A Proof and a Modern "Proof"

Lemma. Every vector bundle E over a paracompact topological space X has a countable locally finite trivializing open cover.

Modern proof. Since X is paracompact, there is a locally finite trivializing open cover. Combine sets in this cover that are disjoint to form countably many sets. The details are straightforward, but very messy.

Milnor-Stasheff, p66. Let $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a locally finite trivializing open cover. Since X is normal, there exists an open cover $\{V_{\alpha}\}_{\alpha \in \mathcal{A}}$ such that $\overline{V_{\alpha}} \subset U_{\alpha}$ for every $\alpha \in \mathcal{A}$. Let $f_{\alpha}: X \longrightarrow \mathbb{R}$ be a continuous function such that $f_{\alpha}|_{V_{\alpha}} = 1$ and $f_{\alpha}|_{X-U_{\alpha}} = 0$. For each subset $S \subset \mathcal{A}$, define

$$U_S = \{ x \in X \colon f_\alpha(x) > f_\beta(x) \ \forall \ \alpha \in S, \ \beta \in \mathcal{A} - S \}.$$

For each $k \in \mathbb{Z}^+$, let

$$U_k = \bigcup_{S \subset \mathcal{A}, |S|=k} U_S.$$

Since $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a locally finite cover, so is $\{U_k\}_{k \in \mathbb{Z}^+}$. Since $U_{S_1} \cap U_{S_2} = \emptyset$ unless either $S_1 \subset S_2$ or $S_2 \subset S_1$, each U_k is a disjoint union of the sets U_S . If $\alpha \in \mathcal{A}$, then $U_S \subset V_{\alpha} \subset U_{\alpha}$. Thus, the restrictions $E|_{U_S}$ and $E|_{U_k}$ are trivial.