MAT 615: Complex Curves and Surfaces

Problem Set 2 Solutions

Problem 1 (5 pts)

Describe all special divisors on a smooth compact Riemann surface of genus 0,1 and 2.
If D is an effective divisor on a smooth compact Riemann surface S of genus g,

$$
0 \leq \operatorname{deg} D \leq \operatorname{deg} K_{S}=2 g-2
$$

Thus, there are no effective divisors if $g=0$. If $g=1$, any effective divisor D on S is of degree 0 and thus must be the zero divisor. If $g=2$, any effective divisor D on S is of degree 0,1 , or 2 . In this case, the canonical map

$$
\iota_{K_{S}}: S \longrightarrow \mathbb{P}\left(H^{0}\left(S ; K_{S}\right)^{*}\right)
$$

is a degree 2 branched cover, which determines a holomorphic involution $\tau: S \longrightarrow S$. Since $K_{S}=\iota_{K_{S}}^{*} \mathcal{O}(1)$,

$$
K_{S}=[p+\tau(p)] \quad \forall p \in S .
$$

Thus, the effective divisors on S are $0, p, p+\tau(p)$ (all of the degree 1 divisors p are not linearly equivalent, while all of the degree 2 divisors $p+\tau(p)$ are linearly equivalent).

Problem 2 (5 pts)

Let $C, D_{1}, D_{2} \subset \mathbb{P}^{2}$ be smooth cubics so that

$$
C \cdot D_{1}=\sum_{i=1}^{i=9} p_{i}
$$

as divisors on C and D_{2} passes through p_{1}, \ldots, p_{8}. Show that $p_{9} \in D_{2}$.
Let $p_{9}^{\prime} \in C \cap D_{2}$ be the 9 -th point of the intersection so that

$$
C \cdot D_{2}=\sum_{i=1}^{i=8} p_{i}+p_{9}^{\prime}
$$

as divisors on C. Since D_{1}, D_{2} are linearly equivalent divisors on \mathbb{P}^{2}, the points p_{9}, p_{9}^{\prime} are linearly equivalent on C. Since C is of genus 1 , this implies that $p_{9}=p_{9}^{\prime}$ (because C does not admit a meromorphic function with a single simple pole).

Alternatively, suppose $D_{1}=\left(f_{1}\right)$ and $D=\left(f_{2}\right)$ for some degree 3 homogeneous polynomials in 3 variables. The restriction of f_{1} / f_{2} to C is then a meromorphic function on S with a single simple pole at p_{9}^{\prime} if $p_{9} \neq p_{9}^{\prime}$. Such a function does not exist because C is of genus 1 .

Problem 3 (5 pts)

Let $C \subset \mathbb{P}^{n}$ with $n \geq 3$ be a smooth (connected) curve of genus 1 and degree 4. Show that C is contained in some linearly embedded $\mathbb{P}^{3} \subset \mathbb{P}^{n}$ and is the intersection of two quadric (degree 2) surfaces in that \mathbb{P}^{3}.

Since $\left.L \equiv \mathcal{O}_{\mathbb{P}^{n}}(1)\right|_{C} \longrightarrow C$ is a holomorphic line bundle of degree 4, Riemann-Roch gives

$$
h^{0}(L)=1-1+4+h^{0}\left(K_{C} \otimes L^{*}\right)=4
$$

Thus, C is a contained in a \mathbb{P}^{3}.
Since the dimensions of $H^{0}\left(\mathbb{P}^{3} ; \mathcal{O}_{\mathbb{P}^{3}}(2)\right)$ and $H^{0}\left(C ;\left.\mathcal{O}_{\mathbb{P}^{3}}(2)\right|_{C}\right)$ are

$$
\binom{2+3}{3}=10 \quad \text { and } \quad 1-1+2 \cdot 4=8
$$

respectively, there exist two distinct quadric hypersurfaces $H_{1}, H_{2} \subset \mathbb{P}^{3}$ so that $C \subset H_{1} \cap H_{2}$. Since $4=2 \cdot 2$, this inclusion must be an equality.

