MAT 615: Complex Curves and Surfaces

Partial Problem Set 5 Solutions

Problem 2 (10 pts)

(a) If S is a minimal surface and $D \subset S$ is an effective divisor such that $D \cdot K_S < 0$, then

$$P_n(S) \equiv h^0(K_S^n) = 0 \qquad \forall n \in \mathbb{Z}^+.$$

(b) If S, S' are minimal (projective) surfaces and $f: S \longrightarrow S'$ is a birational map, then either f is a biholomorphic map or $P_n(S) = P_n(S') = 0$ for all $n \in \mathbb{Z}^+$.

Note: This says that a surface S with Kodaira dimension $\kappa(S) \ge 0$ has a unique minimal model.

(a) We can assume that D is irreducible. If $C \subset S$ is a divisor in the linear system nK_S for some $n \in \mathbb{Z}^+$, then

$$D \cdot C = D \cdot nK_S < 0.$$

Thus, D is one of the irreducible components of C and $D^2 < 0$. Since $D \cdot K_S < 0$ as well, D is an exceptional divisor for a blowup by the Castelnuovo-Enriques Criterion, contrary to the assumption that S is minimal.

(b) We first note the following. If $\pi: \widetilde{S} \longrightarrow S$ is the blowup at a point $p' \in S'$ with the exceptional divisor E and $\overline{C} \subset \widetilde{S}$ is the proper transform of a curve $C \subset S$, then

$$K_{\widetilde{S}} = \pi^* K_S + E, \quad \overline{C} = \pi^* C - mE \qquad \Longrightarrow \qquad \overline{C} \cdot K_{\widetilde{S}} = C \cdot K_S + m$$

for some $m \ge 0$. Thus, $C \cdot K_S$ does not decrease under blowdowns.

Suppose now that $f: S \longrightarrow S'$ is a birational map between minimal surfaces which is not biholomorphic. Thus, there exist blowups $\pi: \widetilde{S} \longrightarrow S$ and $\pi': \widetilde{S} \longrightarrow S'$ so that $\pi' = f \circ \pi$. Take minimal such blowup, i.e. \widetilde{S} contains an exceptional curve $\widetilde{C} \subset \widetilde{E}$ which is contracted by π' , but not by π (and the other way around). Let $C = \pi(\widetilde{C}) \subset S$. Since $\widetilde{C} \cdot K_{\widetilde{S}} = -1$, $C \cdot K_S < 0$ by the previous paragraph and thus $P_n(S) = 0$ by part (a). By symmetry, $P_n(S') = 0$ as well.