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The argument in the present notes is a more detailed version of [1, §2], except for (Dk) and the
part of (Ak) beyond (A⋆k); see Remark 1.1 below.

1 Introduction and Overview

For a smooth manifold X, we denote by Diff(X) the group of diffeomorphisms of X (with the
product given by the composition of functions). For a symplectic manifold (X,ω), we denote
by Symp(X,ω) the group of symplectomorphisms of (X,ω), i.e. diffeomorphisms ψ of X such
that ψ∗ω = ω. A smooth action of a Lie group G on a smooth manifold X (resp. symplectic
manifold (X,ω)) is a group homomorphism

ψ : G −→ Diff(X)
(
resp. G −→ Symp(X,ω)

)
, u −→ ψu , (1.1)

such that the map
Ψ: G×X −→ X, Ψ(u, x) = ψu(x),

is smooth. For each v∈T1G,

ζv ≡ d1ψ(v) ∈ Γ(X;TX), ζv(x) = d(1,x)Ψ(v, 0) ∈ TxX ∀x∈X, (1.2)

is then a well-defined smooth vector field on X. For any action ψ as in (1.1), let

Xψ ≡
{
x∈X : ψu(x)=x ∀u∈G

}

denote its fixed locus. If in addition x∈X, let

Gx(ψ) ≡
{
u∈G : ψu(x)=x

}
(1.3)

denote the stabilizer of x in G.

An action ψ in (1.1) is called effective if the group homomorphism ψ is injective. It is called
irreducible if the associated vector space homomorphism

d1ψ : T1G −→ Γ(X;TX), v −→ ζv ,

is injective; otherwise, it is called reducible. An effective action is irreducible, but an irreducible
action may have a discrete nontrivial kernel and thus not be effective.

Let G be a Lie group. A moment map for a smooth action of G on a symplectic manifold (X,ω) is
a smooth map

µ : X −→ T ∗
1
G s.t.

−d
(
{µ(·)}(v)

)
= ιζvω ≡ ω(ζv, ·) ∀ v∈T1G,

µ
(
ψu(x)

)
= Ad ∗

u−1

(
µ(x)

)
∀ x∈X, u∈G, (1.4)

where Ad∗u−1 : T ∗
1
G −→ T ∗

1
G is the dual of the adjoint action Adu−1 of G on T1G; see [30, Sec-

tions 3.46]. On the left-hand side of the first equation in (1.4), {µ(·)}(v) denotes the smooth
function on X given by

{µ(·)}(v) : X −→ R,
{
{µ(·)}(v)

}
(x) = {µ(x)}(v).
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On the right-hand side of this equation, ω(ζv, ·) denotes the 1-form on X given by

ω(ζv, ·) : TX −→ R,
{
ω(ζv, ·)

}
(w) = ω

(
ζv(x), w

)
∀ x∈X, w∈TxX.

If G is abelian, the second equation in (1.4) is equivalent to µ being G-invariant. A smooth G-action
on (X,ω) that admits a moment map is called Hamiltonian. In such a case, µ is determined up
to an additive constant fixed by the Ad∗-action of G on T ∗

1
G. If G is connected, Exercise 3.11(a)

implies that a smooth action of G on X that admits a smooth map µ : X−→T ∗
1
G satisfying the

first condition in (1.4) is in fact an action on (X,ω). By Exercise 3.11(c), such a map is G-invariant
if G is connected, abelian, and either G ≈ R or either G or X is compact. We will call a tuple
(X,ω, ψ, µ) a Hamiltonian G-manifold if (X,ω) is a symplectic manifold, ψ is a smooth G-action
on (X,ω), and µ is a moment map for this action.

A closed manifold is a compact manifold without boundary. We call a closed subset Z of a smooth
manifold X a closed submanifold if every topological component, i.e. a maximal connected subset,
of Z is open in Z and is a smooth manifold without boundary smoothly embedded into X. In other
words, every topological component of Z has an open neighborhood in X disjoint from the rest
of Z and is a submanifold of X in the usual sense, but the dimensions of these submanifolds may
not be the same. In such a case, the components of Z are also its path components; as usual, we
denote the set of these components by π0(Z). We will call a Hamiltonian G-manifold (X,ω, ψ, µ)
closed (resp. connected) if the manifold X is closed (resp. connected).

1.1 Convexity Theorem

The convex hull of a subset S of a vector space V is the subset

CH(S) ≡
{ m∑

i=1

risi : m∈Z+, s1, . . . , sm∈S, r1, . . . , rm∈R≥0,
m∑

i=1

ri = 1

}
⊂ V.

If S⊂V is a finite subset of V , then CH(S) is called a polytope. In such a case, we denote by Ver(S)
the set of vertices of CH(S), i.e. the minimal subset of S so that CH(Ver(S))=CH(S). Since this
subset of the polytope P ≡CH(S) is determined by P itself, we will also denote it by Ver(P ). The
dimension of a polytope P is the dimension of the minimal affine subspace of V containing P . A
(closed) face of a polytope P is the intersection P with the hyperplane L−1(c) for some nonzero
linear functional L : V −→R and c∈R such that

L(v)≥ c ∀ v∈P.

Such a face is the convex hull of Ver(P )∩L−1(c) and thus is a polytope in itself. The interior P ◦ of
a polytope P is the complement of the proper faces of P in P . An open face of P is the interior of
a face of P . An edge (resp. facet) of a polytope P is a face of P of dimension 1 (resp. codimension 1).
We denote by Edg(P ) the set of edges of a polytope P and by Edgv(P )⊂Edg(P ) for each v∈Ver(P )
the subset of the edges containing v. For e∈Edg(P ), we call ve∈V an edge vector for e if

P∩
{
v+tve : t∈R

}
= e ⊂ V

for a vertex v ∈ Ver(e). A full tuple of edge vectors for a polytope P is an element (ve)e∈Edg(P )

of V Edg(P ) so that ve is an edge vector for each e∈Edgv(P ).
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Following [1], we call a smooth Rk-action ψ on a smooth manifold X almost periodic if there exists
a smooth action ψ′ of a torus T, i.e. a compact connected abelian Lie group, on X and a group
homomorphism

ρ : Rk −→ T s.t. ψ = ψ′◦ρ : Rk −→ Diff(X) . (1.5)

If the image of ρ is dense in T (which can be achieved by replacing T with the closure of ρ(Rk)),
then Xψ=Xψ′

. If in addition ψ preserves a symplectic form ω on X, then so does ψ′. This implies
the existence of an Rk-invariant Riemannian metric on X and thus of an Rk-invariant ω-compatible
almost complex structure on X in Theorem 1 below; see Exercises 3.2 and 3.12.

Theorem 1. Suppose k∈Z+, (X,ω, ψ, µ) is a closed connected Hamiltonian Rk-manifold, and the
Rk-action ψ is almost periodic.

(Ak) The subset µ−1(α)⊂X is connected for every α∈T ∗
0R

k.

(Bk) The image µ(X)⊂T ∗
0R

k of X is a convex subset.

(Ck) The ψ-fixed locus Xψ is a closed symplectic submanifold of (X,ω), µ|Y is constant for each
Y ∈ π0(Xψ), and µ(X) is the convex hull of the finite subset µ(Xψ) ⊂ T ∗

0R
k with at most

(dimX)/2 edges at each vertex.

(Dk) The map µ : X−→µ(X) is open.

(Ek) The components of a full tuple of edge vectors for the polytope µ(X) at any given vertex
of µ(X) span T ∗

0R
k if and only if the action ψ is irreducible.

(Fk) If the action ψ is irreducible, then the subset Crit(µ) of points x ∈ X so that dxµ is not
surjective is a finite union of (not necessarily disjoint) closed symplectic proper submanifolds
of (X,ω), and the image of each such submanifold under µ is contained in a hyperplane
of T ∗

0R
k.

The first claim in (Ck) is straightforward and holds for any smooth Lie group action on a sym-
plectic manifold (X,ω) preserving a Riemannian metric on X; see Remark 3.4 and the proof of
Proposition 3.14(1). The second claim in (Ck) follows from the first and the observation that

Xψ =
{
x∈X : dxµ=0

}
;

this identity is a consequence of (1.4) and Proposition 3.8(1). The first claim in (Fk) is a straight-
forward consequence of the equivariant splitting (3.5) of TX|Y for each Y ∈π0(Xψ).

The interesting parts of Theorem 1 are (Ak), (Bk), (Dk), and the remaining claims in (Ck) and (Fk).
The fundamental reason behind these statements is the local form of the moment map µ provided
by the first part of Corollary 3.28. This part of Corollary 3.28 is in a sense a Hamiltonian version of
the Darboux Theorem. It ensures that (Ak), (Bk), and (Dk) hold locally and establishes (Ek), the
last claim in (Fk), and Theorem 2(1) on page 7. We use the global, Morse-Bott theory statement
of Proposition 4.8 and the first, local statement of Proposition 4.5 to obtain

(A⋆k) µ
−1(α)⊂X is connected for every regular value α∈T ∗

0R
k of µ,
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via an induction of the dimension of the torus T, as in [1, 21], and to deduce (Dk) from its local ver-
sion. The remaining part of (Ak) follows from (A⋆k), (Dk), and (Fk) via Exercise 4.10. Claim (Bk)
of Theorem 1 is obvious for k=1, follows readily from (Ak) for k≥ 2, and leads to the last claim
in (Ck).

By the last claim in (Ck), µ(X)⊂T ∗
0R

k is a polytope, called a moment polytope for the Hamiltonian
action ψ on (X,ω). It is well-defined up to translation. Since a torus T is the quotient of a
finite-dimensional vector space by a lattice, Theorem 1 immediately implies its statement with Rk

replaced by T. In such a case, the moment polytope µ(X)⊂T ∗
1
T has additional properties; see

Theorems 2 and 3 on pages 7 and 8, respectively. Figure 1 on page 14 shows moment polytopes
for the two torus actions on (CP 2, ωFS;2) of Exercise 2.7.

Remark 1.1. The three parts of the statement of [1, Theorem 1] are (Ak), (Bk), and (Ck) in
Theorem 1, while (Fk) is stated at the beginning of the proof of (A⋆k) and is justified at the end of
Section 2 in [1]. The proof in [1] contains (at least) two gaps, both at the top of page 6.

(G1) It is claimed that (A⋆k) implies (Ak) by continuity. This is indeed the case for k = 1; see
Lemma 4.9. However, this may not be the case for k≥2, even if the regular values are dense
in the image (as is the case at the top of page 6). As an example, pinch the points +1,−1
of the unit circle S1⊂R2 to the origin (so that the preimage of 0∈R2 consists of two points,
while the preimages of all other points contain at most one point). Replacing the circle with
a 2-torus, we can ensure that the set of regular values is dense in the image. Statement (Dk)
is the key property of µ needed for the by continuity claim in [1], but it does not even appear
in [1], and neither does the local description of µ of Corollary 3.28 needed for this statement.
Both play prominent roles in other approaches to the convexity theorem; see Section 1.4.

(G2) It is implicitly assumed that if (c1, . . . , ck) ∈ Rk is a regular value of an Rk-valued smooth
function (f1, . . . , fk) on a smooth manifold X, then (c1, . . . , ck−1)∈Rk−1 is a regular value
of (f1, . . . , fk−1). This need not be the case, including in the setting on page 6 in [1].

Remark 1.2. The statements (Bk) and (Ck) in Theorem 1, with Rk replaced by a torus T, form [2,
Theorem IV.4.3] and [21, Theorem 5.5.1]; [8, Theorem 27.1] includes (Ak) as well. The arguments
in [2, 8, 21] generally follow [1], with [2] stating (Ak) as part of the proof and replicating the two
gaps of Remark 1.1 in the middle of page 115 almost verbatim. In [21], only (A⋆k) is stated as
part of the argument, making the issue (G1) in Remark 1.1 extraneous, while the gap (G2) is
resolved. In order to deduce (Bk) from (A⋆k), it is claimed in the last full sentence on page 239
in [21] that any two points in X (M in [21]) with the same value of a Hamiltonian (Atrµ in [21])
can be approximated by two points in the preimage of a regular value of the Hamiltonian (the same
regular value for both points). However, this is precisely what is needed to deduce (Ak) from (A⋆k),
as indicated by the proof of Lemma 4.9. This property is implied by the Hamiltonian being an
open map onto its image, i.e. (Dk), as suggested by Exercise 4.10, but neither the openness of
the Hamiltonian nor its local description as in the first part of Corollary 3.28 is ever brought up
in [21]. Thus, the attempt in [21] to bypass (G1) while establishing (Bk) contains fundamentally
the same gap. In [8], the proof of (Ak) is relegated to Homework 21, which deals only with (A⋆k),
while resolving (G2) as in [21]; neither the openness of the Hamiltonian nor its local description is
mentioned in [8] either. While (Fk) is also stated at the beginning of the proof of (A⋆k) in [21] with
a note that it is established later in the proof, (Fk) is never addressed in [21]. The equivariant
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splitting (3.5) of TX|Y for each Y ∈π0(Xψ) needed to establish even the first claim in (Fk) does
not appear anywhere in [21].

1.2 Kähler case

For a Lie group G and v∈T1G, let e
v∈G be the exponential of v; see [30, §3.30]. Define

(T1G)Z =
{
v∈T1G : ev={1}

}
and (T ∗

1
G)Z =

{
α∈T ∗

1
G : α(v)∈Z ∀ v∈(T1G)Z

}
.

If G′⊂G is a Lie subgroup, then

(T1G
′)Z = (T1G)Z∩T1G

′ ⊂ T1G

and the image of (T ∗
1
G)Z under the restriction homomorphism T ∗

1
G)Z −→ T ∗

1
G is contained

in (T ∗
1
G′)Z. If T is a torus, then (T1T)Z ⊂ T1T and (T ∗

1
T)Z⊂T ∗

1
T are lattices, i.e. the homo-

morphisms

(T1T)Z⊗ZR −→ T1T, v⊗c −→ cv, and (T ∗
1
T)Z⊗ZR −→ T ∗

1
T, α⊗c −→ cα,

are isomorphisms of real vector spaces, and the map

T1T
/
(T1T)Z −→ T, [v] −→ ev,

is an isomorphism of Lie groups. We call α∈T ∗
1
T integral if α∈(T ∗

1
T)Z and a line segment in T ∗

1
T

rational if it is parallel to an integral element of T ∗
1
T.

Exercise 1.3. Let T be a torus.

(a) Suppose that V ⊂T1T is a linear subspace. Show that

eV ≡
{
ev : v∈V

}
⊂ T

is a subtorus if and only if V is the R-span of a finite subset of (T1T)Z.

(b) Suppose T′⊂T is a subtorus. Show that there exists a subtorus T′c⊂T so that the Lie group
homomorphism

T′×T′c −→ T, (u′, u′c) −→ u′u′c,

is an isomorphism. Conclude that the restriction homomorphism (T ∗
1
T)Z−→(T ∗

1
T′)Z is sur-

jective.

The complexification of a torus T is the complex Lie group

TC ≡
(
T1T⊗RC

)/
(T1T)Z⊗R{1}

with T1TC=T1T⊗RC. An almost complex structure on a smooth manifoldX is an endomorphism J of
the real vector bundle TX−→X covering the identity on X so that J2=−IdTX . A complexification

of a smooth T-action ψ on a symplectic manifold (X,ω) is a smooth TC-action on X,

ψC : TC −→ Diff(X), u −→ ψC;u , s.t.

d1ψC(v+iv′) = d1ψ(v)+Jd1ψ(v
′) ∈ Γ(X;TX) ∀ v, v′∈T1T, (1.6)
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for some almost complex structure J on X compatible with ω and preserved by ψ, i.e.

ω(w, Jw) > 0 ∀w∈TX, w 6=0, ω(Jw, Jw′) = ω(w,w′) ∀w,w′∈TX, and
{
dxψu

}−1◦J ◦dxψu=J : TxX −→ TxX ∀ u∈T, x∈X.

If X is compact, the conditions (1.6) with v=0 determine R-actions in the imaginary directions.
However, these actions may not commute with ψ or each other and thus not give rise to a TC-action.

Theorem 2. Suppose T is a torus and (X,ω, ψ, µ) is a closed connected Hamiltonian T-manifold.

(1) All edges of the polytope µ(X)⊂T ∗
1
T are rational.

(2) If ψC is a complexification of ψ, x∈X, and Ox ⊂X is the closure of the TC-orbit Ox≡TCx
of x, then

(2a) Ver(µ({Y ∈π0(Xψ) : Y ∩Ox 6=∅}))=µ({Y ∈π0(Xψ) : Y ∩Ox 6=∅});
(2b) µ(Ox)=CH(µ({Y ∈π0(Xψ) : Y ∩Ox 6=∅}));
(2c) for every open face σ of the polytope µ(Ox), µ−1(σ)∩Ox is a single TC-orbit;

(2d) the map Ox/T−→µ(Ox), [x′]−→µ(x′), is a well-defined homeomorphism.

If T≈S1 or J is an integrable almost complex structure on X compatible with ω and preserved by
a smooth T-action ψ on (X,ω), then (1.6) determines a complexification ψC of ψ; see Exercise 5.1.
In the latter case, Theorem 2(2) reduces to [1, Theorem 2], but the argument in [1] applies to the
general case of Theorem 2(2). The crucial implication of (1.6) is that the action of the imaginary
components (which correspond to the radial direction in C∗) is given by the gradient flow of
projections of µ to one-dimensional subspaces of T ∗

1
T; see (3.18).

Remark 1.4. As stated, [1, (3.6)] is wrong. For example, it fails if C⊂Nu−N consists of a single
point. However, [1, (3.6)] is used in the proof of Theorem 2(2) in [1] only to obtain the second
statement in [1, (3.7)]. The latter is correct, as it follows from Proposition 4.7(6), which corrects [1,
(3.6)].

1.3 Symplectic toric manifolds

Let T be a torus. A polytope P ⊂T ∗
1
T is Delzant if there exists a full tuple (αe)e∈Edg(P ) of (integral)

edge vectors for P such that for each vertex η of P the components αe with e∈Edgη(P ) form a Z-
basis for (T ∗

1
T)Z; this property of P is typically called smoothness in the literature. In particular,

all edges of a Delzant polytope are rational. Furthermore, the number of edges containing any
given vertex is the same as the dimension of T; this property of P is typically called simplicity. A
symplectic toric T-manifold is a closed connected Hamiltonian T-manifold (X,ω, ψ, µ) so that

dimX = 2dimT (1.7)

and the action ψ on X is effective. By Delzant’s Theorem, Theorem 3 below, the map

(X,ω, ψ, µ) −→ µ(X)

induces a bijection between the equivalence classes of symplectic toric T-manifolds and Delzant
polytopes in T ∗

1
T.
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Theorem 3 ([11, Théorème 2.1, Section 3.2]). Let T be a torus.

(0) If (X,ω, ψ, µ) is a symplectic toric T-manifold, then the moment polytope µ(X)⊂T ∗
1
T is

Delzant.

(1) For every Delzant polytope P ⊂ T ∗
1
T, there exists a symplectic toric T-manifold (X,ω, ψ, µ)

with µ(X)=P .

(2) If (X,ω, ψ, µ) and (X ′, ω′, ψ′, µ′) are symplectic toric T-manifolds with µ(X)=µ(X ′), then
there exists a T-equivariant diffeomorphism

Φ: X −→ X ′ s.t. ω = Φ∗ω′, µ = µ′◦Φ.

Claim 0 of this theorem is a consequence of the following description of the moment map µ : X−→T ∗
1
T.

(0+) If (X,ω, ψ, µ) is a symplectic toric T-manifold, then there exist a subtorus TF ⊂T for every
face F of the polytope µ(X) and a full tuple (αe)e∈Edg(P ) of integral edge vectors for µ(X)
so that

(0+a) TF ={ev : v∈T1T, αe(v)=0 ∀ e∈Edgη(F )
}
for every face F of P and η∈Ver(F );

(0+b) Tx(ψ)=TF for every face F of P and every x∈µ−1(F ◦);

(0+c) the restriction µ : µ−1(F ◦)−→F ◦ is a principal T/TF -bundle with ω-isotropic fibers,
i.e.ω|Tµ−1(η)=0 for every η∈F ◦.

Similarly to Theorems 1(Ek) and 2(1), this statement is a consequence of the equivariant split-
ting (3.5) of TX|Y for each Y ∈π0(Xψ) and Corollary 3.28; we establish it at the end of Section 5.2.
By (1.7) and (0+c), the dimension of µ(X) is the same as the dimension of T and Tµ(X)={1}.
Along with (0+a), the latter implies that for each vertex η of µ(X) the components αe with η∈e
span (T ∗

1
T)Z over Z. Combining this with the last claim of Theorem 1(Ck) and (1.7) again, we

conclude that these components form a Z-basis for (T ∗
1
T)Z.

Theorem 3(1) is readily obtained by applying the Hamiltonian symplectic cut of [19, Proposition 2.4],
which is detailed in Section 6.2, to the Hamiltonian T-manifold (T ∗

1
T×T, ωT, ψT, µT) of Exercise 2.11

with respect to the collection H of half-spaces of T ∗
1
T cutting out the polytope P . We establish

Theorem 3(2) by describing a reverse of the Hamiltonian symplectic cut in Section 6.3; this imple-
ments the argument sketched in the proof of [22, Theorem 7.5.10].

1.4 Alternative approaches to Convexity Theorem

Other approaches to Theorem 1(Ck) on page 4, with Rk replaced by a torus T, have appeared in
particular in [15, 16, 5, 6]. In contrast to [1, 2, 21, 8], they clearly emphasize the significance of the
local form of the moment map µ as in Corollary 3.28 and make it possible to relax the compactness
condition on X to the properness of µ. These approaches differ in how they pass from the local
versions of (Ak), (Bk), and (Dk) implied by this local form to the global versions appearing in The-
orem 1. The global, Morse-Bott theory statement of Proposition 4.8 and the first, local statement
of Proposition 4.5 used in [1, 2, 21, 8] to inductively confirm (A⋆k) on page 4 is used in [15, §5]
instead to deduce (Bk) from its local version and to establish (Ck); the remaining statements of
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Theorem 1 do not appear in [15]. An enlightening summary of the reasoning in [15] appears in [27].

The most succinct approach to passing from the local properties provided by the first part of
Corollary 3.28 to the global statements of Theorem 1 is arguably presented in [6]. It is motivated
by the following point set topology result from the 1920s.

Proposition 1.5 (Tietze-Nakajima Theorem, [29, Satz 1], [6, Theorem 1]). A closed connected
locally convex subset of Rk is convex.

Remark 1.6. Nakajima’s paper [26] typically credited for Proposition 1.5 contains several state-
ments in the same spirit, most concerning subsets of R2 and R3, but not the actual statement of
this proposition.

Let f : X−→V be a continuous map between topological spaces. Such a map is fiber connected if
f−1(v)⊂X is connected for every v∈V . If in addition V is a vector space, f is convex if for any
x0, x1∈X there exists a path

γ :
(
[0, 1], 0, 1

)
−→

(
X,x0, x1

)

from x0 to x1 in X such that the map f ◦γ is fiber connected and f(γ([0, 1])) is contained in the
line segment from f(x0) to f(x1) in V . The conditions on γ mean that the path

f ◦γ :
(
[0, 1], 0, 1

)
−→

(
V, f(x0), f(x1)

)

traces the line segment from f(x0) to f(x1) in V without reversing the direction at any point in
time.

Proposition 1.7 ([6, Theorem 15]). Suppose X is a connected Hausdorff topological space, V is
a finite-dimensional vector space, and f : X−→V is a proper continuous map. If for every x∈X
there exists an open neighborhood U ⊂X of x such that f |U is convex and f : U −→Φ(U) is open,
then f is a convex map and f : X−→f(X) is an open map. In particular, f is fiber connected and
f(X)⊂V is convex.

Taking V =Rk, X⊂Rk to be a closed connected locally convex subset, and f : X−→V to be the
inclusion in this proposition, we recover Proposition 1.5; the closedness of X implies the properness
of f . By Exercises 1.8-1.10 below, Corollary 3.28 implies that the moment map µ of Theorem 1
satisfies the local condition on f in Proposition 1.7.

Exercise 1.8. Suppose fi : Xi−→Vi for i=1, 2 are convex maps. Show that the map

f1×f2 : X1×X2 −→ V1×V2

is also convex.

Exercise 1.9. Suppose k,m∈Z≥0, f : Rk−→Rm is a smooth function so that the differential d0f
is surjective, and U is a neighborhood of 0 in Rk. Show that f is open and convex on some
neighborhood U ′ of 0 in U .

Exercise 1.10. Suppose m∈Z≥0, S⊂Rm is a finite subset,

f : CS −→ Rm, f
(
(wα)α∈S

)
=

∑

α∈S

|wα|2α,
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and U is a neighborhood of 0 in CS . Show that the map

f : CS −→ C0(S) ≡
{∑

α∈S

tαα : tα∈R≥0 ∀α∈S
}

is open and f is convex on some neighborhood U ′ of 0 in U .
Proposition 1.7 is a variation on the purely topological local-to-global theorems of [16, 17, 4, 5],
which do not involve geometric input as in Propositions 4.8 and 4.5 used in [1, 15, 2, 21, 8]. The
conditions on the continuous function f in [17, Theorem 3.10] and [5, Theorem 2.28], for example,
are arguably more ad hoc, explicitly involving an assignment of a cone in the target vector space V
of f to each point in the domain topological space X and thus fitting more closely with the output
of Corollary 3.28; see Proposition 1.11 below.

Let V be a vector space. For S⊂V and v∈S, define

R+(S−v) =
{
r(v′−v) : v′∈S, r∈R+

}
, Lv(S) = R+(S−v) ⊂ V.

A subset S ⊂ V is locally polyhedral if for every v ∈ S there exists a neighborhood U ⊂ V of v
such that

S∩U =
{
v+v′ : v′∈Lv(S)

}
∩U.

A closed convex subset S⊂V is a (closed) cone with vertex at v∈V if v+t(v′−v)∈S whenever v′∈S
and t∈R+. Such a subset is locally polyhedral. If S 6= V is a cone and V is a finite-dimensional
vector space, then S is contained in a (closed) half-space, i.e.

S ⊂
{
w∈V : L(w)≥c

}

for some nonzero linear functional L : V −→R and c∈R.

Let f : X −→ V be a continuous map between topological spaces. Such a map is locally fiber

connected if for every x∈X and open neighborhood U⊂X of x there exists an open neighborhood
U ′ ⊂U such that f |U ′ is fiber connected. If in addition V is a finite-dimensional vector space, a
tuple (Cx)x∈X of closed convex cones in V based at 0 is called local convexity data if for every y∈X
and an open neighborhood U⊂X of y there exists an open neighborhood Uy⊂U such that f |Uy is
fiber connected, f(x)−f(y)∈Cy for every x∈Uy, and

Uy −→ Cy, x −→ f(x)−f(y),

is an open map.

Proposition 1.11 ([16, Theorem 3.4],[17, Theorem 3.10]). Suppose X is a connected Hausdorff
topological space, V is a finite-dimensional vector space, and f : X −→ V is a proper locally fiber
connected map. If f admits local convexity data (Cx)x∈X , then f is a fiber connected map, f(X)⊂V
is a closed convex locally polyhedral subset, f : X−→f(X) is an open map, and Cx=Lf(x)(f(X))
for every x∈X.

For a topological space X, A⊂X, and x ∈A, the connected component of A containing x is the
maximal connected subset Ax ⊂ A containing x. For a continuous map f : X −→ V between
reasonable topological spaces, the Reeb quotient space,

Xf ≡ X/ ∼, x ∼ x′ if f(x) = f(x′) ∈ V,
(
f−1

(
f(x)

))
x
=

(
f−1

(
f(x)

))
x′
⊂ X,
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is Hausdorff; see [12, Theorem 4.5]. A continuous map f : X−→V is fiber connected if and only if
the induced map

Xf −→ V, [x] −→ f(x),

is injective. This perspective on fiber connectivity appearing in [10] provides the motivation for
the proof of Proposition 1.11 in [17].

2 Preliminaries

2.1 Notation and terminology

in preparation

For k∈Z≥0, let [k]={1, 2, . . . , k}. If Y ⊂X is a smooth submanifold of a smooth manifold, let

NXY ≡ TX|Y
/
TY −→ Y

denote the normal bundle of Y in X. If H : X−→R is a smooth function, we denote by

Crit(H) ≡
{
x∈X : dxH=0

}

its set of critical points. The gradient of H with respect to a Riemannian metric g on X is the
vector field ∇gH on M defined by

g
(
∇gH|x, w

)
= dxH(w) ∀ x∈X, w∈TxX. (2.1)

Let X be a smooth manifold and G be a Lie group. For a map µ : X−→T ∗
1
G and v∈T1G, define

µv : X −→ R, µv(x) = {µ(x)}(v). (2.2)

A basis v1, . . . , vk for T1G determines identifications

Rk −→ T1G, (r1, . . . , rk) −→
k∑

i=1

rivi, and T ∗
1
G −→ R, α −→

(
α(v1), . . . , α(vk)

)
. (2.3)

The latter isomorphism identifies smooth (G-invariant) maps µ : X −→ T ∗
1
G with smooth (G-

invariant) maps H : X−→Rk by

µ ←→ H≡
(
µv1 , . . . , µvk

)
. (2.4)

If G is a connected abelian Lie group and ω is a symplectic form onX, a moment map µ : X−→T ∗
1
G

for a smooth action ψ of G on (X,ω) corresponds via (2.4) to a smooth G-invariant map

H≡(H1, . . . , Hk) : X −→ Rk s.t. − dHi = ιζviω, where ζvi = d1ψ(vi) ∈ Γ(X;TX). (2.5)

We will call such a smooth function a Hamiltonian for ψ with respect to basis v1, . . . , vk for T1G.
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We denote by e1, . . . , ek ∈R the standard orthonormal basis and by Ri⊂Rk the R-span of ei. A
smooth action ψ of Rk on a smooth manifold X (resp. symplectic manifold (X,ω)) is equivalent
to k commuting smooth R-actions ψi≡ψ|Ri on X (resp. (X,ω)). In such a case, we will call

ζi ≡ d1ψ(ei) =
d

dt
ψi;t

∣∣∣∣
t=0

∈ Γ(X;TX), i∈ [k], (2.6)

the generating vector fields of ψ and a Hamiltonian H as in (2.5) with respect to the basis e1, . . . , ek
for T0R

k simply a Hamiltonian for ψ. If k=1 or X is compact, such a Hamiltonian corresponds to
k smooth functions Hi : X−→R satisfying the condition in (2.5) with ζvi=ζi; see Exercise 3.11(c).

Suppose T is a torus and v1, . . . , vk∈T1T is a Z-basis for the lattice (T1T)Z⊂T1T and thus an R-
basis for T1T. The isomorphisms in (2.3) then identify (T1T)Z and (T ∗

1
T)Z⊂T ∗

1
T with Zk⊂Rk. The

first isomorphism in (2.3) also induces a Lie group identification of T with the standard torus Tk,

φv1...vk: T
k≡(R/Z)k=Rk/Zk −→ T, φv1...vk

(
[r1, . . . , rk]

)
=

k∏

i=1

erivi . (2.7)

Exercise 2.1. Suppose T is a torus and v1, . . . , vk∈T1T is Z-basis for the lattice (T1T)Z⊂T1T.
Let α1, . . . , αk ∈ (T ∗

1
T)Z be the dual basis. For u∈T, let mu : T−→T be the multiplication by u.

Show that the diffeomorphism

Φv1...vk: R
k×Tk −→ T ∗

1
T×T, Φv1...vk

(
(x1, . . . , xk), [r]

)
=

( k∑

i=1

xiαi, φv1...vk
(
[r]

))
, (2.8)

is equivariant with respect to the identification φv1...vk in (2.7) and satisfies

dπ2
({
dΦv1...vk

}
(∂xi)

)
= 0 and

{
π1
(
Φv1...vk

(
(x1, . . . , xk), [r]

))}(
dφv1...vk ([r])mφv1...vk ([−r])

(
dπ2

({
dΦv1...vk

}
(∂ri)

)))
= xi
∀ i∈ [k], (2.9)

where π1, π2 : T
∗
1
T×T−→T ∗

1
T,T are the projections, ∂xi is the i-th coordinate vector field on Rk,

and ∂ri is the coordinate vector field on Tk induced by the i-th coordinate vector field on Rk.

We take the standard Z-basis for (T1T
k)Z to be

2πie1, . . . , 2πiek ∈ T1T
k ⊂ T(1,...,1)Ck.

A smooth action ψ of Tk on a smooth manifold X (resp. symplectic manifold (X,ω)) is equivalent
to k commuting smooth S1-actions ψi≡ψ|S1

i
on X (resp. (X,ω)), where S1

i ⊂Tk=(S1)k is the i-th

component subgroup S1. Similarly to the affine case, we then call

ζi ≡ d1ψ(2πiei) =
d

dt
ψi;e2πit

∣∣∣∣
t=0

∈ Γ(X;TX), i∈ [k],

the generating vector fields of ψ and a Hamiltonian H as in (2.5) with respect to the basis
2πie1, . . . , 2πiek for T1T

k simply a Hamiltonian for ψ. By Exercise 3.11(c), such a Hamiltonian
corresponds to k smooth functions Hi : X−→R satisfying the condition in (2.5) with ζvi=ζi.
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Exercise 2.2. SupposeG,G′ are Lie groups, (X,ω, ψ, µ) is a HamiltonianG-manifold, and ρ : G′−→G
is a Lie group homomorphism. Show that (X,ω, ψ◦ρ, ρ∗◦µ), where

ρ∗≡(d1ρ)
∗ : T ∗

1
G −→ T ∗

1
G′

is the homomorphism induced by ρ, is a Hamiltonian G′-manifold.

Exercise 2.3. Suppose G is a compact Lie group, (X̃, ω̃, ψ̃, µ̃) is a Hamiltonian G-manifold, Ỹ ⊂X̃
is a smooth submanifold preserved by ψ̃, (X,ω) is a symplectic manifold, ψ is a smooth G-action
on X, µ : X−→T ∗

1
G is a map, and p : Ỹ −→X is a G-equivariant surjective submersion so that

p∗ω = ω̃|
T Ỹ

and µ◦p = µ̃|
Ỹ
.

Show that (X,ω, ψ, µ) is also a Hamiltonian G-manifold.

Exercise 2.4. Suppose ψ is a smooth Rk-action on a symplectic manifold (X,ω) with Hamiltonian
H : X−→Rk and A is a real k×m-matrix (determining a linear map from Rm to Rk). Show that ψ◦A
is a smooth Rm-action on (X,ω) with Hamiltonian Atr◦H : X−→Rm, where Atr is the transpose
of A.

2.2 Paradigmatic examples

in preparation

Exercise 2.5. Let k, n∈Z+ with k≤n and

ωCn ≡
n∑

i=1

dxi∧dyi (2.10)

be the standard symplectic form on ωCn . Show that the action of S1 on Cn given by

e2πit ·(z1, . . . , zn) =
(
z1, . . . , zk−1, e

2πitzk, zk+1, . . . , zn
)

is Hamiltonian with respect to ωCn with a Hamiltonian

H : Cn −→ R, H(z1, . . . , zn) = π|zk|2.

Exercise 2.6. Suppose (V, i) is a finite-dimensional complex vector space and Ω is a nondegenerate
2-form on V compatible with i, i.e.

Ω(w, iw) > 0 ∀w∈V −{0}, Ω(iw, iw′) = Ω(w,w′) ∀w,w′∈V.

Via the canonical identification TwV ≈ V for each w ∈ V , i and Ω determine an almost complex
structure J on V and a symplectic form ω compatible with J . Let ψ : T−→GLCV be a complex
representation of a torus T on V . Show that

(a) there exist a subset S(Y )⊂(T ∗
1
T)Z and a splitting

V =
⊕

α∈S

Vα s.t. ψev
(
(wα)α∈S

)
=

(
e2πiα(v)wα

)
α∈S

∀ v∈T1T, (wα)α∈S∈
⊕

α∈S

Vα ;
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Figure 1: The images of CP 2 under Hamiltonians for the torus actions of Exercise 2.7.

(b) the action ψ is Hamiltonian with respect to ω with a moment map

µ : V −→ T ∗
1
T, µ

(
(wα)α∈S

)
= π

∑

α∈S

|wα|2α ∀ (wα)α∈S∈
⊕

α∈S

Vα ,

where | · | is the norm on V with respect to the metric g(·, ·)≡Ω(·, i·).

Exercise 2.7. Let n∈Z+ and q : Cn−{0}−→CPn−1 be the usual quotient projection.

(a) Suppose U ⊂ CPn−1 is an open subset and s : U−→Cn−{0} is a holomorphic section of q,
i.e. q◦s=idU . Show that the 2-form

ωFS;n−1

∣∣
U
≡ i

2π
∂∂ ln |s|2, (2.11)

where | · | is the standard (round) norm on Cn, is independent of the choice of s.

(b) By (a), (2.11) determines a global 2-form ωFS;n−1 on CPn−1, called the Fubini-Study symplectic

form. Show that this form is indeed symplectic,

q∗ωFS;n−1

∣∣
TS2n−1 =

1

π
ωCn

∣∣
TS2n−1 , and

∫

CP 1

ωFS;1 = 1.

Hint. The restriction of q to the interior of the upper hemisphere S2
+⊂S2=S3∩(C×R) is a

diffeomorphism onto the complement of a point in CP 1.

(c) Show that the actions of Tn≡(S1)n and Tn−1≡(S1)n−1 on CPn−1 given by

(
e2πit1 , . . . , e2πitn

)
·[z1, . . . , zn] =

[
e2πit1z1, . . . , e

2πitnzn
]
,

(
e2πit1 , . . . , e2πitn−1

)
·[z1, . . . , zn] =

[
e2πit1z1, . . . , e

2πitn−1zn−1, zn
]

are Hamiltonian with respect to the symplectic form ωFS;n−1. Determine the moment poly-
topes for these actions, in particular showing that in the n=3 they are as depicted in Figure 1.

Exercise 2.8. Let k∈Z+, Tk≡Rk/Zk is the standard k-torus, and

x≡(x1, . . . , xk), y≡(y1, . . . , yk) : R
k×Rk −→ Rk

be the projections to the two components. Show that
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(a) ωk≡
k∑

i=1

dxi∧dyi is a well-defined symplectic form on Rk×Tk;

(b) the action ψk of Tk on Rk×Tk given by

ψT;[r]

(
x, [y]

)
=

(
x, [y+r]

)
,

is well-defined, free, and smooth, preserves ωk, and has

Hk : R
k×Tk −→ Rk, Hk

(
x, [y]

)
= x,

as a Hamiltonian with respect to ωk.

An automorphism φ : X−→X of a set X is an involution if φ2=idX . If (X,ω) is a symplectic man-
ifold, a smooth involution φ on X is called anti-symplectic if φ∗ω=−ω. A Lagrangian submanifold

of a symplectic manifold (X,ω) is a submanifold Y ⊂X such that

dimY =
1

2
dimX and ω|TY = 0.

Exercise 2.9. Suppose (X,ω) and (X ′, ω′) are symplectic manifolds of the same dimension and
f : X−→X ′ is a smooth map. Show that f is a symplectomorphism with respect to ω and ω′ if
and only if the graph of f ,

Gr(f) ≡
{(
x, f(x)

)
: x∈X

}
⊂ X×X ′ ,

is a Lagrangian submanifold of X×X ′ with respect to the symplectic form π∗1ω−π∗2ω′, where

π1, π2 : X×X ′ −→ X,X ′

are the component projections.

Exercise 2.10. Let Y be a smooth manifold and λT ∗Y be the 1-form on (the total space of) its
cotangent bundle π : T ∗Y −→Y given by

λT ∗Y

∣∣
θ
(w) = {π∗θ}(w) ≡ θ

({
dθπ

}
(w)

)
∀ θ∈T ∗Y, w∈Tθ(T ∗Y ).

Show that

(a) {{df}∗}∗λT ∗Y =λT ∗Y ′ for every diffeomorphism f : Y −→Y ′ between smooth manifolds (thus
{df}∗ : T ∗Y ′−→T ∗Y is well-defined);

(b) ωTY ∗≡−dλT ∗Y is a symplectic form on (the total space of) T ∗Y and ωT ∗Rn=ωCn under the
natural identification of T ∗Rn=Rn×Rn with Cn;

(c) for every y∈Y , there is a canonical decomposition Ty(T
∗Y )=TyY ⊕T ∗

y Y and

ωT ∗Y

∣∣
y
(v, w) =

{
0, if v, w∈TyY or v, w∈T ∗

y Y ;

w(v), v∈TyY and w∈T ∗
y Y.

Suppose in addition α is 1-form on X. Show that
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(d) α∗λT ∗Y =α and the map

φα : T
∗Y −→ T ∗Y, φα(θ) = απ(θ)−θ,

is a smooth involution satisfying φ∗αλT ∗Y =π∗α−λT ∗Y ;

(e) the involution φα above is anti-symplectic with respect to ωT ∗Y if and only if dα=0.

Exercise 2.11. Let T, v1, . . . , vk, Φv1...vk , andmu for u∈T be as in Exercise 2.1, (Rk×Tk, ωk, ψk, Hk)
be as in Exercise 2.8, and ωT∗T be as in Exercise 2.10. Define

ΦT : T
∗
1
T×T −→ T ∗

1
T, ΦT(α, u) =

{
dumu−1

}∗
α, and ωT =

{
Φ−1
v1...vk

}∗
ωk .

Denote by ψT the action of T on T ∗
1
T×T by the multiplication on the second component and

by µT : T
∗
1
T×T−→T ∗

1
T the projection to the first component. Show that ωT = −Φ∗

TωT ∗T and
(T ∗

1
T×T, ωT, ψT, µT) is a Hamiltonian T-manifold which does not depend on the choice of a Z-basis

v1, . . . , vk∈T1T for the lattice (T1T)Z⊂T1T and is identified with (Rk×Tk, ωk, ψk, Hk) via Φv1...vk .

Exercise 2.12. (a) Suppose φ is an involution on a neighborhood of 0∈Rn with φ(0) = 0. Let
Jac0(φ) : R

n−→Rn be its Jacobian at 0 so that

φ(x) =
{
Jac0(φ)

}
x+Q(x)

for some quadratic term Q : Rn−→Rn (Q(0)=0, Jac0(Q)=0) and all x in a neighborhood of
0∈Rn. Show that there exist neighborhoods U and W of 0∈Rn so that

h : U −→W, h(x) = x+
1

2

{
Jac0(φ)

}
Q(x),

is a well-defined diffeomorphism satisfying h◦φ={Jac0(φ)}h.

(b) Let X be a smooth manifold and φ : X −→ X be a smooth involution. Show that every
connected component of the fixed locus of φ,

Xφ ≡
{
x∈X : φ(x)=x

}
,

is a smooth submanifold of X.

(c) Suppose in addition ω is a nondegenerate 2-form on X such that φ∗ω=−ω. Show that Xφ⊂X
is a Lagrangian submanifold of (X,ω).

Exercise 2.13. Suppose (X,ω) is a symplectic manifold, Y ⊂X is a Lagrangian submanifold, J
is an ω-compatible almost complex structure on X, and ωT ∗Y is the canonical symplectic form
on T ∗Y as in Exercise 2.10. Show that

(a) J(TY )⊂TX|Y is a subbundle complementary to TY ;

(b) the map ΦY ;J : J(TY )−→T ∗Y , ΦY ;J(w)=ω(·, w), is an isomorphism of vector bundles over Y ;

(c) Φ ∗
Y ;JωT ∗Y |Ty(J(TY ))=ω|TyX under the canonical identification

Ty
(
J(TY )

)
= TyY ⊕J(TyY ) = TyX.
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3 Group Actions on Manifolds

3.1 Basic properties of group actions

This section collects basic facts about smooth actions of Lie groups, especially abelian ones, on
smooth manifolds.

Exercise 3.1. Let ψ be a smooth action of a Lie group G on a smooth manifold X as in (1.1).
Show that

ζAd
u−1 (v) = ψ∗

uζv ≡ dψ−1
u (ζv◦ψu), ζ[v,v′] = −

[
ζv, ζv′

]
∈ Γ(X;TX) ∀ u∈G, v, v′ ∈ T1G,

where [v, v′] is the Lie bracket on T1G; see [30, Sections 3.8]. Furthermore, the maps

dψ : G −→ Diff(TX), u −→ dψu, and dψ∗ : G −→ Diff(T ∗X), u −→ dψ∗
u≡

{
dψ−1

u

}∗
,

are smooth actions of G on TX and T ∗X, respectively, lifting the G-action ψ on X and linear on
the fibers of the vector bundles TX, T ∗X−→X. The 1-form λT ∗X of Exercise 2.10 is preserved by
the action dψ∗.

Exercise 3.2. Let ψ be a smooth action of a compact Lie group on a smooth manifold X as
in (1.1). Show that there exists a ψ-invariant Riemannian metric on X, i.e. a Riemannian metric g
on X such that

g
(
dxψu(w), dxψu(w

′)
)
= g(w,w′) ∀ u∈G, x∈X, w,w′∈TxX.

Suppose Y ⊂X is a closed submanifold of a smooth manifold. A tubular neighborhood identification

for Y in X is a diffeomorphism Φ: U −→U from an open neighborhood of Y in a subbundle
TY c⊂TX|Y complementary to TY to an open neighborhood of Y ⊂X such that

Φ(y) = y, dyΦ=id: TyU=Ty(TY c)=TyY ⊕TY c
∣∣
y
−→ TyY ⊕TY c

∣∣
y
=TyX=TyU ∀ y∈Y. (3.1)

Proposition 3.3. Let ψ be a smooth action of a compact Lie group G on a smooth manifold X as
in (1.1).

(1) The fixed locus Xψ⊂X of ψ is a closed submanifold with

T (Xψ) = (TX)dψ. (3.2)

(2) If Y ⊂X is a closed submanifold preserved by ψ and TY c⊂TX|Y is a subbundle complementary
to TY and preserved by ψ, then there exists a tubular neighborhood identification Φ: U −→U
for Y in X with U ⊂TY c which is G-equivariant with respect to the actions ψ on X and dψ
on TX.

Proof. Let g be a Riemannian metric preserved by the group action ψ, as provided by Exercise 3.2.
Its Levi-Civita connection ∇ is also preserved by G. If w∈TX, γw : (a, b)−→X with a< 0<b is
the geodesic with respect to ∇ of g with γ′w(0)=w, and u∈G, then

ψu◦γw : (a, b) −→ X
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is the geodesic with respect to ∇ with (ψu◦γw)′(0) = {dγw(0)ψu}(w), i.e. ψu◦γw = γ{dγw(0)ψu}(w).
Thus, the exponential map

exp:W −→ X, exp(w) = γw(1) ∀w∈W⊂TX,

with respect to ∇ satisfies

{dψu}(W) =W and exp
(
{dψu}(w)

)
= ψu

(
exp(w)

)
∀ u∈G, w∈W, (3.3)

i.e. it is G-equivariant with respect to the actions ψ on X and dψ on TX.

(2) Since
{dx exp}(w) = w ∈ TxX ∀x∈X, w∈W, (3.4)

for each y∈Y the restriction of exp to a neighborhood of y in TY c∩W is a diffeomorphism onto an
open neighborhood of y in X by the Inverse Function Theorem. Since Y ⊂X is closed, it follows
that there exists a neighborhood U ′ of Y in TY c∩W so that

exp: U ′ −→ Ψ(U ′)

is a diffeomorphism onto an open subset of X. This map satisfies both conditions in (3.1) by the
definition of the exponential map. Since G is compact,

U ≡
⋂

u∈G

dψu(U ′) ⊂ U ′ ⊂ TY c∩W

is a neighborhood of Y ⊂TY c preserved by the G-action. By (3.3), the restriction

Φ≡exp |U : U −→ U≡exp(U) ⊂ X

is a G-equivariant diffeomorphism from an open neighborhood of Y in TY c to an open neighbor-
hood of Y in X with the required properties. This establishes (2).

(1) It is immediate that Xψ ⊂ X is a closed subset. For each y ∈ Xψ, let Φy : Uy −→ Uy be a
G-equivariant tubular neighborhood identification as in (2) with Y = {y} and Uy ⊂ TyX. By the
G-equivariance of Φy,

Φy : (TyX)dψ∩Uy −→ Xψ∩Uy
is a homeomorphism for every y∈Xψ. Thus, each topological component of Xψ is a submanifold
of X; see [30, 1.33(b)]. By the G-equivariance of Φy, (3.2) holds as well.

Remark 3.4. The conclusion of Proposition 3.3(1) also holds if π0(G) is finite and X admits
a G-invariant metric (but G is not necessarily compact). The first paragraph in the proof of
Proposition 3.3 still applies. For (1) in this proof, Uy⊂TyX can be taken to be any neighborhood
of 0∈TyX on which the map exp is injective.

Corollary 3.5. Let ψ be an irreducible almost periodic action of Rk on a smooth manifold X as
in (1.1). The subspace Crit(ψ) of points of X with stabilizers containing a one-dimensional linear
subspace of Rk is a countable union of (not necessarily disjoint) closed proper submanifolds of X.
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Proof. Let ρ : Rk−→T and ψ′ be as in (1.5). For each one-dimensional linear subspace L⊂Rk, the
closure TL⊂T of ρ(L) in T is a torus. By (1.5), the fixed locus XTL⊂X of the smooth action ψ′|TL
on X is the same as the fixed locus XL of the smooth action ψ|L. By Proposition 3.3(1), XL is thus
a closed submanifold of X (possibly empty). Since the action ψ is irreducible, ψ|L is a nontrivial
action and XL 6=X. Thus, Crit(ψ) is the union of the closed submanifolds XT′ 6=X taken over the
subcollection

A ≡
{
TL : L∈RPk−1

}

of subtori of T. Since the subtori of T are generated by finite sets of vectors in (T1T)Z, the
collection A is (at most) countable.

For a torus T and α∈(T ∗
1
T)Z, let

Tα =
{
ev : v∈T1T, α(v)∈Z

}
.

If α 6=0, Tα⊂T is a codimension 1 closed subgroup. If α is primitive, i.e. α 6=kα′ for any α′ ∈(T ∗
1
T)Z

and k ∈ Z with k ≥ 2, then Tα ⊂ T is a codimension 1 subtorus. For a subset S ⊂ (T ∗
1
T)Z and a

closed subgroup G⊂T, let

TS =
⋂

α∈S

Tα and SG =
{
α∈S : G⊂Tα

}
.

Thus, TS ⊂ T is a closed subgroup of codimension at most |S|, SG⊂S is the maximal subset so
that G⊂TSG , and STS=S.

Proposition 3.6. Let ψ be a smooth action of a torus T on a smooth manifold X as in (1.1) and
Y ⊂Xψ be a topological component of the ψ-fixed locus.

(1) There exist a subset S(Y )⊂(T ∗
1
T)Z−{0} and a splitting

TX|Y = TY ⊕
⊕

α∈S(Y )

Nα
XY −→ Y (3.5)

of TX|Y into a direct sum of vector bundles preserved by dψ so that the bundles Nα
XY are

nonzero and complex with

dψev(w) = e2πiα(v)w ∀ v∈T1T, w∈Nα
XY, α∈S(Y ). (3.6)

In particular, 2|S(Y )|≤codimXY . If X is connected and the action ψ is irreducible (resp. ef-
fective), then the R-span (resp. Z-span) of S(Y ) is T ∗

1
T (resp. (T ∗

1
T)Z). If TX|Y is a complex

vector bundle and dψ preserves its complex structure J , then the complex structure on each
subbundle Nα

XY ⊂TX|Y can be taken to be the restriction of J .

(2) If G⊂T is a closed subgroup, Z ⊂XG is a topological component of the G-action ψ|G on X,
and Y ⊂Z, then

TZ|Y = TY ⊕
⊕

α∈S(Y )G

Nα
XY ⊂ TX|Y −→ Y

and Z is a topological component of the fixed locus XTS(Y )G of the TS(Y )G-action ψ|TS(Y )G
on X.
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Proof. (1) For each y ∈ Y , dyψ is a real representation of T on TyX. Every such representation
splits as a direct sum of a trivial real representation and of one-dimensional complex representations
with the action on each factor given by (3.6) for some α∈(T ∗

1
T)Z nonzero. By (3.2), the trivial

representation summand is TyY . Since dyψ depends smoothly on y, the weights α are independent
of y ∈ Y and the corresponding component representations vary smoothly with y ∈ Y . Thus, the
latter form vector subbundles Nα

XY ⊂TX|Y as in (3.5) with complex structures. If TX|Y is a com-
plex vector bundle and dψ preserves its complex structure, then dyψ is a complex representation
of T on TyY and the same reasoning applies.

If S(Y ) does not span T ∗
1
T over R (resp. (T ∗

1
T)Z over Z), there exists v∈T1T−(T1T)Z such that

α(v)=0 (resp. α(v)∈Z) for all α∈S(Y ). Let G be the closure of the subgroup {etv : t∈R} (resp. the
subgroup generated by v) in T. This subgroup acts trivially on TX|Y . By Proposition 3.3(1),
this implies that the connected component of the G-fixed locus XG containing Y is a connected
component of X, i.e. G acts trivially on X (and so the action ψ is not effective) if X is connected.
If α(v)=0 for all α∈S(Y ) and X is connected, then

ζv≡d1ψ(v) = 0 ∈ Γ(X;TX),

i.e. the action ψ is reducible.

(2) By Proposition 3.3(1) applied to ψ|G, ψ, and ψ|TS(Y )G
,

TZ|Y =
{
w∈TX|Y : dψu(w)=w ∀u∈G

}
= TY ⊕

⊕

α∈S(Y )G

Nα
XY = TXTS(Y )G

∣∣
Y
.

This establishes both claims.

Corollary 3.7. Let ψ be an irreducible almost periodic action of Rk on a smooth manifold X as
in (1.1). For each L∈RPk−1, let XL ⊂X be the fixed locus of the action ψ|L. If X is compact,
then the set

π̃∗0
(
Crit(ψ)

)
≡

{
Z∈π0(XL) : L∈RPk−1, Z∩Xψ 6=∅

}

is finite.

Proof. Let ρ : Rk −→ T and ψ′ be as in (1.5). We can assume that the image of ρ is dense in T

and so Xψ =Xψ′

. For each L∈RPk−1, let TL ⊂T be as in the proof of Corollary 3.5. For each
subtorus T′ ⊂ T, let XT′ ⊂ X be the fixed locus of the action ψ′|T′ . In particular, XL = XTL .
By Proposition 3.6(2), every element Z of π̃∗0(Crit(ψ)) intersecting a topological component Y of
Xψ=Xψ′

is thus the unique topological component of XTS⊂X for some S⊂S(Y ) intersecting Y .
The number of subsets of S⊂S(Y ) is finite for each Y ∈π0(Xψ). Since X is compact, π0(X

ψ) is
finite as well.

Proposition 3.8. Let X be a smooth manifold.

(1) The flow of a complete vector field ζ on X determines a smooth R-action ψ on X by

ψ0 = idX ,
d

dt
ψt(x) = ζ

(
ψt(x)

)
∀ t∈R, x∈X.
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Conversely, a smooth R-action ψ on X is the flow of the vector field ζ on X given by

ζ(x) =
d

dt
ψt(x)

∣∣∣
t=0

∀x∈X. (3.7)

In particular, Xψ={x∈X : ζ(x)=0}.

(2) If ψ is a smooth R-action on X with associated vector field ζ and x∈Xψ, the linear R-action dxψ
on TxX is the flow of the vector field

∇ζ|x : TxX −→ TxX, w −→ ∇wζ, (3.8)

on TxX, where ∇ is any connection in the vector bundle TX −→ X. If in addition J is a
ψ-invariant endomorphism of this vector bundle, i.e.

{
dx′ψt

}−1◦J ◦dx′ψt=J : Tx′X −→ Tx′X ∀ t∈R, x′∈X, (3.9)

then
∇Jwζ = J∇wζ ∀ w∈TxX . (3.10)

Proof. (1) If ψt : X−→X is the time t flow of ζ∈Γ(X;TX) for each t∈R, then

ψs+t=ψs◦ψt : X−→ X;

see [30, Theorem 1.48]. Thus, the map (1.1) is a group homomorphism and ψ is a smooth R-action
on X. Conversely, if ψ is a smooth R-action on X and ζ∈Γ(X;TX) is given by (3.7), then

ψ0 = idX ,
d

dt
ψt(x) =

d

ds
ψs+t(x)

∣∣∣∣
s=0

=
d

ds
ψs

(
ψt(x)

)∣∣∣∣
s=0

≡ ζ
(
ψt(x)

)
;

the second equality above holds because (1.1) is a group homomorphism. Thus, ψt is the time t
flow of ζ. The last claim in (1) follows immediately.

(2) Let x∈Xψ and γ : (−δ, δ)−→X be a smooth curve such that γ(0)=x. Then,

d

dt
dxψt

(
γ′(0)

)∣∣∣∣
t=0

=
d

dt

d

ds
ψt
(
γ(s)

)∣∣
s,t=0

=
D

ds

d

dt
ψt
(
γ(s)

)∣∣∣∣
s,t=0

=
D

ds
ζ
(
γ(s)

)∣∣∣∣
s=0

= ∇γ′(0)ζ ,

where D/ds denotes the covariant derivative with respect to any torsion-free connection in TX; the
penultimate equality above holds by the second claim in (1) for the R-action ψ on X. By second
claim of (1) for the R-action dxψ on TxX, dxψt is thus the time t flow of the vector field ∇ζ|x
on TxX given by (3.8) (which is independent of the choice of ∇ because ζ(x)=0).

If in addition J is a ψ-invariant endomorphism of the vector bundle TX−→X, then

dx′ψt(Jw) = Jdx′ψt(w) ∀ w∈Tx′X, x′∈X .

Setting x′=x above, differentiating the resulting equation at t=0, and using the previous state-
ment, we obtain (3.10).
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Exercise 3.9. Suppose k∈Z≥0, ψ is a smooth Rk-action on a smooth manifold X, and x∈X. Let
Rkx⊂Rk be the largest linear subspace fixing x and Rcx⊂Rk be a complementary linear subspace.
Show that

d

dt
ψtv(x)

∣∣∣∣
t=0

6= 0 ∈ TxX ∀ v∈Rcx−{0}.

Exercise 3.10. Let ψ be a nontrivial smooth action of Rk (resp. k-torus Tk≡(R/Z)k) on a smooth
manifold X as in (1.1). Show that there exist an irreducible smooth action ψ′ of Rm (resp. Tm)
on X for some m∈Z+ and a full-rank real (resp. integer) m×k-matrix A so that ψ=ψ′◦A, i.e.

ψv = ψ′
Av ∈ Diff(X) ∀ v∈Rk

(
resp. v∈Tk).

Furthermore, if the action ψ is almost periodic in the first case, then so is the action ψ′. Hint.
Let G be a compact Lie group. For every v ∈ T1G, the closure of the one-parameter subgroup
{etv : t∈R} is a torus.

3.2 Group actions on symplectic manifolds

This section provides an analogue of Proposition 3.3 in the symplectic setting. In particular,
Proposition 3.14(2) is an equivariant version of the Symplectic Tubular Neighborhood Theorem.

Exercise 3.11. Let (X,ω) be a symplectic manifold and ψ be a smooth action of a Lie group G
on X as in (1.1).

(a) Suppose G is connected. Show that ψ preserves ω if and only if d(ιζvω)=0 for all v∈T1G.

(b) Suppose ψ preserves ω. Show that

d
(
ω(ζv, ζv′)

)
= −ι[ζv ,ζv′ ]ω ∀ v, v′∈T1G.

(c) Suppose in addition G is connected and abelian. Let µ : X−→T ∗
1
G be a smooth map satisfying

the first condition in (1.4). Show that µ is G-invariant if G≈ R, or G is compact, or X is
compact.

Hint: use Proposition 3.8(1) for the restriction of ψ to the one-parameter subgroup {etv : t∈R}
of G.

Exercise 3.12. Let ψ be a smooth action of a compact Lie group on a symplectic manifold (X,ω)
as in (1.1). Show that there exists a ψ-invariant ω-compatible almost complex structure on X,
i.e. an ω-compatible almost complex structure J on X such that

{
dxψu

}−1◦J ◦dxψu=J : TxX −→ TxX ∀ u∈G, x∈X.

Hint: a Riemannian metric g and a nondegenerate 2-form ω on X determine an ω-compatible
almost complex structure Jg,ω on X; see the proof of Proposition 2.3 in [32].

Exercise 3.13. Suppose ψ is a smooth action of a Lie group on a symplectic manifold (X,ω) as
in (1.1), J is a ψ-invariant ω-compatible almost complex structure on X, and Y ⊂X is a Lagrangian
submanifold. Show that the isomorphism

ΦY ;J : J(TY ) −→ T ∗Y, ΦY ;J(w) = ω(·, w),

of real vector bundles over Y isG-equivariant with respect to the actions dψ and dψ∗ of Exercise 3.1.
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Proposition 3.14. Let ψ be a smooth action of a compact Lie group G on a symplectic mani-
fold (X,ω) as in (1.1).

(1) The fixed locus Xψ⊂X of ψ is a closed symplectic submanifold with T (Xψ)=(TX)dψ.

(2) Suppose Y ⊂X is a closed submanifold preserved by ψ, TY c ⊂ TX|Y is a subbundle comple-
mentary to TY and preserved by dψ, and ω̃ is a G-invariant closed 2-form on a neighborhood
of Y in TY c preserved by dψ. If

ω̃
∣∣
Ty(TY c)

= ω
∣∣
TyX

∀ y∈Y , (3.11)

there exists a G-equivariant tubular neighborhood identification Φ: U −→U for Y in X such
that U ⊂TY c and Φ∗ω= ω̃|U .

Proof. (1) Let J be a G-invariant ω-compatible almost complex structure on X, as provided by
Exercise 3.12. By Proposition 3.3(1), Xψ⊂X is a closed submanifold with T (Xψ)=(TX)dψ. Since
J is G-invariant, J(TXψ)⊂TXψ by (3.2). Since J is ω-compatible, ω(v, Jv)>0 for all v ∈ TX
nonzero. Thus, ω|TXψ is nondegenerate.

(2) Let Φ: U −→U be a G-equivariant tubular neighborhood identification for Y inX with U ⊂TY c,
as provided by Proposition 3.3(2). In particular, Φ∗ω is a symplectic form on U . By (3.11) and (3.1),

(Φ∗ω)
∣∣
Ty(TY c)

= ω̃
∣∣
Ty(TY c)

∀ y∈Y . (3.12)

Since Φ is G-equivariant, the 2-form Φ∗ω is G-invariant. Since the subset of U on which ω̃ is non-
degenerate contains Y by (3.11) and is open and preserved by G, we can assume that the 2-form
ω̃ is nondegenerate on U (by replacing U by its subset on which ω̃ is nondegenerate) .

Let mτ : TY
c−→TY c be the scalar multiplication by τ as in (A.1) and ζTY c ∈Γ(TY c;T (TY c)) be

the canonical vertical vector field as in (A.5). Define a 1-form α on U by

α =

∫ 1

0
m∗
τ

(
ιτ−1ζTY c (Φ

∗ω−ω̃)
)
dτ.

By Exercise A.1 and (3.12),

dα = Φ∗ω−ω̃, dα
∣∣
T (TY c)|Y

= 0, α
∣∣
T (TY c)|Y

= 0, ∇α
∣∣
T (TY c)|Y

= 0, (3.13)

where ∇ is any connection in T ∗(TY c).

By the second statement in (3.13) and the compactness of [0, 1],

ωt ≡ ω̃+t dα

is a symplectic form on a neighborhood U ′ of Y ⊂U for every t∈ [0, 1]. For each t∈ [0, 1], define

ξt ∈ Γ
(
U ′;TU ′

)
by ιξtωt = −α. (3.14)

By the third statement in (3.13), ξt|Y = 0. Since [0, 1] is compact, it follows that there exists a
neighborhood U ′′ of Y in U ′ so that the flow of ξt,

ψt : U ′′ −→ U ′, ψ0(w) = w ∀w∈U ′′,
d

dt
ψt = ξt◦ψt,
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is well-defined for every t∈ [0, 1]. By the first, third, and fourth statements in (3.13),

ω̃ = ψ∗
t ωt, ψt(w) = w ∀w∈U ′′, and dψt|T (TY c)|Y = idT (TY c)|Y ∀ t∈ [0, 1]; (3.15)

see Exercise 3.15 below for the first identity.

Since G is compact, the set

U ′′′ ≡
⋂

u∈G

dψu(U ′′) ⊂ U ′ ⊂ TY c

is a neighborhood of Y ⊂ TY c preserved by the G-action so that ψ1 : U ′′′−→U is a well-defined
diffeomorphism onto an open subset of U . Since the 2-forms Φ∗ω and ω̃ are G-invariant, so are
the 1-form α and the vector fields ξt. Thus, the smooth map ψ1 is G-equivariant, as is the
diffeomorphism

Φ◦ψ1 : U ′′′ −→ Φ
(
ψ1(U ′′′)

)
⊂ U ⊂ X.

By the second and third statements in (3.15), this diffeomorphism is a tubular neighborhood
identification for Y in X (because Φ is). By the first statement in (3.15), {Φ◦ψ1}∗ω= ω̃|U ′′′ .

Exercise 3.15. Suppose X is a smooth manifold, (ωt)t∈[0,1] is a smooth family of symplectic forms
on X, (ξt)t∈[0,1] is the smooth family of vector fields on X defined by

d
(
ιξtωt

)
= − d

dt
ωt,

and ψt : U −→X is a flow of (ξt)t∈[0,1] on an open subset of X, i.e.

ψ0(x) = x,
d

dt

(
ψt(x)

)
= ξt

(
ψt(x)

)
∀ x∈U , t∈ [0, 1].

Show that ψ∗
t ωt=ω0|U for all t∈ [0, 1]. Hint: differentiate both sides and use Cartan’s formula.

Example 3.16 (Symplectic Tubular Neighborhood Theorem). Suppose ψ is a smooth action of a
compact Lie group G on a symplectic manifold (X,ω) and Y is a symplectic submanifold of (X,ω)
preserved by ψ. The restriction ω⊥

Y of ω to the ω-symplectic complement

TY ω ≡
{
w∈TX|Y : ω(w,w′)=0 ∀w′∈TY

}
−→ Y

of TY in TX|Y is then a G-invariant nondegenerate fiberwise 2-form. Let ζTY ω ∈Γ(TY ω;T (TY ω))
be the canonical vertical vector field as in (A.5). A G-invariant connection ∇ in the real vector
bundle π : TY ω−→Y extends ω⊥

Y to a G-invariant 2-form ω⊥
∇ on (the total space of) TY ω; see

Exercise A.5. By (A.19), the G-invariant closed 2-form

ω̃∇ ≡ π∗ω +
1

2
d
(
ιζTY ωω

⊥
∇

)

satisfies (3.11) with ω̃= ω̃∇. If in addition Y ⊂X is a closed subspace, by Proposition 3.14(2) there
then exists a G-equivariant tubular neighborhood identification Φ: U −→U for Y in X such that
U ⊂TY ω and Φ∗ω= ω̃∇|U . If Y ≡{x} is a one-point set, TY ω=TxX and ω̃∇=π∗ωx. This yields
Corollary 3.17 below.
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Corollary 3.17 (Darboux Theorem). Suppose ψ is a smooth action of a compact Lie group G on
a symplectic manifold (X,ω) and x∈Xψ. There exist a G-invariant tubular neighborhood U of 0
in TxX and a G-equivariant diffeomorphism Φ: U −→U onto a neighborhood U of x in X such that

Φ(0) = x, d0Φ=id: T0(TxX)=TxX −→ TxX, and Φ∗ω = π∗ωx|U ,

where π : TxX−→{x} is the projection.

Corollary 3.18 (Lagrangian Tubular Neighborhood Theorem). Suppose ψ is a closed action of a
compact Lie group G on a symplectic manifold (X,ω), Y ⊂X is a compact Lagrangian submanifold
preserved by ψ, and ωT ∗Y is the canonical symplectic form on T ∗Y as in Exercise 2.10. There
exists a G-equivariant diffeomorphism Φ: U −→U from an open neighborhood of Y in T ∗Y onto an
open neighborhood of Y in X so that

Φ(y) = y ∀ y∈Y and Φ∗ω = ωT ∗Y

∣∣
U
. (3.16)

Proof. By Exercise 3.12, there exists a ψ-invariant ω-compatible almost complex structure J on X.
By Exercise 3.13, the isomorphism

ΦY ;J : J(TY ) −→ T ∗Y, ΦY ;J(w) = ω(·, w),

of real vector bundles over Y isG-equivariant with respect to the actions dψ and dψ∗ of Exercise 3.1.
Along with the latter exercise, this implies that the closed 2-form Φ ∗

Y ;JωT ∗X on (the total space of)
J(TY ) is G-invariant. By Exercise 2.13(c), this form satisfies (3.11). By Proposition 3.14(2), there
thus exists a G-equivariant tubular neighborhood identification Φ: U −→U for Y in X such that
U ⊂J(TY ) and Φ∗ω=Φ ∗

Y ;JωT ∗Y |U . The map

Φ◦Φ−1
Y ;J : ΦY ;J(U) −→ U

is then a G-equivariant diffeomorphism satisfying (3.16) with Φ replaced by Φ◦Φ−1
Y ;J .

Exercise 3.19 (Moser’s Stability). Let X be a closed manifold. Suppose p∈Z≥0 and (ωt)t∈[0,1] is
a smooth family of cohomologous closed smooth p-forms on X, i.e. [ωt]=[ω0]∈Hp

deR(X) for every
t∈ [0, 1].
(a) Show that there exists a smooth family (ηt)t∈[0,1] of (p−1)-forms on X such that

ωt−ω0 = dηt ∀ t∈ [0, 1] .

(b) With ηt as in (a), suppose also that (ζt)t∈[0,1] is a smooth family of vector fields on X satisfying

ιζtωt = −
d

dt
ηt ∀ t∈ [0, 1]

and ψt : X−→X for t∈ [0, 1] is its flow. Show that ψ∗
t ωt=ω0 for all t∈ [0, 1].

(c) Suppose ωt is a symplectic form on X for every t∈ [0, 1]. Show that there exists a diffeomor-
phism ψ : X−→X such that ψ∗ω1=ω0.

(d) Suppose X is connected and oriented and Ω0,Ω1 are volume forms on X. Show that there

exists a diffeomorphism ψ : X−→X such that ψ∗Ω1=Ω0 if and only if

∫

X
Ω0 =

∫

X
Ω1.
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The assumptions that X is compact and the symplectic forms ωt are cohomologous necessary for
the conclusion of Exercise 3.19(c). For example, Cn with n≥ 2 admits a symplectic structure ω
so that (Cn, ω) is not symplectomorphic to (Cn, ωCn); see [14, 0.4.A′

2]. A smooth family (ωt)t∈R
of symplectic forms on a closed 8-dimensional smooth manifold Ỹ is constructed in [20] so that
all forms ωk with k ∈Z are cohomologous and the symplectic manifolds (Ỹ , ωk) and (Ỹ , ωℓ) with
k, ℓ ∈ Z are symplectomorphic if and only if |k| = |ℓ|; see Theorem 2.1 in [20]. In the case of
Exercise 3.19(d), the equality of the integrals implies that

Ωt ≡ (1−t)Ω0+tΩ1, t∈ [0, 1],

is a smooth family of cohomologous volume forms.

Remark 3.20. The analogue of Proposition 3.14(2) in [21] is Lemma 3.2.1, which unnecessarily
requires Y (Q in [21]) to be compact. As a consequence, the Symplectic and Lagrangian Tubular
Neighborhood Theorems, i.e. Example 3.16 and Corollary 3.18 above, are restricted to compact
submanifolds in [21]; see Theorems 3.4.10 and 3.4.13 in [21]. Even if one is interested only in
compact symplectic manifolds, the Symplectic Tubular Neighborhood Theorem without the com-
pactness restriction is needed for the proof of Proposition 6.13. The latter is a key step in the proof
of Delzant’s Theorem, Theorem 3, following the modern efficient approach sketched in [19, 22]; see
page 62.

3.3 Hamiltonian group actions

We next obtain structural results for Hamiltonian group actions and their moment maps, in par-
ticular Proposition 4.5 and Corollary 3.28.

Exercise 3.21. Suppose G is a Lie group, (X,ω, ψ, µ) is a Hamiltonian G-manifold, and x∈X.
For each v∈T1G, let ζv∈Γ(X;TX) be as in (1.2). Show that

ker dxµ =
{
ζv(x) : v∈T1G

}ω ≡
{
w∈TxX : ω

(
w, ζv(x)

)
=0 ∀ v∈T1G

}
,

Imdxµ = Ann
({
v∈T1G : ζv(x)=0

})
≡

{
α∈T ∗

1
G : α(v)=0 ∀ v∈T1G s.t. ζv(x)=0

}
.

(3.17)

Conclude that

(a) the G-orbit Gx⊂X of x is open if and only if dxµ is injective;

(b) the stabilizer Stabx(ψ)⊂G of x is discrete if and only if dxµ is surjective.

Exercise 3.22. Suppose T is a torus and (X,ω, ψ, µ) is a Hamiltonian T-manifold so that (1.7)
holds, the action ψ is free, and the fibers of µ are connected.

(a) Show that µ(X) ⊂ T ∗
1
T is an open subset, µ : X −→ µ(X) is a principal T-bundle, and the

fibers of µ are Lagrangian submanifolds of (X,ω), i.e.

dimµ−1(α) = n and ω
∣∣
Tµ−1(α)

= 0 ∀ α ∈ µ(X).

(b) Let η be a 1-form on µ(X). Show that the vector field ζη on X defined by ιζηω=µ
∗η is

µ-vertical, i.e.
dµ

(
ζη
)
= 0 ∈ Γ

(
µ(X);Tµ(X)

)
.
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(c) Let (T ∗
1
T×T, ωT, ψT, µT) be the Hamiltonian T-manifold of Exercise 2.11, with k=n. Suppose

s : µ(X)−→X is a (smooth) Lagrangian section of µ, i.e. µ◦s=idµ(X) and s
∗ω=0. Show that

the map
Φ: µ(X)×T −→ X, Φ(α, u) = ψu

(
s(α)

)
,

is a T-equivariant diffeomorphism such that Φ∗ω = ωT|µ(X)×T and µ◦Φ=µT|µ(X)×T. Hint:
choose a Z-basis v1, . . . , vn∈T1T for the lattice (T1T)Z ⊂ T1T and replace µ by the corre-
sponding Hamiltonian H : X−→Rn and (T∗

1
T×T, ωT, ψT, HT) by the Hamiltonian T-manifold

(Rn×Tn, ωn, ψn, Hn) as in Exercise 2.8.

Exercise 3.23. Suppose G is a positive-dimensional Lie group, (X,ω) is a compact positive-
dimensional symplectic manifold, and ψ is a smooth G-action on (X,ω).

(a) Suppose ψ is a Hamiltonian action. Show that the ψ-fixed locus Xψ contains at least 2 points.

(b) Give an example of a compact positive-dimensional symplectic manifold (X,ω) and an action ψ
on (X,ω) so that Xψ=∅.

Exercise 3.24. Suppose T is a torus, (X,ω, ψ, µ) is a compact Hamiltonian T-manifold, x ∈X,
and Z∈π0(XTψ(x)) is the topological component of the ψ|Tψ(x)-fixed locus containing x. For each

Y ∈π0(Xψ), let S(Y )⊂T ∗
1
T be as in Proposition 3.6(1). Show that

(a) Z∩Xψ 6=∅;

(b) if Y ∈π0(Xψ) and Y ⊂Z, then Tx(ψ)=TS for some S⊂S(Y ).

Hint: use Exercise 3.23(a) and Proposition 3.6(2).

Exercise 3.25. Suppose G is a Lie group, (X,ω) is a symplectic manifold, ψ is a smooth G-action
on (X,ω), J is an ω-compatible almost complex structure on X, and x∈X. For each v∈T1G, let
ζv∈Γ(X;TX) be as in (1.2).

(a) Let µ : X−→T ∗
1
G be a smooth map satisfying the first condition in (1.4) and g(·, ·)≡ω(·, J ·)

be the Riemannian metric on X determined by ω and J . Show that

∇gµv = −Jζv ∈ Γ(X;TX) ∀ v∈T1G. (3.18)

(b) Let µ : X −→ T ∗
1
G be a G-invariant smooth map satisfying the first condition in (1.4).

Show that {
ζv(x) : v∈T1G

}
∩
{
Jζv(x) : v∈T1G

}
= {0} ⊂ TxX.

Suppose in addition that α ≡ µ(x) ∈ T ∗
1
G is a regular value of µ and thus µ−1(α) ⊂X is a

smooth submanifold. Show that

TxX = Tx
(
µ−1(α)

)
⊕
{
Jζv(x) : v∈T1G

}
. (3.19)

(c) Give an example of a positive-dimensional symplectic manifold (X,ω) and an action ψ on
(X,ω) so that {

ζv(x) : v∈T1G
}
=

{
Jζv(x) : v∈T1G

}
= TxX.
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Exercise 3.26. Suppose (X,ω) is a symplectic manifold, ψ is a smooth action of Rk on (X,ω),
X ′ ⊂ X is an ω-symplectic manifold preserved φ so that the inclusion i : X ′−→X is a homo-
topy equivalence, and µ′ : X ′−→T ∗

0R
k is a moment map for the restriction of the action ψ to X ′.

Show that µ′ extends to a moment map µ : X−→T ∗
0R

k for ψ. Hint: first show this for k=1.

Proposition 3.27. Suppose k ∈ Z+, (X,ω, ψ, µ) is a Hamiltonian Rk-manifold, ψ′ is a smooth
action of a torus T on X, ρ : Rk−→T is a homomorphism with dense image so that ψ = ψ′ ◦ρ,
Y ⊂ X is a topological component of Xψ = Xψ′

, and J is a ψ-invariant (or equivalently ψ′-
invariant) ω-compatible almost complex structure on X. Let S(Y ) ⊂ (T ∗

1
T)Z and Nα

XY ⊂ TX|Y
for each α∈S(Y ) be as in Proposition 3.6(1) with ψ replaced by ψ′ so that the complex structure
on Nα

XY is induced by J . For every y ∈ Y , there exists a T-equivariant tubular neighborhood
identification Φy : Uy−→Uy for y in X such that

Φ∗
yω=ωy|Uy and µ

(
Φy

(
w0, (wα)α∈S(Y )

))
= µ(Y )+ π

∑

α∈S(Y )

|wα|2ρ∗α

∀
(
w0, (wα)α∈S(Y )

)
∈Uy ⊂ TyX=TyY ⊕

⊕

α∈S(Y )

Nα
XY

∣∣
y
,

(3.20)

where | · | is the norm on TX with respect to the metric g(·, ·)≡ω(·, J ·). If in addition X is closed
and connected, then

µ(X) ⊂ Cµ(Y )

(
ρ∗S(Y )

)
≡

{
µ(Y )+

∑

α∈S(Y )

tαρ
∗α : tα∈R≥0 ∀α∈S(Y )

}
. (3.21)

Proof. By Corollary 3.17 with ψ replaced by ψ′, there exists a T-equivariant (or equivalently
Rk-equivariant) tubular neighborhood identification Φy : Uy−→Uy for y in X satisfying the first
condition in (3.20). By Proposition 3.6(1), the complex vector space (TyX, Jy) splits as

TyX|Y = TyY ⊕
⊕

α∈S(Y )

Nα
XY

∣∣
y

with the T-action dy′ψ
′ given by (3.6) with ψ replaced by ψ′. By Example 2.6, a moment map for

this action with respect to ωy is

µ′ : TyX −→ T ∗
1
T, µ′

(
w0, (wα)α∈S(Y )

))
= π

∑

α∈S(Y )

|wα|2α ∀
(
w0, (wα)α∈S(Y )

)
∈TyY ⊕

⊕

α∈S(Y )

Nα
XY

∣∣
y
.

Since a moment map is unique up to an additive constant on each connected component of the
domain, it follows that

Φ∗
yµ=µ(y)+ρ

∗◦µ′
∣∣
Uy

: Uy −→ T ∗
0R

k .

This establishes the second condition in (3.20).

Suppose in addition that X is closed and connected and η0 ∈ T ∗
0R

k −Cµ(Y )(ρ
∗S(Y )). Thus,

Cµ(Y )(ρ
∗S(Y )) is contained in a (closed) half-space in T ∗

0R
k and there exists v∈T0Rk so that

η0(v) < inf
{
η(v) : η∈Cµ(Y )

(
ρ∗S(Y )

)}
=

{
µ(Y )

}
(v) ≡ µv(Y ). (3.22)
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By the second equality in (3.20), this implies that {ρ∗α}(v)≥0 for all α∈S(Y ). Thus,

µv(Y ) = inf
{
µv(x) : x∈Uy

}
.

Combining this with Proposition 4.5(2), we conclude that

µv(Y ) = inf
{
µv(x)≡{µ(x)}(v) : x∈X

}
∀ y∈Y.

Along with (3.22), this implies that η0 6∈µ(X) and establishes (3.21).

Suppose ψ is a smooth action of Rk on a smooth manifold X. For y∈X, let Rky⊂Rk be the largest

linear subspace preserving y and Rcy⊂Rk be a complementary linear subspace. The decomposition

Rk=Rky⊕Rcy induces decompositions

T0R
k = T0R

k
y×T0Rcy and µ≡

(
µy, µ

c
y

)
: X −→ T ∗

0R
k
y×T ∗

0R
c
y = T ∗

0R
k , (3.23)

for any map µ : X −→ T ∗
0R

k. If µ is a moment map for the action ψ on X with respect to a
symplectic form ω, then µy and µcy are moment maps for the Rky-action ψy ≡ψ|Rky and Rcy-action

ψcy≡ψ|Rkc , respectively, on X with respect to ω. If the action ψ is almost periodic, then so are the

actions ψy and ψ
c
y. By Proposition 3.14(1), (Xψy , ω|Xψy , ψcy, µ

c
y) is then a Hamiltonian Rcy-manifold.

By Exercises 3.21(b) and 3.9 with (X,ω, ψ, µ) replaced by (Xψy , ω|Xψy , ψcy, µ
c
y), the differential

dyµ
c
y : TyX

ψy −→ T ∗
0R

c
y (3.24)

is surjective in this case.

Corollary 3.28. Suppose k ∈ Z+, (X,ω, ψ, µ) is a Hamiltonian Rk-manifold, the Rk-action ψ
is almost periodic, y ∈ X, and Rky ,R

c
y ⊂ Rk, µy, µ

c
y, and ψy are as above. There exist a finite

subset S(y)⊂T ∗
0R

c
y, neighborhoods Uy;1 of y in Xψy , Uy;2 of 0 in CS(y), and Uy of y in X, and a

diffeomorphism Φy : Uy;1×Uy;2−→Uy such that

∣∣S(y)
∣∣ ≤ (dimX)/2−dimRcy , (3.25)

Φy(y
′, 0) = y′, µcy

(
Φy(y

′, w)
)
= µcy(y

′),

µy
(
Φy

(
y′, (wα)α∈S(y)

))
= µy(y)+π

∑

α∈S(y)

|wα|2α ∀ y′∈Uy;1, w≡(wα)α∈S(y)∈Uy;2 ⊂ CS(y) .

In particular, the map µ is locally convex. If in addition X is closed and connected, then there exist
a cone Cy(ψ)⊂T ∗

0R
k with vertex at µ(y) and a neighborhood Uy⊂X of y so that µ(X)⊂Cy(ψ) and

the restriction µ : Uy−→Cy(ψ) is an open map.

Proof. Let Y ∈ π0(Xψy) be the connected component of ψy-fixed locus containing y and ψcy be
as above. With S(Y ) and ρ as in Proposition 3.27 with (ψ, µ) replaced by (ψy, µy), let

S(y) = ρ∗S(Y ) ⊂ T ∗
1
Rky .

By Proposition 3.14(1), Y ⊂X is a symplectic submanifold with µy(Y )=µy(y). Since the actions ψy
and ψcy commute, Xψy is preserved by ψcy. Since the differential (3.24) is surjective, the second
equations in (3.17) and in (3.18) applied to (Y, ω|Y , ψcy|Y , µcy|Y ) imply that

dimY ≥ 2 dimRcy =⇒ 2
∣∣S(y)

∣∣ ≤ dimTyX − dimTyY ≤ dimX − 2 dimRcy .

29



This establishes (3.25). The remainder of the first claim of the corollary follows from the first state-
ment of Proposition 3.27 with (ψ, µ) replaced by (ψy, µy) and Exercise 3.29 below with k=dim Y ,
ℓ=codimY , m=Rcy, and f =µcy. Along with Exercises 1.8-1.10, this claim implies the convexity
claim.

Suppose in addition that X is closed and connected. By the second statement of Proposition 3.27,

µ(X) ⊂ Cy(ψ)≡Cµ(y)
(
S(y)

)
×T ∗

0R
c
y ⊂ T ∗

0R
k .

By the first claim of the corollary and Exercises 1.8-1.10, there exists a neighborhood Uy⊂X of y
so that the restriction µ : Uy−→Cy(ψ) is an open map.

Exercise 3.29. Suppose k, ℓ,m ∈ Z≥0 and f : Rk×Rℓ −→ Rm is a smooth function so that the
restriction of the differential d(0,0)f to Rk×{0} is surjective. Show that there exist neighborhoods U1
of 0∈Rk and U2 of 0∈Rℓ and a smooth map

φ : U1×U2−→Rk s.t. φ(x, 0) = x, f
(
φ(x,w), w

)
= f(x, 0) ∀x∈U1, w∈U2,

and for each w ∈ U2 the map U1 −→Rk, x−→ φ(x,w), is a diffeomorphism onto an open subset
of Rk. Hint: assume that the restriction of d(0,0)f to Rm×{0}×{0}⊂Rk×{0} is surjective; show
that there exist neighborhoods U1 of 0∈Rk and U2 of 0∈Rℓ so that for each w∈ U2 the map

Φw : U1−→Rk, Φw(x1, x2) =
(
f
(
(x1, x2), w

)
, x2

)
∀ (x1, x2)∈U1⊂Rm×Rk−m,

is a diffeomorphism onto an open subset of Rk.

Proposition 3.30. Suppose T is a torus and (X,ω, ψ, µ) is a Hamiltonian T-manifold so that (1.7)
holds, the action ψ is free, the fibers of µ are connected, and µ(X) ⊂ T ∗

1
T is contractible. Let

(T ∗
1
T×T, ωT, ψT, µT) be the Hamiltonian T-manifold of Exercise 2.11. Then µ(X)⊂T ∗

1
T is an open

subset and there exists a T-equivariant diffeomorphism

Φ: µ(X)×T −→ X s.t. Φ∗ω=ωT

∣∣
µ(X)×T

, µ◦Φ=µT
∣∣
µ(X)×T

.

Proof. The subset µ(X) ⊂ T ∗
1
T is open by Exercise 3.21(b). By Exercise 3.22(c), it remains to

show that µ admits a Lagrangian section µ(X)−→X. Since µ(X)⊂T ∗
1
T is contractible, µ admits

a section s : µ(X)−→X and s∗ω=dη for some 1-form η on µ(X). Let ζη∈Γ(X;TX) be the µ-
vertical vector field of Exercise 3.22(b). Since the fibers of µ are compact and the vector field ζη is
vertical, the flow of −ζη,

ψt : X −→ X, ψ0 = idX ,
d

dt
ψt = −ζη◦ψt ,

is defined for all t∈R, ψt◦s : µ(X)−→X is a section of µ for every t∈R, and
d

dt
ψ∗
t ω = ψ∗

t

(
L−ζηω

)
= ψ∗

t

(
d(ι−ζηω)+ι−ζη(dω)

)
= ψ∗

t

(
d(µ∗(−η))+0

)
= −d(µ∗η) = −µ∗s∗ω,

where L is the Lie derivative; the second equality above holds by Cartan’s formula. Thus,

s∗ψ∗
1ω = s∗

(
ω−µ∗s∗ω

)
= 0,

i.e. ψ1◦s : µ(X)−→X is a Lagrangian section of µ.
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4 Morse-Bott Theory

4.1 Definitions and notation

Let X be a smooth manifold and H : X −→ R be a smooth function. If x ∈ Crit(H), then the
gradient ∇gH of H with respect to any Riemannian metric g vanishes at x and the Hessian

∇2H
∣∣
x
≡∇

(
∇gH)

∣∣
x
: TxX −→ TxX, ∇2H

∣∣
x
(w) = ∇w

(
∇gH), (4.1)

of H at x does not depend on the choice of a connection ∇ in TX (it does depend on the metric g
though). If in addition ξ, ξ′ are vector fields on X and ∇ is the Levi-Civita connection of g, then

g
(
∇2H

∣∣
x
(ξ(x)), ξ′(x)

)
≡ g

(
∇ξ(x)∇gH, ξ′(x)

)
=

{
ξ(x)

}(
g(∇gH, ξ′)

)
−g

(
∇gH|x,∇ξ(x)ξ′

)

=
{
ξ(x)

}(
dH(ξ′)

)
−dxH

(
∇ξ(x)ξ′

)
=

{
ξ(x)

}(
ξ′(H)

)
−
{
∇ξ(x)ξ′

}
(H)

=
{
ξ′(x)

}(
ξ(H)

)
+
{
[ξ, ξ′](x)

}
(H)−

{
∇ξ(x)ξ′

}
(H)

=
{
ξ′(x)

}(
ξ(H)

)
−
{
∇ξ′(x)ξ

}
(H) = g

(
∇2H

∣∣
x
(ξ′(x)), ξ(x)

)
.

Thus, the linear automorphism (4.1) is symmetric with respect to the metric g and therefore
diagonalizable. We denote by

E0
x(H),E−

x (H),E+
x (H) ⊂ TxX and n0x(H), n−x (H), n+x (H) ∈ Z≥0

the nullspace of ∇2H|x, the negative eigenspace of ∇2H|x, the positive eigenspace of ∇2H|x, and
their respective dimensions. In particular,

TxX = E0
x(H)⊕E−

x (H)⊕E+
x (H) and dimX = n0x(H)+n−x (H)+n+x (H) .

Exercise 4.1. Let X be a smooth manifold, H : X−→R be a smooth function, and x∈Crit(H).
Show that

(a) the negative and positive eigenspaces E−
x (H),E+

x (H)⊂ TxX of ∇2H|x depend on the choice
of a Riemannian metric g on X, but

(b) their dimensions n−x (H), n+x (H) and the nullspace E0
x(H)⊂TxX of ∇2H|x do not.

Definition 4.2. Let X be a smooth manifold. A smooth function H : X −→R is Morse-Bott if
Crit(H)⊂X is a closed submanifold of X with TxY =E0

x(H) for all Y ∈π0(Crit(H)) and x∈Y .

If H : X −→R is a Morse-Bott function and Y ∈ π0(Crit(H)), H|Y is constant. Furthermore, the
numbers n−x (H), n+x (H) do not depend on x∈Y ; we denote them by n−Y (H), n+Y (H), respectively.
The subspaces E−

x (H),E+
x (H) of TxX form subbundles E−

Y (H),E+
Y (H) of TX|Y so that

TX|Y = TY ⊕E−
Y (H)⊕E+

Y (H).

Exercise 4.3. Suppose X is a smooth manifold, H : X −→ R is a Morse-Bott function, and
Y ∈π0(Crit(H)). Show that H reaches a local minimum (resp. maximum) on Y if and only if
n−Y (H)=0 (resp. n+Y (H)=0).

Exercise 4.4. Suppose H : X −→R and Y ⊂Crit(H) are in Exercise 4.3 and Z⊂X is a smooth
submanifold transverse to the closed submanifold Y ⊂X. Show that Y ∩Z is a closed submanifold
of Z, is an open subset of Crit(H|Z), and

Tx(Y ∩Z) = TxY ∩TxZ = E0
x

(
H|Z

)
, n±x

(
H|Z

)
= n±x (H) ∀x∈Y ∩Z.
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Proposition 4.5. Let ψ be an almost periodic R-action on a symplectic manifold (X,ω). If
H : X−→R is a Hamiltonian for ψ, then Crit(H)⊂X is a closed symplectic submanifold and H is
a Morse-Bott function with n±x (H)∈2Z≥0 for every x∈Crit(H). If in addition X is compact and
connected, then

(2) H has a unique local minimum and a unique local maximum;

(3) H−1(c)⊂X is connected for every c∈R.

Proof. Let ρ : R −→ T and ψ′ be as in (1.5) and ζ ∈ Γ(X;TX) be the generating vector field
for the ψ-action as in (3.7). We can assume that the image of ρ is dense in T and so Xψ=Xψ′

.
By Exercise 3.12, there exist a ψ-invariant ω-compatible almost complex structure J on X. Let
g(·, ·)≡ω(·, J ·) be the Riemannian metric on X determined by ω and J . By (2.1) and (2.5), the
gradient of H with respect to g is then given by

∇gH = −Jζ ∈ Γ(X;TX). (4.2)

By (2.5) and Proposition 3.8(1),

Crit(H) ≡
{
x∈X : dxH=0

}
=

{
x∈X : ζ(x)=0

}
= Xψ=Xψ′

. (4.3)

Along with (4.1), (4.2), and (3.10), this implies that the Hessian ∇2H of H satisfies

∇2H
∣∣
x
(w) = −J∇wζ, ∇2H

∣∣
x
(Jw) = J∇2H

∣∣
x
(w) ∀ w∈TxX, x∈Crit(H) . (4.4)

By (4.3), Propositions 3.14(1) and 3.8(2), and the first equation in (4.4), Crit(H)⊂X is thus a
closed symplectic submanifold of (X,ω) with

TxY = (TxX)dψ
′

= (TxX)dψ =
{
w∈TxX : ∇wζ=0

}
= E0

x(H) ∀ Y ∈π0
(
Crit(H)

)
, x∈Y.

By the second equation in (4.4), the subspaces E±
x (H)⊂TxX are preserved by J for every x∈Crit(H)

and thus n±x (H)∈2Z≥0 for every x∈Crit(H). The remaining claims of the proposition now follow
immediately from Proposition 4.8.

The second proof of Proposition 4.8 is based on standard properties of gradient flows of Morse-Bott
functions. As these properties are also used in the proof of Theorem 2(2) in Section 5.1, we collect
them in Proposition 4.7 below and justify at the end of this section.

Exercise 4.6. Suppose (X, g) is a compact Riemannian manifold and H : X −→ R is a smooth
function. Since X is compact, the negative gradient flow of H,

ψH;t : X −→ X, ψH;0 = idX ,
d

dt
ψH;t = −∇gH

∣∣
ψH;t

,

is defined for all t∈R. Show that the limits

x±H ≡ lim
t−→±∞

ψH;t(x)

exist for every x∈X.
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Let (X, g) be a compact Riemannian manifold and H : X −→ R be a Morse-Bott function. For
Y ∈π0(Crit(H)), we denote by

π±H;Y : E±
Y (H) −→ Y

the bundle projections and by S(E±
Y (H))⊂E±

Y (H) the sphere bundle of E±
Y (H). Let

X±
Y (H) ≡

{
x∈X : x±H ∈Y

}
⊃ Y

be the H-stable and unstable manifolds of Y . For A⊂X±
Y (H), let

A±
H =

{
x±H : x∈A

}
⊂ Y.

Proposition 4.7. Suppose (X, g) is a compact Riemannian manifold, H : X−→R is a Morse-Bott
function, and Y ∈π0(Crit(H)).

(1) The subspaces X±
Y (H)⊂X are smooth submanifolds with

T
(
X±
Y (H)

)∣∣
Y
= TY ⊕E±

Y (H) ⊂ TX|Y . (4.5)

(2) There exist diffeomorphisms Φ±
H;Y : E±

Y (H)−→X±
Y (H) such that

(
Φ±
H;Y (w)

)±
H

= π±H;Y (w) ∀w∈E±
Y (H), Φ±

H;Y (y) = y ∀ y∈Y,
dyΦ

±
H;Y (w) = w ∀ y∈Y, w∈E±

Y (H)⊂Ty
(
E±
Y (H)

)
.

(4.6)

(3) For every c∈R, the submanifolds X±
Y (H) and H−1(c)−Crit(H) of X are transverse.

(4) For every ǫ∈R+ such that H(Y ) is the only critical value of H in [H(Y )−ǫ,H(Y )+ǫ], there
exist diffeomorphisms

Φ±
H;Y ;ǫ : S

(
E±
Y (H)

)
−→ X±

Y (H)∩H−1
(
H(Y )±ǫ

)
⊂ X

satisfying the first property in (4.6) with (Φ±
H;Y ,E

±
Y (H)) replaced by (Φ±

H;Y ;ǫ, S(E
±
Y (H))).

(5) The intersection of the closure X±
Y (H)⊂X of X±

Y (H) with the level set H−1(H(Y )) is Y .

(6) If A⊂X±
Y (H) and A⊂X is the closure of A, A∩H−1(H(Y ))⊂A±

H . If in addition A is preserved

by the gradient flow of H, i.e. ψH;t(A)=A for all t∈R, then A∩H−1(H(Y ))=A±
H .

Proof. By the Tubular Neighborhood Theorem, there are neighborhoods U ⊂E−
Y (H)⊕E+

Y (H) and
U⊂X of Y and a diffeomorphism Φ: U −→U such that

Φ(y) = y ∀ y∈Y, dyΦ(w) = w ∀ y∈Y, w∈E−
Y (H)⊕E+

Y (H)⊂Ty
(
E−
Y (H)⊕E+

Y (H)
)
.

By the statement and proof of [3, Theorem A.9], there are then neighborhoods U ′⊂U and U ′⊂U
of Y and smooth embeddings

Φ±
H;Y : U±

H;Y ≡U ′∩E+
Y (H) −→ U
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so that Φ±
H;Y (U±

H;Y ) = U ′∩X±
Y (H), the first identity in (4.6) holds whenever w ∈ U±

H;Y , and the

other two identities in (4.6) hold as stated. For all δ∈R+ sufficiently small, U ′ contains the closed
disk bundle of E−

Y (H)⊕E+
Y (H) of radius δ and

± d

dt
H
(
Φ±
H;Y (tw)

)∣∣∣
t=1

> 0 ∀ w∈E±
Y (H), |w|=δ. (4.7)

The smooth maps

Ψ±
H;Y : E±

Y (H)−Y −→ X, Ψ±
H;Y (w) = ψH;∓ ln(|w|/δ)

(
Φ±
H;Y (δw/|w|)

)
,

are then smooth embeddings ontoX±
Y (H)−Y that agree with Φ±

H;Y on the sphere bundle Sδ(E
±
Y (H))

in E±
Y (H) of radius δ, satisfy the first identity in (4.6) whenever w 6=0, and satisfy (4.7) with Φ±

H;Y

replaced by Ψ±
H;Y . We can thus paste Φ±

H;Y and Ψ±
H;Y together on a neighborhood of Sδ(E

±
Y (H))

in E±
Y (H) to obtain smooth embeddings Φ±

H;Y of E±
Y (H) into X with image X±

Y (H) which sat-
isfy (4.6). This establishes (1) and (2).

Let c∈R and x∈X±
Y (H)∩(H−1(c)−Crit(H)). Thus, dxH 6=0, H−1(c)−Crit(H)⊂X is a smooth

submanifold with
Tx

(
H−1(c)−Crit(H)

)
= ker dxH ,

and ψH;t(x) is a curve in X±
Y (H) with

d

dt
H
(
ψH;t(x)

)∣∣∣
t=0

= dxH(−∇gH) = −g(∇gH,∇gH) 6= 0.

This gives (3).

Let ǫ, δ∈R+ be as in (4) and above, respectively, with

Ψ±
H;Y

(
Sδ(E

±
Y (H))

)
⊂ H−1

(
(H(Y )−ǫ,H(Y )+ǫ)

)
.

Since the norm of∇gH is bounded below onH−1((H(Y )−ǫ,H(Y )−ǫ′)) andH−1((H(Y )+ǫ′, H(Y )+ǫ))
for every ǫ′∈(0, ǫ), (4.7) and the smoothness of the negative gradient flow ψH;t imply that there is
a smooth function

ρ : Sδ
(
E±
Y (H)

)
−→ R s.t. H

(
ψH;ρ(w)

(
Φ±
H;Y (w)

))
= H(Y )±ǫ.

Along with (4.7) again, the map

Φ±
H;Y ;ǫ : S

(
E±
Y (H)

)
−→ X±

Y (H)∩H−1
(
H(Y )±ǫ

)
, Φ±

H;Y ;ǫ = ψH;ρ(w)

(
Φ±
H;Y (w)

)
,

is then a diffeomorphism satisfying the first property in (4.6) with (Φ±
H;Y ,E

±
Y (H)) replaced by

(Φ±
H;Y ;ǫ, S(E

±
Y (H))).

Suppose x′∈H−1(H(Y ))−Y . Choose disjoint open neighborhoods U,U ′⊂X of Y and x′, respec-
tively. By (4.7), there exists ǫ∈R+ so that

∣∣H(x)−H(Y )
∣∣ ≥ ǫ ∀ x∈X±

Y (H)−U .
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By shrinking U ′ if necessary, we can assume that
∣∣H(x)−H(Y )

∣∣ < ǫ ∀ x∈U ′ .

It then follows that U ′ is disjoint from X±
Y (H) and thus from X±

Y (H). This establishes (5).

Let A⊂X±
Y (H). By ((5)), A∩H−1(H(Y ))=A∩Y . Suppose y∈A∩Y and U⊂X is a neighborhood

of y. By (2), there exists a neighborhood U ′ of y in U so that x±H ∈U ′ for every x∈U ′. Since y∈A,
U ′ contains some x∈A and thus x±H ∈A±

H . We conclude that y∈A±
H .

Suppose A is preserved by the gradient flow of H and y∈A±
H . Let U ⊂X be a neighborhood of y

and x∈A a point such that x±H ∈U . Thus, ψH;±(x)∈A∩U for all t∈R sufficiently large. Therefore,
y∈A.

4.2 Fiber connectedness

The next proposition is the main point-set topology input in the proof of (A⋆k) on page 4 in [1]
and [21].

Proposition 4.8 ([1, Lemma 2.1], [21, Lemma 5.5.5]). Suppose M is a compact connected smooth
manifold and H : X−→R is a Morse-Bott function. If n±x (H) 6=1 for every x∈Crit(H), then

(1) H has a unique local minimum and a unique local maximum;

(2) H−1(c)⊂X is connected for every c∈R.
We give two proofs of this proposition, which are essentially two different formulations of the same
reasoning. The first one is in the style of classical Morse theory, as in [24]. It is based on describing
the changes in the homotopy type of H−1((−∞, c]) as c passes through critical values as adding
“handles” of various kinds; see (4.8) below. The second proof is in the style of the modern take on
Morse theory originating in [31]. It is based on partitioning X into stable or unstable manifolds
of the negative gradient flow; see (4.9) below. In both cases, we first show that there are unique
connected critical submanifolds Y−, Y+ ⊂X with n−Y−(Y−) = 0 and n+Y+(Y+) = 0. The function H
reaches its global minimum along Y− and maximum along Y+; there are no other local minima or
maxima. We then show that H−1(c) is connected whenever c∈ (minH,maxH) is a regular value
of H. The claim for arbitrary c∈R then follows from Lemma 4.9 below.

Proof 1 of Proposition 4.8 ([1]). For Y ∈π0(Crit(H)), we denote by D(E−
Y (H))⊂E−

Y (H) the
disk bundle of E−

Y (H). For c∈R, let

Xc(H) = H−1
(
(−∞, c]

)
⊂ X.

If c is a regular value of H, i.e. c 6∈H(Crit(H)), then Xc(H) is a smooth manifold with boundary
∂Xc(H)=H−1(c). If c−, c+∈R are regular values of H with c−<c+, then

Xc+(H) ∼ Xc−(H) ∪
⋃

Y ∈π0(Crit(H))
H(Y )∈(c−,c+)

D
(
E−
Y (H)

)
, (4.8)

with ∼ denoting homotopy equivalence; see [7, Section 1]. The boundaries of the disk bundles
on the right-hand side above are attached to ∂Xc−(H); the right-hand side is then a deformation
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retract of the left-hand side.

If Y ∈π0(Crit(H)) and n−Y (H)= 0 (i.e. H has a local minimum along Y ), then adding D(E−
Y (H))

as in (4.8) adds a topological component to Xc−(H). If Y ∈π0(Crit(H)) and n−Y (H)≥ 2, then at-
taching D(E−

Y (H)) as in (4.8) has no impact on the topological components of Xc−(H) vs Xc+(H).
Since n−Y (H) 6=1 for any Y ∈ π0(Crit(H)) and X is connected, it follows that there is a unique
Y− ∈ π0(Crit(H)) with n−Y−(H)= 0; thus, H(Y−)=minH. Since n−Y (−H)=n+Y (H), the same rea-

soning shows that there is a unique Y+ ∈ π0(Crit(H)) with n+Y+(H) = 0; thus, H(Y+) = maxH.
Furthermore, Xc(H) is connected for every c∈R.

We can assume that H is not a constant function. Let c ∈ (minH,maxH) be a regular value.
By (4.8), Xc(H) is a homotopy equivalent to a CW complex with cells of dimension at most the
maximum of the numbers

dimD
(
E−
Y (H)

)
= n0Y (H)+n−Y (H) = dimX−n+Y (H) < dimX−1 = dim ∂Xc(H)

taken over Y ∈ π0(Crit(H)) with H(Y ) < c. The inequality above holds because n+Y (H) 6= 0 for
Y 6=Y+ and n+Y (H) 6=1 for any Y ∈π0(Crit(H)). Thus, Hk(Xc(H);Z2)=0 for k≥dim ∂Xc(H) and
the boundary homomorphism

∂ : HdimX

(
Xc(H);Z2

)
−→ Hdim ∂Xc(H)

(
∂Xc(H);Z2)

in the homology exact sequence for (Xc(H), ∂Xc(H)) is surjective. Since Xc(H) is connected, the
domain of this homomorphism is isomorphic to Z2. It follows that ∂Xc(H)=H−1(c) is connected.

Thus, H−1(c)⊂X is connected for every c∈R−H(Crit(H)). Since H(Crit(H))⊂R is a finite subset,
Lemma 4.9 below implies that H−1(c)⊂X is connected for every c∈R.

Proof 2 of Proposition 4.8 (modification of [21, pp233,4]). By definition,

X =
⊔

Y ∈π0(Crit(H))

X+
Y (H) =

⊔

Y ∈π0(Crit(H))

X−
Y (H) . (4.9)

Since n−Y (H) 6=1 for any Y ∈ π0(Crit(H)),

⋃

Y ∈π0(Crit(H))

n−

Y (H)=0

X+
Y (H) = X −

⋃

Y ∈π0(Crit(H))

n−

Y (H)≥2

X+
Y (H).

Since X is connected and each submanifold X+
Y (H)⊂X on the right-hand side above is of codi-

mension n−Y (H) ≥ 2 by Proposition 4.7(1), the union on the left-hand side is connected. Since
each submanifold X+

Y (H) ⊂ X on the left-hand side is open, it follows that there is a unique
Y−∈π0(Crit(H)) with n−Y−(H)=0; thus, H(Y−)=minH. By the same reasoning with the second

partition in (4.9), there is a unique Y+∈π0(Crit(H)) with n+Y+(H)=0; thus, H(Y+)=maxH.
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We can assume that H is not a constant function. Let ǫ be as in Proposition 4.7(4) with Y =Y−
and c∈(minH,maxH) be a regular value. By (4.9),

H−1(c)−
⋃

Y ∈π0(Crit(H))

n−

Y (H)≥2

X+
Y (H) = H−1(c)∩X+

Y−
(H)

≈ H−1
(
minH+ǫ

)
−

⋃

Y ∈π0(Crit(H))
H(Y )∈(minH,c)

H−1
(
minH+ǫ

)
∩X−

Y (H) ;
(4.10)

the diffeomorphism ≈ above is obtained via the gradient flow. Since H−1(minH+ǫ) is transverse
to each X−

Y (H), the codimension of the last intersection above in H−1(minH+ǫ) is the codimen-
sion of X−

Y (H) in X, i.e. n+Y (H)≥2. The last inequality holds because n+Y (H) 6=0 for Y 6=Y+ and
n+Y (H) 6=1 for any Y ∈π0(Crit(H)). Since H−1(minH+ǫ) is diffeomorphic to the connected man-
ifold S(E+

Y−
(H)) by Proposition 4.7(2), the right-hand side in (4.10) is connected as well. Since

the codimension of H−1(c)∩X+
Y (H) in H−1(c) is n−Y (H) and n−Y (H)>0 whenever Y 6=Y−, it then

follows from (4.10) that H−1(c) is also connected.

By the above H−1(c)⊂X is connected for every c ∈ R−H(Crit(H)). Since H(Crit(H))⊂R is a
finite subset, Lemma 4.9 below implies that H−1(c)⊂X is connected for every c∈R.

Lemma 4.9. Let X be a compact connected manifold (or more generally a topological space which
is sequentially compact, connected, locally connected, and normal). Suppose f : X −→ R is a
continuous function and P ∗⊂R is a dense subset. If f−1(c)⊂X is connected for every c∈P ∗, then
f−1(c)⊂X is connected for every c∈R.

Proof. Suppose c ∈R−P ∗ and f−1(c) =A∪B for some disjoint nonempty subsets A,B that are
closed in f−1(c) and thus in X. Let UA, UB ⊂X be disjoint open subsets such that A⊂UA and
B ⊂ UB. Let W ⊂ R be a neighborhood of c such that f−1(W )⊂ UA∪UB (its existence follows
from the first countability of R, sequential compactness of X, and the continuity of f). For each
x∈A∪B, choose a connected neighborhood Vx of x in f−1(W ). The subsets

VA ≡
⋃

x∈A

Vx and VB ≡
⋃

x∈B

Vx

of X are then open disjoint neighborhoods of A and B, respectively, in X. If f−1(cA)∩VA 6=∅ for
some cA<c, then

f−1(c′)∩VA 6= ∅ ∀ c′∈(cA, c).
If in addition f(x)<c for some x∈VB, then there exists c∗∈(cA, c) such that

c∗ ∈ P ∗, f−1(c∗)∩UA 6= ∅, and f−1(c∗)∩UB 6= ∅.

Since f−1(c∗) ⊂ UA∩UB, this would contradict the assumption that f−1(c∗)⊂M is connected for
every c∗∈P ∗. We can thus assume that f(x)≤c for all x∈VA and f(x)≥c for all x∈VB. Then

ŨA ≡ f−1
(
(−∞, c)

)
∪VA and ŨB ≡ f−1

(
(c,∞)

)
∪VB

are disjoint nonempty open subsets of X that cover X. However, this contradicts the assumption
that X is connected.
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Exercise 4.10. Let X be a compact connected manifold (or more generally a topological space
which is sequentially compact, connected, and normal). Suppose P is a first countable topological
space, f : X−→P is a continuous open surjective map, and P ∗⊂P is a dense subset. Show that if
f−1(c)⊂X is connected for every c∈P ∗, then f−1(c)⊂X is connected for every c∈P .

5 Properties of Moment Polytopes

5.1 Complexified Hamiltonian group actions

This section establishes Theorem 2(2). The key steps in the proof are Lemma 5.2, which describes
the behavior of the moment map µ on Ox, and Proposition 5.6, which concerns the images of Ox
and Ox−Ox under µ.

Exercise 5.1. Suppose ψ is a smooth action of a torus T on a compact almost complex mani-
fold (M,J), i.e. ψ preserves J . Show that (1.6) determines a complexification ψC of ψ if either T
is one-dimensional or J is integrable. Hint: J is preserved by ψ if and only if LζvJ =0 for every
v∈T1T

k, where L is the Lie derivative and ζv∈Γ(X;TX) is as in (1.2); J is integrable if and only
LJξJ=J(LξJ) for every ξ∈Γ(X;TX).

Lemma 5.2. Suppose T is a torus, (X,ω, ψ, µ) is a Hamiltonian T-manifold, and ψC is a complex-
ification of ψ with respect to a T-invariant ω-compatible almost complex structure J as in (1.6).
For each v∈T1T, let ζv∈Γ(X;TX) and µv∈C∞(X) be as in (1.2) and (2.2), respectively. Then,

d

dt
µv

(
ψC;[itv′](x)

)
= −g(ζv, ζv′)

∣∣
ψ
C;[itv′](x)

∀ v, v′∈T1T, x∈X, (5.1)

where g(·, ·)≡ω(·, J ·) is the Riemannian metric determined by ω and J . Furthermore,

µ
(
ψC;[iv](x)

)
6= µ(x) ∈ T1T

∗ ∀ v∈T1T, x∈X s.t. ζv(x) 6=0.

Proof. By (1.4), (1.6), and Proposition 3.8(1),

d

dt
µv

(
ψC;[itv′](x)

)
≡ dψ

C;[itv′](x)
µv

(
d

dt
ψC;[itv′](x)

)
= −ω

(
ζv
(
ψC;[itv′](x)

)
,
(
Jζv′

(
ψC;[itv′](x)

)))
.

This gives (5.1). Along with Proposition 3.8(1) again, this implies that

R −→ R, t −→ µv
(
ψC;[itv](x)

)
,

is a strictly decreasing function unless ζv(x)=0. This gives the second claim of the lemma.

Exercise 5.3. Suppose T, (X,ω, µ, ψ), ψC, J , g, ζv, and µv are as in Lemma 5.2. Suppose in
addition X is compact. Show that the limit

x∞(v) ≡ lim
t−→∞

ψC;[itv](x) ∈ X (5.2)

exists for all v∈T1T and x∈X and satisfies

ζv
(
x∞(v)

)
= 0, dx∞(v)µv = 0, µv

(
x∞(v)

)
= inf

t∈R
µv

(
x∞(v)

)
,

(
ψC;u(x)

)
∞
(v) = ψC;u

(
x∞(v)

)
∀u∈TC .

(5.3)
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Suppose ψ is a smooth action of a torus T on a smooth manifold X. For x∈X and v ∈ T1T, let
Tx(ψ)⊂T be as in (1.3) with G=T and Tx;v(ψ)⊂T be the closed subgroup spanned by Tx(ψ) and
the closure of {etv : t∈R} in T.

Corollary 5.4. Suppose T, (X,ω, ψ, µ), ψC, and µv are as in Lemma 5.2, with X compact, x∈X,
v ∈ T1T, and x′∞(v)∈X is as in (5.2). Let Ox ⊂ Ox be the TC-orbit of x and its closure in X,
respectively. Then, there exists a topological component Zx;v of the Tx;v(ψ)-fixed locus XTx;v(ψ)⊂X
so that

x′∞(v) ∈ Zx;v and inf
t∈R

µv
(
x′∞(v)

)
= µv

(
Zx;v

)
= inf

Ox
µv = inf

Y ∈π0(Xψ)

Y ∩Ox 6=∅

µv(Y ) ∀x′∈Ox. (5.4)

Proof. Let x′ ∈ Ox. By the continuity of the action ψ, x′∞(v) is fixed by Tx′(ψ) = Tx(ψ). By
the first equation in (5.3), x′∞(v) is also fixed by the closure of {etv : t ∈ R} in T. Thus, x′∞(v)
lies in XTx;v(ψ), which is a closed symplectic submanifold of (X,ω) by Proposition 3.14(1). Let
Zx;v ⊂ XTx;v(ψ) be the component containing x∞(v). Since TC is connected, the last equation
in (5.3) implies that x′∞(v)∈Zx;v as well.

Since dµv vanishes on X
Tx;v(ψ), µv is constant on Zx;v. Along with the third equation in (5.3), this

yields the first equality in the second equation in (5.4). Thus,

inf
Ox
µv = inf

Ox
µv = µv(Zx;v). (5.5)

If v∈T1T is generic, Tx;v(ψ)=T and so Zx;v⊂Xψ. Thus,

inf
Ox

µv ≤ inf
Y ∈π0(Xψ)

Y ∩Ox 6=∅

µv(Y ) ≤ µv
(
Zx;v

)
= inf

Ox
µv =⇒ inf

Ox
µv = inf

Y ∈π0(Xψ)

Y ∩Ox 6=∅

µv(Y ).

By the compactness of Ox and the continuity of µ in both inputs, the last equality holds for all
v ∈ T1T. Combining this equality with (5.5), we obtain the last equality in the second equation
in (5.4).

Corollary 5.5. Suppose T, (X,ω, ψ, µ), ψC, and µv are as in Lemma 5.2, x ∈X, and Ox ⊂Ox
are as in Corollary 5.4. Then,

Ox−Ox =
{
x′∈Ox : ∃ v∈T1T s.t. µv(x

′)=inf
Ox

µv, dxµv 6=0
}
. (5.6)

Proof. Let T c
1
T⊂T1T be a complement of

T1Tx(ψ) =
{
v∈T1T : dxµv=0

}
(5.7)

and S(T c
1
T)⊂T c

1
T be the unit sphere with respect to some metric. In particular,

Ox =
{
ψC;v+iv′(x) : v, v

′∈T c
1
T
}
.

By (1.6) and (3.18), ψC;itv is the negative gradient flow ψµv ;t of µv with respect to the metric
g(·, ·)=ω(·, J ·), with J as in (1.6). Since dx′µv 6=0 for all x′∈Ox, the continuous function

T×S(T c
1
T)×R −→ R, h

(
u, v, t

)
= µv

(
ψC;itv(ψu(x))

)
,
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is thus decreasing in t. In particular, the left-hand set in (5.6) contains the right-hand set. By (5.4),

lim
t−→∞

h(u, v, t) = inf
Ox

µv ∀ u∈T, v∈S(T c
1
T). (5.8)

Suppose y∈Ox−Ox is the limit of a sequence ψC;itkvk(ψuk(x)) with uk ∈T converging to some u,
vk∈S(T c1T) converging to some v, and tk∈R converging to ∞. Since the functions h(uk, vk, t) are
decreasing in t and µv is a continuous function on X, (5.8) implies that µv(y)=infOx µv.

For a polytope P ⊂T∗
1
T, we denote by ∂P ⊂P the union of the proper faces of P . Let IntP =P−∂P .

With T, (X,ω, ψ, µ), ψC, x∈X, and Ox⊂X as in Theorem 2(2), let

Px
(
ψC

)
= CH

(
µ
{
Y ∈π0(Xψ) : Y ∩Ox 6=∅

})
.

Proposition 5.6. Suppose T, (X,ω, ψ, µ), ψC, x∈X, and Ox⊂Ox are as in Theorem 2(2). Then,

µ(Ox) = IntPx
(
ψC

)
, µ

(
Ox−Ox

)
= ∂Px

(
ψC

)
, (5.9)

and the map Ox/T−→T ∗
1
T induced by µ is injective.

Proof. For each v ∈ T1T, the map

Lv : T
∗
1
T −→ R, Lv(α) = α(v), (5.10)

is a linear functional and µv ≡Lv ◦µ : X −→R. Let Tcx ⊂T be a subtorus complementary to the
identity component (Tx(ψ))0 of Tx(ψ) and ι : T

c
x−→T be the inclusion so that

µcx≡ ι∗◦µ : X −→ T ∗
1
Tcx

is a moment map for the restriction of the T-action ψ on Tcx. In particular,

Ox≡TCx = (Tcx)Cx,
{
Y ∈π0(Xψ) : Y ∩Ox 6=∅

}
=

{
Y ∈π0(XTcx) : Y ∩Ox 6=∅

}
,

Ox/T = Ox/Tcx, µ
(
Ox) ⊂ (T ∗

1
T)µ;x≡

{
α∈T ∗

1
T : Lv(α)=Lv

(
µ(x)

)
∀ v∈T1Tx(ψ)

}
.

Since ι∗ : (T ∗
1
T)µ;x−→T ∗

1
Tcx is a homeomorphism sending line segments to line segments, it suffices

to establish the claims with (ψ, µ) replaced by (ψ|Tcx , µcx). We can thus assume that (Tx(ψ))0={1},
as is done below.

For v∈T1T, let ζv∈Γ(X;TX) be as in (1.2). Since

(
Tx′(ψ)

)
0
=

(
Tx(ψ)

)
0
= {1} ∀ x′∈Ox,

ζv(x
′) 6=0 for all v∈T1T−{0} and x′∈Ox. By Lemma 5.2, the map

T1T −→ T ∗
1
T, v −→ µ

(
ψC;iv(x)

)
,

is thus a diffeomorphism onto an open subset of T ∗
1
T. Since µ is T-invariant, this open subset

is µ(Ox). By the last equality in the second equation in (5.4), µ(Ox)⊂Px(ψC). Thus, the polytope
Px(ψC)⊂T ∗

1
T is of full dimension, µ(Ox)⊂ IntPx(ψC), and the last claim of the proposition holds.
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For v ∈ T1T−{0}, the level sets of Lv are hyperplanes. Thus, the restriction of µv≡Lv◦µ to Ox
achieves its minimum along the preimage of a proper face of Px(ψC) under µ and not at any point
of µ−1(IntPx(ψC)); the former preimage contains Y ∩Ox for at least one element Y ∈π0(Xψ) with
Y ∩Ox 6=∅. From the compactness of Ox and (5.6), we then conclude that

µ(Ox)−µ(Ox) ⊂ µ
(
Ox−Ox

)
=

{
µ(x′) : x′∈Ox, ∃ v∈T1T−{0} s.t. µv(x′)=inf

Ox
µv

}
⊂ ∂Px(ψC).

Thus, µ(Ox)⊃ IntPx(ψC), which establishes the first equality in (5.9). The second equality in (5.9)
then follows from the compactness of Ox.

Proof of Theorem 2(2). The two equations in (5.9) give (2b), as well as (2c) with σ=IntPx(ψC).
Suppose σ is the interior of a proper face F of Px(ψC). Choose v∈T1T and c∈R be so that

F = Px(ψC)∩L−1
v (0),

with Lv as in (5.10). Let Zx;v⊂X be as in (5.4). Thus,

µ−1(F )∩Ox ⊂ Crit(µv), µv|µ−1(F ) = c,

and Zx;v is a topological component of Crit(µv) with µv|Zx;v = c. By (1.6) and (3.18), ψC;itv

is the negative gradient flow ψµv ;t of µv with respect to the metric g(·, ·)=ω(·, J ·), with J as
in (1.6). By the first statement in (5.4), Ox⊂X+

Zx;v
(µv). The first statement of Proposition 4.5,

Proposition 4.7(6), and the last equation in (5.3) then imply that

µ−1(F )∩Ox = µ−1
v (c)∩Ox ⊂ {x′∞(v) : x′∈Ox} = Ox∞(v).

Thus, Ox∞(v)=µ
−1(F )∩Ox. From (5.9) with x replaced by x∞(v), we then conclude that

µ−1(σ)∩Ox = µ−1(σ)∩Ox∞(v) = Ox∞(v).

This establishes (2c). Since Oy={y} for any y∈Xψ, (2a) follows from (2c).

Since the moment map µ is T-invariant, the map

Ox/T −→ µ(Ox), [x′] −→ µ(x′), (5.11)

is well-defined. It is surjective by definition. Its domain is compact, while the target is Hausdorff.
By (2c), for every open face σ of the polytope µ(Ox) there exists xσ∈Ox so that µ−1(σ)∩Ox=Oxσ .
By the last statement of Proposition 5.6 with x replaced by xσ, the restriction of the map (5.11) to
µ−1(σ)∩Ox/T is thus injective for every open face σ of µ(Ox). It follows that the entire map (5.11)
is injective as well and thus a homeomorphism.

Exercise 5.7. Show that

(a) the S1-action on CP 2 given by

S1×CP 2 −→ CP 2, u·
[
z0, z1, z2

]
=

[
z0, u

2z1, u
3z2

]
,

is effective and Hamiltonian with respect to the symplectic form ωFS;2 of Exercise 2.7;

(b) the closure Ox of the C∗-orbit Ox is a rational cubic curve for any point x≡ [z0, z1, z2] in CP 2

with z0, z1, z2 6=0.

41



5.2 Proofs of Theorems 1, 2(1), and 3(0+)

The last statement of Corollary 3.28 establishes (Dk). As already noted in Section 1, (Fk) is a
straightforward consequence of the equivariant splitting (3.5) of TX|Y for each Y ∈π0(Xψ) and is
deduced first below. We then establish the main part of the proof of Theorem 1, (A⋆k) on page 4,
and wrap up this section with the remaining statements of Theorem 1, Theorem 2(1), and (0+) on
page 8.

Proof of (Fk). For each L ∈ RPk−1, let XL ⊂ X be the fixed locus of the action ψ|L. By the
second equality in (3.17) and Proposition 3.8(1),

Crit(µ) =
{
x∈XL : L∈RP k−1

}
.

By Proposition 3.14(1),XL⊂X is a compact symplectic submanifold. Every topological component
Z⊂XL is preserved ψ. The restriction of the ψ-action to such a component is Hamiltonian. Thus,

Z∩Xψ = Zψ 6= ∅ ∀ Z∈π0(XL), L∈RP k−1

by Exercise 3.23(a). Along with Corollary 3.7, this implies that Crit(µ) is a finite union of the
topological components Z of the symplectic submanifolds XL⊂X with L∈RP k−1. By the second
equality in (3.17) and Proposition 3.8(1), the smooth map

µv : X −→ T ∗
0R

k, µv(x) = {µ(x)}(v), (5.12)

is constant along each topological component Z⊂XL for every v∈L, i.e. for any v∈L there exists
cv∈R so that

µ(Z) ⊂
{
α∈T ∗

0R
k : α(v)=cv

}
;

the right-hand side above is a hyperplane in T ∗
0R

k if v 6=0.

Lemma 5.8. Suppose k∈Z≥0, (X,ω) is a symplectic manifold, ψ1, . . . , ψk+1 are R-actions on (M,ω)
with Hamiltonians

H1, . . . , Hk+1 : X −→ R,

respectively, the R-action ψk+1 is almost periodic, and its Hamiltonian Hk+1 is ψi-invariant for
every i∈ [k]. If c∈Rk is a regular value of the map

H≡
(
H1, . . . , Hk) : X −→ Rk,

then the submanifolds Z≡H−1(c) and Crit(Hk+1) of X are transverse, Z∩Crit(Hk+1) is an open
subset of Crit(Hk+1|Z), and

Tx
(
Z∩Crit(Hk+1)

)
= TxZ∩TxCrit(Hk+1) = E0

x

(
Hk+1|Z

)
, n±x

(
Hk+1|Z

)
= n±x (Hk+1) ∈ 2Z≥0

for all x∈Z∩Crit(Hk+1).

Proof. By the first statement of Proposition 4.5, Crit(Hk+1)⊂X is a closed symplectic submanifold
and Hk+1 : X−→R is a Morse-Bott function. Since c∈Rk is a regular value of H, Z≡H−1(c) is a
submanifold of X. In light of Exercise 4.4 and the first statement of Proposition 4.5, it remains to
prove that the submanifolds Crit(Hk+1), Z⊂X are transverse. Let Y ∈π0(Crit(Hk+1)).
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Let ζ1, . . . , ζk ∈ Γ(X;TX) be the vector fields generating the R-actions ψ1, . . . , ψk and thus sat-
isfying the middle equation in (2.5) with ζvi = ζi. Since Hk+1◦ψi=Hk+1 for each i ∈ [k], ψi
preserves Crit(Hk+1) and thus Y . Therefore,

ζi
∣∣
Y
∈ Γ(Y ;TY ) ⊂ Γ

(
Y ;TX|Y

)
∀ i∈ [k].

If x∈Z, then dxH1, . . . , dxHk vanish on TxZ. Since dxH is surjective, it follows that

dxH≡
(
dxH1, . . . , dxHk

)
: TxX/TxZ −→ Rk (5.13)

is a well-defined isomorphism. The middle equation in (2.5) with ζvi = ζi then implies that the
tangent vectors ζ1(x), . . . , ζk(x)∈TxX are linearly independent.

Suppose x∈Y ∩Z and (r1, . . . , rk)∈Rk−{0}. Since
r ·ζ(x) ≡ r1ζ1(x)+. . .+rkζk(x) ∈ TxY −{0}

and ω|TxY is a nondegenerate, there exists w∈TxY so that

k∑

i=1

ridxHi(w) ≡ −ω
(
r ·ζ(x), w

)
6= 0.

Thus, the restrictions of dxH1, . . . , dxHk to TxY are linearly independent. Since (5.13) is a well-
defined isomorphism, it follows that TxX=TxY ⊕TxZ, i.e. the submanifolds Y, Z⊂X are transverse
at x.

Corollary 5.9. Suppose k∈Z≥0, (X,ω) is a symplectic manifold, ψ̃ is an almost periodic Rk+1-
action on (X,ω) with Hamiltonian

H̃≡(H,Hk+1) : X −→ Rk×R=Rk+1.

If c∈Rk is a regular value of H, then the restriction of Hk+1 to the submanifold Z≡H−1(c) of X
is a Morse-Bott function with n±x (H)∈2Z≥0 for every x∈Crit(Hk+1|Z).
Proof. LetH=(H1, . . . , Hk) and x∈Crit(Hk+1|Z). Suppose x∈Crit(Hk+1|Z). Since the map (5.13)
is a well-defined isomorphism,

dxHk+1 = r1H1+. . .+rkHk : TxX −→ R

for some r≡(r1, . . . , rk)∈Rk. The map

Hk+1;r≡Hk+1−
(
r1H1+. . .+rkHk

)
: X −→ R

is then a Hamiltonian for an almost periodic R-action on (X,ω) so that x∈Z∩Crit(Hk+1;r). This

Hamiltonian is preserved by the restriction of the action ψ̃ to Rk×{0}. Since Hk+1;r−Hk+1 restricts
to the constant r ·c on Z,
Crit

(
Hk+1;r|Z

)
= Crit

(
Hk+1|Z

)
, E0

x

(
Hk+1;r|Z

)
= E0

x

(
Hk+1|Z

)
, n±x

(
Hk+1;r|Z

)
= n±x

(
Hk+1|Z

)
.

By Lemma 5.8, the closed submanifold Z∩Crit(Hk+1;r) of Z is thus an open subset of Crit(Hk+1),

Tx
(
Z∩Crit(Hk+1;r)

)
= E0

x

(
Hk+1|Z

)
, and n±x

(
Hk+1|Z

)
∈ 2Z≥0. (5.14)

We conclude that Crit(Hk+1|Z) is a finite union of submanifolds Z∩Crit(Hk+1;r) of Z with r∈Rk,
each of which is a union of the topological components of Crit(Hk+1|Z) and satisfies (5.14) for all
x∈Z∩Crit(Hk+1;r).
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Proof of (A⋆
k) on page 4. The claim is trivially true for k = 0. We assume that it is true for

some k∈Z≥0 and show that it also holds with k replaced by k+1. Let

H̃≡(H,Hk+1) : X −→ Rk×R=Rk+1

be a Hamiltonian for an almost periodic Rk+1-action ψ̃ on (X,ω) and c̃≡(c, ck+1)∈Rk×R.

Suppose first that c∈Rk is a regular value of H and thus Z⊂H−1(c) is a closed submanifold of X.
It is connected by the inductive assumption. By Corollary 5.9, Hk+1|Z is a Morse-Bott function
with n±x (Hk+1|Z)∈2Z≥0. By Proposition 4.8,

H̃−1(c̃) ≡
{
Hk+1|Z

}−1(
ck+1

)
⊂ X

is thus connected.

Let RkH ⊂ Rk and Rk+1

H̃
⊂ Rk+1 be the subsets of regular values of H and H̃, respectively. In

particular,

Rk+1

H̃
=

{
c̃∈Rk+1 : dxH1, . . . , dxHk+1∈T ∗

xX are lin. independent ∀x∈H̃−1(c̃)
}
.

Since the subset H̃−1(c̃)⊂X is compact for every c̃∈Rk+1, the subset Rk+1

H̃
⊂Rk+1 is open. The

function
Rk+1

H̃
−→ Z≥0, c̃ −→

∣∣π0
(
H̃−1(c̃)

)∣∣, (5.15)

is constant on the connected components of Rk+1

H̃
and takes value 0 or 1 on Rk+1

H̃
∩(RkH×R). Since

the subset RkH ⊂Rk is dense by Sard’s Theorem and each connected component of Rk+1

H̃
is open

in Rk+1, the function (5.15) takes value 0 or 1 on each connected component of Rk+1

H̃
, i.e. H̃−1(c̃)⊂X

is connected for every c̃∈Rk+1

H̃
.

Proof of (Ak). By Exercises 3.10 and 2.4, we can assume that the action ψ is irreducible. Let
(T ∗

0R
k)µ⊂T ∗

0R
k be the subset of regular values of µ. By (Fk), µ

−1((T ∗
0R

k)µ)⊂X is the complement
of a finite union of submanifolds of positive codimensions. Thus, the subset

P ∗ ≡ µ
(
µ−1

(
(T ∗

0R
k)µ

))
⊂ µ(X)≡P

is dense in P . By (Dk), the map µ : X−→P is open. By (A⋆k), µ
−1(α)⊂X is connected for every

α∈P ∗. Thus, (Ak) now follows from Exercise 4.10.

Proof of (Bk). This claim is trivially true for k = 0. Suppose k ∈ Z+ and H : X−→Rk is a
Hamiltonian for an almost periodic Rk-action ψ̃ on (X,ω). For a k×(k−1) real matrix A, the
Rk−1-action ψA≡ψ◦A is then also almost periodic with Hamiltonian

HA≡Atr◦H : X −→ Rk−1 .

Suppose x0, x1∈X. Let A be a k×(k−1) injective real matrix A so that

H(x1)−H(x0) ∈ kerAtr.
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Thus, x1∈H−1
A (HA(x0)) and

H(x1) ∈ H
(
H−1
A

(
HA(x0)

))
⊂

{
H(x0)+c : c∈kerAtr

}
.

Since kerAtr is a line and H−1
A

(
HA(x0)

)
⊂X is connected by (Ak),

H
(
H−1
A

(
HA(x0)

))
⊂ H(X)

contains the line segment between H(x0) and H(x1). Thus, H(X)⊂Rk is convex.

Proof of (Ck). Let ρ : Rk −→ T and ψ′ be as in (1.5). We can assume that the image of ρ is
dense in T and so Xψ=Xψ′

. The first claim then follows from Proposition 3.14(1). By Proposi-
tion 3.8(1) and the first equation in (1.4), dµ vanishes along Xψ; this implies the second claim.
By (Bk), µ(X)⊂CH(µ(Xψ)).

Suppose η0∈T ∗
0R

k−CH(µ(Xψ)). Thus, there exists v∈T0Rk so that

η0(v) < min
{
η(v) : η∈µ(Xψ)

}
= min

{
η(v) : η∈CH

(
µ(Xψ)

)}
. (5.16)

Let y∈X be a minimum of the smooth function µv as in (5.12) Thus, dyµv=0, the vector field ζv
as in (1.2) vanishes at y, and y lies in the fixed locus XRv of the restriction of the ψ-action to
Rv⊂Rk. For a generic choice of v∈Rk satisfying (5.16), ρ(Rv)⊂T is dense and thus XRv=Xψ. It
follows that

η0(v) < min
{
η(v) : η∈µ(Xψ)

}
= min

{
µv(x) : x∈X

}
= min

{
η(v) : η∈µ(X)

}
,

i.e. η0 6∈µ(X).

Thus, µ(X) = CH(µ(Xψ)). The vertices of this polytope are of the form µ(Y ) with Y ∈ π0(Xψ).
By (3.25), the number of edges at any such vertex µ(Y ) is at most |S(Y )|. Since the real rank of
each subbundle Nα

XY ⊂TX|Y is at least 2, |S(Y )|≤(dimX)/2.

Proof of (Ek). Suppose Y ∈π0(Xψ). Let ρ, J , S(Y ), Nα
XY for each α∈S(Y ), and Cµ(Y )(ρ

∗S(Y ))

be as in Proposition 3.27. If ρ∗S(Y ) does not span T ∗
0R

k over R, there exists

v ∈ T0Rk−{0} s.t. {ρ∗α}(v) =0 ∀α∈S(Y ).

The subgroup Rv⊂Rk then acts trivially on TX|Y . By Proposition 3.3(1), this implies that the
connected component of the Rv-fixed locus XRv containing Y is a connected component of X,
i.e. Rv acts trivially on X (and so the action ψ is reducible), since X is connected. If the action ψ
is reducible, then Rv⊂Rk acts trivially on X and thus on TX|Y for some v ∈ T0Rk nonzero and
thus {ρ∗α}(v) =0 for every α∈S(Y ), i.e. ρ∗S(Y ) does not span T ∗

0R
k over R.

Thus, ρ∗S(Y ) spans T ∗
0R

k over R if and only if the action ψ is irreducible. Suppose µ(Y )∈Ver(µ(Xψ))
is a vertex of the polytope µ(X)=CH(µ(Xψ)). By Proposition 3.27, the edges of µ(X) at µ(Y )
are the edges of the cone Cµ(Y )(ρ

∗S(Y )). A subset Sµ(Y ) of ρ∗S(Y ) thus forms a collection of
edge vectors of the polytope µ(X) at the vertex µ(Y ), while the elements of ρ∗S(Y )−Sµ(Y ) lie
in the span of Sµ(Y ). We conclude that Sµ(Y ) spans T ∗

0R
k over R if and only if the action ψ is

irreducible.
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Proof of Theorem 2(1). Suppose Y ∈ π0(Xψ). Let ρ, J , S(Y ), and Nα
XY for each α ∈ S(Y )

be as in Proposition 3.27 with (Rk, 0) replaced by (T, 1) and thus ρ = id. As above, a sub-
set Sµ(Y ) of ρ∗S(Y )=S(Y ) forms a collection of edge vectors of the polytope µ(X) at µ(Y ). Since
S(Y )⊂(T ∗

1
T)Z, all edges of the polytope µ(X) at µ(Y ) are rational.

Proof of (0+) on page 8. Let ρ, J , S(Y ) for each Y ∈ π0(Xψ), Nα
XY for each α ∈ S(Y ), and

Cµ(Y )(ρ
∗S(Y )) be as in Proposition 3.27 with (Rk, 0) replaced by (T, 1) and thus ρ=id. By (3.25)

and (1.7), |S(Y )| is at most the dimension of T. Since the action ψ is effective, Proposition 3.6(1)
then implies that S(Y ) is a Z-basis for T ∗

1
T for every Y ∈ π0(Xψ); this remains the case if some

of the elements of S(Y ) are negated. In particular, the polytope µ(X)⊂T ∗
1
T is of full dimension.

Furthermore, for every Y ∈π0(Xψ), the cone Cµ(Y )(S(Y )) contains no lines, µ(Y )∈Ver(µ(X)), and

for every S⊂S(Y ) the µ-image of the topological component XS
Y of the ψ|TS -fixed locus XS con-

taining Y lies in the cone Cµ(Y )(S) of dimension |S| and contains a neighborhood of the vertex µ(Y )
of this cone.

By Proposition 3.14(1), (XS
Y , ω|XS

Y
, ψ|XS

Y
, µ|XS

Y
) is a closed connected Hamiltonian T-manifold for

every Y ∈π0(Xψ) and S⊂S(Y ). Thus,

µ(XS
Y ) = CH

(
µ
(
(XS

Y )
ψ
))

= CH
(
µ(Xψ∩XS

Y )
)

by Theorem 1(Ck). Since µ(X
ψ∩XS

Y )⊂Ver(µ(X)), it follows that µ(XS
Y ) is the face Fµ(Y );S(µ(X))

of the polytope µ(X) containing the edges

eµ(Y );α ≡ µ(X)∩{µ(Y )+tαα : tα∈R≥0}

with α∈S. Since S(Y ) is a Z-basis for T ∗
1
T for every Y ∈π0(Xψ), Exercise 3.24 implies that for

each x∈X there exist Yx ∈π0(Xψ) and Sx⊂S(Yx) so that the ψ-stabilizer Tx(ψ)⊂T of x is the
subtorus TSx⊂T and x∈XSx

Yx
. It follows that

µ−1
(
F ◦
µ(Y );S(µ(X))

)
=

{
x∈XTS

Y : Tx(ψ)=TS
}

∀ Y ∈π0(Xψ), S⊂S(Y ), (5.17)

where F ◦
µ(Y );S(µ(X))⊂Fµ(Y );S(µ(X)) is the interior.

Suppose e∈Edg(µ(X)) is an edge of the polytope µ(X) and thus e= eµ(Y );α for some Y ∈π0(Xψ)

and α ∈ S(Y ). We then set αe = α. If Y ′ ∈ π0(Xψ) is such that µ(Y ′) is the vertex of eµ(Y );α

other than µ(Y ), then −α∈S(Y ′) and e=eµ(Y ′);−α. Thus, (αe)e∈Edg(µ(X)) is a full tuple of integral
edge vectors for the polytope µ(X) such that for each vertex η of µ(X) the components αe with
e∈Edgη(µ(X)) form a Z-basis for (T ∗

1
T)Z and

TS =
⋂

α∈S

Tαeµ(Y );α
∀ Y ∈π0(Xψ), S⊂S(Y ). (5.18)

Suppose F ⊂µ(X) is a face of the polytope µ(X) and thus F =Fµ(Y );S(µ(X)) for some Y ∈π0(Xψ)
and S ⊂ S(Y ). We then set TF =TS . Thus, TF ⊂T is a subtorus. By (5.17), (0+b) holds. This
implies that TF is independent of the choice of µ(Y )∈F . By (5.18), (0+a) thus holds for all η∈F .

Let Y ∈π0(Xψ), S⊂S(Y ), and F =Fµ(Y );S(µ(X)). Since

dimY +
∑

α∈S(Y )

rkNα
XY = dimX, rkNα

XY ≥ 2 ∀α∈S(Y ), and |S(Y )| = dimT = (dimX)/2,
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we conclude that dimY = 0 and rkNα
XY = 2 for every α ∈ S(Y ). Along with Proposition 3.6(2),

this implies that
dimXTS

Y = 2|S| = 2dimF = 2dim(T/TF ) . (5.19)

Since α(v)=0 for all α∈S and v∈T1TS , the affine map

ΦY ;S :
{
µ(Y )+

∑

α∈S

tαα : tα∈R
}
−→ T ∗

1
(T/TS),

{
ΦY ;S(η)

}
(v) = η(v)−

{
µ(Y )

}
(v),

is a well-defined surjection and thus affine isomorphism by the last equality in (5.19). By (5.17), the
torus T/TF acts freely on µ−1(F ◦)⊂XTS

Y via ψ; we denote this action by ψY ;S . By Theorem 1(Ak),
the fibers of the restriction

µ : µ−1(F ◦) −→ F ◦

are connected. Since F ◦ ⊂ F is open, µ−1(F ◦)⊂XTS
Y is a symplectic submanifold. Thus, (0+c)

follows from Exercise 3.22(a) with T and (X,ω, ψ, µ) replaced by T/TS and

(
µ−1(F ◦), ω|µ−1(F ◦), ψY ;S ,ΦY ;S◦µ|µ−1(F ◦)

)
,

respectively.

6 Symplectic Quotient and Cut Constructions

6.1 Symplectic quotient

For a Lie group G, let (
T ∗

1
G
)G ≡

{
α∈T ∗

1
G : Ad∗g(α)=α ∀ g∈G

}

be the fixed locus of the dual of the adjoint action of G on T1G. If ψ is a G-action on a space X,
µ : X−→T1G is a map satisfying the second condition in (1.4), and α∈ (T ∗

1
G)G, then ψ restricts

to a G-action on µ−1(α)⊂X. If G is abelian, then (T ∗
1
G)G=T ∗

1
G.

Theorem 4 ([23, Theorems 3,4]). Suppose G is a compact Lie group, (X̃, ω̃, ψ̃, µ̃) is a Hamiltonian
G-manifold, and α∈(T ∗

1
G)G are such that G acts freely on µ̃−1(α). Then,

(0) α∈T ∗
1
G is a regular of µ̃;

(1) there is a unique smooth structure on Xα ≡ µ̃−1(α)/G so that the quotient projection

pα : µ̃
−1(α) −→ Xα

is a principal G-bundle;

(2) there exists a unique 2-form ωα on Xα so that p∗αωα= ω̃|T µ̃−1(α);

(3) the 2-form ωα is symplectic.

If G′ is another Lie group and (X̃, ω̃, ψ̃′, µ̃′) is a Hamiltonian G′-manifold such that the actions ψ̃
and ψ̃′ commute, µ̃′ is ψ-invariant, and µ̃ is ψ′-invariant, then ψ̃′ and µ̃′ descend to a G′-action ψ′

α

on Xα and a smooth map µ′α : Xα−→T1G
′, respectively, so that (Xα, ωα, ψ

′
α, µ

′
α) is a Hamiltonian

G′-manifold.
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The symplectic manifold (Xα, ωα) of Theorem 4 is called the symplectic quotient of (X̃, ω̃, ψ̃, µ̃) at α.
We will similarly call the Hamiltonian G′-manifold (Xα, ωα, ψ

′
α, µ

′
α) of this theorem the Hamiltonian

quotient of (X̃, ω̃, (ψ̃, ψ̃′), (µ̃, µ̃′)) at α.

Proof of Theorem 4. Exercise 3.21(b) establishes (0). Since G is compact, the quotient projec-
tion pα is a closed map. By [25, Lemma 37.1], the quotient space Xα is thus Hausdorff. By (0) and
the Implicit Function Theorem, µ̃−1(α)⊂X̃ is a smooth submanifold on which the compact Lie G
acts smoothly and freely. By the Slice Theorem (equivariant version of the Tubular Neighborhood
Theorem), for every x∈ µ̃−1(α) there thus exists a submanifold Sx⊂X̃ so that x∈Sx and the map

Sx×G −→ X̃, (x′, u) −→ ψu(x
′),

is a diffeomorphism onto an open neighborhood Ũx⊂ X̃ of x preserved by G. This submanifold is
then transverse to the orbits Gx′ of G and thus to µ̃−1(α). The restriction

pα : µ̃
−1(α)∩Sx −→ pα

(
µ̃−1(α)∩Ũx

)
⊂ Xα

of the quotient map is a homeomorphism onto an open subset of Xα and induces a smooth structure
on pα(µ̃

−1(α)∩Ũx) so that the restriction

pα : µ̃
−1(α)∩Ũx −→ pα

(
µ̃−1(α)∩Ũx

)

is a (trivial) principle G-bundle. Since there is at most one smooth structure on pα(µ̃
−1(α)∩Ũx) so

that the latter restriction is a submersion, the smooth structures on open subset of Xα obtained
in this way overlap smoothly. This establishes (1).

By (1), for every x∈ µ̃−1(α) the map

dxpα : Txµ̃
−1(α)

/
Tx(Gx) −→ Tpα(x)Xα

is a well-defined isomorphism. For each v ∈ T1G, let ζv ∈ Γ(X̃;TX̃) be as in (1.2) with (X,ψ)
replaced by (X̃, ψ̃). Thus,

Tx(Gx) =
{
ζv(x) : v∈T1G

}
∀x∈ µ̃−1(α) and

−
(
ιζv(x)ω̃

)∣∣
Txµ̃−1(α)

= dx
(
{µ̃(·)}(v)

∣∣
Txµ̃−1(α)

)
= dx

(
α(v)

∣∣
Txµ̃−1(α)

)
= 0 ∀ v∈T1G, x∈ µ̃−1(α).

It follows that there is a unique alternating 2-tensor ωα|pα(x) on Tpα(x)Xα for each x∈ µ̃−1(α) so that

ωα|pα(x)
(
dxpα(w), dxpα(w

′)
)
= ω̃|x(w,w′) ∀ w,w′∈Txµ̃−1(α),

i.e. p∗α(ωα|pα(x)) = ω̃|Txµ̃−1(α). Since ω is G-invariant, ωα|pα(x) does not depend on the choice
of x in p−1

α (pα(x)), i.e. ωα is a well-defined 2-form on Xα. Since pα is a submersion and the 2-
form ω̃|T µ̃−1(α) is smooth and closed, so is the 2-form ωα. Since α is a regular value of µ̃ and ω̃ is

nondegenerate on X̃, the first statement of Exercise 3.21 with (ω, µ) replaced by (ω̃, µ̃) implies that

(
Txµ̃

−1(α)
)ω̃

=
(
ker dxµ̃

)ω̃
= Tx(Gx).

Thus, ωα is nondegenerate.
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Suppose G′ is another Lie group and (X̃, ω̃, ψ̃′, µ̃′) is a Hamiltonian G′-manifold such that the
actions ψ̃ and ψ̃′ commute, µ̃′ is ψ-invariant, and µ̃ is ψ′-invariant. Since µ̃ is ψ′-invariant, ψ′

preserves µ̃−1(α)⊂X. Since the actions ψ̃ and ψ̃′ commute and µ̃′ is ψ-invariant, the restriction
of ψ̃′ and µ̃′ to µ̃−1(α) descend to a G′-action ψ′

α on Xα and a smooth map µ′α : Xα−→T1G
′. By

Exercise 2.3 with (ψ̃, ψ) replaced by (ψ̃′, ψ′), (Xα, ωα, ψ
′
α, µ

′
α) is thus a Hamiltonian G′-manifold.

Exercise 6.1. Suppose G, (X̃, ω̃, ψ̃, µ̃), α, (Xα, ωα), and pα are as in Theorem 4 and X̃ ′⊂X̃ is an
ω̃-symplectic submanifold preserved by the G-action ψ̃.

(a) Show that the symplectic quotient (X ′
α, ω

′
α) of (X̃

′, ω̃|
X̃′ , ψ̃|X̃′ , µ̃|X̃′) at α is a symplectic sub-

manifold of (Xα, ωα) and the bundle homomorphisms

N
X̃
X̃ ′

∣∣
µ̃−1(α)∩X̃′ ←− Nµ̃−1(α)

(
µ̃−1(α)∩X̃ ′

) dpα−→
{
pα|µ̃−1(α)∩X̃′

}∗NXαX ′
α (6.1)

over µ̃−1(α)∩X̃ ′ induced by the inclusions and the quotient projection are isomorphisms.

(b) Suppose that G′, ψ̃′, µ̃′, and (Xα, ωα, ψ
′
α, µ

′
α) are also as in Theorem 4 and the submanifold

X̃ ′⊂X̃ is preserved by the G′-action ψ̃′. Show that the submanifold X ′
α⊂Xα is preserved by

the G′-action ψ′, (X ′
α, ω

′
α, ψ

′
α|X′

α
, µ′α|X′

α
) is the Hamiltonian quotient of

(
X̃ ′, ω̃|

X̃′ , (ψ̃, ψ̃
′)|
X̃′ , (µ̃, µ̃

′)|
X̃′

)

at α, and the bundle isomorphisms in (6.1) are G′-equivariant.

Exercise 6.2. Suppose G, (X̃, ω̃, ψ̃, µ̃), α, (Xα, ωα), and pα are as in Theorem 4 and J̃ is a
ψ-invariant almost complex structure on X̃ compatible with ω̃. Show that

(a) the restriction of the differential

dxpα : Txµ̃
−1(α)∩J̃

(
Txµ̃

−1(α)
)
−→ Tpα(x)Xα

is an isomorphism for every x ∈ µ̃−1(α) and thus induces an almost complex structure Jα
on Xα compatible with ωα;

(b) if G′, ψ̃′, µ̃′, and (Xα, ωα, ψ
′
α, µ

′
α) are also as in Theorem 4 and the almost complex structure J̃

on X̃ is ψ̃′-invariant as well, then the almost complex structure Jα is ψ′
α-invariant;

(c) if X̃ ′⊂X̃ is an almost complex submanifold preserved by the G-action ψ̃ and (X ′
α, ω

′
α) is the

symplectic quotient of (X̃ ′, ω̃|
X̃′ , ψ̃|X̃′ , µ̃|X̃′) at α, then X

′
α is an almost complex submanifold

of Xα and the composite isomorphism from the left-hand side in (6.1) to the right-hand side
is C-linear with respect to the complex structures induced by J̃ and Jα.

Example 6.3. Let n∈Z+. By Exercise 2.5,

H : Cn −→ R, H(z1, . . . , zn) = π
n∑

k=1

|zk|2 ,

is a Hamiltonian for the standard action ψ of S1 on Cn,

ψu : C
n −→ Cn, ψu(z) = uz, ∀ u ∈ S1 ⊂ C.
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For each r∈R+, the group S1 acts freely on H−1(πr2), the sphere of radius r centered at the origin.
The associated quotient of Theorem 4 is the complex projective space CPn−1 with a symplectic
form ωCPn−1;r. By Exercise 2.7(b),

ωCPn−1;r = πr2ωFS;n−1 .

Exercise 6.4. Let n∈Z+ and q : Cn−{0}−→CPn−1 be the usual quotient projection. The C∗-
action on Cn by the coordinate multiplication restricts to a C∗-action on Cn−{0} and S1-actions
on Cn and the unit sphere S2n−1⊂Cn. Show that

(a) the quotient topologies on CPn−1 given by (Cn−{0})/C∗ and S2n−1/S1 are the same (i.e. the
map S2n−1/S1−→(Cn−{0})/C∗ induced by inclusions is a homeomorphism);

(b) CPn−1 is a compact topological 2(n−1)-manifold that admits a complex structure so that the
quotient projections

q : Cn−{0} −→ CPn−1=(Cn−{0})/C∗ and p : S2n−1 −→ CPn−1=S2n−1/S1

are a holomorphic submersion and a smooth submersion, respectively.

(c) the above complex structure is compatible with the Fubini-Study symplectic form ωFS;n−1 of
Exercise 2.7(b).

6.2 Hamiltonian symplectic cut

Suppose T is a torus. For υ≡(v, c)∈T1T×R, let

cυ = c, Hυ ≡
{
α∈T ∗

1
T : α(v)≥c

}
, and ∂Hυ ≡

{
α∈T ∗

1
T : α(v)=c

}
;

the subspaces Hυ, ∂Hυ ⊂ T ∗
1
T are a (closed) half-space and an affine hyperplane, respectively, if

v 6=0. For H ⊂T1T×R and H ′⊂H , let

〈H 〉 =
⋂

υ∈H

Hυ ⊂ T ∗
1
T, 〈H 〉∂ =

⋂

υ∈H

∂Hυ ⊂ 〈H 〉, 〈H ′〉∂H = 〈H ′〉∂∩〈H 〉 −
⋂

H ′(H ′′⊂H

〈H ′′〉∂ .

In particular, 〈∅〉=〈∅〉∂=〈∅〉∂∅ =T ∗
1
T, 〈H ′〉∂

H
⊂〈H ′〉∂ is an open subset,

〈H ′〉∩〈H −H
′〉 = 〈H 〉, and 〈H ′〉∂ ∩〈∅〉∂H −H ′ = 〈H ′〉∂H .

We call a collection H ⊂(T1T−{0})×R minimal if ∂Hυ∩〈H 〉 6=∅ for every υ∈H . Every collection
H ⊂(T1T−{0})×R with 〈H 〉 6=∅ contains a unique minimal subcollection H ′ with 〈H ′〉=〈H 〉.

If H ⊂(T1T−{0})×R is a finite collection, 〈H 〉 is a polyhedron by definition. A polytope is easily
seen to be a compact polyhedron. The converse, which is not needed for our purposes, follows
from the Minkowski-Weyl Theorem [9, Theorem 3.13], which states that a polyhedron is a finitely
generated cone on a polytope.

If H ⊂(T1T)Z×R is a finite subset, define

LH : RH −→ T1T, LH

(
(rv,c)(v,c)∈H

)
=

∑

(v,c)∈H

rv,cv ,

ΦH : TH ≡RH/ZH −→ T, ΦH

(
[r]

)
= eLH (r) , TH = ImΦH . (6.2)
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In particular, TH ⊂ T is a subtorus. We call a finite subset H ⊂ (T1T)Z×R Delzant if ΦH ′ is
injective for every subset H ′ ⊂H such that 〈H ′〉∂ ∩〈H 〉 6= ∅. This implies in particular that
v ∈ (T1T)Z is primitive for every element (v, c) ∈H such that ∂Hv,c∩〈H 〉 6=∅ and TH ′ ⊂ T is a
subtorus of dimension |H ′| for every subset H ′⊂H such that 〈H ′〉∂∩〈H 〉 6=∅.
Exercise 6.5. Let T be a torus and H ⊂(T1T)Z×R be a finite subset.

(a) Suppose T′⊂T is a subtorus of T so that H ⊂(T1T
′)Z×R. Show that the images of

〈H 〉, 〈H 〉∂ , 〈H ′〉∂∩〈H 〉, 〈H ′〉∂H ⊂ T ∗
1
T with H

′ ⊂H

under the restriction homomorphism T ∗
1
T −→ T ∗

1
T′ are the corresponding subsets of T ∗

1
T′.

Conclude that H is Delzant with respect to T if and only if H is Delzant with respect to T′.

(b) Suppose 〈H 〉 6=∅. Show that there exists a subset H ′⊂H such that

〈H ′〉∂∩〈H 〉 6=∅ ⊂ T ∗
1
T and ImLH ′ = ImLH ⊂ T1T.

(c) Suppose H is Delzant. Show that kerΦH ⊂ TH is a subtorus of codimension equal to the
dimension of ImLH ⊂T1T.

Exercise 6.6. Suppose T is a torus and P ⊂ T ∗
1
T is a polytope. Show that P is Delzant if and

only if P = 〈H 〉 for some Delzant subset H ⊂(T1T)Z×R such that the homomorphism LH is
surjective.

Exercise 6.7. Suppose T is a torus, H ⊂(T1T)Z×R is finite subset, and (X,ω, ψ, µ) is a Hamil-
tonian T-manifold. Show that

(a) µ−1(〈H 〉∂)⊂X is a fiber of a moment map for the restriction of the action ψ to TH ⊂T;

(b) if TH acts freely on µ−1(〈H 〉∂), then µ−1(〈H 〉∂)⊂X is a closed submanifold of codimension
equal to the dimension of TH ;

(c) if µ(X)⊂〈H 〉∂ , then TH acts trivially on X;

(d) if µ(X)⊂〈H 〉∂ , x∈X, and Stabx(ψ)=TH , then the differential dxµ : TxX−→Tµ(x)〈H 〉∂ is
surjective.

Definition 6.8. Let T be a torus and H ⊂(T1T)Z×R be a finite subset. A Hamiltonian T-manifold
(X,ω, ψ, µ) is

• H -cuttable if for every subset H ′ ⊂ H such that µ−1(〈H ′〉∂) 6=∅ the Lie group homomor-
phism ΦH ′ as in (6.2) is injective and the subtorus TH ′⊂T acts freely on µ−1(〈H ′〉∂);

• H -cut if µ(X) ⊂ 〈H 〉 and for every H ′ ⊂ H the subspace YH ′≡µ−1(〈H ′〉∂) is a union of
topological components of the fixed locus XT

H ′ ⊂ X of ψ|T
H ′ and there is a T-equivariant

splitting

TX|Y
H ′ = TYH ′ ⊕

⊕

υ∈H ′

N υ
XYH ′ −→ YH ′ (6.3)

of TX|Y
H ′ with a ψ-invariant complex structure J compatible with ω so that

rkCN υ
XYH ′ = 1 ∀ υ∈H

′ and

dψΦ
H ′ ([(rυ)υ∈H ′ ])(w) = e2πirυ′w ∀ (rυ)υ∈H ′ ∈RH ′

, w∈N υ′

X YH ′ , υ′∈H
′.

(6.4)
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Suppose T is a torus, H ⊂(T1T)Z×R, (X,ω, ψ, µ) is a Hamiltonian T-manifold, and H ′⊂H is
subset such that µ−1(〈H ′〉∂) 6=∅. If (X,ω, ψ, µ) is an H -cuttable, then µ−1(〈H ′〉∂)⊂X is a closed
submanifold of codimension |H ′| by Exercise 6.7(b) and thus

µ−1
(
〈H ′〉∂H

)
= µ−1

(
〈H ′〉∂∩〈H 〉

)
−

⋂

H ′(H ′′⊂H

µ−1
(
〈H ′′〉∂

)

is an open subset. If (X,ω, ψ, µ) is H -cut, then µ−1(〈H ′〉∂)⊂X is a closed ω-symplectic sub-
manifold of codimension 2|H ′| and the Lie group homomorphism ΦH ′ as in (6.2) is injective by
Proposition 3.14(1), (6.3), and (6.4). Thus, µ−1(〈H ′〉∂

H
)⊂µ−1(〈H ′〉∂) is again an open subset; it

is dense in this case, since µ(X)⊂〈H 〉. If in addition H ′
1 ,H

′
2 ⊂H are disjoint subsets, then

the restriction of µ to the symplectic submanifold µ−1(〈H ′
2 〉∂)⊂X is transverse to 〈H ′

1 〉∂ ⊂ T ∗
1
T

by (6.3) and (6.4).

Exercise 6.9. Suppose (X,ω, ψ, µ) is a symplectic toric T-manifold, H ⊂(T1T)Z×R is a Delzant
subset so that µ(X) = 〈H 〉, and H ′ ⊂H . Show that TH ′⊂T is the subtorus T〈H ′〉∂∩〈H 〉⊂T

as in (0+) on page 8, YH ′≡µ−1(〈H ′〉∂) is a connected component of the fixed locus XT
H ′ ⊂X

of ψ|T
H ′ , and TX|Y

H ′ splits as in (6.3) and (6.4). Conclude that the Hamiltonian T-manifold
(X,ω, ψ, µ) is H -cut.

Exercise 6.10. Suppose T is a torus, H =H1⊔H2 is a partition of a finite subset of (T1T)Z×R,
and (X,ω, ψ, µ) is an H -cuttable Hamiltonian T-manifold. Show that

(a) (X,ω, ψ, µ) is H1-cuttable;

(b) for all H ′
1 ⊂H1 and H ′

2 ⊂H2 such that µ−1(〈H ′
2 〉∂) 6=∅ the Lie group homomorphism ΦH ′

2
as

in (6.2) is injective and the subtorus TH ′
2
⊂T acts freely on µ−1(〈H ′

1 ⊔H ′
2 〉∂)/TH ′

1
.

Theorem 5 ([19, Proposition 2.4]). Suppose T is a torus, H ⊂ (T1T)Z×R is a finite subset, and
(X,ω, ψ, µ) is an H -cuttable Hamiltonian T-manifold. There exists a unique H -cut Hamiltonian
T-manifold

(X,ω, ψ, µ)H ≡ (XH , ωH , ψH , µH

)
(6.5)

so that

(1) XH =µ−1(〈H 〉)/∼ with x∼ x′ if there exist H ′⊂H and u∈TH ′ so that µ(x)∈ 〈H ′〉∂ and
x′=ψu(x);

(2) the quotient projection pH : µ−1(〈H 〉)−→XH is T-equivariant and µ|µ−1(〈H 〉)=µH ◦pH ;

(3) for every H ′ ⊂ H , pH : µ−1(〈H ′〉∂
H
) −→ µ−1

H
(〈H ′〉∂) is a submersion (onto a dense open

subset) and {
pH |µ−1(〈H ′〉∂

H
)

}∗(
ωH |Tµ−1

H
(〈H ′〉∂)

)
= ω

∣∣
T (µ−1(〈H ′〉∂

H
))
. (6.6)

For any partition H =H1⊔H2, (X,ω, ψ, µ)H1 is an H2-cuttable Hamiltonian T-manifold and

(X,ω, ψ, µ)H =
(
(X,ω, ψ, µ)H1

)
H2
. (6.7)
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Proof. Let c= (cυ)υ∈H ∈RH . With ωH denoting the standard symplectic form on CH , analo-
gously to (2.10), define

ω̃ ≡ π∗1ω⊕π∗2ωH ,

where π1, π2 : X×CH −→X,CH are the component projections. Let ψ̃ be the RH/ZH -action on
X×CH given by

ψ̃[(rυ)υ∈H ]

(
x, (zυ)υ∈H

)
=

(
ψΦH ([(rυ)υ∈H ])(x),

(
e−2πirυzυ

)
υ∈H

)
. (6.8)

This action commutes with the T-action ψ on the first component and preserves its moment map

µ◦π1 : X×CH −→ T ∗
1
T (6.9)

with respect to ω̃. By Exercises 2.2 and 2.5, the smooth function

H̃ : X×CH −→ T ∗
1
(RH/ZH )=RH , H̃

(
x, (zv,c)(v,c)∈H

)
=

(
µv(x)−π|zv,c|2

)
(v,c)∈H

, (6.10)

is a Hamiltonian for the action ψ̃ with respect to ω̃. It is preserved by the T-action ψ on the first
component.

Suppose (x, (zυ)υ∈H )∈H̃−1(c), u∈RH/ZH , and ψ̃u(x, (zυ)υ∈H )=(x, (zυ)υ∈H ). Let

H
′ =

{
υ∈H : zυ=0

}
.

From (6.10) and (6.8), we then obtain

µ(x) ∈ 〈H ′〉∂H ⊂ T ∗
1
T and u ∈ RH ′

/ZH ′ ⊂ RH/ZH . (6.11)

Since (X,ω, ψ, µ) is H -cuttable, it follows that u = 1. Thus, RH/ZH acts freely on H̃−1(c)
via (6.8). Let

(XH , ωH , ψH , µH

)
≡

(
Xα, ωα, ψα, µα

)

be the associated quotient Hamiltonian T-manifold of Theorem 4 and

p : H̃−1(c) −→ XH ≡H̃−1(c)
/
(RH/ZH )

be the quotient projection.

The map

pH : µ−1(〈H 〉) −→ XH ≡H̃−1(c)
/
(RH /ZH ), pH (x) =

[
x,

(√
(µv(x)−cv)/π

)
(v,c)∈H

]
,

is well-defined, continuous, surjective, and T-equivariant and satisfies the last condition in (2). In
particular, µH (XH )⊂〈H 〉. By the first statement in (6.11), pH induces an injective map from
the quotient µ−1(〈H 〉)/∼ in (1) to XH . Since the map

p̃H : µ−1(〈H 〉) −→ H̃−1(c), p̃H (x) =
(
x,

(√
(µv(x)−cv)/π

)
(v,c)∈H

)
, (6.12)

is closed and the group RH/ZH is compact, pH is a closed map and thus so is the induced map
from µ−1(〈H 〉). This confirms (1) and (2).
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Let J be a ψ-invariant almost complex structure on X compatible with ω, JH be the standard
complex structure on CH , and ψ̃′ be the action of TH on X×CH given by

ψ̃′
ΦH ([(rυ)υ∈H ])

(
x, (zυ)υ∈H

)
= ψ̃[(−rυ)υ∈H ]

(
ψΦH ([(rυ)υ∈H ])(x), (zυ)υ∈H

)

=
(
x,

(
e2πirυzυ

)
υ∈H

)
.

(6.13)

This action commutes with the RH/ZH -action ψ̃ and thus induces a TH -action on XH . By the
middle expression in (6.13), the latter is the restriction of the T-action ψH to TH . The almost
complex structure J̃≡J⊕JH on X×CH is ψ-, ψ̃-, and ψ̃′-invariant and compatible with ω̃. By
Exercise 6.2, J̃ thus descends to a ψH -invariant almost complex structure JH on XH which is
compatible with ωH .

Let H ′⊂H . By the first statement in (6.11),

ỸH ′ ≡
(
µ−1(〈H ′〉∂)×CH

)
∩H̃−1(c) =

{
H̃|X×CH −H ′

}−1
(c)

⊂ X×CH −H ′

=
(
X×CH

)ψ̃′|T
H ′ .

(6.14)

Since the moment map µH : XH −→T ∗
1
T is induced by (6.9),

YH ′ ≡ µ−1
H

(
〈H ′〉∂

)
= p

(
ỸH ′

)
= pH

(
µ−1(〈H ′〉)∂

)
⊂ XT

H ′

H
⊂ XH ;

the first inclusion above follows from the last equality in (6.14). The ω̃-symplectic submanifold
X×CH −H ′⊂X×CH is preserved by the RH/ZH -action ψ̃, the T-action ψ, and the TH -action ψ̃′.
By Exercise 6.1, YH ′⊂XH is thus an ωH -symplectic submanifold preserved by the T-action ψH .
By (6.13), the natural splitting

NX×CH

(
X×CH −H ′)

=
⊕

υ∈H ′

(
X×C{υ}

)

is T−, RH/ZH -, and TH -equivariant with respect to the actions dψ, dψ̃, and dψ̃′ on the left-hand
side and the actions

u·
(
x, zυ

)
=

(
ψu(x), zυ

)
,

[
(rυ′)υ′∈H

]
·
(
x, zυ

)
,=

(
ψΦH ([(rυ′ )υ′∈H

])(x), e
−2πirυzυ

)
,

and ΦH

(
[(rυ′)υ′∈H ]

)
·
(
x, zυ

)
=

(
x, e2πirυzυ

)

on the summand X×C{υ} on the right-hand side. By Exercises 6.1 and 6.2, TXH |YH ′ thus splits
T-equivariantly as in (6.3) and (6.4). It follows that YH ′⊂XH is a union of topological compo-

nents of the fixed locus X
T

H ′

H
of the restriction of the T-action ψH to TH ′ ⊂TH . Thus, (6.5) is

an H -cut Hamiltonian T-manifold.

The restriction of the map p̃H in (6.12) to µ−1(〈H ′〉∂
H
) is a smooth embedding; its image is

ỸH ′∩(X×(R+)H −H ′

). Thus,
{
p̃H |µ−1(〈H ′〉∂

H
)

}∗(
ω̃|
T Ỹ

H ′

)
= ω

∣∣
T (µ−1(〈H ′〉∂

H
))
. (6.15)

Since p∗(ωH |TYH ′ )= ω̃|T Ỹ
H ′

by Theorem 4(2) and Exercise 6.1, (6.6) follows from (6.15). The map

P̃H ;H ′ :
(
RH −H ′

/ZH −H ′)×µ−1
(
〈H ′〉∂H

)
−→ ỸH ′∩

(
X×(C∗)H −H ′)

,

P̃H ;H ′(u, x) = ψ̃u
(
p̃H (x)

)
,
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is a diffeomorphism. Since the map p : ỸH ′ −→ YH ′ is a principal RH/ZH -bundle (and thus a
submersion) by Theorem 4(2),

µ−1
H

(
〈H ′〉∂H

)
= ỸH ′∩

(
X×(C∗)H −H ′)

,

and dp vanishes on dP̃H ;H ′(T (RH −H ′

/ZH −H ′

)), the composition

pH =p◦p̃H : µ−1
(
〈H ′〉∂H

)
−→ µ−1

H
(〈H ′〉∂H ) ⊂ µ−1

H
(〈H ′〉∂

)

is a submersion. This confirms (3). The conditions (1)-(3) ensure the uniqueness of H -cut Hamil-
tonian T-manifold satisfying these properties.

Suppose H =H1⊔H2. By Exercise 6.10, the Hamiltonian T-manifold (X,ω, ψ, µ) is H1-cuttable.
Let

(X,ω, ψ, µ)H1 ≡ (XH1 , ωH1 , ψH1 , µH1

)
(6.16)

be the corresponding H1-cut Hamiltonian T-manifold as in (6.5). If H ′
2 ⊂H2,

µ−1
H1

(
〈H ′

2 〉∂
)
=

⋃

H ′′
1 ⊂H1

⋃

H ′
2⊂H ′′

2 ⊂H2

µ−1
H1

(
〈H ′′

1 ⊔H
′′
2 〉∂H

)
=

⋃

H ′′
1 ⊂H1

⋃

H ′
2⊂H ′′

2 ⊂H2

µ−1
(
〈H ′′

1 ⊔H
′′
2 〉∂H

)/
TH ′′

1
;

the last equality holds by (1) with H replaced by H1. If µ
−1
H1

(〈H ′
2 〉∂) 6=∅, Exercise 6.10 thus implies

that the Lie group homomorphism ΦH ′
2
as in (6.2) is injective and TH ′

2
acts freely on µ−1

H1
(〈H ′

2 〉∂).
We conclude that the Hamiltonian T-manifold (6.16) is H2-cuttable.

By (1) and (2) with H replaced by H1 and H2,

(
XH1

)
H2

= µ−1
H1

(
〈H2〉

)/
∼H2= pH1

(
µ−1(〈H1〉)∩µ−1(〈H2〉)

)/
∼H2=

(
µ−1(〈H 〉)/∼H1

)/
∼H2 ,

with x, x′ ∈ µ−1(〈H 〉) being equivalent in the double quotient if there exist H ′
1 ⊂H1, H ′

2 ⊂H2,
and u in the subgroup generated by TH ′

1
,TH ′

2
⊂T such that

µ(x) ∈ 〈H ′
1 〉∂∩〈H ′

2 〉∂=〈H ′
1 ⊔H

′
2 〉∂ and x′ = ψu(x).

By definition, the subgroup generated by TH ′
1
,TH ′

2
⊂T is TH ′

1⊔H ′
2
. Thus,

pH2◦pH1 =pH : X −→
(
XH1

)
H2

=XH , (µH1)H2 =µH : XH −→ T ∗
1
T ,

and the T-actions (ψH1)H2 and ψH on XH are the same (as they are induced by the same T-
action ψ on X). Since 〈∅〉∂

H
=〈∅〉∂

H1
∩〈∅〉∂

H2
is an open subset of T ∗

1
T, (6.6) gives

{
pH |µ−1(〈∅〉∂

H
)

}∗
(ωH1)H2 =

{
pH1 |µ−1(〈∅〉∂

H
)

}∗{
pH2 |µ−1

H1
(〈∅〉∂

H2
)

}∗
(ωH1)H2

=
{
pH1 |µ−1(〈∅〉∂

H
)

}∗
ωH1 = ω

∣∣
µ−1(〈∅〉∂

H
)
=

{
pH |µ−1(〈∅〉∂

H
)

}∗
ωH .

Since pH is a submersion on µ−1(〈∅〉∂
H
), it follows that (ωH1)H2 = ω on the dense open subset

µ−1
H

(〈∅〉∂
H
)⊂XH and thus everywhere on XH . This establishes (6.7).
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6.3 Hamiltonian symplectic uncut

In this section, we show that the Hamiltonian symplectic cut construction is reversible and complete
the proof of Theorem 3. This formalizes the argument sketched in the proof of [22, Theorem 7.5.10].

Exercise 6.11. Suppose T is a torus, H =H1⊔H2 is a partition of a finite subset of (T1T)Z×R,
(X,ω, ψ, µ) is an H2-cuttable Hamiltonian T-manifold so that (X,ω, ψ, µ)H2 is an H -cut Hamil-
tonian T-manifold, and Y ⊂XH2 is a topological component of µ−1

H2
(〈H1〉∂). Show that

(a) there exists a (unique) topological component Ỹ ⊂X of µ−1(〈H1〉∂) which contains p−1
H2

(Y );

(b) Ỹ is a topological component of the fixed locus XTH1 ⊂X of ψ|TH1
with its normal bundle

admitting a splitting as in (6.3) and (6.4) with (YH ′ ,H ′) replaced by (Ỹ ,H1).

Corollary 6.12. Suppose T is a torus, H =H1⊔H2 is a partition of a finite subset of (T1T)Z×R,
and (X,ω, ψ, µ) is an H2-cuttable Hamiltonian T-manifold. If (X,ω, ψ, µ)H2 is an H -cut Hamil-
tonian T-manifold, then there exists an open T-invariant subset X ′⊂X so that

(
X ′, ω|X′ , ψ|X′ , µ|X′

)
H2

= (X,ω, ψ, µ)H2 (6.17)

and the Hamiltonian T-manifold (X ′, ω|X′ , ψ|X′ , µ|X′) is H1-cut. If XH2 is connected and/or the
restriction

µ : µ−1
(
〈H ′

1 〉∂H1

)
−→ 〈H ′

1 〉∂H1
∩µ(X) (6.18)

is a principal T/TH ′
1
-bundle for every H ′

1 ⊂H1, then (X ′, ω′, ψ′, µ′) can be chosen so that X ′ is
also connected and/or the restriction

µ : µ−1
(
〈H ′

1 〉∂H1

)
∩X ′ −→ 〈H ′

1 〉∂H1
∩µ(X ′) (6.19)

is also a principal T/TH ′
1
-bundle for every H ′

1 ⊂H1, respectively.

Proof. Suppose H ′
1 ⊂ H1 and Y ⊂ XH2 is a topological component of µ−1

H2
(〈H ′

1 〉∂). It is thus

contained in a topological component YH ′′
1
⊂XH2 of µ−1

H2
(〈H ′′

1 〉∂) for every H ′′
1 ⊂H ′

1 . By Exer-

cise 6.11(a), there exists a (unique) topological component ỸH ′′
1
⊂ X of µ−1(〈H ′′

1 〉∂) which con-

tains p−1
H2

(YH ′′
1
). In particular, ỸH ′

1
is disjoint from the closed subsets µ−1(〈H ′′

1 〉∂)−ỸH ′′
1
of X with

H ′′
1 ⊂H ′

1 .

By Exercise 6.11(b) and the first part of Proposition 3.27 with T replaced by TH ′
1
, there thus exists

a T-invariant neighborhood ŨY of ỸH ′
1
in X so that

µ(ŨY ) ⊂ 〈H ′
1 〉 and ŨY ∩µ−1

(
〈H ′′

1 〉∂
)
⊂ ỸH ′′

1
∀H

′′
1 ⊂H

′
1 . (6.20)

The T-invariant neighborhood

Ũ ′
Y ≡ ŨY ∩µ−1

(
〈∅〉∂

H1−H ′
1

)
⊂ µ−1

(
〈H ′

1 〉
)
∩µ−1

(
〈H1−H

′
1 〉
)
= µ−1

(
〈H1〉

)

of ỸH ′
1
∩µ−1(〈H ′

1 〉∂H1
) inX is then disjoint from µ−1(〈H ′′

1 〉∂) for every subset H ′′
1 ⊂H1 not contained

in H ′
1 . Thus,

X ′ ≡
⋃

H ′
1⊂H1

⋃

Y ∈π0(µ
−1
H2

(〈H ′
1 〉
∂))

Ũ ′
Y ⊂ µ−1

(
〈H1〉

)
(6.21)
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is a T-invariant neighborhood of

⋃

H ′
1⊂H1

⋃

Y ∈π0(µ
−1
H2

(〈H ′
1 〉
∂))

(
ỸH ′

1
∩µ−1(〈H ′

1 〉∂H1
)
)
⊃

⋃

H ′
1⊂H1

⋃

Y ∈π0(µ
−1
H2

(〈H ′
1 〉
∂))

p−1
H2

(Y ) = p−1
H2

(XH2) = µ−1
(
〈H2〉

)

in X. By Theorem 5(1) with H replaced by H2, the above inclusion implies (6.17).

By (6.21), µ(X ′) ⊂ 〈H1〉. Let H ′′
1 ⊂ H1 be such that µ−1(〈H ′′

1 〉∂) 6= ∅. Since Ũ ′
Y ⊂ ŨY with

Y ∈π0(µ−1
H2

(〈H ′
1 〉∂)) is disjoint from µ−1(〈H ′′

1 〉∂) whenever H ′′
1 6⊂H ′

1 , the second statement in (6.20)
implies that

X ′∩µ−1
(
〈H ′′

1 〉∂
)
⊂

⋃

H ′′
1 ⊂H ′

1⊂H1

⋃

Y ∈π0(µ
−1
H2

(〈H ′
1 〉
∂))

ỸH ′′
1

=
⋃

Y ∈π0(µ
−1
H2

(〈H ′′
1 〉∂))

ỸH ′′
1

. (6.22)

Since (X,ω, ψ, µ)H2 is H -cut, it follows that the Lie group homomorphism ΦH ′′
1

as in (6.2) is

injective. By (6.22), X ′∩µ−1(〈H ′′
1 〉∂) ⊂X is the disjoint union of the open subspaces X ′∩ ỸH ′′

1

of ỸH ′′
1

with Y ∈π0(µ−1
H2

(〈H ′′
1 〉∂)). By Exercise 6.11(b), X ′∩µ−1(〈H ′′

1 〉∂) is thus a union of topo-

logical components of the fixed locus X
′T

H ′′
1 of the restriction of the T-action ψ to TH ′′

1
⊂ T

and X ′ ⊂X with its normal bundles admitting a splitting as in (6.3) and (6.4) with (YH ′ ,H ′)
replaced by (X ′∩µ−1(〈H ′′

1 〉∂),H ′′
1 ). Thus, (X ′, ω|X′ , ψ|X′ , µ|X′) is H1-cut.

Since µH2(XH2) ⊂ 〈H2〉, the subspaces ỸH ′
1
∩µ−1(〈H ′

1 〉∂H1
) ⊂ X above intersect µ−1(〈H2〉) and

thus so do their neighborhoods Ũ ′
Y ⊂X ′⊂X. If XH2 is connected, then so is µ−1(〈H2〉) ⊂ X

by Theorem 5(1) with H replaced by H2. It follows that X ′ ⊂ X is then connected. If the
restriction (6.18) is a principal T/TH ′

1
-bundle for some H ′

1 ⊂H1, then T acts transitively on the

fibers of µ over 〈H ′
1 〉∂H ∩µ(X). Since X ′ ⊂ X is a T-invariant subset, (6.19) is the restriction

of principal T/TH ′
1
-bundle (6.18) to 〈H ′

1 〉∂H1
∩µ(X ′)⊂〈H ′

1 〉∂H1
∩µ(X) and thus is still a principal

T/TH ′
1
-bundle.

Proposition 6.13. Suppose T is a torus, H =H1⊔H2 is a partition of a finite subset of (T1T)Z×R,
and (X,ω, ψ, µ) is an H2-cut Hamiltonian T-manifold. Then,

(X,ω, ψ, µ) = (X ′, ω′, ψ′, µ′)H2 (6.23)

for some H2-cuttable Hamiltonian T-manifold (X ′, ω′, ψ′, µ′). If

(a) X is connected and/or

(b) (X,ω, ψ, µ) is H -cut and the restriction

µ : µ−1
(
〈H ′〉∂H

)
−→ 〈H ′〉∂H ∩µ(X) (6.24)

is a principal T/TH ′-bundle for every H ′⊂H ,

then (X ′, ω′, ψ′, µ′) can be chosen so that

(a’) X ′ is connected and/or
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(b’) (X ′, ω′, ψ′, µ′) is H1-cut and the restriction

µ′ : µ′−1
(
〈H ′

1 〉∂H1

)
−→ 〈H ′

1 〉∂H1
∩µ′(X ′) (6.25)

is a principal T/TH ′
1
-bundle for every H ′

1 ⊂H1,

respectively.

Proof. By (6.7) and Corollary 6.12, it is sufficient to establish this proposition with H2 consisting
of a single element υ≡ (v, c) of (T1T)Z×R with v 6=0. We assume that the closed codimension 2
symplectic submanifold

Y ≡ µ−1
(
〈H2〉∂

)
≡

{
x∈X : µv(x)=c

}

of (X,ω) is nonempty; otherwise, we can take (X ′, ω′, ψ′, µ′)=(X,ω, ψ, µ). Since (X,ω, ψ, µ) is H2-
cut, the Lie group homomorphism ΦH2 as in (6.2) is then injective. We establish the proposition by
removing Y and continuing the radial directions in the normal bundle of Y in X into the negative
values without them coming together at 0. Since (X,ω, ψ, µ) is H2-cut,

X−Y =
{
x∈X : µv(x)>c

}
= µ−1

(
〈∅〉∂H2

)
. (6.26)

Let J be a Tn-invariant almost complex structure on X compatible with ω and g(·, ·)≡ω(·, J ·) be
the associated Tn-invariant metric compatible with J .

Since (X,ω, ψ, µ) is H2-cut, Y is a union of topological components of the fixed locus XTυ of the
restriction of the T-action ψ to the circle Tυ⊂T generated by v∈(T1T)Z and

π : TY ω ≡
{
w∈TX|Y : ω(w,w′)=0 ∀w′∈TY

}
−→ Y

is a complex line bundle complementary to TY . It is preserved by the Tn-action dψ and

dψetv(w) = e2πitw ∀ t∈R, w∈TY ω (6.27)

by (6.4). Let

ζv ∈ Γ
(
TY ω;T (TY ω)

)
, ζv(w) =

d

dt
dψetv(w)

∣∣∣
t=0

= 2πiw,

be the (vertical) vector field on TY ω generating the S1-action (6.27). Since this action preserves
the unit circle bundle of TY ω,

π : S
(
TY ω

)
≡

{
w∈TY ω : g(w,w)=1

}
−→ Y, (6.28)

the vector field ζv|S(TY ω) is tangent to S(TY ω). The maps

ι̃ : S
(
TY ω

)
×R+ −→ S

(
TY ω

)
×C, ι̃(w, t) =

(
w,
√
2t
)
,

p : S
(
TY ω

)
×C −→ TY ω, p(w, z) = zw,

are smooth. The map p descends to a T-equivariant diffeomorphism from the quotient S(TY ω)×S1C

of S(TY ω)×C by the S1-action

S1×
(
S(TY ω)×C

)
−→ S(TY ω)×C, u·(w, z) =

(
uw, u−1z

)
, (6.29)
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to TY ω. The generating vector field for this action is ζ̃v≡(ζv,−2π∂θ). The map

ι≡p◦ ι̃ : S
(
TY ω

)
×R+ −→ TY ω

is a T-equivariant diffeomorphism onto TY ω−Y .

Let λ be a T-invariant connection 1-form on the principal S1-bundle S(TY ω) −→ Y , i.e. λ is a
1-form on S(TY ω) so that

λ(ζv) = 2π and ιζv(dλ) = 0 . (6.30)

In light of the first condition above, the second condition is equivalent to λ being S1-invariant. Let
ω̃ and ω̃′ be the T-invariant closed 2-forms on S(TY ω)×C and S(TY ω)×R, respectively, given by

ω̃ = π∗ω+ωC+
1

2
d
(
|z|2λ

)
and ω̃′ = π∗ω+d(tλ),

where ωC is the standard symplectic form on C as in Example 2.5, z is the standard coordinate
on C, and t is the standard coordinate on R. Since

ω̃′
(w,0) = ωπ(w)+d0t∧λw ∀ w∈S(TY ω), (6.31)

the 2-form ω̃′ is nondegenerate (and thus symplectic) on some neighborhood U ′⊂S(TY ω)×R of
S(TY ω)×{0}.

By (6.30) and the last coordinate of the map ι̃ taking only real values,

ιζv ω̃
′ = −2πdt and ω̃′

∣∣
S(TY ω)×R+ = ι̃∗ω̃ , (6.32)

respectively. With (r, θ) denoting the standard radius-angle coordinates on C so that ωC=rdr∧dθ,
(
ι
ζ̃v
ω̃
)
(w,reiθ)

= 0−2πι∂θωC+ιζv
(
rdr∧λ+1

2
r2dλ) = 2πrdr−2πrdr+0 = 0 ; (6.33)

the middle equality above follows again from (6.30). Since the S1-action (6.29) preserves the 2-
form ω̃, (6.33) implies that there is a unique 2-form ωTY ω on (the total space of) TY ω so that
p∗ωTY ω= ω̃. This form is T-equivariant and closed and satisfies

ω̃′
∣∣
S(TY ω)×R+ = ι∗ωTY ω ; (6.34)

see the second equation in (6.32).

Let λS be the 1-form on LS=TY
ω determined by λ as in Exercise A.8(a). Thus,

ωTY ω = π∗ω+
1

2
dλS .

Along with Exercise A.8(b), this implies that the closed 2-form ωTY ω on TY ω satisfies (3.11)
with TY c=TY ω. By Proposition 3.14(2), there thus exists a T-equivariant tubular neighborhood
identification Φ: U −→U for Y in X such that U ⊂TY ω and Φ∗ω=ωTY ω |U . Along with (6.34), the
last identity gives

ω̃′
∣∣
ι−1(U)

= ι∗Φ∗ω. (6.35)
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Let U ′′⊂U ′⊂S(TY ω)×R be a T-invariant tubular neighborhood of S(TY ω)×{0} so that

U+ ≡ U ′′∩
(
S(TY ω)×R+

)
⊂ ι−1(U).

Since the diffeomorphism Φ◦ι : U+−→Φ(ι(U+)) is T-equivariant and satisfies (6.35) with ι−1(U)
replaced by U+,

µ◦Φ◦ι : U+ −→ T ∗
1
T (6.36)

is a moment map for the T-action on (U+, ω̃′|U+). By Exercise 3.26, it extends to a moment map
µ̃′ : U ′′−→T ∗

1
T for the T-action on (U ′′, ω̃′|U ′′). Since

lim
t−→0+

ι(w, t) = π(w) ∈ Y ⊂ TY ω, lim
t−→0+

µ
(
Φ
(
ι(w, t)

))
= µ

(
π(w)

)
∀ w∈S(TY ω),

the first equation in (6.32) implies that

µ̃′v(w, t) = 2πt+c, µ̃′−1
v

(
〈H 〉∂

)
= S(TY ω)×{0}, (6.37)

and µ̃′=µ◦π on S(TY ω)×{0}=S(TY ω).

We define

X ′ =
(
(X−Y )⊔U ′′

)/
∼, U+∋ (w, t) ∼ Φ

(
ι(w, t)

)
∈ X−Y, (6.38)

ω′
[x] =

{
ωx, if x∈X−Y ;

ω̃′
x, if x∈U ′′;

µ′([x]) =

{
µ(x), if x∈X−Y ;

µ̃′(x), if x∈U ′′.

Suppose x∈X−Y−Φ(ι(U+)) and x′∈U ′′−U+. If x′ does not lie in the closure ClU ′′U+ of U+ in U ′′,
then the images of X−Y and U ′′−ClU ′′U+ in X ′ under the quotient projection

q : (X−Y )⊔U ′′ −→ X ′

are disjoint open subsets around [x] and [x′], respectively. If

x′ ∈ ClU ′′U+−U+ = Y ×{0}

and U,U ′⊂X are disjoint open neighborhoods of x and Y , respectively, then

q(U), q
((
U ′′∩(S(TY ω)×R≤0)

)
∪ι−1

(
Φ−1(U ′)

))
⊂ X ′

are disjoint open subsets around [x] and [x′], respectively. Since the restrictions of q to the Haus-
dorff spaces X−Y and U ′′ are homeomorphisms onto open subsets of X ′, it follows that X ′ is a
Hausdorff space and a smooth manifold. By (6.35) and the assumption on U ′ below (6.31), ω′ is a
well-defined symplectic form on X ′. Since the smooth map µ̃′ is an extension of the map (6.36),
µ′ : X ′−→T ∗

1
T is a well-defined smooth map.

Since the identification of the spaces X−Y and U ′′ over U+ ⊂U ′′ in (6.38) is T-equivariant, the
T-action ψ on X−Y ⊂X and the T-action dψ on U ′′⊂S(TY ω)×R induce a smooth T-action ψ′

on X ′ which preserves ω′. Since µ|X−Y and µ̃′ are moment maps for the T-actions on (X−Y, ω|X−Y )
and (U ′′, ω̃′|U ′′), µ′ is a moment map for the T-action ψ′ on (X ′, ω′). By (6.26) and (6.37),

µ′−1
(
〈H2〉∂

)
= q

(
S(TY ω)×{0}

)
⊂ X ′.
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Since the restriction of q to U ′′ is a diffeomorphism onto q(U ′′) and Tυ acts freely on S(TY ω)×{0},
Tυ acts freely on µ′−1(〈H2〉∂) as well. Thus, (X ′, ω′, ψ′, µ′) is an H2-cuttable Hamiltonian T-
manifold with

µ′−1
(
〈∅〉∂H2

)
= q(X−Y ) ≈ Y, µ′−1

(
〈H2〉∂

)
= q

(
S(TY ω)×{0}

)
⊂ X ′,

X = µ′−1
(
〈H2〉

)/
∼, x ∼ ψ′

u(x) ∀x∈µ′−1
(
〈H2〉∂

)
, u∈Tυ, Y = µ′−1

(
〈H2〉∂

)/
Tυ,{

q|X−Y

}∗
p ∗

H2
ω = ω|X−Y ,

{
q|S(TY ω)×{0}

}∗{
pH2 |µ′−1(〈H2〉∂)

}∗(
ω|TY

)
= ω̃′

∣∣
S(TY ω)×{0}

,

where pH2 : µ
′−1(〈H2〉)−→X is the quotient projection; the two identities on the first line above

follow from (6.26) and the second statement in (6.37). Furthermore, the map pH2 is T-equivariant
and the compositions

pH2◦q : X−Y −→ µ−1
(
〈∅〉∂H2

)
and pH2◦q : S(TY ω)×{0} −→ µ−1

(
〈H2〉∂

)

are submersions. By the uniqueness statement of Theorem 5, (6.23) thus holds.

Every topological component of the tubular neighborhood q(U ′′) ⊂ X ′ of q(Y ×{0}) intersects
q(X−Y ). If X is connected, then so is X−Y (because Y ⊂X is a submanifold of codimension 2).
It then follows that X ′ is also connected. If (X,ω, ψ, µ) is H -cut, then (X ′, ω′, ψ′, µ′) is H1-cut
by Corollary 6.12 if U ′′ is sufficiently small.

Suppose both conditions in (b) hold and H ′
1 ⊂H1=H −{υ}. Let H ′

1 υ=H ′
1 ⊔{υ}. By the above,

µ′−1(〈H ′
1 〉∂)⊂X ′ is an ω′-symplectic submanifold consisting of components of the fixed locus X

′T
H ′

1

of the restriction of the action ψ′ to the subtorus TH ′
1
⊂ T. Since the restriction of the quotient

projection q above to U ′′ is a T-equivariant diffeomorphism onto the open subset q(U ′′)⊂X ′ and
µ̃′ = µ′ ◦q on U ′′, it follows that µ̃′−1(〈H ′

1 〉∂) ⊂ U ′′ is an ω̃′-symplectic submanifold consisting of

components of U ′′T
H ′

1 . By (6.24) with H ′=H ′
1 υ, the restriction

µ : µ−1
(
〈H ′

1 υ〉∂H
)
=µ−1

(
〈H ′

1 〉∂H1

)
∩Y −→ 〈H ′

1 υ〉∂H ∩µ(X) = 〈H ′
1 〉∂H1

∩µ(Y )

is a principal T/TH ′
1 υ
-bundle. Since Tυ acts freely on the fibers of the circle bundle (6.28), it

follows that the restriction

µ̃′=µ◦π : S(TY ω)
∣∣
µ−1(〈H ′

1 υ〉
∂
H

)
×{0} = µ̃′−1

(
〈H ′

1 〉∂H1

)
∩
(
S(TY ω)×{0}

)
−→ 〈H ′

1 〉∂H1
∩µ(Y )

is a principal T/TH ′
1
-bundle. By Exercise 6.7(d) with H replaced by H ′

1 and the submanifold

〈H ′
1 υ〉∂⊂〈H ′

1 〉∂ being closed, the moment map

µ̃′ : µ̃′−1
(
〈H ′

1 〉∂H1

)
−→ 〈H ′

1 〉∂

is then a submersion and thus also a principal T/TH ′
1
-bundle over its image if U ′′ is sufficiently

small. Since q|U ′′ is a T-equivariant diffeomorphism onto q(U ′′)⊂X ′ and µ̃′=µ′◦q on U ′′, it follows
that

µ′ : µ′−1
(
〈H ′

1 〉∂H1

)
∩q(U ′′) −→ 〈H ′

1 〉∂H1
∩µ̃′(U ′′) = 〈H ′

1 〉∂H1
∩µ′(q(U ′′)

)
.

By (6.24) with H ′=H ′
1 and (6.26), the restriction

µ : µ−1
(
〈H ′

1 〉∂H
)
∩(X−Y )=µ−1

(
〈H ′

1 〉∂H1

)
∩(X−Y ) −→ 〈H ′

1 〉∂H1
∩µ(X−Y )
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is a principal T/TH ′
1
-bundle. Since the restriction of q to X−Y is a T-equivariant diffeomorphism

onto the open subset q(X−Y )⊂X ′ and µ=µ′◦q on X−Y , it follows that the restriction

µ′ : µ′−1
(
〈H ′

1 〉∂H1

)
∩q(X−Y ) −→ 〈H ′

1 〉∂H1
∩µ(X−Y ) = 〈H ′

1 〉∂H1
∩µ′(q(X−Y )

)

is also a principal T/TH ′
1
-bundle. Since X ′=q(U ′′)∪q(X−Y ), we conclude that the restric-

tion (6.25) is a principal T/TH ′
1
-bundle.

Proof of Theorem 3. Since (0) in the statement of this theorem follows from (0+) on page 8,
which was established in Section 5.2, it remains to establish (1) and (2). Suppose P ⊂ T ∗

1
T is a

Delzant polytope and H ⊂(T1T)Z×R is a Delzant subset so that µ(X)=〈H 〉, and H ′⊂H . Let
(T ∗

1
T×T, ωT, ψT, µT) be the Hamiltonian T-manifold of Exercise 2.11, with k=n. By Theorem 5,

the Hamiltonian T-manifold

(X,ω, ψ, µ) ≡
(
T ∗

1
T×T, ωT, ψT, µT

)
H

as in (6.5) is then a closed connected Hamiltonian T-manifold so that (1.7) holds, the T-action ψ
is effective (it is free on µ−1(〈∅〉∂

H
), and µ(X)=P . This gives (1).

Suppose (X,ω, ψ, µ) is any symplectic toric T-manifold with µ(X) = P . In particular, X is con-
nected. By Exercise 6.9 and (0+c) on page 8, (X,ω, ψ, µ) also satisfies (b) in the statement of
Proposition 6.13. By Proposition 6.13 with H1=∅ and H2=H ,

(X,ω, ψ, µ) = (X ′, ω′, ψ′, µ′)H (6.39)

for some H -cuttable Hamiltonian T-manifold (X ′, ω′, ψ′, µ′) so that X ′ is connected and

µ′ : X ′=µ′−1
(
〈∅〉∂∅

)
−→ 〈∅〉∂∅∩µ′(X ′)=µ′(X ′)

is a principal T-bundle. By Exercise 3.21(b) and (6.39), µ′(X ′)⊂T ∗
1
T is an open neighborhood of

the polytope P . By replacing X ′ with the preimage of a contractible neighborhood of P in µ′(X ′),
we can assume µ′(X ′) is contractible. By Proposition 3.30, (X ′, ω′, ψ′, µ′) is then isomorphic
to (U, ωT|U , ψT|U , µT|U ) for an open neighborhood U⊂T ∗

1
T×T of µ−1

T (P ). Along with (6.39) and
Theorem 5, this implies that

(X,ω, ψ, µ) ≈
(
U, ωT|U , ψT|U , µT|U

)
H

=
(
T ∗

1
T×T, ωT, ψT, µT

)
.

This gives (2).

7 Symplectic Toric Manifolds

In this chapter, we describe a construction of toric symplectic manifolds along the lines of [11,
Section 3.2] and use it to obtain key properties of these manifolds. Example 2.7 is a special case of
this construction. The structure of this chapter is motivated by [28, Chapter 2], which efficiently
summarizes these properties from a more concrete perspective. We fix a torus T of dimension n
and continue with the notation and terminology introduced at the beginning of Section 6.2.
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7.1 Delzant’s construction

Let H ⊂(T1T)Z×R be a Delzant subset so that the homomorphism LH in (6.2) is surjective.
In this section, we use the symplectic reduction of Theorem 4 to construct a connected Hamil-
tonian T-manifold (X,ω, ψ, ω) with an effective T-action ψ and µ(X) = 〈H 〉. The manifold X
obtained in this way is compact if and only if 〈H 〉 is compact. By Exercise 6.6, every Delzant
polytope P equals 〈H 〉 for some Delzant subset H ⊂(T1T)Z×R so that the homomorphism LH

in (6.2) is surjective. Thus, the construction of this section provides another proof of Theorem 3(1).

By Exercise 6.5(c), the kernel of the homomorphism ΦH in (6.2),

KH ≡ kerΦH ⊂ TH ≡RH/ZH ,

is then a codimension n subtorus. Let

ι∗H : RH =T ∗
1
TH −→ T ∗

1
KH

be the composition of the standard identification of RH with T ∗
1
TH and the homomorphism

induced by the inclusion KH −→TH . We note that the sequence

0 −→ T ∗
1
T

L∗
H−−−−→ T ∗

1
TH =RH

ι∗
H−−−→ T ∗

1
KH −→ 0 (7.1)

of vector spaces is exact and

L∗
H

(
〈H 〉

)
=

{
(sυ)υ∈H ∈ker ι∗H : sυ≥cυ ∀ υ∈H

}
. (7.2)

Denote by ωH the standard symplectic form on CH as in Example 2.5. By this example, the map

HH : CH −→ RH , HH

(
(zυ)υ∈H

)
=

(
π|zυ|2+cυ

)
υ∈H

, (7.3)

is a Hamiltonian with respect to ωH for the standard action ψH of TH on CH ,

ψH ;[(rυ)υ∈H ]

(
(zυ)υ∈H

)
=

(
e2πirυzυ

)
υ∈H

. (7.4)

Thus,
µH ≡ ι∗H ◦HH : CH −→ T ∗

1
KH

is a moment map with respect to ωH for the restriction ψ̃ of the action ψH to KH ⊂TH . By (7.2),

HH (CH )∩ι∗−1
H

(0) = L∗
H

(
〈H 〉

)
. (7.5)

Lemma 7.1. The subspace µ−1
H

(0)⊂CH is preserved by the TH -action (7.4); if 〈H 〉 is compact,
then so is µ−1

H
(0). The codimension n subtorus KH ⊂ TH acts freely on µ−1

H
(0). For some

z∈µ−1
H

(0), Stabz(ψH )={1}.

Proof. Since the Hamiltonian H̃ is TH -invariant, the TH -action (7.4) preserves µ−1
H

(0). Since the
subspace in (7.5) and the fibers of H are path-connected, so is the subspace

µ−1
H

(0) = H−1
H

(
ι∗−1
H

(0)
)
.
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If 〈H 〉 is compact, then so is the subspace in (7.5). Since the map H is proper, it follows that the
subspace µ−1

H
(0) is also compact if 〈H 〉 is compact.

Suppose (zυ)υ∈H ∈µ−1
H

(0), u∈KH , and ψH ;u((zυ)υ∈H )=(zυ)υ∈H . Let

H
′ =

{
υ∈H : zυ=0

}
.

From (7.3), (7.4), and (7.5), we then obtain

H(z) ∈ L∗
H

(
〈H ′〉∂H

)
⊂ RH and u ∈ RH ′

/ZH ′ ⊂ RH/ZH .

Since H is a Delzant subset, it follows from the first statement above that the homomorphism ΦH ′

as in (6.2) is injective and thus from the second that u=1. We conclude that KH ⊂TH acts freely
on µ−1

H
(0). By (7.5), there exists z≡(zυ)υ∈H ∈µ−1

H
(0) such that H(z)∈L∗

H
(〈∅〉∂

H
) and thus zυ 6=0

for any υ∈H . It follows that Stabz(ψH )={1}.

Thus, (CH , ωH , ψH , µH ) is a Hamiltonian KH -manifold such that KH acts freely on µ−1
H

(0). Let
(X,ω) ≡ (X0, ω0) be the quotient symplectic manifold provided by the first part of Theorem 4.
By (0) and (1) in this theorem,

dimX = dimRC
H − 2 dimKH = 2|H | − 2

(
|H |−n) = 2n.

By Lemma 7.1, X≡µ−1
H

(0)/KH is connected; if 〈H 〉⊂T ∗
1
T is compact, then so is X.

The torus actions ψH |KH
and ψH commute, the Hamiltonian H̃ for ψH is ψH |KH

-invariant, and
the moment map µH for ψH |KH

is ψH -invariant. Let ψ′
0 and µ′0 be the TH -action on X induced

by ψH and its Hamiltonian with respect to ω induced by HH , as provided by the last part of
Theorem 4.

By Exercise 6.5(b), there exists a subset H ′ ⊂ H be such that 〈H ′〉∂ is a vertex of 〈H 〉,
i.e. 〈H ′〉∂⊂〈H 〉 is a single point. Let ιH ;H ′ : TH ′−→TH be the inclusion. Since H is Delzant,
the Lie homomorphism group ΦH ′ as in (6.2) is an isomorphism and thus so is the Lie group
homomorphism

KH ×TH ′ −→ TH , (u, u′) −→ uu′.

By the last statement of Lemma 7.1 above and Exercise 7.2 below, the composition ψ of the
TH -action ψ′

0 on X with the homomorphism

T
Φ−1

H ′−−−→ TH ′ ι
H ;H ′−−−−−→ TH

is therefore an effective T-action on X. The composition

µ : X
µ′0−−→ T ∗

1
TH

ι ∗
H ;H ′−−−−−→ T ∗

1
TH ′ L∗−1

H ′−−−−→ T ∗
1
T

is its moment map with respect to ω. Thus, (X,ω, ψ, µ) is a connected Hamiltonian T-manifold
with an effective T-action ψ and moment polytope

µ(X) = L∗−1
H ′

(
ι ∗H ;H ′

(
µ′0(X)

))
= L∗−1

H ′

(
ι ∗H ;H ′

(
HH (µ−1

H
(0))

))

= L∗−1
H ′

(
ι ∗H ;H ′

(
L∗

H (〈H 〉)
))

= L∗−1
H ′

(
L∗

H ′(〈H 〉)
)
= 〈H 〉 ;

the second equality above holds by (7.5).
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Exercise 7.2. Suppose ψ1 and ψ2 are commuting actions of groups G1 and G2 on a set Z and z∈Z
is a point such that Stabz(ψ1×ψ2)={1}. Let ψ2 be the induced G2-action on the quotient Z/G1

and G1z∈Z/G1 be the G1-orbit of z. Show that StabG1z(ψ2)={1}.

Exercise 7.3. Show that the Hamiltonian T-manifold (X,ω, ψ, µ) constructed above does not
depend on the choice of subset H ′⊂H such that 〈H ′〉∂ is a vertex of H .

Exercise 7.4. Suppose H̃ ⊂ (T1T)Z×R is a Delzant subset such that 〈H̃ 〉= 〈H 〉 and H̃ ⊃H .
Show that

(a) there exists a group homomorphism φ
H ;H̃

: TH̃ −H −→TH so that the group homomorphism

KH ×TH̃ −H −→ TH ×TH̃ −H =TH̃ , (u, u′) −→
(
uφ

H ;H̃
(u), u′

)
,

is an isomorphism onto K
H̃
;

(b) there exist (unique) linear functionals ℓυ : ImL∗
H
−→R with υ∈H̃ −H such that

ImL∗
H̃

=
{(
s, (ℓH (s))

υ∈H̃ −H

)
: s∈ ImL∗

H

}
⊂ RH ×RH̃ −H =RH̃ ;

(c) ℓυ(s)>cυ for all υ∈H̃ −H and s∈L∗
H
(〈H 〉) and

L∗
H̃

(
〈H̃ 〉

)
=

{(
s, (ℓH (s))

υ∈H̃ −H

)
: s∈L∗

H

(
〈H 〉

)}
⊂ RH ×RH̃ −H =RH̃ ;

(d) the projection CH̃ −→ CH restricts to a principal TH̃ −H -bundle µ−1

H̃
(0)−→µ−1

H
(0) with

smooth TH -equivariant section

s
H̃ ,H

: µ−1
H

(0) −→ µ−1

H̃
(0) ⊂ CH×CH̃ −H , s

H̃ ,H
(z) =

(
z,
(√

(ℓυ(HH (z))− cυ)/π
)
υ∈H̃ −H

)
;

(e) s∗
H̃ ,H

ω
H̃

=ωH |Tµ−1
H

(0) and

ι ∗
H̃ ;H ′

◦H
H̃
◦s∗

H̃ ,H
= ι ∗H ;H ′◦HH : µ−1

H
(0) −→ ImL∗

H ′ ⊂ RH ′ ∀H
′⊂H .

Conclude the Hamiltonian T-manifold (X,ω, ψ, µ) constructed above does not depend on the choice
of Delzant subset H ⊂(T1T)Z×R with 〈H 〉 fixed.

7.2 Kähler structure

in preparation

As before, let H ⊂(T1T)Z×R be a Delzant subset so that the homomorphism LH in (6.2) is
surjective. In this section, we show that the Hamiltonian T-manifold (X,ω, ψ, ω) constructed in
in Section 7.1, admits a compatible (integrable) complex structure J , i.e. J is compatible with
the symplectic form ω and is preserved by the effective T-action ψ on X. We continue with the
notation introduced in Section 7.1.
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Let (KH )C⊂TH
C be the complexification of KH ⊂TH and (KH )i⊂(KH )C be the purely imaginary

subgroup (it corresponds to a subgroup of (R∗)H ⊂(C∗)H via e2πi·). The group TH
C ≈(C∗)H acts

on CH by the coordinate-wise multiplication in the usual way, i.e. as in (7.4); we denote this
complexified action in the same way. Define

X̃H = CH −
⋃

H ′⊂H

CH
′
∩µ−1

H
(0)=∅

CH ′

, XH ≡X̃H

/
(KH )C .

In particular, X̃H ⊂CH is a TH
C -invariant path-connected open subset containing µ−1

H
(0).

Exercise 7.5. Show that

(a) X̃
H̃

=X̃H ×(C∗)H̃ −H for any Delzant subset H̃ ⊂(T1T)Z×R with 〈H̃ 〉=〈H 〉 and H̃ ⊃H ;

(b) (KH )C acts freely on the subspace X̃H ⊂CH ;

(c) the subspace X̃H ⊂CH is simply connected if H is minimal.

Hint: see the proof of Lemma 7.1 for (b).

Lemma 7.6. The smooth map

ΨH : (KH )i×µ−1
H

(0) −→ X̃H , ΨH (u, z) = ψH ;u(z),

is a diffeomorphism.

Proof.

7.3 Line bundles and projectivity

Define
αH = −ιH ∗

(
(cυ)υ∈H

)
∈ T ∗

1
KH .

PαA = {s∈
(
R≥0)N : ι∗A(s)=α

}
, V

α
A =

{
J⊂ [N ] : |J |=n, P τA∩(R≥0)[N ]−J 6=∅

}
,

µ̃CN =

N∑

j=1

(
− yjdxj+xjdyj

)
.

Let P ≡
{
r∈Rn : vk ·r≥ck ∀ k∈ [N ]} be a Delzant polytope with the inward normals v1, . . . , vN to

the facets (codimension 1 faces) meeting at each vertex of P forming a Z-basis for ZN . Define

A=
(
v1 . . . vN

)
: (RN ,ZN ) −→ (Rn,Zn), c = (c1, . . . , cN ) ∈ RN , α = −ι∗A(c) ∈ T ∗

1
TA.

Thus, Z̃αA⊂CN is the preimage of the regular value α∈T1T
∗ of H̃A, TA acts freely on Z̃αA, and

(MP , ωP ) ≡
(
Z̃αA, ωCN |T Z̃αA

)/
TA

is the compact connected symplectic manifold obtained from P via the Delzant construction in class.
Show that
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(a) the inclusions Z̃αA−→M̃α
A and TA−→(TA)C induce a homeomorphism

Mα
A≡M̃α

A

/
(TA)C −→ Z̃αA/TA≡MP

with respect to the quotient topologies;

(b) the smooth manifold Mα
A =MP is simply connected and admits a complex manifold struc-

ture, compatible with the smooth and symplectic structures, so that the quotient projection
q : M̃α

A−→Mα
A is a holomorphic submersion and (TA)C acts on Mα

A by biholomorphisms.

A Bundle Connections

A.1 Connections and splittings

Suppose X is a smooth manifold and πE : E−→X is a (smooth) real vector bundle. We identify X
with the zero section of E. Denote by

a : E⊕E −→ E and πE⊕E : E⊕E −→ X

the associated addition map and the induced projection map, respectively. For f ∈C∞(X;R),
define

mf : E −→ E by mf (v) = f
(
πE(v)

)
· v ∀ v∈E. (A.1)

In particular,
πE⊕E = πE◦a, πE = πE◦mf ∀ f ∈C∞(X;R).

The total spaces of the vector bundles

πE⊕E : E⊕E −→ X and π∗EE−→E

consist of the pairs (v, w) in E×E such that πE(v)=πE(w).

Define a smooth bundle homomorphism

ιE : π∗EE −→ TE, ιE(v, w) =
d

dt
(v+tw)

∣∣∣
t=0

. (A.2)

Since the restriction of ιE to the fiber over v∈E is the composition of the isomorphism

EπE(v) −→ TvEπE(v), w −→ d

dt
(v+tw)

∣∣∣
t=0

,

with the differential of the embedding of the fiber EπE(v) into E, ιE is an injective bundle homo-
morphism. Furthermore,

dπE◦ιE=0: π∗EE −→ π∗ETX, m∗
f ιE◦π∗Emf = dmf ◦ιE : π∗EE −→ m∗

fTE,

a
∗ιE◦π ∗

E⊕Ea = da◦ιE⊕E : π ∗
E⊕E(E⊕E) −→ a

∗TE ,
(A.3)

TE|X = TX⊕ιE
(
π∗EE|X

)
= TX⊕ιE(E) . (A.4)

Let
ζE ∈ Γ(E;TE), ζE(v) = ιE(v, v) ∈ TvE, (A.5)

be the canonical vertical vector field on E.
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Exercise A.1. Suppose p∈Z+, πE : E−→X is a real vector bundle, U ⊂E is a tubular neighborhood
of X in E, i.e. tv∈U whenever v∈U and t∈ [0, 1], and ̟ is a closed p-form on U . Show that the
family (m∗

t̟)t∈[0,1] of p-forms on U satisfies

d

dt
m∗
t̟ = m∗

t

(
Lt−1ζE̟

)
= d

(
m∗
t (ιt−1ζE̟)

)
∀ t∈ [0, 1],

where L is the Lie derivative.

By the first statement in (A.3), the injectivity of ιE , and surjectivity of dπE ,

0 −→ π∗EE
ιE−−−→ TE

dπE−−−−→ π∗ETX −→ 0 (A.6)

is an exact sequence of real vector bundles over E. By the second statement in (A.3), the diagram

0 // π∗EE
ιE

//

π∗
Emf

��

TE
dπE

//

dmf

��

π∗ETX
//

π∗
E idTX

��

0

0 // π∗EE
m∗
f ιE

// m∗
fTE

m∗
fdπE

// π∗ETX
// 0

(A.7)

of real vector bundle homomorphisms over E commutes. By the third statement in (A.3), the
diagram

0 // π∗E⊕E(E⊕E)
ιE⊕E

//

π ∗
E⊕Ea

��

T (E⊕E)
dπE⊕E

//

da

��

π ∗
E⊕ETX

//

π ∗
E⊕E idTX

��

0

0 // π ∗
E⊕EE

a∗ιE
// a

∗TE
a∗dπE

// π∗E⊕ETX
// 0

(A.8)

of real vector bundle homomorphisms over E⊕E commutes.

A connection in E is an R-linear map

∇ : Γ(X;E) −→ Γ(X;T ∗X⊗RE) s.t.

∇(fs) = df⊗s+ f∇s ∀ f ∈C∞(X), s∈Γ(X;E). (A.9)

The Leibnitz property (A.9) implies that any two connections in E differ by a 1-form on X. In other
words, if ∇ and ∇′ are connections in E there exists

θ ∈ Γ
(
X;T ∗X⊗RHomR(E,E)

)
s.t.

∇′
vs = ∇vs+

{
θ(v)

}(
s(x)

)
∀ s∈Γ(X;E), v∈TxX, x∈X. (A.10)

If U is a neighborhood of x∈X and f is a smooth function on X supported in U such that f(x)=1,
then

∇s
∣∣
x
= ∇

(
fs)

∣∣
x
− dxf⊗s(x) (A.11)

by (A.9). The right-hand side of (A.11) depends only on s|U . Thus, a connection ∇ in E is
a local operator, i.e. the value of ∇ξ at a point x∈X depends only on the restriction of s to any
neighborhood U of x.
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Exercise A.2. Suppose ∇,∇′ are connections in real vector bundles E,E′ −→ X, respectively.
Show that the map

∇⊕∇′ : Γ
(
X;E⊕E′

)
−→ Γ

(
X;T ∗X⊗R(E⊕E′)

)
, ∇⊕∇′(s, s′) =

(
∇s,∇′s′

)
,

is a connection in the real vector bundle E⊕E′−→X.

Exercise A.3. Suppose ∇ is a connection in a real vector bundle πE : E−→X. Show that

(a) the linear map ∇ extends to a linear map on the E-valued p-forms by

∇ : Γ
(
X; Λp(T ∗X)⊗RE

)
−→ Γ

(
X; Λp+1(T ∗X)⊗RE

)
, ∇(η⊗s) = (dη)⊗s+(−1)pη⊗(∇s) ;

(b) there exists κ∇∈Γ(X; Λ2(T ∗X)⊗REndR(E)) so that

∇(∇η̃) = κ∇∧η̃ ∀ η̃∈Γ
(
X; Λp(T ∗X)⊗RE

)
, p∈Z≥0.

Note: the bundle section κ∇ above is called the curvature of ∇.

Suppose U is an open subset of X and s1, . . . , sn∈Γ(U ;E) is a frame for E on U , i.e.

s1(x), . . . , sn(x) ∈ Ex

is a basis for Ex for all x∈U . By definition of ∇, there exist

θkl ∈ Γ(U ;T ∗U) s.t. ∇sℓ =
k=n∑

k=1

skθ
k
ℓ ≡

k=n∑

k=1

θkℓ ⊗sk ∀ ℓ=1, . . . , n.

We call
θ ≡

(
θkℓ
)
k,ℓ=1,...,n

∈ Γ
(
U ;T ∗U⊗RMatnR

)

the connection 1-form of ∇ with respect to the frame (sk)k.

For an arbitrary section

s ≡
ℓ=n∑

ℓ=1

f ℓsℓ ∈ Γ(U ;E),

by (A.9) we have

∇s =
k=n∑

k=1

sk

(
dfk +

ℓ=n∑

ℓ=1

θkℓ f
ℓ
)
, i.e. ∇

(
s · f t

)
= s ·

{
d+θ

}
f t, (A.12)

where s = (s1, . . . , sn), f = (f1, . . . , fn). (A.13)

This implies that

∇s
∣∣
x
= π2|x◦dxs : TxX −→ Ex ∀ x∈X, s∈Γ(X;E) s.t. s(x)=0, (A.14)

where π2|x : TxE−→Ex is the projection to the second component in (A.4).
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Lemma A.4. Suppose X is a smooth manifold and πE : E −→ X is a real vector bundle. A
connection ∇ in E induces a splitting

TE ≈ π∗ETX ⊕ π∗EE (A.15)

of the exact sequence (A.6) extending the splitting (A.4) such that

∇s
∣∣
x
= π∇◦dxs : TxX −→ Ex ∀ s∈Γ(X;E), x∈X, (A.16)

where π∇ : TE−→π∗EE is the projection onto the second component in (A.15). Furthermore,

dmt ≈ π∗E id⊕ π∗Emt ∀ t∈R and a ≈ π ∗
E⊕E id⊕ π ∗

E⊕Ea, (A.17)

with respect to the splitting (A.15) and the corresponding splitting for the connection ∇⊕∇ in the real
vector bundle E⊕E−→X, i.e. these splittings are consistent with the commutative diagrams (A.7)
and (A.8).

Proof. Given x∈X and v∈Ex, choose s∈Γ(X;E) such that s(x)=v and let

TvE
h =

{
dxs(w)−ιE

(
∇ws

)
: w∈TxX

}
⊂ TvE.

Since πE◦s=idX and dπE◦ιE=0,

dvπE◦
{
ds−ιE◦∇s

}∣∣
x
= idTxX =⇒ TvE ≈ TvEh ⊕ Ex ≈ TxX ⊕ Ex.

This splitting of TvE satisfies (A.16) at v=s(x).

With the notation as in (A.12),

{
ds−ιE◦∇s

}∣∣
x
=

(
dxidX ,−

ℓ=n∑

ℓ=1

f ℓ(x)θ1ℓ |x, . . .−
ℓ=n∑

ℓ=1

f ℓ(x)θnℓ |x
)
: TxX −→ TxX⊕Rn (A.18)

with respect to the identification E|U ≈ U×Rn determined by the frame (sk)k. Thus, TvE
h is

independent of the choice of s. Since TxE
h = TxX for every x∈X, the resulting splitting (A.15)

of (A.6) extends (A.4). By (A.18), it also satisfies (A.17).

Exercise A.5. Suppose p∈Z+, πE : E−→X is a real vector bundle, Ω is a fiberwise p-form on E,
and ∇ is a connection in E with the associated projection π∇ : TE−→π∗EE as in Lemma A.4.
Thus, Ω∇≡π∗∇Ω is a p-form on the total space of E. Let ζE ∈Γ(E;TE) be the canonical vertical
vector field on E as in (A.5). Show that

ι∗E
(
d(ιζEΩ∇)

)
= pΩ and

(
d(ιζEΩ∇)

)∣∣
TxX

= 0 ∀x∈X. (A.19)

Suppose g is a metric on a real vector bundle E−→X, i.e.

g ∈ Γ
(
X;E∗⊗RE

∗
)

s.t. g(v, w) = g(w, v), g(v, v) > 0 ∀ v, w ∈ Ex, v 6=0, x∈X.

A connection ∇ in E is g-compatible if

d
(
g(s, s′)

)
= g(∇s, s′) + g(s,∇s′) ∈ Γ(X;T ∗X) ∀ s, s′ ∈ Γ(X;E).
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Suppose U is an open subset of X and s1, . . . , sn∈Γ(U ;E) is a frame for E on U . For i, j=1, . . . , n,
let

gij = g(si, sj) ∈ C∞(U).

If ∇ is a connection in E and θkℓ is the connection 1-form for ∇ with respect to the frame {sk}k,
then ∇ is g-compatible on U if and only if

k=n∑

k=1

(
gikθ

k
j + gjkθ

k
i

)
= dgij ∀ i, j = 1, 2, . . . , n. (A.20)

A.2 Complex vector bundles

Suppose X is a smooth manifold and πE : E −→ X is a complex vector bundle. Similarly to
Section A.1, there is an exact sequence

0 // π∗EE
ιE

// TE
dπE

// π∗ETX
// 0 (A.21)

of complex vector bundles over E. The homomorphism ιE is now C-linear. If f ∈C∞(X;C) and
mf : E−→E is defined as in (A.1), there is a commutative diagram

0 // π∗EE
ιE

//

π∗
Emf

��

TE
dπE

//

dmf

��

π∗ETX
//

π∗
E idTX

��

0

0 // π∗EE
m∗
f ιE

// m∗
fTE

m∗
fdπE

// π∗ETX
// 0

(A.22)

of complex vector bundle maps over E.

Suppose ∇ is a (C-linear) connection in the complex vector bundle πE : E−→X, i.e.

∇v(is) = i(∇vs) ∀ s ∈ Γ(X;E), v∈TX.

If U is an open subset of X and s1, . . . , sn∈Γ(U ;E) is a C-frame for E on U , then there exist

θkℓ ∈ Γ
(
U ;T ∗U×RC

)
s.t. ∇ξℓ =

k=n∑

k=1

skθ
k
ℓ ≡

k=n∑

k=1

θkℓ ⊗sk ∀ ℓ=1, . . . , n.

For an arbitrary section

s =
ℓ=n∑

ℓ=1

f ℓsℓ ∈ Γ(U ;E),

by (A.9) and C-linearity of ∇ we have

∇ξ =
k=n∑

k=1

sk

(
dfk +

ℓ=n∑

ℓ=1

θkℓ f
ℓ
)
, i.e. ∇

(
s · f t

)
= ξ ·

{
d + θ

}
f t, (A.23)

where s and f are as (A.13).
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Let g be a Hermitian metric on E, i.e.

g ∈ Γ
(
X; HomC(E⊗CE,C)

)
s.t. g(v, w) = g(w, v), g(v, v) > 0 ∀ v, w ∈ Ex, v 6=0, x∈X.

A (C-linear) connection ∇ in E is g-compatible if

d
(
g(s, s′)

)
= g(∇s, s′) + g(s,∇s′) ∈ Γ(X;T ∗X⊗RC) ∀ s, s′ ∈ Γ(X;E).

With the notation as in the previous paragraph, let

gij = g(si, sj) ∈ C∞(U ;C) ∀ i, j=1, . . . , n.

Then ∇ is g-compatible on U if and only if

k=n∑

k=1

(
gikθ

k
j + ḡjkθ̄

k
i

)
= dgij ∀ i, j = 1, 2, . . . , n. (A.24)

Exercise A.6. Suppose ∇ is a connection in a complex vector bundle πE : E −→ X. Let
κ∇∈Γ(X; Λ2(T ∗X)⊗REndR(E)) be the curvature of ∇ as in Exercise A.3 and TEh⊂TE be the
complement of ιE(π

∗
EE)⊂TE determined by ∇ as in the proof of Lemma A.4.

(a) Show that the splitting (A.15) satisfies the first property in (A.17) for all t ∈ C and that
κ∇∈Γ(X; Λ2(T ∗X)⊗REndC(E));

(b) Suppose ∇ is compatible with a Hermitian metric g on E and

v ∈ SE,g ≡
{
w∈E : g(w,w)=1

}
.

Show that TvE
h⊂TvSE,g.

(c) Suppose in addition that rkCE=1. Show that κ∇ is a 1-form on X with values in iR.

A.3 Principal S1-bundles

Suppose X is a smooth manifold and πS : S−→X is a (smooth) principal S1-bundle. Let

ζS ∈ Γ(S;TS), ζS(v) =
d

dt

(
e2πit ·v

)∣∣∣∣
t=0

, (A.25)

be the vector field generating the S1-action. This vector field generates the vertical tangent bundle

of πS , i.e.
TSver ≡ ker dπS =

{
tζS(v) : v∈S, t∈R

}
−→ S.

A connection 1-form on S is an S1-invariant 1-form λ on (the total space of) S such that λ(ζS)=2π.
Such a form determines an S1-equivariant splitting of the exact sequence

0 −→ TSver −→ TS
dπS−−−→ π∗STX −→ 0

of real vector bundles over S with

TS = TSver⊕(kerλ).
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Exercise A.7. Suppose πS : S−→X is a principal S1-bundle.

(a) Show that the S1-invariance condition on 1-form λ being a connection 1-form can be equiva-
lently replaced by the condition ιζSdλ=0;

(b) Let λ be a connection 1-form on S. Show that there exists a 2-form κλ on X so that dλ=π∗Sκλ.

Note: the 2-form κλ above is called the curvature of λ.

A principal S1-bundle πS : S−→X determines a complex line bundle

πLS : LS≡
(
S×S1C

)/
∼−→ X,

(v, z) ∼
(
u·v, u−1 ·z

)
∀ (v, z)∈S×C, u∈S1, πLS

(
[v, z]

)
= πS(v),

with a Hermitian metric specified by

gS
(
[v, z], [v, z′]

)
= zz′ .

Conversely, a complex line bundle πL : L−→X with a Hermitian metric g determines a principal
S1-bundle, the unit circle bundle of L,

πSL,g : SL,g≡
{
v∈L : g(v, v)=1

}
−→ X, πSL,g(v) = πL(v).

With S and (L, g) as above, the maps

S −→ SLS ,gS , v −→ [v, 1], and LSLS,gS −→ L, [v, z] −→ zv, (A.26)

are isomorphism of principal S1-bundles overX and of complex line bundles with Hermitian metrics
over X . Thus, we have constructed a bijective correspondence between the isomorphism classes of
principal S1-bundles over X and the isomorphism classes of complex line bundles with Hermitian
metrics over X.

Exercise A.8. Suppose λ is a connection 1-form on a principal S1-bundle πS : S −→ X and
p : S×C−→LS is the quotient projection. Show that

(a) there is a unique 1-form λS on LS so that

p∗λS
∣∣
(v,z)

= |z|2λv+
i

2

(
zdz−zdz

)
∀ (v, z)∈L×C;

(b) ι∗LS (dλS)=2Re gS(i·, ·) and ιv(dλS)=0 for all v∈TxX⊂TxLS , x∈X;

(c) there is a unique (C-linear) connection ∇λ in the complex line bundle LS −→X compatible
with the Hermitian metric gS so that the 1-form λS vanishes on the complement TLh⊂TL of
ιL(π

∗
LL)⊂TL determined by ∇λ as in the proof of Lemma A.4.

Thus, a connection 1-form λ in a principal S1-bundle πS : S −→X determines a connection ∇λ
in the associated complex line bundle πLS : LS−→X compatible with the Hermitian metric gS
on LS . Suppose πL : L−→X is a complex line bundle with a Hermitian metric g and ∇ is a (C-
linear) connection in L compatible with g. Let ζL∈Γ(L;TL) be the canonical vertical vector field
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as in (A.5) and TLh⊂TL be the complement of ιL(π
∗
LL)⊂ TL determined by ∇ as in the proof

of Lemma A.4. In particular, 2πiζL ∈ Γ(L;TL) is the vector field generating the S1-action on L
by scalar multiplication. By Exercise A.6, the S1-action on L preserves the subbundle TLh|SL,g
of TSL,g. Thus, the 1-form λ∇ on SL,g defined by

λ∇
(
2πiζL(v)

)
= 2π, λ∇

∣∣
TvLh = 0 ∀ v∈SL,g

is a connection 1-form on the principal S1-bundle SL,g −→X. By Exercise A.9 below, we have
constructed a bijective correspondence between the isomorphism classes of principal S1-bundles
overX with connection 1-forms and the isomorphism classes of complex line bundles with Hermitian
metrics over X and compatible connections.

Exercise A.9. Suppose λ is a connection 1-form on a principal S1-bundle πS : S−→X and ∇ is
a connection in a complex line bundle πL : L−→X compatible with a Hermitian metric g. Show
that

λ = λ∇λ and ∇λ∇ = ∇
under the isomorphisms (A.26) and that κ∇λ= iκλ.

Remark A.10. By a Čech cohomology computation [13, p141] and Exercise A.9,

c1(L) =
i

2π

[
κ∇

]
= − 1

2π

[
κλ

]
∈ H2

deR(X),

if ∇ is a connection in a complex line bundle L−→X and λ is a connection 1-form in an associated
principal S1-bundle.
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