Vn−1−a

)

≥ 1.

Since the flags V and V′ are general, it follows that σab(V) ∩ σa′b′(V
′) is empty unless

(n−b) + (n−1−a′)− n ≥ 1, (n−b′) + (n−1−a)− n ≥ 1.

Since we can assume that (2.5) holds, it follows that

σab(V) ∩ σa′b′(V
′) 6= ∅ =⇒ a′=n−2−b, b′=n−2−a.

This implies the second case in (2.6). If a′=n−2−b and b′=n−2−a, then

σab(V) ∩ σa′b′(V
′) = σ0ab(V) ∩ σ0a′b′(V

′)

consists of the single element P ∈G(2, n) which is the span of the disjoint one-dimensional linear
subspaces Vn−b∩V

′
n−1−a′ and V

′
n−b′∩Vn−1−a of Cn. This is a transverse point of the intersection

of complex sub-manifolds σ0ab(V) and σ0a′b′(V
′) in G(2, n) and thus contributes 1 to the homology

intersection of σab(V) and σa′b′(V
′).
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Proof 2. By (2.2) and (2.3),
〈

σabσa′b′ ,G(2, n)
〉

=
〈

σa−bσa′b′ ,G(2, n−b)
〉

=
〈

σa−bσa′−b′ ,G(2, n−b−b′)
〉

.
(2.8)

The last number above is zero unless

n− b− b′ − 2 ≥ a−b, a′−b′ ⇐⇒ a+b′ ≤ n−2, a′+b ≤ n−2.

In light of (2.5), the last condition is equivalent to

a+b′ = n−2, a′+b = n−2.

If these equalities hold, by (2.8)
〈

σabσa′b′ ,G(2, n)
〉

=
〈

σa−bσa−b,G(2, a−b+2)
〉

= 1,

since this is the number of two-dimensional linear subspaces of Ca−b+2 containing two fixed
distinct one-dimensional linear subspaces.

Exercise 2.7. (a) If n, a1, . . . , ak, b1, . . . , bk are nonnegative integers, show that
〈

σa1b1 · . . . · σakbk ,G(2, n)
〉

=
〈

σa1−b1 · . . . · σak−bk ,G(2, n−b1−. . .−bk)
〉

. (2.9)

(b) Verify the transversality statement at the end of the first proof of Lemma 2.6.

Exercise 2.8. Prove the following identities for Schubert cycles:
(a) if n, a1, a2, a3∈Z+ are such that n−2≥a1, a2, a3≥0, then

〈

σa1σa2σa3 ,G(2, n)
〉

=

{

1, if a1+a2+a3 = 2n−4;

0, otherwise;
(2.10)

(b) if a1, a2≥0,

σa1 · σa2 =
∑

c≥a1,a2

σc,a1+a2−c. (2.11)

Hint: Use (a) along with (2.6) and (2.9).

The identity (2.11) is a special case of Pieri’s formula for Schubert cycles. Along with (2.6)
and (2.9), it suffices to compute the intersection of any collection of Schubert classes on G(2, n).

Exercise 2.9. (a) The inclusion Cn−→Cn+1 induces an embedding

ι : G(2, n)−→G(2, n+1).

Show that the cohomology homomorphism induced by the latter is given by

ι∗ : H∗
(

G(2, n+1);Z
)

−→ H∗
(

G(2, n);Z
)

, σab −→ σab ∀ a, b.

(b) Let ι : Pn−1−→G(2, n+1) be the embedding defined by L −→ L ⊕ (0n×C). Show that the
induced cohomology homomorphism is given by

ι∗ : H∗
(

G(2, n+1);Z
)

−→ H∗
(

Pn−1;Z
)

, σab −→ σab ∀ a, b,

with σab∈H
∗(Pn−1;Z) defined to be 0 if b 6=0.

10



It is often convenient to represent Schubert cycles by Young diagrams. The Schubert cycle σab
then corresponds to the tableaux µ with the first (bottom) row consisting of a boxes and the
second of b boxes. In order to indicate that this cycle lies in G(2, n), we draw this tableaux at
the bottom left corner of a 2×(n−2) grid and thus indicate all possibilities for µ. By Lemma 2.6,
the tableaux µc describing the Schubert cycle σµc dual to σµ is the complement of µ in the grid:

µ = (5, 1) ⊂ G(2, 9) µc = (6, 2) ⊂ G(2, 9)

By Exercise 2.5, σµ(V) is smooth if and only µc is a rectangle.

The projectivization of a 2-dimensional linear subspace of Cn+1 is a projective line in Pn and vice
versa. Thus, the set of lines in Pn, which we denote by Ln(Pn), can be identified with G(2, n+1).
If V is a flag on Cn+1 and a and b are nonnegative integers, under this identification the Schubert
cycle σab(V) is given by

σab(V) =
{

ℓ∈Ln(Pn) : ℓ⊂PVn+1−b, ℓ∩PVn−a 6=∅
}

. (2.12)

Thus, σab is the space of lines in Pn that are contained in a linearly embedded projective subspace
Pn−b and meet a linearly embedded projective subspace Pn−1−a of Pn−b . The identification (2.12)
can be used along with (2.6), (2.9), and (2.11) to determine the number of lines in Cn (or Pn)
meeting a specified collection of affine (or linear) subspaces.

Example 2.10. The number of lines through 2 distinct points, in Cn or Pn, is of course 1. This
corresponds to the statement

〈

σn−1σn−1,G(2, n+1)
〉

= 1,

which is a special case of (2.6).

Example 2.11. Let a, b, and c be non-negative integers such that a+b+c=n−1. By Example 1.1,
the number of lines in Cn or Pn meeting general subspaces of dimensions a, b, and c is 1. This
corresponds to the statement

〈

σn−1−aσn−1−bσn−1−c,G(2, n+1)
〉

= 1,

which is a special case of (2.10).

Example 2.12. By the last part of Section 1, the number of lines meeting 4 general lines in C3

or P3 is 2. This corresponds to the statement that

〈

σ41,G(2, 4)
〉

= 2,

which can be deduced from (2.11) and (2.9).

The intersection arguments in Examples 2.10-2.12 rely on the assumption that general represen-
tatives for Schubert cycles intersect transversally in G(2, n+1). This follows from Exercise 2.13
below, which also implies that the numbers obtained by intersecting appropriate Schubert cycles
on G(2, n+1) are indeed actual counts of lines passing through specified linear constraints.

11



n . . . 〈. . . ,G(2, n)〉 n . . . 〈. . . ,G(2, n)〉

Table 2: Top intersections of Schubert classes on G(n, 5). The numbers directly obtainable
from (2.6) and (2.11) are not shown.

Exercise 2.13. If V(1), . . . ,V(k) are general flags on Cn+1, show that for every l=2, . . . , k, then

(1) σ0a1b1(V
(1))∩. . .∩σ0al−1bl−1

(V(l−1)) is a smooth complex submanifold of G(2, n+1);

(2) σ0a1b1(V
(1))∩. . .∩σ0al−1bl−1

(V(l−1)) and σalbl(V
(l)) intersect transversally in G(2, n+1).

Exercise 2.14. Verify the numbers in Table 3.

Analogously to (B.3.1), let

π : γ2 =
{

(P, v)∈G(2, n)×Cn : v∈P ⊂ Cn
}

−→ G(2, n). (2.13)

Exercise 2.15. Show that γ2 is a complex submanifold of G(2, n)×Cn and (2.13) is a holomorphic
vector bundle of rank 2.

The vector bundle π : γ2 −→ G(2, n) is called the tautological two-plane bundle. It turns out
to be useful in particular for counting lines on projective hypersurfaces and more generally on
projective complete intersections.

Lemma 2.16. The total chern class of the vector bundle γ∗2−→G(2, n) is given by

c(γ∗2) = 1 + σ1 + σ11 ∈ H∗
(

G(2, n);Z
)

.

Proof. Since the Schubert cells provide a CW-decomposition of G(2, n),

c1(γ
∗
2) = aσ1, c2(γ

∗
2) = bσ11 + cσ2,

for some a, b, c ∈ Z. Since the tautological bundle γ2 −→ G(2, n+1) restricts to the tautolog-
ical bundle over G(2, n) under the embedding G(2, n) −→ G(2, n+1) induced by the inclusion
Cn−→Cn+1, by the naturality of chern classes and Exercise 2.9(a) the numbers a, b, and c are
independent of n. Since the pull-back of γ2−→G(2, n+1) by the embedding ι : Pn−1−→G(2, n+1)
of Exercise 2.9(b) is γ1⊕τ1, a=1 and c=0 by the naturality of chern classes and Exercise 2.9(b).
Finally, the pull-back of γ2−→G(2, 4) by the embedding

h : P1×P1 −→ G(2, 4), (ℓ1, ℓ2) −→ ℓ1×ℓ2 ⊂ C2×C2

is the bundle γ1×γ1−→P1×P1. Thus, b=+1 or b=−1 depending on whether

〈

h∗σ11,P
1×P1

〉

= +1 or
〈

h∗σ11,P
1×P1

〉

= −1;

since h is a holomorphic map, the latter is impossible.
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n λ N(λ) n λ N(λ) n λ N(λ)

4 (1,0,3) 1 6 (0,0,1,3,1) 5 7 (0,0,2,0,0,4) 6

4 (0,2,2) 2 6 (0,0,1,2,3) 7 7 (0,0,1,2,1,0) 3

4 (0,1,4) 3 6 (0,0,1,1,5) 10 7 (0,0,1,2,0,2) 4

4 (0,0,6) 5 6 (0,0,1,0,7) 14 7 (0,0,1,1,2,1) 5

5 (1,0,1,2) 1 6 (0,0,0,5,0) 6 7 (0,0,1,1,1,3) 7

5 (1,0,0,4) 1 6 (0,0,0,4,2) 9 7 (0,0,1,1,0,5) 10

5 (0,2,0,2) 2 6 (0,0,0,3,4) 13 7 (0,0,1,0,4,0) 6

5 (0,1,2,1) 2 6 (0,0,0,2,6) 19 7 (0,0,1,0,3,2) 8

5 (0,1,1,3) 3 6 (0,0,0,1,8) 28 7 (0,0,1,0,2,4) 11

5 (0,1,0,5) 4 6 (0,0,0,0,10) 42 7 (0,0,1,0,1,6) 15

5 (0,0,4,0) 3 7 (1,0,0,1,1,1) 1 7 (0,0,1,0,0,8) 20

5 (0,0,3,2) 4 7 (1,0,0,1,0,3) 1 7 (0,0,0,4,0,0) 4

5 (0,0,2,4) 6 7 (1,0,0,0,3,0) 1 7 (0,0,0,3,1,1) 6

5 (0,0,1,6) 9 7 (1,0,0,0,2,2) 1 7 (0,0,0,3,0,3) 8

5 (0,0,0,8) 14 7 (1,0,0,0,1,4) 1 7 (0,0,0,2,3,0) 7

6 (1,0,1,0,2) 1 7 (1,0,0,0,0,6) 1 7 (0,0,0,2,2,2) 10

6 (1,0,0,2,1) 1 7 (0,2,0,0,0,2) 2 7 (0,0,0,2,1,4) 14

6 (1,0,0,1,3) 1 7 (0,1,1,0,1,1) 2 7 (0,0,0,2,0,6) 20

6 (1,0,0,0,5) 1 7 (0,1,1,0,0,3) 3 7 (0,0,0,1,4,1) 12

6 (0,2,0,0,2) 2 7 (0,1,0,2,0,1) 2 7 (0,0,0,1,3,3) 17

6 (0,1,1,1,1) 2 7 (0,1,0,1,2,0) 2 7 (0,0,0,1,2,5) 24

6 (0,1,1,0,3) 3 7 (0,1,0,1,1,2) 3 7 (0,0,0,1,1,7) 34

6 (0,1,0,3,0) 2 7 (0,1,0,1,0,4) 4 7 (0,0,0,1,0,9) 48

6 (0,1,0,2,2) 3 7 (0,1,0,0,3,1) 3 7 (0,0,0,0,6,0) 15

6 (0,1,0,1,4) 4 7 (0,1,0,0,2,3) 4 7 (0,0,0,0,5,2) 21

6 (0,1,0,0,6) 5 7 (0,1,0,0,1,5) 5 7 (0,0,0,0,4,4) 30

6 (0,0,3,0,1) 2 7 (0,1,0,0,0,7) 6 7 (0,0,0,0,3,6) 43

6 (0,0,2,2,0) 3 7 (0,0,2,1,0,1) 2 7 (0,0,0,0,2,8) 62

6 (0,0,2,1,2) 4 7 (0,0,2,0,2,0) 3 7 (0,0,0,0,1,10) 90

6 (0,0,2,0,4) 6 7 (0,0,2,0,1,2) 4 7 (0,0,0,0,0,12) 132

Table 3: The number of lines N(λ) in Cn or Pn that meet λk general affine or linear subspaces of
dimension k, with k=0, 2, . . . , n−2. The numbers provided by Examples 2.10-2.12 are omitted.
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Here is another way to see that e(γ∗2)=σ11. The map

γ2 −→ Cn,
(

P, (c1, . . . , cn)
)

−→ cn,

induces a holomorphic section s̃Zn of γ∗2−→G(2, n). Since

s̃−1
Zn

(0) =
{(

P, (c1, . . . , cn)
)

∈γ2 : cn=0 ∀ (c1, . . . , cn)∈P
}

=
{

P ∈G(2, n) : P ⊂Cn−1
}

= σ11

and this section is transverse to the zero set,

e(γ∗2) = PDG(2,n)

(

[s̃−1
Q (0)]G(2,n)

)

= σ11 ;

the first equality follows from Theorem 0.4.

By Lemma B.3.3, a nonzero degree a homogeneous polynomial Q in (n+1) variables determines
a holomorphic section sQ of the line bundle γ∗⊗a−→Pn. The zero set of this section,

Xn;a ≡ XQ ≡ s−1
Q (0) ≡

{

[Z0, . . . , Zn]∈Pn : Q(X0, . . . , Xn)=0
}

.

is a degree a hypersurface. By the Lefschetz Hyperplane Theorem [5, p156, p158], the homomor-
phisms on the fundamental groups

πi(Xn;a) −→ πi(P
n)

are isomorphisms for i<n−1. Thus, the restriction isomorphisms

H i(Pn;Z) −→ H i(Xn;a;Z)

are isomorphisms for i<n−1 as well.

Exercise 2.17. Let Xn;a⊂Pn be a smooth degree a hypersurface.

(1) Show that c1(Xn;a)=(n+1−a)c1(γ
∗)|Xn;a .

(2) Show that the euler characteristic of Xn;a is given by

χ(Xn;a) =
(1−a)n+1 + (n+1)a− 1

a
.

(3) If n=2, show that the genus of the curve Xn;a is
(

a−1
2

)

.

(4) Determine the betti numbers of Xn;a (the dimensions of H i(Xn;a)).

(5) For n≤4, determine the Hodge diamond of Xn;a.

Exercise 2.18. Show that

(1) a degree a homogeneous polynomial Q in n+1 variables induces a holomorphic section s̃Q of
the vector bundle Symaγ∗−→G(2, n+1);

(2) a line ℓ=P1P ⊂Pn, with P ∈G(2, n+1), is contained in the hypersurface XQ if and only if
s̃Q(P )=0;

14



(3) the bundle section s̃Q is transverse to the zero set for a generic choice of Q .

If sQ (s̃Q) is transverse to the zero set, does it follow that so is s̃Q (sQ)?

By Exercise 2.18, the dimension of the space of lines lying on a generic degree a hypersurface Xn;a

in Pn is given by

dimM0

(

Xn;a, ℓ
)

= dimG(2, n+1)− rk Symaγ∗2 = 2(n−1)− (a+1)

= 2n− a− 3.
(2.14)

In particular, there are no lines on Xn;a if a>2n−3. Using Exercise 2.18, we can determine the
number of lines that lie on Xn;a and meet a generic collection of linear subspaces of Pn. By (2.14),
the total codimension of the subspaces minus the number of subspaces should be 2n−a−3.

Example 2.19. The number of lines on a generic conic (degree 2) surface in P3 that meet a
general line in P3 is given by

〈

σ1 · e(Sym
2γ∗2),G(2, 4)

〉

=
〈

σ1 · 4c1(γ
∗
2)c2(γ

∗
2),G(2, 4)

〉

= 4
〈

σ21σ11,G(2, 4)
〉

= 4;

the last identity follows from (1.1) and (2.10). Since a generic line in P3 meets X3;2 at two points,
it follows that the number of lines on X3;2 through a fixed point is 2. By [5, p478], every smooth
conic surface in P3 is isomorphic to P1×P1; the two lines through any point p are the horizontal
and vertical slices of this cartesian product through p.

Example 2.20. The number of lines on a generic cubic (degree 3) surface in P3 is given by

〈

e(Sym3γ∗2),G(2, 4)
〉

=
〈

9c2(γ
∗)(2c1(γ

∗
2)

2 + c2(γ
∗
2)),G(2, 4)

〉

= 9
〈

2σ21σ11 + σ211,G(2, 4)
〉

= 27;

the first equality above follows from Exercise A.3.4 and Lemma 2.16.

Exercise 2.21. Describe the 27 lines on the cubic surface in P3 given by X3
0+X

2
1+X

3
2+X

3
3 = 0

explicitly.

If a = (a1, . . . , ac) is a tuple positive integers, a complete intersection of multi-degree a in Pn is
the intersection of hypersurfaces of degrees a1, . . . , ac in Pn. A generic complete intersection of
multi-degree a is the intersection of generic hypersurfaces of degrees a1, . . . , ac:

Xn;a =
i=c
⋂

i=1

Xn;ai .

The above method for counting lines on a generic hypersurface extends to counting lines on Xn;a:
simply replace the euler class of Symaγ∗ by the product of the euler classes of Symaiγ∗2 with
i=1, . . . , c.

Exercise 2.22. Verify the numbers in Table 4.
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n a λ Na(λ) n a λ Na(λ)

4 2 (1,1) 4 6 2 (0,1,2,0) 8

4 2 (0,3) 8 6 2 (0,1,1,2) 12

4 3 (1,0) 18 6 2 (0,1,0,4) 16

4 3 (0,2) 45 6 2 (0,0,3,1) 16

4 4 (0,1) 320 6 2 (0,0,2,3) 24

4 5 (0,0) 2875 6 2 (0,0,1,5) 36

4 (2,2) 0 16 6 2 (0,0,0,7) 56

5 2 (1,1,0) 4 6 3 (1,0,1,0) 18

5 2 (1,0,2) 4 6 3 (1,0,0,2) 18

5 2 (0,2,1) 8 6 3 (0,2,0,0) 45

5 2 (0,1,3) 12 6 3 (0,1,1,1) 63

5 2 (0,0,5) 20 6 3 (0,0,3,0) 81

5 3 (1,0,1) 18 6 3 (0,0,2,2) 126

5 3 (0,2,0) 45 6 3 (0,0,1,4) 189

5 3 (0,1,2) 63 6 3 (0,0,0,6) 297

5 3 (0,0,4) 108 6 4 (1,0,0,1) 96

5 4 (1,0,0) 96 6 4 (0,1,1,0) 416

5 4 (0,1,1) 416 6 4 (0,1,0,2) 512

5 4 (0,0,3) 736 6 4 (0,0,2,1) 832

5 5 (0,1,0) 3250 6 4 (0,0,1,3) 1248

5 5 (0,0,2) 6125 6 4 (0,0,0,5) 1984

5 6 (0,0,1) 60480 6 5 (1,0,0,0) 600

5 7 (0,0,0) 698005 6 5 (0,1,0,1) 3850

5 (2,2) (1,0) 16 6 5 (0,0,2,0) 6725

5 (2,2) (0,2) 32 6 5 (0,0,1,2) 9975

5 (2,3) (0,1) 180 6 5 (0,0,0,4) 16100

5 (2,4) (0,0) 1280 6 6 (0,1,0,0) 33264

5 (3,3) (0,0) 1053 6 6 (0,0,1,1) 93744

6 2 (1,1,0,0) 4 6 6 (0,0,0,3) 154224

6 2 (1,0,1,1) 4 6 7 (0,0,1,0) 1009792

6 2 (1,0,0,3) 4 6 7 (0,0,0,2) 1707797

6 2 (0,2,0,1) 8 6 8 (0,0,0,1) 21518336

Table 4: The number of lines Na(λ) that lie on a generic complete intersection of multi-degree
(a1, . . . , ac) in Pn that meet λk general linear subspaces of Pn of dimension k= c, c+1, . . . , n−2.
The numbers provided by Examples 2.19 and 2.20 and those with al=1 for some l are omitted.
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3 Conic curves in affine/projective spaces

A conic (degree 2) curve C ⊂ Pn is a complex curve, possibly with some singularities, such that
[C]=2[P1], for any linear subspace P1⊂Pn. Every conic lies in a P2⊂Pn and every conic, other
than a double line, is contained in a unique P2. Thus, counting conics in Pn is usually equivalent
to counting pairs (π,C), where π ≈ P2 is a linear subspace of Pn and C ⊂ π is a conic lying
in π. Since each π equals PV for a unique 3-dimensional linear subspace V of Cn+1, the space of
two-dimensional linear subspaces of Pn is G(3, n+1), the Grassmannian of 3-dimensional linear
subspaces of Cn+1. Let

π : γ3 =
{

(V, v)∈G(3, n+1)×Cn+1 : v∈V ⊂ Cn+1
}

−→ G(3, n) (3.1)

be the tautological rank 3 vector bundle. A conic C lying in V corresponds to an element
of P(Sym2V ∗), i.e. a nonzero degree 2 polynomial on V determined up to multiplication by C∗.
Thus, the space of conics in Pn is essentially P(Sym2γ∗3); see Example A.2.4.

The Grassmannian G(3, 4) parametrizes two-dimensional linear subspaces of P3 or equivalently
three-dimensional linear subspaces of Cn. Every such subspace V can be identified with its
annihilator,

Ann(V ) ≡ {η∈(C4)∗ : η(v)=0 ∀ v∈V
}

⊂ (C4)∗ ≡ HomC(C
4,C),

which is a one-dimensional linear subspace of (C4)∗ ≈ C4. Thus, the map

G(3, 4) −→ P̂3 ≡ P1(C4)∗ ≈ P3 , V −→ Ann(V ), (3.2)

is a bijection and thus can be used to topologize G(3, 4) and give it a complex structure. With
this complex structure,

dimCG(3, 4) = dimCP
3 = 3, dimCP(Sym

2γ∗3) = dimCG(3, 4) + dimCSym
2C3 − 1 = 8,

where γ3−→G(3, 4) is the tautological three-plane bundle.

Every conic curve in P3 meets a generic hyperplane, i.e. a two-dimensional linear subspace of P3,
in 2 points. Thus, passing through a hyperplane does not impose a condition on the conics.
Passing through a line ℓ imposes a one-dimensional condition on the space of conics in P3, since ℓ
is of codimension two in P3, while a conic is of dimension one. Similarly, passing through a
point in P3 imposes a two-dimensional condition on the space of conics in P3. By the last two
paragraphs, the complex dimension of the space of conics in P3 is 8. Thus, we expect that there
are finitely many conics passing through a generic points and b generic lines in P3 if 2a+b=8.

Example 3.1. Four generic points in P3 do not lie in any two-dimensional linear subspace P2⊂P3.
Since every conic lies in such a subspace, the number of conics passing through 4 general points
in P3 is 0.

Example 3.2. Three general points in P3 determine a P2⊂P3. Every P2 meets a generic line ℓ
in P3 in a single point. Since every conic lies in such a P2 ⊂ P3, the number of conics passing
through 3 general points and 2 general lines in P3 is the same as the number of conics in the P2

determined by the 3 points that pass through 5 points: the 3 original points and the 2 points of
the intersection of P2 with the 2 original lines. By Example 0.2, this number is 1.
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Exercise 3.3. Let γ̂−→ P̂3 denote the tautological line bundle and

â = c1(γ̂
∗) ∈ H2

(

P̂3;Z
)

= H2
(

G(3, 4);Z
)

.

Show that

(1) γ3 ⊕ γ̂∗ ≈ G(3, 4)×C4 as complex vector bundles;

(2) c(γ∗3) = 1 + â+ â2 + â3 ;

(3) c(Sym2γ∗3) = 1 + 4â+ 10â2 + 20â3 .

We identify the space of conics in P3 with the elements ([η], [s]) of P(Sym2γ∗3), consisting of a
one-dimensional linear subspace Cη⊂(C4)∗ and a one-dimensional linear subspace [s] in the space
of degree 2 homogeneous polynomials on V =η−1(0) ⊂ C4 (or equivalently of a two-dimensional
linear subspace PV ⊂P3 and a conic s−1(0)⊂PV ). Let

γ̃ −→ P(Sym2γ∗3) and λ̃ = c1(γ̃
∗) ∈ H2

(

Sym2γ∗3 ;Z
)

denote the tautological line bundle as in Example A.2.4 and the chern class of its dual, respectively.
A conic ([η], [s]) passes through a point [p]∈P3 if and only if p∈η−1(0) and p∈s−1(0). The first
requirement imposes a linear condition on η, defining a section ϕ̂p of γ̂∗−→ P̂3 dependent on the
choice of the representative p for [p]; the zero set of this transverse section is a two-dimensional
linear subspace P̂2 ⊂ P̂3. The second requirement similarly imposes a linear condition on s and
defines a section ϕ̃p of γ̃∗−→P(Sym2γ∗3), dependent on p:

{

ϕ̃p([s])
}

(s) = s(p) ∀ s ∈ γ̃
∣

∣

P(Sym2γ∗

3 )|P̂2
.

Thus, the subspace M[p]⊂P(Sym2γ∗3) of conics passing through a point [p] in P3 represents the

Poincare dual of λ̃ in P(Sym2γ∗3)|P̂2 .

Exercise 3.4. Let V be a vector space over C of dimension 3, α, β ∈ V ∗, and s : V −→C be a
homogeneous function of order 2. Show that the linear map

α2∧β2∧s : (Λ3
CV )⊗2 −→ C,

(u ∧ v ∧ w)⊗2 −→
(

α(u)β(v)− α(v)β(u)
)2
s(w) ∀ u, v ∈ V, w ∈ kerα ∩ kerβ,

is well-defined and is identically zero if and only if s vanishes somewhere on kerα ∩ kerβ − 0.

We next describe the space of conics in P3 meeting a line ℓ = Pπ in P3, where π ⊂ C4 is a
two-dimensional linear subspace of C4. In particular,

π = kerα ∩ kerβ

for some α, β ∈ (C4)∗. By Exercise 3.4, the subspace Mℓ⊂P(Sym2γ∗3) of conics passing through
the line ℓ in P3 is described by

Mℓ =
{

([η], [s])∈P1(Sym2γ∗3) : α
2∧β2∧s = 0 ∈ (ΛCη

−1(0))∗⊗2
}

.
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Thus, Mℓ is the zero set of the section ϕα,β of the line bundle

γ̃∗ ⊗ π∗(ΛCγ3)
∗⊗2 −→ P(Sym2γ∗3),

where π : P(Sym2γ∗3)−→G(3, 4) is the projection map, given by
{

ϕα,β([η], [s])
}

(s) −→ α|2η−1(0) ∧ β|
2
η−1(0) ∧ s

and so represents the Poincare dual of

e
(

γ̃∗ ⊗ π∗(ΛCγ3)
∗⊗2
)

= c1(γ̃
∗) + 2π∗1c1

(

ΛCγ
∗
3

)

= λ̃+ 2π∗â.

Example 3.5. By the above, the set of conics in P3 passing through 2 general points and 4 general
lines is the zero set of a section of the vector bundle

2 γ̃∗ ⊕ 4 γ̃∗⊗π∗(ΛCγ3)
∗⊗2 −→ P(Sym2γ∗3)

∣

∣

P̂1 ,

where P̂1 is the intersection of the two P̂2⊂ P̂3 corresponding to the two points. As this section
is transverse to the zero set, the cardinality of this set is

〈

e
(

(2γ̃∗ ⊕ 4 γ̃∗⊗π∗(ΛCγ3)
∗⊗2
)

,P(Sym2γ∗3)|P̂1

〉

=
〈

λ̃2(λ̃+2â)4,P(Sym2γ∗3)|P̂1

〉

=
〈

λ̃6 + 8âλ̃5,P(Sym2γ∗3)|P̂1

〉

.

By Exercises A.2.6(2) and 3.3(3),

λ̃6 = −c1(Sym
2γ∗3)λ

5 = −4âλ̃5 ∈ H∗
(

P(Sym2γ∗3)|P̂1 ;Z
)

.

We conclude that the number of conics in P3 passing through 2 general points and 4 general
lines is

〈

e
(

(2γ̃∗ ⊕ 4 γ̃∗⊗π∗(ΛCγ3)
∗⊗2
)

,P(Sym2γ∗3)|P̂1

〉

=
〈

−4âλ̃5 + 8âλ̃5,P(Sym2γ∗3)|P̂1

〉

= 4.

Exercise 3.6. Show that the number of conics in P3 passing through

(1) 1 point and 6 general lines is 18;

(2) 8 general lines is 92.

4 Grassmannians of three-planes

In order to count conics in Pn with n>3, we need to describe a topology and a complex structure
on G(3, n+1), the space of three linear subspace of Cn. Denote by

B(3, n) ⊂ (Cn−0)× (Cn−0)× (Cn−0)

the open subspace consisting of triples of linearly independent vectors in Cn. Let B∗(3, n)⊂B(3, n)
be the subset of orthonormal triples (w.r.t. the standard hermitian inner-product on Cn). Since
the maps

B(3, n),B∗(3, n) −→ G(3, n), (v1, v2, v3) −→ Cv1 + Cv2 + Cv3,

are surjective, the topologies of B(3, n) and B∗(3, n) induce quotient topologies on G(3, n); see
[15, Section 22]. The maps

GLn(C), U(n) −→ G(3, n)

sending each matrix to the span of the first three columns are also surjective. As with G(2, n) in
Section 2, there are at least four ways to describe the topology on G(3, n).
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Exercise 4.1. Let n∈Z+ be such that n≥3. Show that

(1) the four quotient topologies on G(3, n) are the quotient topologies

B(3, n)/GL3(C), B∗(3, n)/U(3), GLn(C)
/

G3, U(n)
/

U(3)×U(n−3)

for certain free group actions and for a certain subgroup G3⊂GLn(C);

(2) the four quotient topologies on G(3, n) are in fact the same.

Exercise 4.2. Let n∈Z+ be such that n≥3. Show that

(1) G(3, n) is a compact complex manifold of dimension 3(n−3) and the projection maps

B(3, n),GLn(C) −→ G(3, n)

defined above are holomorphic submersions;

(2) the bijections
G(k, n) −→ G(n−k, n), V −→ Ann(V ), (4.1)

are holomorphic if k, n−k≤3 (this is true in general).

A stratification of G(3, n) and its cohomology are also described similarly to those of G(2, n).
Given a flag V be in Cn as in Section 2 and nonnegative integers a, b, c, we define

σ0abc(V) =
{

V ∈G(3, n) : dim(V ∩Vn−2−a) = 1, dim(V ∩Vn−3−a) = 0;

dim(V ∩Vn−1−b) = 2, dim(V ∩Vn−2−b

)

= 1;

dim(V ∩Vn−c) = 3, dim(V ∩Vn−1−c

)

= 2
}

.

Since V is a linear subspace of Cn of dimension 3,

σ0abc(V) =
{

V ∈G(3, n) : V ∩Vn−2−a 6={0}, V ∩Vn−3−a={0};

dim(V ∩Vn−1−b) = 2, dim(V ∩Vn−2−b

)

= 1;

V ⊂Vn−c, V 6⊂Vn−1−c

}

.

Since a generic element of G(3, n) is not contained in Vn−1, meets Vn−2 in a one-dimensional
subspace, and intersects Vn−2 trivially, the numbers a, b, and cmeasure the extent of the deviation
of the elements of σ0abc from a generic element of G(3, n). Note that

σ0abc(V) 6= ∅ =⇒ n−3 ≥ a ≥ b ≥ c .

Furthermore,

G(3, n) =
⊔

n−3≥a≥b≥c≥0

σ0abc(V). (4.2)

The closure of σ0abc(V) in G(3, n) is given by

σabc(V) ≡ σ̄0abc(V) =
{

V ∈G(3, n) : V ⊂Vn−c, dim(V ∩Vn−1−b) ≥ 2, V ∩Vn−2−a 6={0}
}

. (4.3)

These subspaces of G(3, n) are called Schubert cells. We will write σa(V) for σa00(V) and σab(V)
for σab0(V). If

Vn−c ≡ (V0, V1, . . . , Vn−c)
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is a flag for Cn−c, then
σabc(V) = σa−c,b−c(V

n−c) ⊂ G(3, n−c). (4.4)

These Schubert cycles can also be represented by Young diagrams, this time with 3 rows and
(n−3) columns:

µ = (5, 2, 1) ⊂ G(3, 9) µc = (5, 4, 1) ⊂ G(3, 9)

For every Young diagram µ, we denote by µtr the transposed diagram, obtained by interchanging
the rows and columns of µ. The first part of the next exercise is the G(3, n) analogue of Lemma 2.3
and Exercise 2.5.

Exercise 4.3. Let n∈Z+ be such that n≥3. Show

(1) the decomposition (4.2) is a stratification of G(3, n) with

dimC σ
0
abc(V) = 3(n−3)− (a+b+c) if n−3 ≥ a ≥ b ≥ c ≥ 0 ; (4.5)

(2) the subvariety σµ(V) of G(3, n) represented by a 3×(n−3) Young diagram µ is smooth if and
only if µc is a rectangle.

Similar to the G(2, n) case, the Schubert cycles σabc(V) and σabc(V
′) corresponding to two dif-

ferent flags determine the same elements in the homology of G(3, n) and via the Poincare duality
in the cohomology of G(3, n). Both of these elements will be denoted by σabc. By Exercise 4.3,

σabc ∈ H2(3(n−3)−(a+b+c))

(

G(3, n);Z
)

, H2(a+b+c)
(

G(3, n);Z
)

.

Furthermore, H∗(G(3, n);Z) and H∗(G(3, n);Z) are the free Z-modules generated by σabc with
n−3≥a≥b≥c≥0. The next lemma is the G(3, n) analogue of Lemma 2.16.

Exercise 4.4. Let n∈Z+ be such that n≥3. Show that

(1) the total chern class of the vector bundle γ∗3−→G(3, n) is given by

c(γ∗3) = 1 + σ1 + σ11 + σ111 ∈ H∗
(

G(3, n);Z
)

;

(2) Ann∗σµ = σµtr , whenever n≤6 (this is true in general).

Similarly to Lemma 2.6, if n−3≥a≥b≥c≥0, then

〈

σabcσa′b′c′ ,G(3, n)
〉

=

{

1, if a′=n−3−c, b′=n−3−b, c′=n−3−a;

0, otherwise.
(4.6)

Similarly to (2.9),

〈

σa1b1c1 · . . . · σakbkck ,G(3, n)
〉

=
〈

σa1−c1,b1−c1 · . . . · σak−ck,bk−ck ,G(3, n−c1−. . .−ck)
〉

. (4.7)

21



Exercise 4.5. Let n∈Z+ be such that n≥3.

(1) Verify (4.6) and (4.7).

(2) Suppose 0 ≤a1, a2, a3, b2, b3≤n−3. Show that

〈

σa1σa2b2σa3b3 ,G(3, n)
〉

=











1,
if b2+b3≤n−3≤a2+b3, a3+b2,

a1+a2+a3 = 3(n−3);

0, otherwise.

(4.8)

(3) Suppose 0 ≤a1, a2, b2≤n−3. Show that

σa1 · σa2b2 =
∑

a′≥a2≥b′≥b2≥c′≥0
a′+b′+c′=a1+a2+b2

σa′b′c′ . (4.9)

Exercise 4.6. Let n∈Z+ be such that n≥3.

(1) Show that (4.6), (4.7), and (4.9) suffice to compute all intersection numbers

〈σa1b1c1 . . . σakbkck ,G(3, n)〉 ∈ Z≥0.

(2) Confirm the intersection numbers in Table 5.

To be added: constraints other than points and codimension 2, conics on complete intersection,
genus 1 conics on complete intersections, twisted cubics

The number of conics on the quintic threefold, X4;5 ⊂ P4, is computed in [6, Section 3], by
evaluating the euler class of a suitable bundle over the total space of the fibration

P(Sym2γ∗3) −→ G(3, 5).
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. . . 〈. . . ,G(3, 6)〉 . . . 〈. . . ,G(3, 6)〉 . . . 〈. . . ,G(3, 6)〉

σ1σ11σ33 0 σ31σ2σ22 3 σ11σ
2
2σ21 2

σ31σ33 1 σ31σ11σ22 3 σ211σ2σ21 2

σ211σ32 0 σ51σ22 6 σ311σ21 2

σ21σ2σ32 2 σ1σ2σ
2
3 1 σ21σ

2
2σ21 4

σ21σ11σ32 1 σ1σ11σ
2
3 0 σ21σ11σ2σ21 4

σ41σ32 3 σ31σ
2
3 1 σ21σ

2
11σ21 4

σ21σ3σ31 1 σ1σ2σ21σ3 1 σ1σ
4
2 3

σ11σ21σ31 1 σ1σ11σ21σ3 1 σ1σ11σ
3
2 3

σ21σ21σ31 2 σ31σ21σ3 2 σ1σ
2
11σ

2
2 2

σ1σ
2
2σ31 2 σ321 2 σ1σ

3
11σ2 3

σ1σ11σ2σ31 1 σ1σ2σ
2
21 3 σ1σ

4
11 3

σ1σ
2
11σ31 1 σ1σ11σ

2
21 3 σ31σ

3
2 6

σ31σ2σ31 3 σ31σ
2
21 6 σ31σ11σ

2
2 5

σ31σ11σ31 2 σ32σ3 1 σ31σ
2
11σ2 5

σ51σ31 5 σ11σ
2
2σ3 1 σ31σ

3
11 6

σ21σ3σ22 1 σ211σ2σ3 0 σ51σ
2
2 11

σ11σ21σ22 1 σ311σ3 1 σ51σ11σ2 10

σ21σ21σ22 2 σ21σ
2
2σ3 2 σ51σ

2
11 11

σ1σ
2
2σ22 1 σ21σ11σ2σ3 1 σ71σ2 21

σ1σ11σ2σ22 2 σ21σ
2
11σ3 1 σ71σ11 21

σ1σ
2
11σ22 1 σ32σ21 2 σ91 42

Table 5: Top intersections of Schubert classes on G(3, 6). The numbers directly obtainable
from (4.6) and (4.9) are not shown (except for the first one).
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2 Pseudocycles

5 Overview

A compact oriented k-manifoldM carries a fundamental class [M ]∈Hk(M ;Z). IfX is a topological
space and M⊂X, let

[M ]X ≡ ιX,M∗

(

[M ]
)

∈ Hk(X;Z)

denote the image of [M ] under the homomorphism induced by the inclusion ιX,M : M −→ X.
More generally, if f :M−→X is a continuous map from a compact oriented k-manifold, let

[f ] = f∗
(

[M ]
)

∈ Hk(X;Z).

If −M is the same manifold with the reverse orientation and −f denotes the same map as f , but
with the domain −M ,

[−f ] = −[f ] ∈ Hk(X;Z).

Two maps f1 : M1−→X and f2 : M2−→X from compact oriented k-manifolds are cobordant if
there exists a compact oriented (k+1)-manifold M̃ with boundary

∂M̃ = (−M1) ⊔M2

and a continuous map f̃ : M̃ −→X such that f̃ |Mi
=fi for i=1, 2. For example, let f : M −→X

be a continuous map from a compact oriented k-manifold M , I=[0, 1], and π2 : I×M −→M be
the projection onto the second component. The continuous map

f ◦ π2 : I×M −→ X

is then a cobordism between f and itself, as well as between

f ⊔ (−f) :M ⊔ (−M) −→ X

as the empty set (viewed as a k manifold).

The set of equivalence classes of continuous maps f :M−→X from compact oriented k-manifolds
forms an abelian group under the disjoint union with the inverse given by reversing the orientation
of the domain. This group, denoted Ωk(X), is called the k-th oriented cobordism group of X.
Since two cobordant maps fi : Mi −→ X from compact oriented k-manifolds define the same
homology class, the group homomorphism

Ωk(X) −→ Hk(X;Z), [f :M−→X] −→ f∗
(

[M ]
)

, (5.1)
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is well-defined. If X is a smooth manifold, Ωk(X) can be defined using smooth manifolds and
smooth maps. This point of view provides a geometric way of representing homology cycles in a
smooth manifold which is convenient especially when defining or computing specific geometrically
meaningful counts. The homomorphism (5.1) tensored with Q, i.e.

Ωk(X)⊗ZQ −→ Hk(X;Z)⊗ZQ = Hk(X;Q), [f :M−→X]⊗ q −→ q f∗
(

[M ]
)

, (5.2)

is surjective, as a nonzero multiple of every homology class in an orientable manifold can be
represented by an embedded submanifold; see [23, Théorème II.29]. By [12, Corollary 18.9],

Ω∗(pt)⊗Z Q ≈ Q[P2,P4, . . .];

thus (5.2) is never injective. The homomorphism (5.1) need not be even surjective in general.
These deficiencies of the oriented cobordism ring can be resolved by relaxing the compactness
assumption on the domain of the maps to an assumption regarding the image of the points away
from compact subsets of the domain.

Definition 5.1. Let X be a topological space. The boundary of a continuous map f : M −→X
from a topological space is the subspace

Bd f =
⋂

K⊂M cmpt

f(M−K) ⊂ X.

Definition 5.2. Let X be a smooth manifold. A subset Z⊂X is of dimension at most k if there
exists a k-dimensional manifold Y and a smooth map h : Y −→X such that Z⊂h(Y ).

Definition 5.3. Let X be a smooth manifold.

(1) A smooth map f : M −→ X from a smooth oriented k-manifold M is a k-pseudocycle if
f(M)⊂X is compact and dimBd f ≤ k−2.

(2) Two k-pseudocycles f1 : M1−→X and f2 : M2−→X are equivalent if there exists a smooth
map f̃ : M̃−→X from a smooth oriented (k+1)-manifold M̃ with boundary ∂M̃ =M2−M1

such that f̃(M)⊂X is compact, dimBd f̃ ≤ k−1, and f̃ |Mi
= fi for i=1, 2.

For example, the standard inclusion ιS2,C : C−→S2 is a 2-pseudocycle, since the boundary of ιS2,C

consists of the single point ∞. On the other hand, the standard inclusion of the open unit disk
into S2 is not a 2-pseudocycle, since the boundary of this map is S1, which is one-dimensional.
If f :M−→X is a k-pseudocycle,

f ◦ π2 : I×M −→ X

is an equivalence between f and itself, as well as between

f ⊔ (−f) :M ⊔ (−M) −→ X

as the empty set (viewed as a k-pseudocycle). The set of equivalence classes of k-pseudocycles,
which we denote by Hk(X), forms an abelian group under the disjoint union with the inverse
given by reversing the orientation of the domain.

The boundary of every smooth map f :M−→X from a compact manifold is empty. Thus, every
smooth map f : M −→X from a compact oriented k-manifold is a k-pseudocycle and every two
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such maps equivalent in Ωk(X) are also equivalent as elements of Hk(X). Thus, there is a natural
group homomorphism

Ωk(X) −→ Hk(X), [f :M−→X] −→ [f :M−→X]. (5.3)

Since the homomorphism (5.1) is neither injective nor surjective in general, the first part of The-
orem 5.4 below implies that neither is the homomorphism (5.3).

If X is oriented, H∗(X;Z) carries a ring structure,

Hk1(X;Z)⊗Hk2(X;Z) −→ Hk1+k2−n(X;Z),

given by
A⊗B −→ PD

(

PDX(A) ∪ PDX(B)
)

where
PD: H∗(X;Z) −→ Hn−∗

c (X;Z) and H∗
c (X;Z) −→ Hn−∗(X;Z)

are the Poincare Duality isomorphisms and n= dimX. In this case, H∗(X) also carries a ring
structure,

Hk1(X)⊗Hk2(X) −→ Hk1+k2−n(X),

defined as follows. Suppose i=1, 2, fi :Mi−→X is a ki-pseudocycle, and hi : Yi−→X is a smooth
map from a (ki−2)-manifold such that

(1) Bd f1 ⊂ Imh1 and Bd f2 ⊂ Imh2;

(2) f1⊤∩Xf2, f1⊤∩Xh2, f2⊤∩Xh1, and h1⊤∩Xh2.

Since X, M1, and M2 are oriented and f1⊤∩Xf2,

M1f1×f2M2 ≡
{

(x1, x2) : f1(x1)=f2(x2)
}

is a smooth oriented manifold of dimension k1+k2−n and

f1×M f2 :M1f1×f2M2 −→ X, (x1, x2) −→ f1(x1) = f2(x2).

The remaining assumptions insure that f1×M f2 has sufficiently small boundary. By Propo-
sition 11.2, every pair of equivalence classes in H∗(X) admits representatives fi : Mi −→ X
satisfying (1) and (2).

Theorem 5.4. Let X be a smooth manifold.

(1) There exist natural homomorphisms of graded Z-modules

Φ: H∗(X) −→ H∗(X;Z) and Ψ: H∗(X;Z) −→ H∗(X), (5.4)

such that Φ ◦ Ψ=Id, Ψ ◦ Φ=Id, and the composition of Φ with the homomorphism (5.3) is
the homomorphism (5.1).

(2) If in addition X is oriented, the isomorphisms (5.4) intertwine the ring structures on H∗(X)
and H∗(X;Z).
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A smooth map g : X−→X ′ between smooth manifolds induces homomorphisms

g∗ : H∗(X;Z) −→ H∗(X
′;Z) and g∗ : H∗(X) −→ H∗(X

′)

by composition on the left. The naturality statement of Theorem 5.4 means that these maps
commute with the isomorphisms Φ and Ψ corresponding to X and X ′.

For the purposes of the first part of Theorem 5.4, it is sufficient to require that pseudocycle
maps be continuous, as long as the same condition is imposed on pseudocycle equivalences. All
arguments in this chapter concerning the first part of Theorem 5.4 go through for continuous
pseudocycles; in fact, Lemma 7.2 would no longer be necessary. However, smooth pseudocycles
are useful, including in algebraic geometry and symplectic topology, for describing intersections of
cycles geometrically. In [16] and [18], pseudocycles are used to define Gromov-Witten invariants
of compact semi-positive symplectic manifolds; they are then used to obtain a recursion for counts
of rational curves in projective spaces.

Theorem 5.4 is the main subject of this chapter; its proof is outlined starting with the next
paragraph. The proof of the first part of this theorem follows [25, 27]. Alternative treatments of
this part of Theorem 5.4 appear in [7] and [20]. The latter is restricted to compact target mani-
folds X and considers only k-pseudocycles for which the boundary itself has vanishing homology
in dimensions k−1 and k; see Remark 8.5. While non-compact manifolds are considered in [7],
pseudocycles in [7] are not required to have compact closures. By [7, Proposition 1], there is then
no surjective homomorphism from H∗(X;Z) to H∗(X) for a non-compact manifold X, and so
Theorem 5.4 fails for non-compact manifolds if pseudocycles are not required to have compact
closures. The relevant target manifolds in [16, Section 7.1] and [18, Section 1] are compact, and
a pseudocycle is not explicitly required to have a compact closure; the closure condition is made
explicit in [17, Section 6.5].

Exercise 5.5. Let f : M −→X be a continuous map between topological spaces and U be an
open neighborhood of Bd f .

(1) Show that the subspace f−1(X−U)⊂M is compact if f(M)⊂X is.

(2) Give an example showing that the compactness requirement on f(M) cannot be dropped.

If f : M −→ X is a k-pseudocycle, one can choose a compact k-submanifold with boundary,
V̄ ⊂M , so that f(M−V ) lies in an arbitrary small neighborhood U of Bd f . In particular, f |V̄
determines the homology class

f∗[V̄ , ∂V̄ ] ∈ Hk(X,U ;Z).

By Corollary 8.4, U can be chosen so that Hk(X,U ;Z) is naturally isomorphic to Hk(X;Z). In
order to show that the resulting cycle in Hk(X;Z) depends only on f (and not V or U), we use
Proposition 6.4 to replace the singular chain complex S∗(X) by a quotient complex S̄∗(X). The
advantage of the latter complex is that cycles and boundaries between chains can be constructed
more easily; see Remark 6.5.

In an analogous way, a pseudocycle equivalence f̃ : M̃−→X between two pseudocycles

fi :Mi−→X, i=0, 1,
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gives rise to a chain equivalence between the corresponding cycles in S̄∗(X,W ), for a small
neighborhood W of Bd f̃ . In particular, the homology cycles determined by f0 and f1 are equal
inHk(X,W ;Z). On the other hand, by Corollary 8.4,W can be chosen so thatHk(X;Z) naturally
injects into Hk(X,W ;Z). Therefore, f0 and f1 determine the same elements of Hk(X;Z) and the
homomorphism Φ is well-defined. Its construction is described in detail in Section 8.

Remark 5.6. The homomorphism Φ of Section 8 induces the linear map

H∗(X) −→ H∗(X;Z)
/

Tor
(

H∗(X;Z)
)

described in [16] and [18]. However, the construction of Φ in Section 8 differs from that of the
induced map in [16] and [18]; the latter is in fact constructed via the homomorphism Ψ and the
natural intersection pairing on H∗(X) defined whenever X is oriented. The construction of Φ in
Section 8 is more direct.

Remark 5.7. The construction of Φ in Section 8 implies the following. SupposeM is an oriented
k-manifold and f : M −→X is a continuous map with a pre-compact image. If R is a ring and
Bd f has an arbitrary small neighborhood U so that Hl(U ;R)=0 for all l>k−2, then f defines
an element in Hk(X;R). The analogous statement holds for equivalences between maps. It is
not necessary for X to be a smooth manifold. These observations have a variety of applications.
For example, the first statement implies that a compact complex algebraic variety carries a
fundamental class. For essentially the same reason, (generalized) pseudocycles figure prominently
in the approach in [24] to a large class of problems in enumerative geometry. Pseudocycles can
also be used to give a more geometric interpretation of the virtual fundamental class construction
of [4] and [10] and are used to define new symplectic invariants in [26]. This is a different type
of generalization, as the ambient space X in these settings is a topological space stratified by
infinite-dimensional orbifolds.

In order to construct the homomorphism Ψ, we show that a singular cycle gives rise to a pseudocy-
cle and a chain equivalence between two cycles gives rise to a pseudocycle equivalence between the
corresponding pseudocycles. The former works out precisely as outlined in [16, Section 7.1], with
a reinterpretation for the complex S̄∗(X); this reinterpretation is not necessary to construct Ψ
in Section 7, but is needed in Section 9 to show that the maps Φ and Ψ are isomorphisms. If s
is a k-cycle, all codimension-one simplices of its k-simplices must cancel in pairs. By gluing
the k-simplices along the codimension-one faces paired in this way, we obtain a continuous map
from a compact topological space M ′ to X. The complement of the codimension-two simplices
is a smooth manifold and the continuous map can be smoothed out in a fixed manner using
Lemma 7.2. We thus obtain a pseudocycle from the cycle s.

On the other hand, turning a chain equivalence s̃ between two k-cycles, s0 and s1, into a pseudo-
cycle equivalence between the corresponding pseudocycles,

f0 :M0 −→ X and f1 :M1 −→ X,

turns out to be less straightforward. Similarly to the previous paragraph, s̃ gives rise to a smooth
map from a smooth (k+1)-manifold with boundary,

f̃ : M̃∗ −→ X.
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However, if all codimension-two simplices (including those of dimension k−1) are dropped, the
boundary of M̃∗ will be the complement in M0⊔M1 of a subset of dimension k−1 (instead of
beingM0⊔M1). One way to fix this is to keep the (k−1)-simplices that would lie on the boundary.
In such a case, the entire space may no longer be a smooth manifold and its boundary may not
be M0⊔M1, because the (k−1)-simplices of the (k+1)-simplices of s̃ may be identified differently
from the way the (k−1)-simplices of the k-simplices of s0 and s1 are identified. It is possible to
modify s̃ so that all identifications are consistent. However, the required modification turns out
to be quite laborious. We instead implement a less direct, but far simpler, construction suggested
by D. McDuff. Instead of trying to reinsert (k−1)-simplices into the boundary of M̃∗, we attach
to M̃∗ two collars,

M̃0 ⊂ [0, 1]×M0 and M̃1 ⊂ [0, 1]×M1.

The boundary of M̃i has two pieces, Mi and the complement in Mi of the (k−1)-simplices. We
attach the latter to the piece of the boundary of M̃∗ corresponding to si. In this way, we obtain
a smooth manifold M̃ with boundary M1−M0 and a pseudocycle equivalence from f0 to f1; see
Section 8 for details.

In Section 9, we verify that the homomorphisms Ψ and Φ are mutual inverses. It is fairly straight-
forward to see that the map Φ◦Ψ is the identity on H̄∗(X;Z). However, showing the injectivity
of Φ requires more care. The desired pseudocycle equivalence f̃ : M̃ −→ X, is constructed by
taking a limit of the corresponding construction in Section 7. In particular, the smooth manifold
M̃ is obtained as a subspace of a non-compact space.

6 Oriented homology groups

If X is a simplicial complex, the standard singular chain complex S∗(X) most naturally corre-
sponds to the ordered simplicial chain complex of X; see [14, Section 13]. In this section, we define
a singular chain complex S̄∗(X) which corresponds to the standard, or oriented, simplicial chain
complex. In particular, its homology is the same as the homology of the ordinary singular chain
complex; see Proposition 6.4. On the other hand, it is much easier to construct cycles in S̄∗(X)
than in S∗(X); see Remark 6.5.

If A is a finite subset of Rk, we denote by CH(A) and CH0(A) the (closed) convex hull of A and
the open convex hull of A, respectively, i.e.

CH(A) =
{

∑

v∈A

tvv : tv∈ [0, 1],
∑

v∈A

tv=1
}

and

CH0(A) =
{

∑

v∈A

tvv : tv∈(0, 1),
∑

v∈A

tv=1
}

.

For each p=1, . . . , k, let ep be the p-th coordinate vector in Rk. Put e0=0∈Rk. Denote by

∆k = CH
(

e0, e1, . . . , ek
)

and Int∆k = CH0
(

e0, e1, . . . , ek
)

the standard k-simplex and its interior. Let

bk =
1

k+1

( q=k
∑

q=0

eq

)

=
( 1

k+1
, . . . ,

1

k+1

)

∈ Rk

29



be the barycenter of ∆k.

A map f : ∆k−→Rm is linear if

f(t0e0+. . .+tkek) = t0f(e0) + . . .+ fk(ek) ∀ (t0, . . . , tk) ∈ [0, 1]k s.t.
k
∑

q=0

tqeq = 1.

For each k∈Z+ and p=0, . . . , k−1, define the linear map

ιk,p : ∆
k−1 −→ ∆k

p ⊂ ∆k by ιk,p(eq) =

{

eq, if q<p;

eq+1, if q≥p.

For any element τ in the group Sk of permutations of the set {0, . . . , k}, we define the linear map

τ : ∆k −→ ∆k by τ(eq) = eτ(q) ∀ q = 0, . . . , k.

We embed Sk into Sk+1 by setting τ(k+1)=k+1 for any τ ∈Sk.

If X is a topological space, let
(

S∗(X), ∂X
)

denote its singular chain complex, i.e. the free abelian
group on the set

∞
⋃

k=0

C(∆k, X)

of all continuous maps from standard simplices to X, along with a map ∂X of degree −1. Let
S′
k(X) denote the free subgroup of S∗(X) spanned by the set

{

f−(sign τ)f ◦τ : f ∈C(∆k, X), τ ∈Sk, k=0, 1, . . .
}

.

If τ ∈Sk, put
τ̃ = Id∆k − (sign τ)τ ∈ S′

k(∆
k). (6.1)

Thus, S′
∗(X) is the subgroup of S∗(X) spanned by

{

f#τ̃ : f ∈C(∆
k, X), τ ∈Sk, k∈Z≥0

}

.

If h : X−→Y is a continuous map, the homomorphism

h# : S∗(X) −→ S∗(Y )

maps S′
∗(X) into S′

∗(Y ).

Lemma 6.1. The free abelian group S′
∗(X) is a subcomplex of

(

S∗(X), ∂X
)

, i.e. ∂XS
′
∗(X)⊂S′

∗(X).

Proof. Suppose τ ∈Sk. For any p=0, . . . , k, let τp∈Sk−1 be such that

τ ◦ ιk,p= ιk,τ(p) ◦ τp : ∆
k−1 −→ ∆k

τ(p)⊂∆k. (6.2)

Let τk,p∈Sk be defined by

τk,p(q) =

{

ιk,p(q), if q<k;

p, if q=k.
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Since τ ◦τk,p = τk,τ(p)◦τp ∈ Sk,

sign τp = (−1)(k−p)+(k−τ(p))sign τ = (−1)p+τ(p)sign τ ∀ τ ∈Sk. (6.3)

By (6.2) and (6.3),

∂∆kτ =
k
∑

p=0

(−1)pτ ◦ιk,p =
k
∑

p=0

(−1)pιk,τ(p)◦τp = (sign τ)
k
∑

p=0

(−1)τ(p)(sign τp)ιk,τ(p)◦τp

= (sign τ)
k
∑

p=0

(−1)p(sign ττ−1(p))ιk,p◦ττ−1(p).

Thus,

∂∆k τ̃ =
k
∑

p=0

(−1)p
(

ιk,p − (sign ττ−1(p))ιk,p◦ττ−1(p)

)

∈ S′
k−1(∆

k).

It follows that for any f ∈Sk(X),

∂X(f#τ̃) = f#(∂∆k τ̃) ∈ S′
k−1(X).

This establishes the claim.

Lemma 6.2. There exists a natural transformation of functors DX : S∗−→S∗+1 such that

(1) if f : ∆m−→∆k is a linear map, DXf is a linear combination of linear maps ∆m+1−→∆k

for all k,m∈ Z≥0;

(2) DXS
′
∗(X) ⊂ S′

∗(X) for all topological spaces X;

(3) ∂XDX = (−1)k+1Id +DX∂X on S′
k(X).

Proof. (1) Suppose k∈ Z+. If f : ∆m−→∆k is a linear map, define a new linear map

Pkf : ∆
m+1 −→ ∆k by Pkf (eq) =

{

f(eq), if q=0, . . . ,m;

bk, if q=m+1.
(6.4)

The transformation Pk induces a homomorphism on the sub-chain complex of S∗(∆
k) spanned

by the linear maps. If τ ∈Sm⊂Sm+1 and f ∈Sm(∆k) is a linear map, then

Pk(f ◦τ) = Pkf ◦ τ. (6.5)

Thus, Pk maps the subgroup of S′
∗(∆

k) spanned by the linear maps into itself. Similarly,

τ#(Pkf) ≡ τ ◦ Pkf = Pk(τ ◦f) ≡ Pk(τ#f) (6.6)

if τ ∈Sk and f is a linear map as above. Furthermore,

∂∆kPkf = (−1)k+1f + Pk

(

∂∆kf
)

(6.7)

for every linear map f and thus for linear combinations of linear maps.
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(2) Let DX |Sk(X) = 0 if k < 1; then DX satisfies (1)-(3). Suppose k ≥ 1 and we have defined
DX |Sk−1(X) so that the three requirements are satisfied wherever DX is defined. Put

D∆k(Id∆k) = Pk

(

Id∆k + (−1)k+1D∆k∂∆kId∆k

)

∈ Sk+1(∆
k). (6.8)

By the inductive assumption (1) and (6.4), D∆k(Id∆k) is a well-defined linear combination of
linear maps. For any f ∈C(∆k, X), let

DXf = f#D∆kId∆k . (6.9)

This construction defines a natural transformation Sk −→ Sk+1. Since D∆k(Id∆k) is a linear
combination of linear maps, it is clear that the requirement (1) above is satisfied; it remains to
check (2) and (3).

(3) Given f ∈C(∆k, X) and τ ∈Sk, let s=f#τ̃ ∈S
′
k(X), with τ̃ as in (6.1). By (6.9), (6.8), (6.6),

and the naturality of DX |Sk−1
,

DX(f ◦τ) = f#τ#D∆kId∆k = f#τ#Pk

(

Id∆k + (−1)k+1D∆k∂∆kId∆k

)

= f#Pk

(

τ + (−1)k+1τ#D∆k∂∆kId∆k

)

= f#Pk

(

τ + (−1)k+1D∆k∂∆kτ
)

.
(6.10)

Thus,
DXs = f#Pk

(

τ̃ + (−1)k+1D∆k∂∆k τ̃
)

. (6.11)

By Lemma 6.1, the induction assumption (2), and (6.6), S′
k(∆

k) is mapped into S′
∗(∆

k) by
D∆k∂∆k and by Pk. Thus, by (6.11), DX maps S′

k(X) into S′
k+1(X). Finally, by (6.11), (6.7),

and the inductive assumption (3),

∂XDXs = ∂Xf#Pk

(

τ̃+(−1)k+1D∆k∂∆k τ̃
)

= f#∂∆kPkτ̃ + (−1)k+1f#∂∆kPkD∆k∂∆k τ̃

= f#
(

(−1)k+1τ̃ + Pk∂∆k τ̃
)

+ (−1)k+1f#
(

(−1)k+1D∆k∂∆k τ̃ + Pk∂∆kD∆k∂∆k τ̃
)

=
(

(−1)k+1s+DX∂Xs
)

+ f#Pk∂∆k τ̃ + (−1)k+1f#Pk

(

(−1)k∂∆k τ̃+D∆k∂2∆k τ̃
)

= (−1)k+1s+DX∂Xs.

Thus, DX |Sk
satisfies the induction assumptions (2) and (3).

Corollary 6.3. All homology groups of the complex
(

S′
∗(X), ∂X |S′

∗
(X)

)

are zero.

Let S̄∗(X)=S∗(X)/S′
∗(X) and denote by

π : S∗(X) −→ S̄∗(X) (6.12)

the projection map. Let ∂̄X be boundary map on S̄∗(X) induced by ∂X . We denote by H̄∗(X;Z)
the homology groups of

(

S̄∗(X), ∂̄X
)

.

Proposition 6.4. If X is a topological space, the projection map π : S∗(X)−→ S̄∗(X) induces a
natural isomorphism H∗(X;Z)−→H̄∗(X;Z). This isomorphism extends to relative homologies to
give an isomorphism of homology theories.
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Proof. The first statement follows from the long exact sequence in homology for the short exact
sequence of chain complexes

0 −→ S′
∗(X) −→ S∗(X)

π
−→ S̄∗(X) −→ 0

and Corollary 6.3. The second statement follows from the first and the Five Lemma; see [14,
Lemma 24.3].

For a simplicial complex K, let |K| ⊂ RN denote its geometric realization; see [14, Section 3].
There is a natural chain map from the ordered simplicial complex C ′

∗(K) to the singular chain
complex S∗(|K|), which induces an isomorphism in homology. If the vertices of K are ordered,
there is also a chain map from C ′

∗(K) to the oriented chain complex C∗(K), which induces a
natural isomorphism in homology. However, the chain map itself depends on the ordering of the
vertices; see [14, Section 34]. The advantage of the complex S̄∗(K) is that there is a natural
chain map from C∗(K) to S̄∗(K), which induces an isomorphism in homology; this chain map is
induced by the natural chain map from C ′

∗(K) to S∗(|K|) described in [14, Section 34].

If |K|⊂RN is a geometric realization of a simplicial complex K, for each l-simplex σ of K there
is an injective linear map ισ : ∆

l −→ |K| taking ∆l to |σ|. If M is an oriented n-manifold with
boundary, an oriented triangulation of (M,∂M) is a triple T =(K,K ′, η) consisting of a simplicial
complex K, simplicial sub-complex K ′, and a homeomorphism

η : (|K|, |K ′|) −→ (M,∂M)

such that for every n-simplex ∆ and every x∈ Int∆k the homeomorphism

ησ≡η◦ισ : ∆
n −→M (6.13)

takes the oriented generator of Hn(∆
k,∆k−x;Z) to the oriented generator of Hn(M,M−x;Z).

Remark 6.5. Let M be a compact oriented n-manifold with boundary ∂M and T =(K,K ′, η)
be an oriented triangulation of (M,∂M). The fundamental homology class

[M,∂M ] ∈ Hn(M,∂M ;Z)

is represented in S̄k(M,∂M) by
∑

σ∈K,dimσ=n

{ησ} ≡
∑

σ∈K,dimσ=n

π(ησ),

where π is as before in (6.12). On the other hand,
∑

σ∈K,dimσ=n

ησ

may not even be a cycle in Sn(M,∂M). It is definitely not a cycle if ∂M = ∅ and n is an even
positive integer, as the boundary of each term ησ contains one more term with coefficient +1
than −1. Similarly, if h : (M,∂M)−→ (X,U) is a continuous map, h∗([M,∂M ])∈Hn(X,U ;Z) is
represented in S̄k(X,U) by

∑

σ∈K,dimσ=n

{h◦ησ} ;

the obvious preimage under π of the above chain in Sn(X,U ;Z) may not be even a cycle.
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We next characterize cycles and boundaries in S̄∗(X) in a manner suitable for converting them to
pseudocycles and pseudocycle equivalences in Section 7. We use the statements of Exercises 6.6
and 6.7 below to glue maps from standard simplices together to construct smooth maps from
smooth manifolds.

The homology groups of a smooth manifolds X can be defined with the space C(∆k, X) of con-
tinuous maps from ∆k to X replaced by the space C∞(∆k, X) of smooth maps; this is a standard
fact in differential topology. The operator DX of Lemma 6.2 maps smooth maps into linear
combinations of smooth maps. Thus, all constructions of this section go through for the chain
complexes based on elements in C∞(∆k, X) instead of C(∆k, X). Below S̄∗(X) refers to the
quotient complex based on such maps.

If s=
j=N
∑

j=1
fj , where fj : ∆

k−→X is a continuous map for each j, let

Cs =
{

(j, p) : j=1, . . . , N, p=0, . . . , k
}

.

Exercise 6.6. Suppose k≥1 and s ≡
j=N
∑

j=1
fj is a cycle in S̄k(X). Show that there exist a subset

Ds⊂Cs×Cs disjoint from the diagonal and a map

τ : Ds −→ Sk−1,
(

(j1, p1), (j2, p2)
)

−→ τ(j1,p1),(j2,p2),

such that

(1) if
(

(j1, p1), (j2, p2)
)

∈Ds, then
(

(j2, p2), (j1, p1)
)

∈Ds;

(2) the projection Ds−→Cs on either coordinate is a bijection;

(3) for all
(

(j1, p1), (j2, p2)
)

∈Ds,

τ(j2,p2),(j1,p1) = τ −1
(j1,p1),(j2,p2)

, fj2 ◦ ιk,p2 = fj1 ◦ ιk,p1 ◦ τ(j1,p1),(j2,p2), (6.14)

and sign τ(j1,p1),(j2,p2) = −(−1)p1+p2 . (6.15)

(6.16)

The above claim follows from the assumption that ∂̄{s} = 0 and from the definition of S̄∗(X)
above. The terms appearing in the boundary of s are indexed by the set Cs, and the coefficient
of the (j, p)-th term is (−1)p. Since s is a cycle in S̄∗(X), these terms cancel in pairs, possibly
after composition with an element τ ∈Sk−1 and multiplying by sign τ . This operation does not
change the equivalence class of a (k−1)-simplex in S̄k−1(X).

Exercise 6.7. Suppose k≥1,

s0 ≡

j=N0
∑

j=1

{f0,j}, s1 ≡

j=N1
∑

j=1

{f1,j}, s̃ ≡

j=Ñ
∑

j=1

f̃j , and ∂̄{s̃} = {s1} − {s0} ∈ S̄k(X).
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Show that there exist a subset Ds̃ ⊂ Cs̃×Cs̃ disjoint from the diagonal, subsets C
(0)
s̃ , C

(1)
s̃ ⊂ Cs̃,

and maps

τ̃ : Ds̃ −→ Sk,
(

(j1, p1), (j2, p2)
)

−→ τ̃(j1,p1),(j2,p2),

(j̃i, p̃i) :
{

1, . . . , Ni

}

−→ C
(i)
s̃ , and τ̃i :

{

1, . . . , Ni

}

−→ Sk, j −→ τ̃(i,j), i = 0, 1,

such that

(1) if
(

(j1, p1), (j2, p2)
)

∈Ds̃, then
(

(j2, p2), (j1, p1)
)

∈Ds̃;

(2) the projection Ds̃−→Cs̃ on either coordinate is a bijection onto the complement of C
(0)
s̃ ∪C

(1)
s̃ ;

(3) for all
(

(j1, p1), (j2, p2)
)

∈Ds̃,

τ̃(j2,p2),(j1,p1) = τ̃ −1
(j1,p1),(j2,p2)

, f̃j2 ◦ ιk+1,p2 = f̃j1 ◦ ιk+1,p1 ◦ τ̃(j1,p1),(j2,p2), (6.17)

and sign τ̃(j1,p1),(j2,p2) = −(−1)p1+p2 ; (6.18)

(4) for all i=0, 1 and j=1, . . . , Ni,

f̃j̃i(j) ◦ ιk+1,p̃i(j) ◦ τ̃(i,j) = fi,j and sign τ̃(i,j) = −(−1)i+p̃i(j); (6.19)

(5) (j̃i, p̃i) is a bijection onto C
(i)
s̃ for i=0, 1.

This lemma follows from the assumption that

∂̄{s̃} = {s1} − {s0}.

The terms making up ∂s̃ are indexed by the set Cs̃. By definition of S̄∗(X), there exist disjoint

subsets C
(0)
s̃ and C

(1)
s̃ of Cs̃ such that for each (j, p) ∈ C

(1)
s̃ the (j, p)-th term of ∂s̃ equals one of

the terms of si, after a composition with some τ̃ ∈ Sk and multiplying by −(−1)isign τ̃ . The
remaining terms of Cs̃ must cancel in pairs, as in the case of Exercise 6.6.

7 From homology to pseudocycles

This section establishes Proposition 7.1 below. In the proof of Lemma 7.3, we construct a ho-
momorphism from the subgroup of cycles in S̄∗(X) to H∗(X). We show that every Z-homology
cycle gives rise to a pseudocycle and every boundary between cycles gives rise to a pseudocycle
equivalence. We use the conclusions of Exercises 6.6 and 6.7 to glue maps from standard simpli-
cies into a continuous map from a manifold-like space. We then use Lemma 7.2 below to smooth
out the map across the codimension 1 simplicies.

Proposition 7.1. If X is a smooth manifold, there exists a homomorphism

Ψ: H∗(X;Z)−→H∗(X),

which is natural with respect to smooth maps.
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Starting with a cycle {s} as in Exercise 6.6, we glue the functions fj ◦ϕk together, where ϕk is
the self-map of ∆k provided by Lemma 7.2 below. These functions continue to satisfy the second
equation in (6.14), i.e.

fj2◦ϕk ◦ ιk,p2 = fj1◦ϕk ◦ ιk,p1 ◦ τ(j1,p1),(j2,p2) ∀
(

(j1, p1), (j2, p2)
)

∈Ds, (7.1)

because ϕk=id on ∆k−Int ∆k by the first equation in (7.5). Using these modified functions in-
sures that the glued map is smooth across the codimension 1 simplicies. The proof of Lemma 7.3
implements a construction suggested in [16, Section 7.1].

Starting with a chain {s̃} as in Exercise 6.7, we glue the functions f̃j◦ϕ̃k+1◦ϕk+1 together, where
ϕ̃k+1 and ϕk+1 are the self-maps of ∆k+1 provided by Lemma 7.2. If i=0, 1 and j=1, . . . , Ni, by
the third equation in (7.6), the second equation in (7.5), and the first equation in (6.19)

f̃j̃i(j)◦ϕ̃k+1 ◦ ιk+1,p̃i(j)◦τ̃(i,j) = f̃j̃i(j) ◦ ιk+1,p̃i(j)◦ϕk◦τ̃(i,j) = f̃j̃i(j) ◦ ιk+1,p̃i(j)◦τ̃(i,j)◦ϕk

= fi,j◦ϕk.

Since ϕk+1=id on ∆k+1−Int ∆k+1, it follows that

f̃j̃i(j)◦ϕ̃k+1◦ϕk+1 ◦ ιk+1,p̃i(j)◦τ̃(i,j) = fi,j◦ϕk ∀ j=1, . . . , Ni, i=0, 1. (7.2)

Similarly, if ((j1, p1), (j2, p2))∈Ds̃, by the third equation in (7.6) used twice, the second equation
in (6.17), and the second equation in (7.5),

f̃j2◦ϕ̃k+1 ◦ ιk+1,p2 = f̃j2◦ιk+1,p2◦ϕk = f̃j1◦ιk+1,p1◦τ̃(j1,p1),(j2,p2) ◦ ϕk

= f̃j1 ◦ ιk+1,p1◦ϕk ◦ τ̃(j1,p1),(j2,p2) = f̃j1◦ϕ̃k+1 ◦ ιk+1,p1◦τ̃(j1,p1),(j2,p2).

Since ϕk+1=id on ∆k+1−Int ∆k+1, it follows that

f̃j2◦ϕ̃k+1◦ϕk+1 ◦ ιk+1,p2 = f̃j1◦ϕ̃k+1◦ϕk+1 ◦ ιk+1,p1◦τ̃(j1,p1),(j2,p2) ∀ ((j1, p1), (j2, p2))∈Ds̃. (7.3)

Thus, the functions f̃j ◦ϕ̃k+1◦ϕk+1 are the analogues (in the sense of Exercise 6.7) of the func-
tions f̃j for the maps f0,j◦ϕk and f1,j◦ϕk.

We continue with the notation set up at the beginning of Section 6. Define

π̃kp : ∆
k−{ep} −→ ∆k

p by π̃kp

(

q=k
∑

q=0

tqeq

)

=
1

1−tp

(

∑

q 6=p

tqeq

)

.

Put

bk,p = ιk,p(bk−1), b′k,p =
1

k+1

(

bk +
∑

q 6=p

eq

)

.

The points bk,p and b
′
k,p are the barycenters of the (k−1)-simplex ∆k

p and of the k-simplex spanned

by bk and the vertices of ∆k
p; see Figure 2.1. Define a neighborhood of Int∆k

p in ∆k by

Uk
p =

{

tpb
′
k,p+

∑

0≤q≤k
q 6=p

tqeq : tp≥0, tq>0 ∀q 6=p,

q=k
∑

q=0

tq=1
}

.
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Figure 2.1: The standard 2-simplex and some of its distinguished subsets

If p, q=0, 1, . . . , k and p 6=q, let
∆k

p,q ≡ ∆k
p∩∆

k
q

be the corresponding codimension 2 simplex. Define neighborhoods of Int∆k
p,q in ∆k by

Ũk
p,q =

{

tpbk,p+tqbk,q+
∑

0≤q≤k
r 6=p,q

trer : tp, tq≥0, tr>0 ∀ r 6=p, q,
r=k
∑

r=0

tr=1
}

,

Uk
p,q =

{

tpιk,p(b
′
k−1,ι

k,ι
−1
k,p

(q)
)+tqιk,q(b

′
k−1,ι

k,ι
−1
k,q

(p)
)+

∑

0≤q≤k
q 6=p

trer : tp, tq≥0, tr>0 ∀r 6=p, q,
r=k
∑

r=0

tr=1
}

;

see Figure 2.2. If
k
∑

r=0

trer ∈ Ũk
p,q ⊂ ∆k with tr ≥ 0,

then tp, tq<tr for all r 6=p, q. Thus,

Ũk
p1,q1 ∩ Ũ

k
p2,q2 = ∅ if {p1, q1} 6= {p2, q2}. (7.4)

Define a projection map

π̃kp,q : ∆
k − CH(ep, eq) −→ ∆k

p,q by π̃kp,q

(

r=k
∑

r=0

trer

)

=
1

1−tp−tq

(

∑

r 6=p,q

trer

)

.

Lemma 7.2. If k≥1, Y is the (k−2)-skeleton of ∆k, and Ỹ is the (k−2)-skeleton of ∆k+1, there
exist continuous functions

ϕk : ∆
k −→ ∆k and ϕ̃k+1 : ∆

k+1 −→ ∆k+1

such that

(1) ϕk is smooth outside of Y and ϕ̃k+1 is smooth outside of Ỹ ;

(2) for all p=0, . . . , k and τ ∈Sk,

ϕk|Uk
p
= π̃kp

∣

∣

Uk
p

and ϕk ◦ τ = τ ◦ ϕk; (7.5)
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Figure 2.2: Open neighborhoods of codimension 2 simplicies

(3) for all p, q=0, . . . , k+1 with p 6=q and τ̃ ∈Sk+1,

ϕ̃k+1|Uk+1
p,q

= π̃k+1
p,q

∣

∣

Uk+1
p,q

, ϕ̃k+1 ◦ τ̃ = τ̃ ◦ ϕ̃k+1, and ϕ̃k+1 ◦ ιk+1,p = ιk+1,p ◦ ϕk. (7.6)

Proof. (1) Choose a smooth function

η̃0,1 : ∆
k+1 −∆k+1

0,1 ∩Ỹ −→ [0, 1]

such that η̃0,1=1 on Uk+1
0,1 , η̃0,1=0 outside of Ũk+1

0,1 , and η̃0,1 is invariant under any permutation
τ̃ ∈Sk+1 that preserves the set {0, 1}. If τ̃ ∈Sk+1 is any permutation, let

η̃τ̃(0),τ̃(1) = η̃0,1◦τ̃
−1 : ∆k+1 −∆k+1

τ̃(0),τ̃(1)∩Ỹ −→ [0, 1].

By the assumptions on η̃0,1, η̃p,q is a well-defined smooth function such that η̃p,q = 1 on Uk+1
p,q ,

η̃p,q=0 outside of Ũk+1
p,q , and

η̃τ̃(p),τ̃(q) = η̃p,q ◦ τ̃
−1 (7.7)

for all τ̃ ∈Sk+1 and distinct p, q=0, . . . , k+1.

(2) Define

ϕ̃k+1 : ∆
k+1 −→ ∆k+1 by ϕ̃k+1(x) = x+

∑

0≤p<q≤k+1

η̃p,q(x) ·
(

π̃k+1
p,q (x)−x

)

.

Since π̃k+1
p,q restricts to the identity on ∆k+1

p,q and η̃p,q vanishes on a neighborhood of CH0(ep, eq), the

function η̃ is well-defined, continuous everywhere, and smooth on ∆k+1−Ỹ . By (7.4), ϕ̃k+1= π̃
k+1
p,q

on Uk+1
p,q . By (7.7), for every τ̃ ∈Sk+1

ϕ̃k+1 ◦ τ̃ = τ̃ +
∑

0≤p<q≤k+1

η̃p,q◦τ̃ ·
(

π̃k+1
p,q ◦τ̃−τ̃

)

= τ̃ +
∑

0≤p<q≤k+1

η̃τ̃−1(p),τ̃−1(q) ·
(

τ̃ ◦π̃k+1
τ̃−1(p),τ̃−1(q)

−τ̃
)

= τ̃ +
∑

0≤p<q≤k+1

η̃p,q ·
(

τ̃ ◦π̃k+1
p,q −τ̃

)

= τ̃ ◦ ϕ̃k+1.

Thus, ϕ̃k+1 satisfies the first two conditions in (7.6), as well as (1) above.
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(3) We define ϕk by the third condition in (7.6). The function ϕk is independent of the choice
of p and satisfies the second condition in (7.5) for the following reason. Suppose p, q=0, . . . , k+1,
τ ∈Sk, and τ̃ ∈Sk+1 is defined by

τ̃ ◦ ιk+1,p = ιk+1,q ◦ τ.

If ϕk,p and ϕk,q are the functions corresponding to p and q via the third equation in (7.6), then
by the second equation in (7.6)

ιk+1,q ◦ τ ◦ ϕk,p = τ̃ ◦ ιk+1,p ◦ ϕk,p = τ̃ ◦ ϕ̃k+1 ◦ ιk+1,p = ϕ̃k+1 ◦ τ̃ ◦ ιk+1,p

= ϕ̃k+1 ◦ ιk+1,q ◦ τ = ιk+1,q ◦ ϕk,q ◦ τ.

We conclude that
τ ◦ ϕk,p = ϕk,q ◦ τ ∀ p, q=0, . . . , k+1, τ ∈Sk.

The function ϕk satisfies the first condition in (7.5) because

ιk+1,p

(

Uk
p

)

= Uk+1
p,p+1 ∩∆k+1

p,p+1 and

ιk+1,p ◦ ϕk = ϕ̃k+1 ◦ ιk+1,p = π̃k+1
p,p+1 ◦ ιk+1,p = ιk+1,p ◦ π̃

k
p on Uk

p .

Finally, ϕk satisfies (1) because ϕ̃k+1 does.

Lemma 7.3. If X is a smooth manifold, every integral k-cycle in X, based on C∞(∆k;X),
determines an element of Hk(X).

Proof. If k=0, this is obvious. Suppose k≥1 and

s ≡

j=N
∑

j=1

fj

determines a cycle in S̄k(X). Let Ds be the set provided by Exercise 6.6 and let τ : Ds−→Sk−1

be the corresponding map. Let

M ′ =
(

j=N
⊔

j=1

{j}×∆k
)/

∼, where

(

j1, ιk,p1(τ(j1,p1),(j2,p2)(t))
)

∼
(

j2, ιk,p2(t)
)

∀
(

(j1, p1), (j2, p2)
)

∈Ds, t∈∆k−1.

Let π be the quotient map. Define

F :M ′ −→ X by F
(

[j, t]
)

= fj
(

ϕk(t)
)

. (7.8)

This map is well-defined by (7.1) and continuous by the universal property of the quotient topol-
ogy; see [13, Theorem 22.2]. Let M be the complement in M ′ of the set

π
(

j=N
⊔

j=1

{j}×Y
)

,

39



where Y is the (k−2)-skeleton of ∆k. By continuity of F , compactness of M ′, and the first
equation in (7.5),

BdF |M = F (M ′−M) =

j=N
⋃

j=1

fj
(

ϕk(Y )
)

=

j=N
⋃

j=1

fj(Y ). (7.9)

Since fj |Int σ is smooth for all j = 1, . . . , N and all simplices σ ⊂∆k, BdF |M has dimension at
most k−2 by (7.9). Thus, F |M is a k-pseudocycle, provided M is a smooth oriented manifold
and F |M is a smooth map.

Exercise 7.4. Complete the proof of Lemma 7.3.

The pseudocycle F |M constructed above depends on the choice of Ds and τ . However, as the
next lemma shows, the image of F |M in Hk(X) depends only on [{s}].

Lemma 7.5. Under the construction of Lemma 7.3, homologous k-cycles determine the same
equivalence class of pseudocycles in Hk(X).

Proof. (1) If k=0, this is obvious. Suppose k>0 and

s0 ≡

j=N0
∑

j=1

f0,j and s1 ≡

j=N1
∑

j=1

f1,j

determine two homologous k-cycles in S̄k(X). Let Ds0 andDs1 be the sets provided by Exercise 6.6
and let τ0 and τ1 be the corresponding maps into Sk−1. Denote by (M ′

0,M0, F0) and (M ′
1,M1, F1)

the triples constructed in the proof of Lemma 7.3 corresponding to s0 and s1. Choose

s̃ =

j=Ñ
∑

j=1

f̃j ∈ Sk+1(X) s.t. ∂̄{s̃} = {s1} − {s0} ∈ S̄k(X).

Denote by C
(0)
s̃ , C

(1)
s̃ , Ds̃, (j̃i, p̃i, τ̃i), and τ̃ the corresponding objects of Exercise 6.7.

(2) Let I=[0, 1] as before. Put

M̃ ′ =
(

j=Ñ
⊔

j=1

{j}×∆k+1 ⊔
⊔

i=0,1

{i}×I×M ′
i

)/

∼, where

(

j1, ιk+1,p1(τ̃(j1,p1),(j2,p2)(t))
)

∼
(

j2, ιk+1,p2(t)
)

∀
(

(j1, p1), (j2, p2)
)

∈D̃s̃, t∈∆k,
(

i, 1−i, π(j, t)
)

∼
(

j̃i(j), ιk+1,p̃i(j)(τ̃i,j(t))
)

∀ t∈∆k, j=1, . . . , Ni, i=0, 1.

Let

π̃ :

j=Ñ
⊔

j=1

{j}×∆k+1 ⊔
⊔

i=0,1

{i}×I×M ′
i −→ M̃ ′

be the quotient map. Define

F̃ : M̃ ′ −→ X by
F̃
(

[j, t]
)

= f̃j
(

ϕ̃k+1(ϕk+1(t))
)

∀ t∈∆k+1, j=1, . . . , Ñ ;

F̃
(

[i, s, x]
)

= Fi(x) ∀ s∈I, x∈M ′
i , i=0, 1.

40



This map is well-defined by (7.2), (7.3), and (7.8) and is continuous by the universal property of
the quotient topology. Let M̃ be the complement in M̃ ′ of the set

π̃
(

j=Ñ
⊔

j=1

{j}×Ỹ ⊔
⊔

i=0,1

{i}×I×(M ′
i−Mi)

)

,

where Ỹ is the (k−1)-skeleton of ∆k+1. By continuity of F̃ , compactness of M̃ ′, and the first
equation in (7.6),

Bd F̃ |M̃ = F̃ (M̃ ′−M̃) =

j=Ñ
⋃

j=1

f̃j
(

ϕ̃k+1(ϕk+1(Ỹ ))
)

∪
⋃

i=0,1

fi,j
(

ϕk(Y )
)

=

j=Ñ
⋃

j=1

f̃j
(

Ỹ
)

. (7.10)

Since f̃j |Int σ is smooth for all j=1, . . . , Ñ and all simplices σ⊂∆k+1, Bd F̃ |M̃ has dimension at

most k−1 by (7.10). Thus, F̃ |M̃ is a pseudocycle equivalence between F0|M0 and F1|M1 , provided

M̃ is a smooth oriented manifold, F̃ |M̃ is a smooth map, and ∂(F̃ |M̃ ) = F1|M1 − F0|M0 .

Exercise 7.6. Complete the proof of Lemma 7.5.

Proceeding as in the proof of Lemma 7.3, we can turn s̃ into a pseudocycle equivalence (M̃∗, F̃ )
between some pseudocycles (M∗

0 , F0) and (M∗
1 , F1) by gluing across codimension 1 faces. Unfortu-

nately, M∗
0 andM∗

1 are not the entire manifoldsM0 andM1; they are missing the (k−1)-simplices
of M0 and M1. This issue is resolved in (2) of the proof of Lemma 7.5 by adding collars to M̃∗:
(n+1)-manifolds that begin with M∗

i and end with M∗
i .

8 From pseudocycles to homology

This section establishes Proposition 8.1 below. In the proofs of Lemmas 8.6 and 8.7, we construct
a cycle and a boundary in the oriented singular complex S̄∗(X) out of a pseudocycle and a
pseudocycle equivalence, respectively. In both cases, we use arbitrary small neighborhoods of the
boundaries of these maps provided by Corollary 8.4 below; in a sense, these neighborhoods are
analogous to tubular neighborhoods of embedded submanifolds.

Proposition 8.1. If X is a smooth manifold, there exists a homomorphism

Φ: H∗(X)−→H∗(X;Z),

which is natural with respect to smooth maps.

If K is a simplicial complex and σ is a simplex in K, the star of σ in K is the union of the subsets
Int σ′ taken over the simplices σ′ ∈ K such that σ ⊂ σ′; see [14, Section 62]. The barycentric

subdivision of K is the simplicial complex sdK obtained from K by subdividing each simplex σ
of K into simplicies with vertices at the barycenters bσ′ of all simplicies σ′⊂σ; see [14, Section 17].

If X is a smooth manifold, a topological embedding µ : ∆l−→X is a smooth embedding if there
exist an open neighborhood ∆l

µ of ∆l in Rl and a smooth embedding µ̃ : ∆l
µ −→ X so that
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µ̃|∆l = µ. A smooth triangulation of a smooth manifold X is a pair T = (K, η) consisting of a
simplicial complex and a homeomorphism η : |K|−→X such that

ησ ≡ η◦ισ : ∆
l −→ X

is a smooth embedding for every l-simplex σ in K and l∈Z≥0.

If h : Y −→X is a smooth map and k is a nonnegative integer, put

Nk(h) =
{

y∈Y : rk dyh≤k
}

.

Lemma 8.2. Let h : Y −→X be a smooth map. For every k∈Z≥0, there exists a neighborhood U
of h

(

Nk(h)
)

in X such that
Hl(U ;Z) = 0 ∀ l>k.

Proof. By Proposition 10.1, there exists a smooth triangulation T = (K, η) of X such that the
smooth map h is transverse to ησ|Int σ for all σ∈K. In particular,

h
(

Nk(h)
)

⊂
⋃

σ∈K,dimσ≥n−k

η(Intσ) =
⋃

σ∈K,dimσ≥n−k

η
(

St(bσ, sdK)
)

, (8.1)

where n=dimX. Note that
St(bσ, sdK) ∩ St(bσ′ , sdK) = ∅

unless σ⊂σ′ or σ′⊂σ. Furthermore, if σ1⊂ . . .⊂σm,

St(bσ1 , sdK) ∩ . . . ∩ St(bσm , sdK) = St(bσ1 . . . bσm , sdK);

the last set is contractible. Put

U ′
m =

⋃

σ∈K,dimσ=m

St(bσ, sdK).

Thus, U ′
lm
∩. . .∩U ′

mj
is a disjoint union of contractible open sets in |K|. Let

Um = η(U ′
m), m = n−k, . . . , n; U =

n
⋃

m=n−k

Um.

Since η : |K| −→X is a homeomorphism, Um1∩. . .∩Umj
is a disjoint union of contractible open

subsets of X. By (8.1), h
(

Nk(h)
)

⊂U . By Exercise 8.3 below, Hl(U)=0 for all l>k.

Exercise 8.3. Let
{

Um

}m=k

m=0
be an open cover of topological space X such that

Hl

(

Um1∩. . .∩Umj
;Z
)

= 0 ∀ l>0, m1, . . . ,mj=0, . . . , k.

Use the Mayer-Vietoris Theorem [14, p186] to show that Hl(U)=0 for all l>k.

Corollary 8.4. If h : Y −→X is a smooth map and W is an open neighborhood of a subset A of
Imh in X, there exists a neighborhood U of A in W such that

Hl(U ;Z) = 0 ∀ l > dimY.
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Proof. In Lemma 8.2, take X=W , Y =h−1(W ), and k=dimY .

Remark 8.5. It may not be true that Hl(A;Z)=0 if l>dimY . For example, let A be the subset
of X=RN consisting of countably many k-spheres of radii tending to 0 and having a single point
in common. If k≥2, the set A has infinitely many nonzero homology groups; see [2].

Lemma 8.6. Every k-pseudocycle determines a class in Hk(X;Z).

Proof. (1) Suppose h :M−→X is a k-pseudocycle and f : N−→X a smooth map such that

dimN = k−2 and Bdh ⊂ Imf.

By Corollary 8.4, there exists an open neighborhood U of Bdh in X such that

Hl(U ;Z) = 0 ∀ l > k−2.

Let K=M−h−1(U). Since the closure of h(M) is compact in X, K is a compact subset of M by
definition of Bdh. Let V be an open neighborhood of K in M such that V̄ is a compact manifold
with boundary. It inherits an orientation from the orientation of M and thus defines a homology

[V̄ , ∂V̄ ] ∈ Hk(V̄ , ∂V̄ ;Z).

Put
[h] = h∗

(

[V̄ , ∂V̄ ]
)

∈ Hk(X,U ;Z) ≈ Hk(X;Z), (8.2)

where
h∗ : Hk(V̄ , ∂V̄ ;Z)−→Hk(X,U ;Z) (8.3)

is the homology homomorphism induced by h. The isomorphism in (8.2) is induced by inclusion.
It is an isomorphism by the assumption on the homology of U as follows from the long exact
sequence in homology for the pair (X,U).

(2) The homology class [h] is independent of the choice of V . Suppose V ′ is another choice such
that V̄ ⊂ V ′. Choose a triangulation of V̄ ′ extending some triangulation of ∂V̄ ∪ ∂V̄ ′; such a
triangulation exists by Section 16 in [14]. The cycles

h∗([V̄ , ∂V̄ ]), h∗([V̄
′, ∂V̄ ′]) ∈ Hk(X,U ;Z)

then differ by singular simplices lying in U and thus are the same; see Remark 6.5.

(3) The cycle [h] is also independent of the choice of U . Suppose U ′⊂U is another choice. By (2),
it can be assumed that V and V ′ chosen as in (1) are the same. Since the isomorphism in (8.2)
is the composite of isomorphisms

Hk(X;Z) −→ Hk(X,U
′;Z) −→ Hk(X,U ;Z)

induced by inclusions and the homomorphism (8.3) is the composition

Hk(V̄ , ∂V̄ ;Z) −→ Hk(X,U
′;Z) −→ Hk(X,U ;Z),

the homology classes obtained in Hk(X;Z) from U and U ′ are equal. Finally, if U and U ′ are two
arbitrary choices of open sets in (1), by Corollary 8.4 there exists a third choice U ′′⊂U∩U ′.

43



Lemma 8.7. Equivalent k-pseudocycles determine the same class in Hk(X,Z).

Proof. Suppose hi : Mi −→X, i=0, 1, are two equivalent k-pseudocycles and h̃ : M̃ −→X is an
equivalence between them. In particular, M̃ is oriented,

∂M̃ =M1−M0, and h̃|Mi
= hi.

Let Ũ be an open neighborhood of Bd h̃ in X such that

Hl(Ũ ;Z) = 0 ∀ l > k−1.

Let Ui be an open neighborhood of Bdhi⊂Bd h̃ in Ũ such that

Hl(Ui;Z) = 0 ∀ l > k−2,

as provided by Corollary 8.4. Let Vi ⊂Mi be a choice of an open set as in (1) of the proof of
Lemma 8.6. For i=0, 1, choose a triangulation of Mi that extends a triangulation of ∂V̄i. Extend
these two triangulations to a triangulation T̃ =(K̃, η̃) of M̃ . Let K be a finite sub-complex of K̃
such that

V0, V1 ⊂ η̃(|K|) and M̃ − h̃−1(Ũ) ⊂ η̃(Int |K|).

Such a subcomplex exists because h̃(M̃) is a pre-compact subset of X and thus M̃−h̃−1(Ũ) is a
compact subset of M̃ . Put

Ki =
{

σ∈K : η(σ)⊂ V̄i
}

for i = 0, 1.

By the proof of Lemma 8.6, (Ki, h̃◦η̃||Ki|) determines the homology class [hi]∈Hk(X,Ui;Z). Let

[h′i] denote its image in Hk(X, Ũ ;Z) under the homomorphism induced by inclusion. The above
assumptions on K imply that

∂(K, h̃ ◦ η̃|K) = (K1, h̃ ◦ η̃|K1)− (K0, h̃ ◦ η̃|K0)

in S̄(M, Ũ). Thus,
[h′0] = [h′1] ∈ Hk(X, Ũ ;Z),

and this class lies in the image of the homomorphism

Hk(X;Z) −→ Hk(X, Ũ ;Z) (8.4)

induced by inclusion. This map is equal to the composites

Hk(X;Z) −→ Hk(X,U0;Z) −→ Hk(X, Ũ ;Z),

Hk(X;Z) −→ Hk(X,U1;Z) −→ Hk(X, Ũ ;Z).

Since Hk(Ũ ;Z)=0, the homomorphism (8.4) is injective. Thus, [h0] and [h1] come from the same
element of Hk(X;Z).
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9 Isomorphism of homology theories

This section concludes the proof of the first part of Theorem 5.4. We show that Φ◦Ψ is an
isomorphism and Ψ is injective; see Lemmas 9.1 and 9.2, respectively.

Lemma 9.1. If X is a smooth manifold, the composition

Φ ◦Ψ: H∗(X;Z) −→ H∗(X) −→ H∗(X;Z)

is the identity map on H∗(X;Z).

Proof. Suppose

{s} =
N
∑

j=1

{fj} ∈ S̄k(X)

is a cycle and F :M−→X is a pseudocycle corresponding to s via the construction of Lemma 7.3.
Recall that M is the complement of the (k−2)-simplices in a compact space M ′ and F is the
restriction of a continuous map F ′ :M ′−→X induced by the maps

fj◦ ϕk : ∆
k −→ X, j = 1, . . . , N.

Since ϕk is homotopic to the identity on ∆k, with boundary fixed,

fj◦ ϕk − fj ∈ ∂Sk+1(X) ∀ j = 1, . . . , N. (9.1)

Let U be a neighborhood of BdF such that

Hl(U ;Z) = 0 ∀ l > k−2.

Put K =M−f−1(ϕ−1
k (U)). Let V be a pre-compact neighborhood of K such that (V̄ , ∂V̄ ) is a

smooth manifold with boundary. Choose a triangulation T = (K, η) of (V̄ , ∂V̄ ) such that every
k-simplex of T is contained in a set of the form π({j}×∆k) for some j=1, . . . , N , where π is as
in the proof of Lemma 7.3. For each j=1, . . . , N , put

Kj =
{

σ∈K : η(σ)⊂π({j}×∆k)
}

, Ktop
j =

{

σ∈Kj : dimσ = k
}

.

Let T̃j = (K̃j , ηj ) be a triangulation of a subset of ∆k that along with Kj gives a triangulation
of ∆k. Put

K̃top
j =

{

σ∈K̃j : dimσ = k
}

.

By definition of T ,
fj◦ϕk

(

ηj (σ)
)

⊂ U ∀ σ ∈ K̃ top
j . (9.2)

Furthermore, by (9.1)

{s} =
∑

σ∈Ktop

{fj◦ϕk ◦ η ◦ lσ}

=
N
∑

j=1

∑

σ∈Ktop
j

{fj◦ϕk ◦ η ◦ lσ}+
N
∑

j=1

∑

σ∈K̃top
j

{fj◦ϕk ◦ η̃j ◦ lσ} mod ∂̄S̄k+1(X),
(9.3)
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since subdivisions of cycles do not change the homology class. By the proof of Lemma 8.6, the
first sum on the right-hand side of (9.3) represents [F ] in S̄k(X,U). By (9.2), the second sum lies
in S̄k(U). Since the sum of the two terms is a cycle in S̄k(X), it must represent [F ] in S̄k(X).
Thus,

{F} = {s} ∈ Hk(X;Z),

and the claim follows.

Lemma 9.2. If X is a smooth manifold, the homomorphism Φ: H∗(X)−→H∗(X;Z) is injective.

Proof. Suppose a k-pseudocycle h : M ′ −→X determines the zero homology class via the con-
struction of Lemma 8.6. We show that a modification of h is the boundary of a smooth map
F̃ : M̃ −→X in the sense of pseudocycles. Since M ′ need not be compact, M̃ may need to be
constructed from infinitely many (k+1)-simplices. This is achieved as the limit of finite stages M̃i,
so that as i∈Z+ increases M ′ is the pseudocycle boundary of M̃i “modulo” smaller and smaller
neighborhoods Ui of Bdh. As in the proof of Lemma 7.5, we also need to attach a collar to the
(k+1)-manifold M̃∗ obtained directly from a bounding chain.

(1) It can be assumed that k≥1; otherwise, there is nothing to prove. Let
{

Ui

}∞

i=1
be a sequence

of open neighborhoods of Bdh in X such that Ūi⊂X is compact,

Ui+1 ⊂ Ui,

∞
⋂

i=1

Ui = Bdh, and Hl(Ui;Z) = 0 ∀ l > k−2.

Existence of such a collection follows from Corollary 8.4 and metrizability of any manifold. Let
{

Vi
}∞

i=1
be a corresponding collection of open sets in M ′ as in (1) of the proof of Lemma 8.6.

It can be assumed that V̄i ⊂ Vi+1. Choose a triangulation T = (K, η) of M ′ that extends a

triangulation of
∞
⋃

i=1
∂V̄i. Let

Ktop =
{

σ∈K : dimσ=k
}

, Cη =
{

(σ, p) : σ∈Ktop, p=0, . . . , k
}

.

For each σ∈Ktop, let
ισ : ∆

k −→ σ ⊂ |K| ⊂ R∞

be a linear map such that ησ≡η◦ισ is orientation-preserving. Put

fσ = h ◦ ησ ∀ σ∈Ktop and

Dη =
{

((σ1, p1), (σ2, p2))∈Cη×Cη : (σ1, p1) 6=(σ2, p2), ισ1(∆
k
p1)= ισ2(∆

k
p2)
}

.

For each ((σ1, p1), (σ2, p2))∈Dη, define

τ(σ1,p1),(σ2,p2) ∈ Sk−1 by ισ2◦ιk,p2 = ισ1◦ιk,p1 ◦ τ(σ1,p1),(σ2,p2).

Since K is an oriented simplicial complex,

Dη ⊂ Cη×Cη and τ : Dη −→ Sk−1

satisfy (1)-(3) of Exercise 6.6. Furthermore,M ′ is the topological space corresponding to (Cη,Dη, τ)
via the construction of Lemma 7.3 and h is the continuous map described by

h|π(σ×∆k) = fσ.
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As in the proof of Lemma 7.3, let M be the complement of the (k−2)-simplices in M ′; the
pseudocycles h and h|M are equivalent. Since ϕk is homotopic to the identity on ∆k with boundary
fixed, the pseudocycle h|M is in turn equivalent to the pseudocycle F |M , where as in the proof of
Lemma 7.3

F :M ′ −→ X, F ◦ ησ = fσ◦ϕk.

(2) For each i≥1, let

Ktop
i =

{

σ∈Ktop : η(σ)⊂ V̄i
}

, Cη;i =
{

(σ, p)∈Cη : σ∈Ktop
i

}

, Dη;i = Dη∩(Cη;i×Cη;i).

By construction of Φ(h), for every i≥1 there exists a singular chain

si ≡
Ni
∑

j=1

fi,j ∈ Sk(Ui) s.t.
∑

σ∈Ktop
i

{h ◦ ησ}+ {si}

is a cycle in S̄k(X) representing Φ(h). Similarly to Exercise 6.6, there exist a symmetric subset

Di ⊂ (Cη;i⊔Csi)×(Cη;i⊔Csi)

disjoint from the diagonal and a map τi : Di−→Sk−1 such that

(1) Dη;i⊂Di and τi|Dη;i =τ |Dη;i ;

(2) the projection map Di −→ Cη;i⊔Csi on either coordinate is a bijection;

(3) for all ((j1, p1), (j2, p2))∈Di,

τ(j2,p2),(j1,p1) = τ −1
(j1,p1),(j2,p2)

, fi,j2 ◦ ιk,p2 = fi,j1 ◦ ιk,p1 ◦ τ(j1,p1),(j2,p2),

and sign τ(j1,p1),(j2,p2) = −(−1)p1+p2 ,

where fi,σ≡fσ for all σ∈Ktop
i .

(3) By (2), for each i≥2
∑

σ∈Ktop
i −Ktop

i−1

{h ◦ ησ}+ {si} − {si−1} ∈ S̄k(Ui−1)

is a cycle. Since Hk(Ui−1;Z) = 0, it is a boundary. If i = 1, this conclusion is still true with
U0=X, Ktop

0 =∅, and s0=0, since Φ(h)=0 by assumption. Choose

s̃i ≡
Ñi
∑

j=1

f̃i,j ∈ Sk+1(Ui−1) s.t.
∑

σ∈Ktop
i −Ktop

i−1

{h ◦ ησ}+ {si} − {si−1} = ∂̄
{

s̃i
}

∈ S̄k(Ui−1).

Similarly to Exercise 6.7, there exist

C̃
(0)
i ⊂ C̃i≡

i′=i
⊔

i′=1

Cs̃i′ ,
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a symmetric subset D̃i⊂C̃i×C̃i disjoint from the diagonal, and maps

τ̃i : D̃i −→ Sk,
(

(j1, p1), (j2, p2)
)

−→ τ̃i,((j1,p1),(j2,p2)),

(j̃i, p̃i) : K
top
i ⊔{1, . . . , Ni} −→ C̃

(0)
i , and τ̃i : K

top
i ⊔{1, . . . , Ni} −→ Sk, j −→ τ̃(i,j),

such that

(1) D̃i⊂D̃i+1, τ̃i+1|D̃i
= τ̃i, and (j̃i+1, p̃i+1, τ̃i+1)|Ktop

i
= (j̃i, p̃i, τ̃i)|Ktop

i
;

(2) the projection D̃i−→C̃i on either coordinate is a bijection onto the complement of C̃
(0)
i ;

(3) for all ((j1, p1), (j2, p2))∈D̃i∩(Cs̃i1 ×Cs̃i2 ),

τ̃i,((j2,p2),(j1,p1)) = τ̃ −1
i,((j1,p1),(j2,p2))

, f̃i2,j2 ◦ ιk+1,p2 = f̃i1,j1 ◦ ιk+1,p1 ◦ τ̃i,((j1,p1),(j2,p2)),

and sign τ̃i,((j1,p1),(j2,p2)) = −(−1)p1+p2 ;

(4) for all σ∈Ktop
i −Ktop

i−1,

f̃i,j̃i(σ) ◦ ιk+1,p̃i(σ) ◦ τ̃(i,σ) = fσ and sign τ̃(i,σ) = −(−1)p̃i(σ);

(5) (j̃i, p̃i) is a bijection onto C̃
(0)
i .

(4) Put

M̃ ′ =
(

∞
⊔

i=1

Ñi
⊔

j=1

{i}×{j}×∆k+1 ⊔ I×M ′
)/

∼, where

(

i1, j1, ιk,p1(τ̃i,((j1,p1),(j2,p2))(t))
)

∼
(

i2, j2, ιk,p2(t)
)

∀ ((j1, p1), (j2, p2))∈D̃i∩(Cs̃i1 ×Cs̃i2 ), t∈∆k,
(

1, π(σ, t)
)

∼
(

i, j̃i(σ), ιk+1,p̃i(σ)(τ̃(i,σ)(t))
)

∀ t∈∆k, σ∈Ktop
i −Ktop

i−1, i∈Z+.

Let

π̃ :
∞
⊔

i=1

Ñi
⊔

j=1

{i}×{j}×∆k+1 ⊔ I×M ′ −→ M̃ ′

be the quotient map. Define

F̃ : M̃ ′ −→ X by
F̃
(

[i, j, t]
)

= f̃i,j
(

ϕ̃k+1(ϕk+1(t))
)

∀ t∈∆k+1, j=1, . . . , Ñi, i∈Z+;

F̃
(

[s, x]
)

= F (x) ∀ s∈I, x∈M ′,

where ϕ̃k+1 and ϕk+1 are the self-maps of ∆k+1 provided by Lemma 7.2. Similarly to Exercise 7.6,
this map is well-defined and continuous. Since the image of

∞
⊔

i=2

Ñi
⊔

j=1

{i}×{j}×∆k+1 ⊔ I×π

(

⊔

σ∈Ktop
2

{σ}×∆k−1

)
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under F̃ ◦π̃ is contained U1 and Ū1⊂X is compact, F̃ (M̃ ′)⊂X is compact as well.

Let M̃ be the complement in M̃ ′ of the set

π̃
(

∞
⊔

i=1

j=Ñi
⊔

j=1

{i}×{j}×Ỹ ⊔ I×(M ′−M)
)

,

where Ỹ ⊂∆k+1 is the (k−1)-skeleton. Similarly to the proof of Lemma 7.5, Bd F̃ |M̃ is of dimension

at most k−1, M̃ is a smooth oriented manifold boundary ∂M̃ = −M , F̃ |M̃ is a smooth map, and

F̃ |M =F |M . Since ∂
(

F̃ |M̃
)

=−F |M , F |M and h represent the zero element in Hk(M).

Exercise 9.3. Let F̃ : M̃ ′−→X and M̃⊂M̃ ′ be as in the proof of Lemma 9.2. Show that

(1) the map F̃ is well-defined and continuous;

(2) dimBd F̃ |M̃ ≤ k−1, M̃ is a smooth oriented manifold boundary ∂M̃ = −M , F̃ |M̃ is a smooth

map, and F̃ |M =F |M .

10 Existence of transverse triangulations

In this section, we show that every smooth manifold admits a smooth triangulation transverse to
a given smooth map. Proposition 10.1 below is a key step in the proof of Theorem 5.4, as it is
used in the proof of Lemma 8.6 via Corollary 8.4.

Proposition 10.1. If X,Y are smooth manifolds and h : Y −→X is a smooth map, there exists
a triangulation T =(K, η) of X such that h is transverse to η|Int σ for every simplex σ∈K.

This claim appears clear and completely classical. It is established in [19] under the assumption
that the smooth map h is proper (preimages of compact subsets are compact); the argument
in [19] makes use of this assumption in an essential way. For our purposes, a transverse C1-
triangulation would suffice, and the existence of a such triangulation is fairly evident from the
(infinite-dimensional) Sard-Smale Theorem [21, (1.3)]. On the other hand, according to M. Kreck,
the existence of smooth transverse triangulations without the properness assumption is related to
subtle issues arising in the topology of stratifolds [9]. A complete proof of Proposition 10.1, using
only (the finite-dimensional) Sard’s theorem [11, Section 2], is given in the rest of this section.

If T =(K, η) is a smooth triangulation of X, as defined in Section 8, and ψ : X−→X is a diffeo-
morphism, then (K,ψ◦η) is also a smooth triangulation of X. By the proof of Proposition 10.1
below, (K,ψ◦η) is transverse to h : Y −→X for a generic diffeomorphism ψ of X.

For a simplicial complex K and l ∈ Z≥0, let Kl be the l-th skeleton of K, i.e. the subcomplex
of K consisting of the simplices in K of dimension at most l. The main step in the proof of
Proposition 10.1 is the following observation.

Lemma 10.2. Let h : Y −→ X be a smooth map between smooth manifolds. If (K, η) is a
triangulation of X and σ is an l-simplex in K, there exists a diffeomorphism ψσ : X −→ X
restricting to the identity outside of η(St(bσ, sdK)) so that ψσ◦η|Int σ is transverse to h.
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Corollary 10.3. Let h : Y −→ X be a smooth map between smooth manifolds. If (K, η) is a
triangulation of X, for every l = 0, 1, . . . , dimX, there exists a diffeomorphism ψl : X −→ X
restricting to the identity on η(|Kl−1|) so that ψl◦η|Int σ is transverse to h for every l-simplex σ
in K.

Proof. For each l-simplex σ∈K, let ψσ : X−→X be a diffeomorphism provided by Lemma 10.2.
Since the collection

{St(bσ, sdK) : σ∈K, dimσ= l}

is locally finite, ψσ is the identity outside of η(St(bσ, sdK)), and

St(bσ, sdK) ∩ St(bσ′ , sdK) = ∅

for any two l-simplicies σ and σ′ in K, the composition ψl : X −→ X of the diffeomorphisms
ψσ : X −→ X taken over all l-simplices σ in K is a well-defined diffeomorphism of X. Since
ψl◦η||σ| = ψσ◦η||σ| for every l-simplex σ in K, ψl has the desired property.

Proof of Proposition 10.1. By [13, Chapter II], X admits a triangulation (K, η−1). By in-
duction and Corollary 10.3, for each l = 0, 1, . . . , dimX−1 there exists a triangulation

(K, ηl) ≡ (K,ψl◦ηl−1)

of X which is transverse to h on every open simplex in K of dimension at most l.

In the remainder of this section, we establish Lemma 10.2.

Lemma 10.4. For every l ∈ Z+, there exists a smooth function ρl : R
l −→ R̄+ such that

ρ−1
l (R+) = Int∆l.

Proof. Let ρ : R −→ R be the smooth function given by

ρ(r) =

{

e−1/r, if r > 0;

0, if r ≤ 0.

The smooth function ρl : R
l−→R given by

ρl(t1, . . . , tn) = ρ

(

1−
i=l
∑

i=1

ti

)

·
i=l
∏

i=1

ρ(ti)

then has the desired property.

Lemma 10.5. Let (K, η) be a triangulation of a smooth n-manifold X and σ be an l-simplex
in K. If ∆l

σ⊂Rl is an open neighborhood of ∆l, Uσ⊂X is an open neighborhood of η(|σ|), and

µ̃σ : ∆
l
σ × Rn−l −→ Uσ ⊂ X

is a diffeomorphism such that µ̃σ(t, 0) = η(ισ(t)) for all t∈∆l, there exists cσ∈R+ such that

{

(t, v)∈(Int ∆l)×Rn−l : |v|≤cσρl(t)
}

⊂ µ̃−1
σ

(

η(St(bσ, sdK))
)

.
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Proof. If K ′ is the subdivision of K obtained by adding the vertices bσ′ with σ′ ) σ, then
St(bσ, sdK)=St(σ,K ′). Thus, it is sufficient to show that there exists cσ>0 such that

{

(t, v)∈(Int∆l)×Rn−l : |v|≤cσρl(t)
}

⊂ µ̃−1
σ

(

η(St(σ,K))
)

.

We assume that 0<l< n. Suppose (tp, vp) ∈ (Int∆l)×(Rn−l−0) is a sequence such that

(tp, vp) 6∈ µ̃−1
σ

(

η(St(σ,K))
)

, |vp| ≤
1

p
ρl(tp). (10.1)

Since η(St(σ,K)) is an open neighborhood of η(Int σ) in X, by shrinking vp and passing to a
subsequence we can assume that

(tp, vp) ∈ µ̃−1
σ

(

η(|τ ′|)
)

⊂ µ̃−1
σ

(

η(|τ |)
)

(10.2)

for an n-simplex τ in K and a face τ ′ of τ so that σ 6⊂ τ ′, τ ′ 6⊂σ, and σ ⊂ τ . Let ιτ : ∆
n−→|K|

be an injective linear map taking ∆n to |τ | so that

ι−1
τ (|σ|) = ∆n ∩ Rl×0 ⊂ Rl×Rn−l , ι−1

τ (|τ ′|) = ∆n ∩ 0×Rn−1 ⊂ R1×Rn−1 . (10.3)

Choose a smooth embedding µτ : ∆
n
τ −→X from an open neighborhood of ∆n in Rn such that

µτ |∆n =η ◦ιτ . Let φ be the first component of the diffeomorphism

µ−1
τ ◦µ̃σ : µ̃

−1
σ

(

µτ (∆
n
τ )
)

−→ µ−1
τ

(

µ̃σ(∆
l
σ×Rn−l)

)

⊂ R1×Rn−1 .

By (10.2), the second assumption in (10.3), the continuity of dφ, and the compactness of ∆l,
∣

∣φ(tp, 0)
∣

∣ =
∣

∣φ(tp, 0)− φ(tp, vp)
∣

∣ ≤ C|vp| ∀ p, (10.4)

for some C>0. On the other hand, by the first assumption in (10.3), the vanishing of ρl on Bd∆l,
the continuity of dρl, and the compactness of ∆l,

∣

∣ρl(tp)
∣

∣ ≤ C
∣

∣φ(tp, 0)
∣

∣ ∀ p, (10.5)

for some C > 0. The second assumption in (10.1), (10.4), and (10.5) give a contradiction for
p>C2. This establishes the claim.

Lemma 10.6. Suppose h : Y −→ X is a smooth map between smooth manifolds, (K, η) is a
triangulation of X, and σ is an l-simplex in K. Let ∆l

σ ⊂ Rl be an open neighborhood of ∆l,
Uσ⊂X be an open neighborhood of η(|σ|), and

µ̃σ : ∆
l
σ × Rn−l −→ Uσ ⊂ X

be a diffeomorphism such that µ̃σ(t, 0) = η(ισ(t)) for all t ∈ ∆l. For every ǫ > 0, there exists
sσ∈C

∞(Int ∆l;Rn−l) so that the map

µ̃σ ◦ (id, sσ) : Int ∆
l −→ Int ∆l × Rn−l −→ X (10.6)

is transverse to h,
∣

∣sσ(t)
∣

∣ < ǫ2ρl(t) ∀ t∈ Int ∆l , lim
t−→Bd∆l

ρl(t)
−i
∣

∣∇jsσ(t)
∣

∣ = 0 ∀i, j ∈ Z≥0, (10.7)

where ∇jsσ is the multi-linear functional determined by the j-th partial derivatives of sσ.
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Proof. The smooth map

φ : Int∆l × Rn−l −→ X, φ(t, v) = µ̃σ
(

t, e−1/ρl(t)v
)

,

is a diffeomorphism onto an open neighborhood U ′
σ of η(Int σ) in X. The smooth map (10.6)

with sσ=e−1/ρl(t)v is transverse to h if and only if v∈Rn−l is a regular value of the smooth map

π2◦φ
−1◦h : h−1(U ′

σ) −→ Rn−l ,

where π2 : Int ∆l ×Rn−l −→ Rn−l is the projection onto the second component. By Sard’s
Theorem [11, Section 2], the set of such regular values is dense in Rn−l. Thus, the map (10.6)
with sσ = e−1/ρl(t)v is transverse to h for some v ∈ Rn−l with |v| < ǫ2. The second statement
in (10.7) follows from ρl|Bd∆l =0.

Corollary 10.7. Let X, Y , h, (K, η), l, and µ̃σ be as in the statement of Lemma 10.6. For
every ǫ>0, there exists a diffeomorphism ψ′

σ of ∆l
σ×Rn−l restricting to the identity outside of

{

(t, v)∈(Int ∆l)×Rn−l : |v|≤ǫρl(t)
}

so that the map µ̃σ◦ ψ
′
σ|Int ∆l×0 is transverse to h.

Proof. Choose β∈C∞(R; [0, 1]) so that

β(r) =

{

1, if r ≤ 1
2 ;

0, if r ≥ 1.

Let Cβ=supr∈R |β′(r)| and sσ be as provided by Lemma 10.6. Define

ψ′
σ : ∆

l
σ × Rn−l −→ ∆l

σ × Rn−l by

ψ′
σ(t, v) =

{

(

t, v + β
(

|v|
ǫρl(t)

)

sσ(t)
)

, if t ∈ Int∆l;

(t, v), if t 6∈ Int∆l.

The restriction of this map to (Int∆l)×Rn−l is smooth and its Jacobian is

Jψ′
σ

∣

∣

(t,v)
=

(

Il 0

β
(

|v|
ǫρl(t)

)

∇sσ(t)− β′
(

|v|
ǫρl(t)

)

|v|
ǫρl(t)

sσ(t)
ρl(t)

∇ρl In−l + β′
(

|v|
ǫρl(t)

)

sσ(t)
ǫρl(t)

vtr

|v|

)

. (10.8)

By the first property in (10.7), this matrix is non-singular if ǫ<1/Cβ. If W is any linear subspace
of Rn−l containing sσ(t),

ψ′
σ(t×W ) ⊂ t×W, ψ′

σ(t, v) = (t, v) ∀ v∈W s.t. |v| ≥ ǫρl(t).

Thus, ψ′
σ is a bijection on t×W , a diffeomorphism on (Int∆l)×Rn−l, and a bijection on ∆l

σ×R
n−l.

Since β(r)=0 for r≥1, ψ′
σ(t, v)=(t, v) unless t∈ Int∆l and |v|<ǫρl(t). It remains to show that

ψ′
σ is smooth along

{

(t, v)∈(Int∆l)×Rn−l : |v|≤ǫρl(t)
}

− (Int∆l)×Rn−l = (Bd∆l)×0.
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Since |sσ(t)|−→0 as t−→Bd∆l by the first property in (10.7), ψ′
σ is continuous along (Bd∆l)×0.

By the first property in (10.7), ψ′
σ is also differentiable along (Bd∆l)×0, with the Jacobian equal

to In. By (10.8) and the compactness of ∆l,

∣

∣Jψ′
σ|(t,v) − In

∣

∣ ≤ C
(

|∇sσ(t)|+ ǫ−1ρ(t)−1|sσ(t)|
)

∀ (t, v)∈(Int∆l)×Rn−l

for some C > 0. So Jψ′
σ is continuous at (t, 0) by the second statement in (10.7), as well as

differentiable, with the differential of Jψ′
σ at (t, 0) equal to 0. For i≥ 1, the i-th derivatives of

the second component of ψ′
σ at (t, v)∈(Int∆l)×Rn−l are linear combinations of the terms

β〈i1〉
(

|v|

ǫρl(t)

)

·

(

|v|

ǫρl(t)

)i1

·

k=j1
∏

k=1

(

∇pkρl
ρl(t)

)

·
vJ
|v|j2

· ∇i2sσ(t) ,

where i1, i2, j1, j2∈Z≥0 and p1, . . . , pj1 ∈Z+ are such that

p1 + p2 + . . .+ pj1 + j2 ≤ i, i1 ≤ j1+j2 ,

and vJ is a product of |J |≤j2 components of v. Such a term is nonzero only if ǫρl(t)/2< |v|<ǫρl(t)
or i1=0 and |v|<ǫρl(t). Thus, the i-th derivatives of ψ′

σ at (t, v)∈(Int∆l)×Rn−l are bounded by

Ci

∑

i1+i2≤i

ρl(t)
−i1
∣

∣∇i2sσ(t)
∣

∣

for some constant Ci>0. By the second statement in (10.7), the last expression approaches 0 as
t−→Bd∆l and does so faster than ρl. It follows that ψ

′
σ is smooth at all (t, 0)∈(Bd∆l)×0.

Proof of Lemma 10.2. Let ∆l
σ⊂Rl be a contractible open neighborhood of ∆l and µσ : ∆

l
σ−→X

a smooth embedding so that µσ|∆l =η◦ισ. By the Tubular Neighborhood Theorem [3, (12.11)],
there exist an open neighborhood Uσ of µσ(∆

l
σ) in X and a diffeomorphism

µ̃σ : ∆
l
σ×Rn−l −→ Uσ s.t. µ̃σ(t, 0) = µσ(t) ∀ t∈∆l

σ .

Let cσ>0 be as in Lemma 10.5 and ψ′
σ be as in Corollary 10.7 with ǫ=cσ. The diffeomorphism

ψσ = µ̃σ ◦ ψ′
σ ◦ µ̃−1

σ : Uσ −→ Uσ

is then the identity on Uσ−St(bσ, sdK). Since ψσ is also the identity outside of a compact subset
of Uσ, it extends by identity to a diffeomorphism on all of X.

11 The ring isomorphism

remains to be written; proof of Proposition 11.1 is not quite complete

Proposition 11.1. If X is a smooth oriented manifold, the homomorphism Ψ of Proposition 7.1
commutes with the ring structures.

Proof. We need to show that

Ψ
(

α ∩ [X]
)

·Ψ(B) = Ψ(α ∩B) ∀ α ∈ H l
c(X;Z), B ∈ Hk(X;Z),
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with l≤ k≤ n, where n=dimX. Let ιfn;k, ι
b
n;k : ∆

k −→∆n denote the natural inclusions as the
front and back k-faces, i.e. the linear maps defined by

ιfn;k(ei) = ei, ιbn;k(ei) = en−k+i, i = 0, 1, . . . , k.

Let (T, η) be a smooth oriented triangulation of X as in Sections 6 and 8. Similarly to Remark 6.5,

[X] =
∑

σ∈K,dimσ=n

{ησ} ∈ S̄n(X),

where n=dimX and ησ is as in (6.13). It can be assumed that B is a linear combination of the
front l-simplicies of the singular simplicies ησ, i.e.

B =
N
∑

i=1

ai
{

ησi
◦ιfn;k

}

∈ S̄k(X),

for some ai∈Z and σi∈K. Under these assumptions,

α ∩ [X] =
∑

σ∈K,dimσ=n

α
(

ησ◦ι
f
n;l

) {

ησ◦ι
b
n;n−l

}

∈ S̄n−l(X) ,

α ∩B =
N
∑

i=1

ai α
(

ησi
◦ιfn;k◦ι

f
k;l

) {

ησi
◦ιfn;k◦ι

b
k;k−l

}

=

N
∑

i=1

ai α
(

ησi
◦ιn;l

) {

ησi
◦ιfn;k◦ι

b
k;k−l

}

∈ S̄k−l(X) .

Thus, α∩B consists of the middle k−l faces of the singular n-simplices ησi
; the same is the case

for (α∩[X])∩B. More formally, these intersections need to be made into transverse pseudo-cycles
and the signs need to be checked.

An alternative argument should follow from a pseudo-cycle version of [12, Exercise 11C].

Proposition 11.2. Let X be a smooth manifold and Ai ∈ Hki(X) for i = 1, 2. There exist
representatives fi : Mi −→X for Ai, with i=1, 2, and smooth maps hi : Yi −→X from (ki−2)-
manifolds such that

(1) Bd f1 ⊂ Imh1 and Bd f2 ⊂ Imh2;

(2) f1⊤∩Xf2, f1⊤∩Xh2, f2⊤∩Xh1, and h1⊤∩Xh2.

Lemma 11.3. Let X be a smooth manifold and fi : Yi−→X, with i=1, 2, be smooth maps. For
a generic diffeomorphism ψ : X−→X

The diffeomorphism ψ might perhaps be just Ck, for a fixed arbitrary large k, as happens in [17,
Lemma 6.5.5].
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A Review of Topology

A.1 Poincare Duality

A.2 Some topology

Proposition A.2.1. Let γk −→ GkC denote the tautological k-plane bundle over the infinite
Grassmannian of k-dimensional linear subspaces of C∞. If f : (CP∞)k −→GkC is a continuous
map such that

f∗γk = (γ1)
k ≡

j=k
⊕

j=1

π∗j γ1 −→ (CP∞)k,

where πj : (CP
∞)k−→CP∞ is the projection onto the j-th component, then

f∗ : H∗(GkC;Z) −→ H∗
(

(CP∞)k;Z
)

is an injective homomorphism.

Proof. Since the Schubert cells provide CW-decompositions of finite Grassmannians, they gen-
erate H∗(GkC;Z). Based on intersection formulas for Schubert cycles, H∗(GkC;Z) is in fact
generated by

σ1 = c1(γ
∗
k), σ11 = c2(γ

∗
k), . . . σ1...1 = ck(γ

∗
k)

as an algebra over Z; see [12, Theorem 14.5]. By the product formula for chern classes,

f∗ci(γk) = si ∈ H∗
(

(CP∞)k
)

≈ R[π∗1c1(γ1), . . . , π
∗
kc1(γ1)]

is the i-th elementary symmetric polynomials in π∗1c1(γ1), . . . , π
∗
1c1(γk). Since the k elementary

symmetric polynomials s1, . . . , sk are algebraically independent [1, Corollary 14-(3.11)], it follows
that f∗ is injective.

Exercise A.2.2. Let γk−→GkR denote the tautological k-plane bundle over the infinite Grass-
mannian of k-dimensional linear subspaces of R∞ and f : (RP∞)k−→GkR be a continuous map
such that

f∗γk = (γ1)
k ≡

j=k
⊕

j=1

π∗j γ1 −→ (RP∞)k,

where πj : (RP)
k−→CP∞ is the projection onto the j-th component. Show that

f∗ : H∗(GkC;Z) −→ H∗
(

(CP∞)k;Z
)

is an injective homomorphism.
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Definition A.2.3. Let p : E −→B be an F -fiber bundle, ιb : Eb −→E be the inclusion of the
fiber for each b ∈ B, and R be a ring. A cohomology extension of the fiber for p over R is a
homomorphism

θ : H∗(F ;R) −→ H∗(E;R)

of R-modules such that ι∗b ◦θ : H
∗(F ;R)−→H∗(Eb;R) is an isomorphism for every b∈B.

Example A.2.4. Let V −→B be a complex vector bundle of rank k. The projectivization of V ,

p : PV −→ B,

is the CPk−1-fiber bundle obtained by replacing each fiber of V by its projectivization over C and
the transition maps between trivializations of V by the induced diffeomorphisms between their
projectivizations. Let

γV =
{

(ℓ, v)∈PV ×V : v∈ℓ ⊂ V } −→ PV

denote the tautological line bundle and

λV = c1(γ
∗
V ) ∈ H2(PV ;Z).

Since the restrictions of λ0V = 1, λ1V , . . . , λ
k−1
V to each fiber PVb form a basis for the R-module

H∗(PVb;Z)≈H
∗(CPk−1;Z). Thus, the homomorphism

θ : H∗(CPk−1;Z) −→ H∗(PV ;Z), λi −→ λiV , i = 0, 1, . . . , k−1,

where λ = c1(γ
∗) ∈ H∗(CPk−1;Z), is a cohomology extension of the fiber for p over R.

Theorem A.2.5 ([22, Theorem 5.7.9]). Let p : E −→B be an F -fiber bundle and R be a ring.
If θ : H∗(F ;R) −→ H∗(E;R) is a cohomology extension of the fiber for p over R, then the
homomorphism

H∗(B;R)⊗R H
∗(F ;R) −→ H∗(E;R), α⊗ β −→ p∗α⊗ θ(β),

is an isomorphism of R-modules.

Exercise A.2.6. Let V −→ B be a complex vector bundle of rank k and p : PV −→ B be its
projectivization of V . Show that

(1) the vector bundle γ∗⊗p∗V −→PV admits a non-vanishing section;

(2) the homomorphism

H∗(B;Z)[λV ]
/

(λkV +c1(V )λk−1
V +. . .+ck(V )

)

−→ H∗(PV ;Z), αλiV −→ p∗α ∪ λiV ,

is an isomorphism of Z-algebras (preserves the product structure).

Corollary A.2.7. Let B be a paracompact space. For every complex vector bundle V −→ B,
there exists a topological space B̃ and a continuous map π : B̃−→B such that the homomorphism

π∗ : H∗(B;Z) −→ H∗(B̃;Z)

is injective and the vector bundle π∗V −→B̃ splits as a direct sum of line bundles.
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Proof. Let k=rkCV ≥2 and assume that the statement holds for all vector bundles of rank less
than k. Let p : PV −→B be the projectivization of V . Since B is paracompact and γV ⊂p∗V is a
vector subbundle,

p∗V ≈ V ′ ⊕ γV ,

for some vector subbundle V ′⊂p∗V of rank k−1. By Theorem A.2.5, the homomorphism

p∗ : H∗(B;Z) −→ H∗(PV ;Z)

is injective. By the induction assumption, there exists a topological space B̃ and a continuous
map π′ : B̃−→PV such that the homomorphism

π′∗ : H∗(PV ;Z) −→ H∗(B̃;Z)

is injective and the vector bundle π∗V ′−→B̃ splits as a direct sum of line bundles. The projection

π = p◦π′ : B̃ −→ B

then has the desired properties.

Exercise A.2.8. Let V −→B be a real vector bundle of rank k. Show that

(1) there is a natural RPk−1-fiber bundle p : PV −→B obtained by projectivizing each fiber of
V −→B over R.

(2) the fiber bundle p : PV −→B admits a cohomology extension of the fiber over Z2;

(3) there is an isomorphism

H∗(B;Z2)[λV ]
/

(λkV +w1(V )λk−1
V +. . .+wk(V )

)

−→ H∗(PV ;Z2), αλiV −→ p∗α ∪ λiV ,

of Z2-algebras.

Exercise A.2.9. Let B be a paracompact space. Show that for every real vector bundle E−→V
there exists a topological space B̃ and a continuous map π : B̃−→B such that the homomorphism

π∗ : H∗(B;Z2) −→ H∗(B̃;Z2)

is injective and the vector bundle π∗V −→B̃ splits as a direct sum of real line bundles.

A.3 The splitting principle

Throughout this section, assume either

C case: all vector bundles are complex, all cohomology rings are with Z-coefficients, P1 is the
infinite complex projective space CP∞, and Gn is the infinite complex Grassmannian GrnC

∞, or

R case: all vector bundles are real, all cohomology rings are with Z2-coefficients, P1 is the infinite
real projective space RP∞, and Gn is the infinite real Grassmannian GrnR

∞,
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unless explicitly stated otherwise. Base spaces B are assumed to be paracompact. Let H
∏

(B)

be the product (rather than just sum) of all cohomology groups of B. So, an element of H
∏

(B)
is a possibly infinite series

a0 + a1 + . . . , where ai ∈ H i(B).

A vector bundle V −→B is split if it is isomorphic to a direct sum of line bundles L1, . . . , Lk−→B.

Definition A.3.1. Let R ring. A rule assigning to every r-tuple of vector bundles (V1, . . . , Vr)

of ranks (k1, . . . , kr) over every base B a class p(V1, . . . , Vr)∈H
∏

(B;R) is natural if

p
(

f∗V1, . . . , f
∗Vr) = f∗p(V1, . . . , Vr) ∈ H

∏

(B′;R)

for every continuous map f : B′ −→ B and r-tuple of vector bundles V1, . . . , Vr −→ B of ranks
k1, . . . , kr.

For example, in the complex case the rule assigning to each complex vector bundle V −→B the
class

c2(V ⊗V ) ∈ H4(B;Z)

is natural. So, is the rule assigning to each triple of complex vector bundles V1, V2, V3 −→ B
the class

w3(V1⊗V2⊗V2⊗V3) ∈ H3(B;Z2).

Theorem A.3.2 (The Splitting Principle). Let p, q be two natural rules assigning to every r-tuple
of vector bundles (V1, . . . , Vr) of ranks (k1, . . . , kr) over every base B classes

p(V1, . . . , Vr), q(V1, . . . , Vr) ∈ H
∏

(B).

If p(E1, . . . , Er) = q(E1, . . . , Er) for every r-tuple of split vector bundles E1, . . . , Er over every
base B, then

p(V1, . . . , Vr) = q(V1, . . . , Vr)

for every r-tuple of vector bundles V1, . . . , Vr over every base B.

Proof 1 . By Corollary A.2.7 in the C case and Exercise A.2.9 in the R case, there exists a
topological space B̃ and a continuous map π : B̃−→B such that the homomorphism

π∗ : H∗(B) −→ H∗(B̃) (A.3.1)

is injective and the vector bundle π∗Vi−→B̃ splits for every i=1, . . . , r. Since p and q are natural
and agree on split vector bundles,

π∗p(V1, . . . , Vr) = p(π∗V1, . . . , π
∗Vr) = q(π∗V1, . . . , π

∗Vr) = π∗q(V1, . . . , Vr) ∈ H
∏

(B̃;R).

Since the homomorphism (A.3.1) is injective, it follows that p(V1, . . . , Vr)=q(V1, . . . , Vr).

Proof 2 . Let γk−→Gk be the tautological k-plane bundle and

πG;i : Gk1×. . .×Gkr −→ Gki
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be the projection to the i-th factor. For each i=1, . . . , r, choose a continuous map fi : (P
1)ki −→Gki

such that

f∗i γki = (γ1)
ki ≡

j=ki
⊕

j=1

π∗j γ1 −→ (P)ki ,

where πj : (P)ki −→ P is the projection onto the j-th component; such a map exists by [12,
Theorem 14.6] in the C case and by [12, Theorem 5.6] in the R case. Let

f=f1×. . .×fr : (P)
k1+...+kr −→ Gk1×. . .×Gkr .

By Proposition A.2.1 in the C case and Exercise A.2.2 in the R case, along with the Kunneth
formula [14, Theorem 60.3], the homomorphism

f∗ : H∗
(

Gk1×. . .×Gkr

)

−→ H∗
(

(P1)k1+...+kr
)

(A.3.2)

is injective. Since p and q are natural with respect to continuous maps and agree on split vector
bundles,

f∗p
(

π∗G;1γk1 , . . . , π
∗
G;rγkr

)

= p
(

f∗π∗G;1γk1 , . . . , f
∗π∗G;rγkr

)

= q
(

f∗π∗G;1γk1 , . . . , f
∗π∗G;rγkr

)

= f∗q
(

π∗G;1γk1 , . . . , π
∗
G;rγkr

)

∈ H
∏
(

(P1)k1+...+kr
)

.

Since the homomorphism (A.3.2) is injective, it follows that

p
(

π∗G;1γk1 , . . . , π
∗
G;rγkr

)

= q
(

π∗G;1γk1 , . . . , π
∗
G;rγkr

)

∈ H
∏
(

Gk1×. . .×Gkr

)

.

If V1, . . . , Vr−→B are vector bundles of ranks k1, . . . , kr, respectively, over a paracompact base,
for each i there exists a continuous map gi : B−→Gki such that Vi=g

∗
i γki . Let

g = g1×. . .×gr : B −→ Gk1×. . .×Gkr .

Since gi=πG;i◦g, Vi=g
∗π∗G;iγki . Thus, by the naturality of p and q,

p
(

V1, . . . , Vr
)

= p
(

g∗π∗G;1γk1 , . . . , g
∗π∗G;rγkr

)

= g∗p
(

π∗G;1γk1 , . . . , π
∗
G;rγkr

)

= g∗q
(

π∗G;1γk1 , . . . , π
∗
G;rγkr

)

= q
(

g∗π∗G;1γk1 , . . . , g
∗π∗G;rγkr

)

= q
(

V1, . . . , Vr
)

∈ H
∏

(B),

as needed.

This second proof of Theorem A.3.2 shows that it is sufficient to check only that

p
(

π∗1γ
k1
1 , . . . , π

∗
rγ

kr
1

)

= q
(

π∗1γ
k1
1 , . . . , π

∗
rγ

kr
1

)

∈ H
∏
(

(P1)k1×. . .×(P1)kr
)

.

Example A.3.3. Let B be a paracompact space and V −→ B be a complex vector bundle of
rank k. We use Theorem A.3.2 to show that

c1
(

Λtop
C V

)

≡ c1
(

Λk
CV
)

= c1(V ).
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For every complex vector bundle V −→B over every paracompact base B, let

p(V ) = c1
(

Λtop
C V

)

∈ H2(B;Z) and q(V ) = c1(V ) ∈ H2(B;Z).

If f : B′−→B is any continuous map and V −→B is a complex vector bundle of rank k, then

p(f∗V ) ≡ c1
(

Λtop
C (f∗V )

)

= c1
(

f∗(Λtop
C V )

)

= f∗c1
(

Λtop
C V

)

≡ f∗p(V ) ∈ H2(B′;Z);

q(f∗V ) ≡ c1
(

f∗V
)

= f∗c1(V ) ≡ f∗q(V ) ∈ H2(B′;Z).

Thus, p and q are natural with respect to smooth maps. If V = L1⊕ . . .⊕Lk is a sum of line
bundles, then

Λtop
C V = L1⊗. . .⊗Lk =⇒ p(V ) = c1

(

L1⊗. . .⊗Lk

)

= c1(L1) +. . .+ c1(Lk);

c(V ) =
(

1+c1(L1)
)

. . .
(

1+c1(Lk)
)

=⇒ q(V ) ≡ c1(V ) = c1(L1) +. . .+ c1(Lk).

Thus, p(V ) = q(V ) for every split vector bundle V of rank k. Since p and q are natural with
respect to continuous maps, it follows that p(V )=q(V ) for every vector bundle V of rank k.

Exercise A.3.4. Let B be a paracompact space and V −→ B be a complex vector bundle of
rank 2. Show that

e
(

Sym3V ) = 9 c2(V )
(

c21(V ) + c2(V )
)

.
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B Complex projective spaces

B.1 Definition and basic properties

The n-dimensional complex projective space, Pn, is the quotient of Cn+1−0 by the standard action
of C∗≡C−0:

Pn =
(

Cn+1−0
)/

∼, (X0, . . . , Xn) ∼ (cX0, . . . , cXn) ∀ c ∈ C∗.

This space is a complex n-manifold; it can be covered by n+1 coordinate charts as follows. For
i=0, . . . , n, let

Ui =
{

[X0, . . . , Xn]∈P1 : Xi 6=0
}

,

φi : C
n −→ Ui, φi(w1, . . . , wn) =

[

w1, . . . , wi, 1, wi+1, . . . , wn

]

.

If i<j, then

φ−1
i (Uj) =

{

(w1, . . . , wn)∈Cn : wj 6=0
}

,

φ−1
j (Ui) =

{

(w1, . . . , wn)∈Cn : wi+1 6=0
}

.

The corresponding overlap map

φij ≡ φ−1
i ◦ φj : φ

−1
j (Ui) −→ φ−1

i (Uj)

is given by

(w1, . . . , wn) −→
( w1

wi+1
, . . . ,

wi

wi+1
,
wi+2

wi+1
, . . . ,

wj

wi+1
, w−1

i+1,
wj+1

wi+1
, . . . ,

wn

wi+1

)

. (B.1.1)

Since each of the maps φij is bi-holomorphic,
{

(Ui, φi,C
n)
}

is an atlas of holomorphic charts
on Pn. We will call the chart (Ui, φi,C

n) the i-th standard coordinate chart on Pn. By the next
exercise, Pn is compact.

Exercise B.1.1. Show that the inclusions of the unit sphere S2n+1 into Cn+1 and of S1 into C∗

induce a homeomorphism
S2n+1

/

S1 −→
(

Cn+1 − 0
)/

C∗

with respect to the quotient topologies.

If V is any vector space over C, the projectivization of V , PV , is the quotient of V −0 by the
standard C∗-action. An invertible linear transformation A of V gives rise to a bijection on PV :

Ā : Pn −→ Pn, [v] −→ [Av] ∀ v ∈ V −0.
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If V =Cn, this bijection is a biholomorphism. Thus, if V is any (n+1)-dimensional vector space
over C, PV is a complex manifold bi-holomorphic to Pn.

If V is a linear subspace of Cn+1 of dimension k+1, PV ≈Pk is a complex submanifold of Pn. We
will call such a submanifold of Pn a linear k-dimensional subspace. If k=n−1 (k=1), PV is called
a hyperplane in Pn (line in Pn).

B.2 CW-structure

The n-dimensional complex projective space is a CW-complex with one cell in dimensions 0, 2, . . . , 2n,
described as follows. For each k=0, . . . , n, let

σ0k(Vstd) =
{

[X0, . . . , Xn−k, 0, . . . , 0]∈Pn : Xn−k 6=0
}

. (B.2.1)

This is a smooth submanifold of Pn diffeomorphic to the open unit ball B2(n−k) around 0 in Cn−k;
in particular, the map

ιk : B
2(n−k) −→ σ0k(Vstd) ⊂ Pn,

w≡(w1, . . . , wn−k) −→
[

w1, . . . , wn−k, 1−|w|2, . . . , 0
]

,
(B.2.2)

is a diffeomorphism. It extends continuously (in fact, smoothly) over the closed ball B̄2(n−k); the
image of the boundary S2(n−k)−1 of B̄2(n−k) is contained in

{

[X0, . . . , Xn]∈Pn : Xi=0 ∀ i≥n−k
}

=
⊔

l>k

σ0l (Vstd).

We conclude that

Pn =
k=n
⊔

k=0

σ0k(Vstd)

is a CW-decomposition, σ0k(Vstd) is an open cell of dimension 2(n−k), and ιk is an attaching map
for σ0k(Vstd). The closure of σ0k(Vstd) in Pn is

σk(Vstd) =
{

[X0, . . . , Xn]∈Pn : Xi=0 ∀ i>n−k
}

= Pn−k. (B.2.3)

Since all cells are of even dimension,

Hk(P
n;Z),Hk(Pn;Z) ≈

{

Z, if k=0, 2, . . . , 2n;

0, otherwise.
(B.2.4)

We denote by

[σk(Vstd)]∈H2(n−k)(P
n;Z) and [σk(Vstd)]

∗∈H2(n−k)(Pn;Z)

the generators corresponding to the attaching map ιk. Since the diffeomorphism

ιk : B
2(n−k) −→ Pn
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is orientation-preserving with respect to the standard orientations on B2(n−k) and Pn, [σk(Vstd)]
is the image of [Pn−k] under the homology homomorphism induced by the standard embedding

Pn−k −→ Pn, [X0, . . . , Xn−k] −→ [X0, . . . , Xn−k, 0, . . . , 0].

In particular, [σ0] and [σ0]
∗ are the fundamental and orientation classes of Pn, [σn] is the homol-

ogy class of a point in Pn, and [σn]
∗=1.

By (B.2.3), the standard embedding Pn−k−→Pn induces isomorphisms

Hl(P
n−k;Z) −→ Hl(P

n;Z) and Hl(Pn;Z) −→ Hl(Pn−k;Z)

for l≤ 2(n−k). Since GLn+1C is connected, it follows that the same is the case for any linear
embedding Pn−k−→Pn, i.e. an embedding given by

Pn−k −→ Pn, [v] −→ [Av] ∀ v ∈ Cn−k+1−0,

for some injective homomorphism A : Cn−k+1−→Cn+1.

A (complete) flag on Cn+1 is a sequence of n+2 linear subspaces of Cn+1,

V ≡
(

V0={0} ( V1 ( . . . ( Vn ( Vn+1=Cn+1
)

. (B.2.5)

The standard flag Vstd on Cn+1 is given by

Vk = Ck × {0}n+1−k ⊂ Cn+1.

For any flag V on Cn+1 as in (B.2.5), let

σ0k(V) =
{

[v]∈Pn : v∈Vn+1−k−Vn−k

}

;

σk(V) =
{

[v]∈Pn : v∈Vn+1−k

}

= PVn+1−k.
(B.2.6)

If V=Vstd, these definitions agree with (B.2.1) and (B.2.3). As in the V=Vstd case, σk(V) is
the closure of σ0k(V) in Pn and

Pn =

k=n
⊔

k=0

σ0k(V)

is a CW-decomposition. The attaching map ιk for σ0k(V) can be defined as before, but with
B2(n−k) replaced by the unit ball in Vn−k. Since GLnC is connected, the generators

[σk(V)] ∈ H2(n−k)(P
n;Z) and [σk(V)]∗ ∈ H2(n−k)(Pn;Z)

are then independent of the choice of V. We denote them by [σk] and [σk]
∗, respectively. Let

σk ∈ H2k(Pn;Z)

be the Poincare dual of [σk].

Exercise B.2.1. Using Poincare duality, show by induction on n that

H2∗(Pn;Z) ≈ Z[σ1]
/

σn+1
1 .

63



We next show that σk∪σl = σk+l if k, l≥ 0 and k+l≤n. Choose flags V and V′ on Cn+1 such
that Vn+1−k and V ′

n+1−l intersect in a subspace V ′′
n+1−k−l of C

n+1 of codimension k+ l. Then,
σk(V)≡PVn+1−k and σl(V

′)≡PV ′
n+1−l intersect transversally in Pn, and their intersection is the

complex manifold PV ′′
n+1−k−l with its standard orientation. Since PV ′′

n+1−k−l=σk+l(V
′′) for some

flag V′′ on Cn+1, we conclude from Proposition 0.9 that

σk∪σl ≡ PDPn

(

[PVn+1−k]Pn

)

∪ PDPn

(

[PV ′
n+1−l]Pn

)

= PDPn

(

[PV ′′
n+1−k−l]Pn

)

≡ σk+l.

Since σn is the orientation class of Pn, we find that

1 =
〈

σk∪σn−k, [P
n]
〉

=
〈

σk, σn−k∩[P
n]
〉

=
〈

σk, [σn−k]
〉

.

Thus, by (B.2.4),
σk=[σn−k]

∗ ∈ H2k(Pn;Z) . (B.2.7)

Since σk1 =σk by the above, it follows that
〈

ι∗σk1 , [P
k]
〉

= 1

for any linear embedding ι : Pk−→Pn.

Exercise B.2.2. Using local coordinates on Pn, show that PVn+1−k and PV ′
n+1−l intersect

transversally in Pn as claimed above.

B.3 Tautological line bundle

We will usually view Pn as the space of one-dimensional linear subspaces of Cn+1. With this
understanding, let

γ =
{

(ℓ, v)∈Pn×Cn+1 : v∈ℓ ⊂ Cn+1
}

. (B.3.1)

Exercise B.3.1. Show that γ is a complex submanifold of Pn×Cn+1

In fact, the projection π : γ −→ Pn defines a holomorphic line bundle, which we will call the
tautological line bundle over Pn. A trivialization fi of γ over the open subset Ui of P

n is given by

fi : γ|Ui
−→ Ui×C, fi

(

[X0, . . . , Xn], (Z0, . . . , Zn)
)

=
(

[X0, . . . , Xn], Zi

)

. (B.3.2)

The corresponding overlap data is given by

gij : Ui∩Uj −→ C∗, gij
(

[X0, . . . , Xn]
)

=
Xi

Xj
, (B.3.3)

i.e. π2fi(ℓ, v) = gij(ℓ)π2fj(ℓ, v) ∀ (ℓ, v) ∈ γ|Ui∩Uj
,

where π2 : Ui×C, Uj×C−→C are the projections onto the second component. We will call fi the
standard trivialization of γ over the i-th coordinate chart on Pn.

If a≥0, a holomorphic section s of γ∗⊗a corresponds to a holomorphic map

s : γ −→ C s.t. s(ℓ, cv) = cas(ℓ, v) ∀ (ℓ, v) ∈ γ, c∈C .

Thus, any degree a homogeneous polynomial Q in X0, . . . , Xn induces a section sQ of γ∗⊗a by

sQ : γ −→ C, sQ(ℓ, v) = Q(v) ∀ (ℓ, v) ∈ γ.

By Lemma B.3.3 below, all holomorphic sections of γ∗⊗a, for any a∈Z, are of this form.
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Exercise B.3.2. If Q is linear function of X0, . . . , Xn, show that the induced section sQ of
γ∗−→Pn is transverse to the zero set.

By this exercise and Theorem 0.4, the first chern class of the line bundle γ∗ over Pn is the Poincare
dual of a hyperplane Pn−1⊂Pn:

c1(γ
∗) = σ1 ∈ H2(Pn;Z) . (B.3.4)

Lemma B.3.3. If a∈Z+, the line bundle γa−→Pn admits no nonzero holomorphic section. If
a ∈ Z≥0, every holomorphic section of γ∗⊗a is of the form sQ for some degree a homogeneous
polynomial Q in X0, . . . , Xn.

Proof. (1) It is sufficient to prove the first claim for n=1. If s is a nonzero holomorphic section
of the line bundle γa −→P1, s−1(0) is a finite set. By Corollary 0.7 and (B.3.4), its cardinality
counted with some positive multiplicities is

〈

e(γa), [P1]
〉

= −a
〈

e(γ∗), [P1]
〉

= −a
〈

σ1, [P
1]
〉

= −a < 0.

However, this is impossible if a>0.

(2) Suppose a ≥ 0 and s is a holomorphic sections of the line bundle γ∗⊗a over Pn. Since the
projection map

π2 : γ − Pn −→ Cn+1−0

is a biholomorphism, s induces a holomorphic function

s̃ : Cn+1−0 −→ C s.t. s̃(cv) = cas̃(v) ∀ v∈Cn+1−0, c∈C∗.

By Hartog’s Theorem [5, p7], s̃ extends to a holomorphic function

Q : Cn+1 −→ C s.t. Q(cv) = caQ(v) ∀ v∈Cn+1, c∈C.

Thus, Q is a degree a homogeneous polynomial as claimed.

to be added: Castelnuovo bound, every degree d curves lies in a Pd, in a Pd−1 if at least of
genus 1
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(1954), 17-86

[24] A. Zinger, Counting Rational curves of arbitrary shape in projective spaces, Geom. Top. 9
(2005), 571–697

[25] A. Zinger, Pseudocycles and integral homology, Trans. AMS 360 (2008), no. 5, 2741-2765

[26] A. Zinger, Reduced genus-one Gromov-Witten invariants, J. Differential Geom. 83 (2009),
no. 2, 407-460

[27] A. Zinger, On transverse triangulations, Münster J. Math. 5 (2012), 99-105

67


