MAT 615: Complex Curves and Surfaces

Problem Set 6

Here is a final collection of exercises, that should not be too difficult; you do not need to hand in any written solutions.

Problem 1 (5 pts)

Let S be a complex surface such that $K_{S} \longrightarrow S$ is a negative line bundle.
(a) Using Kodaira Vanishing Theorem, show that $q(S)=0$. Conclude that S is rational.
(b) If in addition S is minimal, show that S is either \mathbb{P}^{2} or $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Problem 2 (5 pts)
Let α be a primitive 5 th root unity (so $\alpha^{5}=1$, but $\alpha \neq 1$) and

$$
\tilde{S}=\left\{\left[X_{0}, X_{1}, X_{2}, X_{3}\right] \in \mathbb{P}^{3}: X_{0}^{5}+X_{1}^{5}+X_{2}^{5}+X_{3}^{5}=0\right\}
$$

Then \mathbb{Z}_{5} acts on \tilde{S} by

$$
\alpha \cdot\left[X_{0}, X_{1}, X_{2}, X_{3}\right]=\left[X_{0}, \alpha X_{1}, \alpha^{2} X_{2}, \alpha^{3} X_{3}\right] .
$$

Show that
(a) \tilde{S} and $S \equiv \tilde{S} / \mathbb{Z}_{5}$ are smooth projective surfaces;
(b) $q(S)=p_{g}(S)=0$, but $K_{S} \longrightarrow S$ is a positive line bundle, and thus S is of general type (and in particular not rational).

Problem 3 (5 pts)
Let $\pi: S \longrightarrow \Sigma$ be an irrational ruled surface. Show that every irreducible rational curve is contained in a fiber of π and thus S is minimal.

Problem 4 (5 pts)

Let S be a projective surface containing infinitely many exceptional curves (such surfaces exist by PS4 \#6). Show that S is rational.

Problem 5 (10 pts)

If S is a compact Kahler surface, each element $\gamma \in H_{1}(S ; \mathbb{Z})$ defines a homomorphism

$$
\int_{\gamma}: H^{1,0}(S) \longrightarrow \mathbb{C}, \quad \omega \longrightarrow \int_{\gamma} \omega
$$

and thus an element of $H^{1,0}(S)^{*}$. Let

$$
\Lambda_{S}=\left\{\int_{\gamma}:: \gamma \in H_{1}(S ; \mathbb{Z})\right\} \subset H^{1,0}(S)^{*}
$$

(a) Show that $\Lambda_{S} \subset H^{1,0}(S)^{*}$ is a lattice.
(b) If $\alpha:[0,1] \longrightarrow S$ is a path, show that the element

$$
\int_{\alpha} \cdot \in \operatorname{Alb}(S) \equiv H^{1,0}(S)^{*} / \Lambda_{S}, \quad \omega \longrightarrow \int_{\alpha} \omega \in \mathbb{C}
$$

depends only on $\alpha(0)$ and $\alpha(1)$.
(c) Thus, for each $p \in S$, there is a well-defined map

$$
\mu_{p}: S \longrightarrow \operatorname{Alb}(S), \quad q \longrightarrow \int_{p}^{q}
$$

Show that the image of this map has dimension at least one, unless $q(S)=0$.
(d) If $q(S) \geq 1$ and $p_{g}(S)=0$, show that the image of μ_{p} is one-dimensional.

Problem 6 (10 pts)

Let S be a smooth compact complex surface, $L \longrightarrow S$ a holomorphic line bundle, and $C \subset S$ a curve, possibly singular. Let

$$
\check{H}^{i}(C ; L)=\check{H}^{i}\left(S ;\left.L\right|_{C}\right), \quad i \in \mathbb{Z}, \quad K_{C}=\left.K_{S}(C)\right|_{C}
$$

the latter is a sheaf on S, as is $\left.L\right|_{C}$. If C is smooth, these definitions agree with the usual ones. Similarly, let

$$
\chi(C, L)=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim} \check{H}^{i}(C ; L), \quad \operatorname{deg}_{C} L=L \cdot C \equiv\left\langle c_{1}(L),[C]\right\rangle
$$

(a) Using Serre duality for line bundles on S and the Five Lemma, show that

$$
\check{H}^{i}(C ; L) \approx \check{H}^{1-i}\left(C ; K_{C}(-L)\right)^{*}
$$

Conclude that $\check{H}^{i}(C ; L)=0$ unless $i=0,1$.
(b) Using Riemann-Roch for line bundles on S, show that

$$
\chi(C, L)=1-a(C)+\operatorname{deg}_{C} L
$$

(c) Conclude that if C is connected, then

$$
\operatorname{dim} \check{H}^{0}\left(C ; K_{C}\right)=a(C)
$$

Problem 7 (10 pts)
Let $\pi: S \longrightarrow \Sigma$ be a holomorphic map from a smooth compact connected complex surface to a smooth compact connected curve of genus g. Show that
(a) the fiber $F_{\lambda}=\pi^{-1}(\lambda)$ is smooth for all but finitely many $\lambda \in \Sigma$ (hint: get a pencil from Σ to use Bertini);
(b) the fibers F_{λ} and $F_{\lambda^{\prime}}$ are not linearly equivalent if $\lambda \neq \lambda^{\prime}$ and $g \geq 1$;
(c) if $g \geq 1$, every irreducible curve C such that the normalization \tilde{C} of C is \mathbb{P}^{1} is contained in a fiber;
(d) if in addition a generic fiber F of π is connected and of genus $a(F) \geq 1$, there are finitely many such curves.

Problem 8 (10 pts)

With $\pi: S \longrightarrow \Sigma$ and $F \subset S$ as in Exercise 7, assume also that $q(S)=1, g(\Sigma)=1, a(F) \geq 1$, and S contains a smooth irreducible curve C such that C is not contained in any fiber of π,

$$
g(C)=1, \quad C^{2}>0, \quad h^{0}\left(K_{S}+C\right)=0 .
$$

Fixing $\lambda_{0} \in \Sigma$, for any $\lambda \in \Sigma$ set

$$
L_{C, \lambda}=C+F_{\lambda}-F_{\lambda_{0}} .
$$

(a) Show that no element of the linear system $\left|L_{C, \lambda}\right|$ is contained in a finite union of fibers of π.
(b) Suppose $m C^{\prime}$, where C^{\prime} is an irreducible curve and $m \in \mathbb{Z}^{+}$, is an element of $\left|L_{C, \lambda}\right|$. Show that $m=1$ and C^{\prime} is smooth of genus 1 .
(c) Suppose $\sum_{i=1}^{i=k} m_{i} C_{i}$, where $k \geq 2, C_{i} \subset S$ irreducible, $C_{i} \neq C_{j}$ for $i \neq j$, and $m_{i} \in \mathbb{Z}^{+}$, is an element of $\left|L_{C, \lambda}\right|$. Show that

$$
C \cdot\left(K_{S}+C_{i}\right)<0, \quad h^{0}\left(K_{S}+C_{i}\right)=0, \quad a\left(C_{i}\right) \leq 1
$$

for every i. If in addition C_{i} is not contained in any fiber, then C_{i} is smooth of genus 1. Furthermore, $C_{i} \cdot K_{S}<0$ for some i; if S is minimal and F is connected, this C_{i} is not contained in any fiber.

Problem 9 (10 pts)

Let $\pi: S \longrightarrow \Sigma$ and C be as in Exercise 8, with S minimal and F connected.
(a) Show that there exists an irreducible curve D on S such that for every $\lambda \in \Sigma$ and every element D^{\prime} of the linear system $\left|L_{D, \lambda}\right|$

$$
a\left(D^{\prime}\right)=1, \quad D^{\prime 2}=D^{2} \equiv d>0, \quad h^{0}\left(K_{S}+D^{\prime}\right)=0
$$

furthermore, D^{\prime} is smooth of genus 1 and is not contained in any fiber of π.
(b) Show that for all $\lambda, \lambda^{\prime} \in \Sigma$ with $\lambda \neq \lambda^{\prime}$ and $D^{\prime} \in\left|L_{D, \lambda}\right|$, the restriction map

$$
H^{0}\left(S ; L_{D, \lambda^{\prime}}\right) \longrightarrow H^{0}\left(D^{\prime} ; L_{D, \lambda^{\prime}}\right)
$$

is injective. Conclude that $h^{0}\left(S, L_{D, \lambda}\right)=d$ for every $\lambda \in \Sigma$.
(c) Let $p_{1}, \ldots, p_{d-1} \in S$ be general points. Show that for each $\lambda \in \Sigma$, there is an element D_{λ} of $\left|L_{D, \lambda}\right|$ passing through the points p_{1}, \ldots, p_{d-1}; if λ is generic, this element is unique. If $\lambda, \lambda^{\prime} \in \Sigma$ and $\lambda \neq \lambda^{\prime}$, the set $D_{\lambda} \cap D_{\lambda^{\prime}}$ consists of a single point which is independent of the choice of D_{λ} and $D_{\lambda^{\prime}}$ (if there is a choice). Show that the map

$$
\Sigma-\lambda \longrightarrow D_{\lambda}, \quad \lambda^{\prime} \longrightarrow D_{\lambda} \cap D_{\lambda^{\prime}}
$$

extends to a surjective map f_{λ} over Σ. Conclude that the choice of λ is in fact unique.
(d) Identify Σ with \mathbb{C} / Λ, where Λ is a lattice in \mathbb{C}. Show that the map

$$
h: \Sigma \times \Sigma \longrightarrow S, \quad(\mu, \lambda) \longrightarrow f_{\lambda}(\mu-\lambda)
$$

is holomorphic surjective and induces a family of non-constant holomorphic maps

$$
h_{\mu}: \mathbb{P}^{1} \longrightarrow S, \quad \lambda \longrightarrow h(\mu, \lambda),
$$

which cover S. However, this contradicts Exercise 7d.
The purpose of Exercises 7-9 is to add details for G\&H pp561-563, especially for p563. More precisely, suppose S is a minimal surface with $q(S) \geq 1$, which contains an irreducible curve C with $C \cdot K_{S}<0$ and $h^{0}\left(K_{S}+C\right)=0, \Sigma$ is a smooth curve with $g(\Sigma)=q(S)$, and $\pi: S \longrightarrow \Sigma$ is a holomorphic map with generic fiber F irreducible and $\pi(C)=\Sigma$. By the top of p562, $g(C)=g(\Sigma)$ so that $\pi: C \longrightarrow \Sigma$ is either an isomorphism or $q(S)=1$. By the middle of p562, $a(F)=0$ if $q(S) \geq 2$. By a more involved argument on p563 and in Exercises 7-9, the same conclusion holds for $q(S)=1$.

Problem 10 (10 pts)

Let $V \subset H^{0}\left(\mathbb{P}^{2} ; \mathcal{O}(3)\right)$ be the two-dimensional vector space spanned by two general cubic polynomials. Show that
(a) the base locus B of the linear system $\mathbb{P} V$ on \mathbb{P}^{2} consists of 9 points;
(b) all of the cubics in $\mathbb{P} V$ are smooth, except for 12 that have exactly one node each;
(c) the proper transform \tilde{V} of V in the blowup S of \mathbb{P}^{2} at B induces a morphism

$$
\pi: S \longrightarrow \mathbb{P} \tilde{V}^{*}
$$

expressing S as an elliptic surface over \mathbb{P}^{1} with no multiple fibers and 12 nodal fibers. What do the 9 exceptional divisors have to do with π ?

