MAT 615: Complex Curves and Surfaces

Partial Problem Set 5 Solutions

Problem 2 (10 pts)
(a) If S is a minimal surface and $D \subset S$ is an effective divisor such that $D \cdot K_{S}<0$, then

$$
P_{n}(S) \equiv h^{0}\left(K_{S}^{n}\right)=0 \quad \forall n \in \mathbb{Z}^{+}
$$

(b) If S, S^{\prime} are minimal (projective) surfaces and $f: S \longrightarrow S^{\prime}$ is a birational map, then either f is a biholomorphic map or $P_{n}(S)=P_{n}\left(S^{\prime}\right)=0$ for all $n \in \mathbb{Z}^{+}$.
Note: This says that a surface S with Kodaira dimension $\kappa(S) \geq 0$ has a unique minimal model.
(a) We can assume that D is irreducible. If $C \subset S$ is a divisor in the linear system $n K_{S}$ for some $n \in \mathbb{Z}^{+}$, then

$$
D \cdot C=D \cdot n K_{S}<0 .
$$

Thus, D is one of the irreducible components of C and $D^{2}<0$. Since $D \cdot K_{S}<0$ as well, D is an exceptional divisor for a blowup by the Castelnuovo-Enriques Criterion, contrary to the assumption that S is minimal.
(b) We first note the following. If $\pi: \widetilde{S} \longrightarrow S$ is the blowup at a point $p^{\prime} \in S^{\prime}$ with the exceptional divisor E and $\bar{C} \subset \widetilde{S}$ is the proper transform of a curve $C \subset S$, then

$$
K_{\widetilde{S}}=\pi^{*} K_{S}+E, \quad \bar{C}=\pi^{*} C-m E \quad \Longrightarrow \quad \bar{C} \cdot K_{\widetilde{S}}=C \cdot K_{S}+m
$$

for some $m \geq 0$. Thus, $C \cdot K_{S}$ does not decrease under blowdowns.
Suppose now that $f: S \longrightarrow S^{\prime}$ is a birational map between minimal surfaces which is not biholomorphic. Thus, there exist blowups $\pi: \widetilde{S} \longrightarrow S$ and $\pi^{\prime}: \widetilde{\widetilde{S}} \longrightarrow S^{\prime}$ so that $\pi^{\prime}=f \circ \pi$. Take minimal such blowup, i.e. \widetilde{S} contains an exceptional curve $\widetilde{C} \subset \widetilde{E}$ which is contracted by π^{\prime}, but not by π (and the other way around). Let $C=\pi(\widetilde{C}) \subset S$. Since $\widetilde{C} \cdot K_{\widetilde{S}}=-1, C \cdot K_{S}<0$ by the previous paragraph and thus $P_{n}(S)=0$ by part (a). By symmetry, $P_{n}\left(S^{\prime}\right)=0$ as well.

