MAT 566: Characteristic Classes

Problem Set 5

Due by Tuesday, 4/15, in class

(if you have not passed the orals yet)

Please do two out of 12-A, 14-B, 14-E, (vi), and (vii).

Problem (vi): Suppose $f: M \longrightarrow M$ is a diffeomorphism. A fixed point x of f (i.e. f(x) = x) is called *nondegenerate* if the isomorphism $d_x f: T_x M \longrightarrow T_x M$ has no eigenvalues equal to 1.

- (a) Show that a nondegenerate fixed point is necessarily isolated (in the set of fixed points).
- (b) Suppose M is compact and f is homotopic to the identity.
 - (b-i) If M is oriented and the Euler characteristic $\chi(M)$ is non-zero, show that f has at least one fixed point. If in addition all fixed points are nondegenerate, show that their number is at least $|\chi(M)|$.
 - (b-ii) If $\chi(M)$ is odd, show that f has at least one fixed point.

Hint: This is a sequel to Problem (v).

Problem (vii): A homogeneous cubic polynomial in four variables,

$$f(X_0, X_1, X_2, X_3) = \sum_{i+j+k+l=3} a_{ijkl} X_0^i X_1^j X_2^k X_3^l,$$

naturally corresponds to an element

$$\tilde{f} \in \left(\operatorname{Sym}^3((\mathbb{C}^4))^* \approx \operatorname{Sym}^3((\mathbb{C}^4)^*) \equiv (\mathbb{C}^4)^* \otimes (\mathbb{C}^4)^* \otimes (\mathbb{C}^4)^* / \sim, \ \alpha \otimes \beta \otimes \gamma \sim \beta \otimes \alpha \otimes \gamma \sim \alpha \otimes \gamma \otimes \beta.$$

This is because each X_i defines a linear map $X_i : \mathbb{C}^4 \longrightarrow \mathbb{C}$, i.e. the projection onto the *i*th coordinate. Since every fiber of the tautological 2-plane bundle $\gamma_2 \longrightarrow \operatorname{Gr}_2 \mathbb{C}^4$ is a linear subspace of \mathbb{C}^4 , by restriction f induces a section

$$s_f \in \Gamma(\operatorname{Gr}_2\mathbb{C}^4; \operatorname{Sym}^3(\gamma_2^*)).$$

Note that the complex rank of the bundle $\operatorname{Sym}^3(\gamma_2^*) \longrightarrow \operatorname{Gr}_2\mathbb{C}^4$ equals to the dimension of $\operatorname{Gr}_2\mathbb{C}^4$. Thus, if s_f is transverse to the zero set (as is the case for a generic f), the set $s_f^{-1}(0)$ is finite and its signed cardinality is

$$^{\pm}|s_f^{-1}(0)| = \langle e(\operatorname{Sym}^3(\gamma_2^*)), \operatorname{Gr}_2\mathbb{C}^4 \rangle \in \mathbb{Z}.$$

In fact, s_f is a holomorphic section of a holomorphic vector bundle and thus all its zeros are positive.

A cubic surface Y in $\mathbb{C}P^3$ is the zero set of a homogeneous cubic polynomial in four variables, i.e.

$$Y \equiv Y_f = \left\{ [X_0, X_1, X_2, X_3] \in \mathbb{C}P^3 : \sum_{i+j+k+l=3} a_{ijkl} X_0^i X_1^j X_2^k X_3^l = 0 \right\} = \left(f^{-1}(0) - 0 \right) / \mathbb{C}^*.$$

A projective line ℓ in $\mathbb{C}P^3$ corresponds to a 2-plane P in \mathbb{C}^4 , i.e. an element of $\operatorname{Gr}_2\mathbb{C}^4$. Such a line ℓ lies in Y_f if and only if $f|_P$ vanishes identically, i.e. $P \in s_f^{-1}(0)$. Thus, if f is generic, the number of lines in Y_f is finite and is given by the culer class of $\operatorname{Sym}^3(\gamma_2^*)$.

- (a) Formulate and prove a splitting principle for Chern classes.
- (b) Use it to determine the number of lines that lie on a generic cubic surface in $\mathbb{C}P^3$.
- (c) Determine the number of lines that lie on a generic quintic threefold in $\mathbb{C}P^4$.