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The argument in the present notes is a more detailed version of [1, §2], except for (Dg) and the
part of (Ag) beyond (Af); see Remark 1.1 below.

1 Introduction and Overview

For a smooth manifold X, we denote by Diff(X) the group of diffeomorphisms of X (with the
product given by the composition of functions). For a symplectic manifold (X,w), we denote
by Symp(X,w) the group of symplectomorphisms of (X,w), i.e. diffeomorphisms ¢ of X such
that ¥*w = w. A smooth action of a Lie group G on a smooth manifold X (resp. symplectic
manifold (X,w)) is a group homomorphism

Y: G — Diff(X) (resp. G — Symp(X,w)), U —> Py, (1.1)

such that the map
U:GxX — X, U(u, ) = Py (z),

is smooth. For each ve TG,
G =dap(v) e N(X;TX), Co(7) = d(1,2)¥(v,0) € T X VrelX, (1.2)
is then a well-defined smooth vector field on X. For any action ¢ as in (1.1), let
XY ={reX:Py(z)=2VueG}
denote its fixed locus. If in addition z€ X, let

Go(¥) = {ueG: ¢y(z)=x} (1.3)

denote the stabilizer of z in G.

An action 1 in (1.1) is called effective if the group homomorphism v is injective. It is called
irreducible if the associated vector space homomorphism

dﬂwTﬂG—>F(X7TX)7 'U—><v,

is injective; otherwise, it is called reducible. An effective action is irreducible, but an irreducible
action may have a discrete nontrivial kernel and thus not be effective.

Let G be a Lie group. A moment map for a smooth action of G on a symplectic manifold (X,w) is
a smooth map

~A({(PW) = 1w =w(G) Y vETHG)

: X ;G t.
prt = ° p(tu(z) = Adf (p(z)) VeeX, ued,

(1.4)

where AdY_, : Ty G — T{G is the dual of the adjoint action Ad,-1 of G on TG} see [30, Sec-
tions 3.46]. On the left-hand side of the first equation in (1.4), {u(-)}(v) denotes the smooth
function on X given by

{pO}): X — R, {p(} )} (@) = {u(@)}(v).



On the right-hand side of this equation, w((,, -) denotes the 1-form on X given by
w(Cy,): TX — R, {w((v, )}(w) = w((v(:c),w) VeeX, weT,X.

If G is abelian, the second equation in (1.4) is equivalent to p being G-invariant. A smooth G-action
on (X,w) that admits a moment map is called Hamiltonian. In such a case, u is determined up
to an additive constant fixed by the Ad*-action of G on T7G. If G is connected, Exercise 3.11(a)
implies that a smooth action of G on X that admits a smooth map p: X — T} G satisfying the
first condition in (1.4) is in fact an action on (X, w). By Exercise 3.11(c), such a map is G-invariant
if G is connected, abelian, and either G &~ R or either G or X is compact. We will call a tuple
(X,w, 1, u) a Hamiltonian G-manifold if (X, w) is a symplectic manifold, v is a smooth G-action
on (X,w), and p is a moment map for this action.

A closed manifold is a compact manifold without boundary. We call a closed subset Z of a smooth
manifold X a closed submanifold if every topological component, i.e. a maximal connected subset,
of Z is open in Z and is a smooth manifold without boundary smoothly embedded into X. In other
words, every topological component of Z has an open neighborhood in X disjoint from the rest
of Z and is a submanifold of X in the usual sense, but the dimensions of these submanifolds may
not be the same. In such a case, the components of Z are also its path components; as usual, we
denote the set of these components by mp(Z). We will call a Hamiltonian G-manifold (X,w, ), 1)
closed (resp. connected) if the manifold X is closed (resp. connected).

1.1 Convexity Theorem

The convex hull of a subset S of a vector space V is the subset

m m
CH(S) = {Zrisi: meZt, si,...,8m€S, r1,...,rm R0, Zri = 1} cV.
i=1 i=1
If SCV is a finite subset of V', then CH(.S) is called a polytope. In such a case, we denote by Ver(S)
the set of vertices of CH(S), i.e. the minimal subset of S so that CH(Ver(S))=CH(S). Since this
subset of the polytope P=CH(S) is determined by P itself, we will also denote it by Ver(P). The
dimension of a polytope P is the dimension of the minimal affine subspace of V' containing P. A
(closed) face of a polytope P is the intersection P with the hyperplane L~!(c) for some nonzero
linear functional L: V — R and c€R such that

L(v)>¢ VwveP.

Such a face is the convex hull of Ver(P)NL~!(c) and thus is a polytope in itself. The interior P° of
a polytope P is the complement of the proper faces of P in P. An open face of P is the interior of
a face of P. An edge (resp. facet) of a polytope P is a face of P of dimension 1 (resp. codimension 1).
We denote by Edg(P) the set of edges of a polytope P and by Edg, (P) C Edg(P) for each v € Ver(P)
the subset of the edges containing v. For e € Edg(P), we call v, €V an edge vector for e if

Pn{v+tve:teR} =eCV

for a vertex v € Ver(e). A full tuple of edge vectors for a polytope P is an element (ve)ccgdg(p)
of VEE(P) g6 that v, is an edge vector for each e Edg, (P).



Following [1], we call a smooth R¥-action 1 on a smooth manifold X almost periodic if there exists
a smooth action v’ of a torus T, i.e. a compact connected abelian Lie group, on X and a group
homomorphism

p:RF — T st =4 op: RF — Diff(X). (1.5)

If the image of p is dense in T (which can be achieved by replacing T with the closure of p(RF)),
then X¥=XY". If in addition ¢ preserves a symplectic form w on X, then so does /. This implies
the existence of an RF-invariant Riemannian metric on X and thus of an R¥-invariant w-compatible
almost complex structure on X in Theorem 1 below; see Exercises 3.2 and 3.12.

Theorem 1. Suppose ke Z*, (X,w, 1, u) is a closed connected Hamiltonian R*-manifold, and the
RF-action 1 is almost periodic.

(Ax) The subset p=*(a) C X is connected for every a€ TfRE.
(Bi) The image u(X) CTERF of X is a convexr subset.

(Cy) The v-fized locus XV is a closed symplectic submanifold of (X,w), ply is constant for each
Y € mo(XY), and u(X) is the convex hull of the finite subset u(X¥) C T¢R* with at most
(dim X')/2 edges at each vertex.

(Dy) The map p: X — u(X) is open.

(Ex) The components of a full tuple of edge vectors for the polytope u(X) at any given vertex
of (X) span TR if and only if the action v is irreducible.

(Fy) If the action 1 is irreducible, then the subset Crit(u) of points x € X so that dyu is not
surjective is a finite union of (not necessarily disjoint) closed symplectic proper submanifolds

of (X,w), and the image of each such submanifold under p is contained in a hyperplane
of TiRE.

The first claim in (Cg) is straightforward and holds for any smooth Lie group action on a sym-
plectic manifold (X,w) preserving a Riemannian metric on X; see Remark 3.4 and the proof of
Proposition 3.14(1). The second claim in (Cy) follows from the first and the observation that

XV ={reX:d,u=0};

this identity is a consequence of (1.4) and Proposition 3.8(1). The first claim in (Fy) is a straight-
forward consequence of the equivariant splitting (3.5) of TX |y for each Y €m(X¥).

The interesting parts of Theorem 1 are (Ag), (Bx), (D), and the remaining claims in (Cy) and (Fy).
The fundamental reason behind these statements is the local form of the moment map p provided
by the first part of Corollary 3.28. This part of Corollary 3.28 is in a sense a Hamiltonian version of
the Darboux Theorem. It ensures that (Ag), (Bg), and (Dg) hold locally and establishes (Ey), the
last claim in (Fy), and Theorem 2(1) on page 7. We use the global, Morse-Bott theory statement
of Proposition 4.8 and the first, local statement of Proposition 4.5 to obtain

(A7) p~(a)C X is connected for every regular value a € T¢RF of ,



via an induction of the dimension of the torus T, as in [1, 21], and to deduce (Dy) from its local ver-
sion. The remaining part of (Ay) follows from (Aj), (D), and (F}) via Exercise 4.10. Claim (By,)
of Theorem 1 is obvious for k=1, follows readily from (Ay) for k> 2, and leads to the last claim
in (Cg).

By the last claim in (Cy), u(X) C T¢RF is a polytope, called a moment polytope for the Hamiltonian
action ¢ on (X,w). It is well-defined up to translation. Since a torus T is the quotient of a
finite-dimensional vector space by a lattice, Theorem 1 immediately implies its statement with R*
replaced by T. In such a case, the moment polytope p(X)CT;T has additional properties; see
Theorems 2 and 3 on pages 7 and 8, respectively. Figure 1 on page 14 shows moment polytopes
for the two torus actions on ((CPQ,WFS;Q) of Exercise 2.7.

Remark 1.1. The three parts of the statement of [1, Theorem 1] are (Ag), (Bg), and (Cy) in
Theorem 1, while (Fj) is stated at the beginning of the proof of (A}) and is justified at the end of
Section 2 in [1]. The proof in [1] contains (at least) two gaps, both at the top of page 6.

(G1) It is claimed that (Aj%) implies (Ay) by continuity. This is indeed the case for k = 1; see
Lemma 4.9. However, this may not be the case for k> 2, even if the regular values are dense
in the image (as is the case at the top of page 6). As an example, pinch the points +1, —1
of the unit circle S* CR? to the origin (so that the preimage of 0€R? consists of two points,
while the preimages of all other points contain at most one point). Replacing the circle with
a 2-torus, we can ensure that the set of regular values is dense in the image. Statement (D)
is the key property of p needed for the by continuity claim in [1], but it does not even appear
in [1], and neither does the local description of x of Corollary 3.28 needed for this statement.
Both play prominent roles in other approaches to the convexity theorem; see Section 1.4.

(G2) Tt is implicitly assumed that if (cy,...,cx) € R¥ is a regular value of an R¥-valued smooth
function (f1,..., fx) on a smooth manifold X, then (ci,...,c,_1) € R¥"! is a regular value
of (fi,..., fx—1). This need not be the case, including in the setting on page 6 in [1].

Remark 1.2. The statements (By) and (Cy) in Theorem 1, with R¥ replaced by a torus T, form [2,
Theorem IV.4.3] and [21, Theorem 5.5.1]; [8, Theorem 27.1] includes (Aj) as well. The arguments
in [2, 8, 21] generally follow [1], with [2] stating (Aj) as part of the proof and replicating the two
gaps of Remark 1.1 in the middle of page 115 almost wverbatim. In [21], only (A}) is stated as
part of the argument, making the issue (G1) in Remark 1.1 extraneous, while the gap (G2) is
resolved. In order to deduce (Bj) from (A%), it is claimed in the last full sentence on page 239
in [21] that any two points in X (M in [21]) with the same value of a Hamiltonian (A% y in [21])
can be approximated by two points in the preimage of a regular value of the Hamiltonian (the same
regular value for both points). However, this is precisely what is needed to deduce (Ay) from (AJ),
as indicated by the proof of Lemma 4.9. This property is implied by the Hamiltonian being an
open map onto its image, i.e. (Dg), as suggested by Exercise 4.10, but neither the openness of
the Hamiltonian nor its local description as in the first part of Corollary 3.28 is ever brought up
n [21]. Thus, the attempt in [21] to bypass (G1) while establishing (Bj) contains fundamentally
the same gap. In [8], the proof of (Aj) is relegated to Homework 21, which deals only with (A}),
while resolving (G2) as in [21]; neither the openness of the Hamiltonian nor its local description is
mentioned in [8] either. While (F},) is also stated at the beginning of the proof of (A}) in [21] with
a note that it is established later in the proof, (Fj) is never addressed in [21]. The equivariant



splitting (3.5) of TX|y for each Y € mo(X?) needed to establish even the first claim in (F) does
not appear anywhere in [21].

1.2 Kahler case
For a Lie group G and v€T1G, let e’ € G be the exponential of v; see [30, §3.30]. Define
(T1G)z = {veThG:e"={1}} and (I3G)z = {acT;G:a(v)eZYVve(T1iG)z}.
If G’ C G is a Lie subgroup, then
(T1G)z = (ThG)zNThG' C TG

and the image of (T7G)z under the restriction homomorphism 77G)z — T7G is contained
in (TyG")z. I T is a torus, then (T3T)z C 71T and (T3T)z CT;T are lattices, i.e. the homo-
morphisms

(T1T)z@zR — T1T, v®c — cv, and (I7T)z®@zR — T7T, a®c — ca,
are isomorphisms of real vector spaces, and the map
TyT/(T1T)z — T, [v] — €Y,

is an isomorphism of Lie groups. We call a € T;T integral if a € (75 T)z and a line segment in 75T
rational if it is parallel to an integral element of 77 T.

Exercise 1.3. Let T be a torus.
(a) Suppose that V. CT1T is a linear subspace. Show that
eVE{e”: veV}cT
is a subtorus if and only if V' is the R-span of a finite subset of (71T)z.

(b) Suppose T'CT is a subtorus. Show that there exists a subtorus T’ C T so that the Lie group
homomorphism
T xT'° — T, (', u'%) — ',
is an isomorphism. Conclude that the restriction homomorphism (75 T)z — (T5T')z is sur-

jective.

The complexification of a torus T is the complex Lie group
Tc = (TaT®rC) /(T1T)z®r {1}

with T3 Tc =771 TRRC. An almost complex structure on a smooth manifold X is an endomorphism J of
the real vector bundle TX — X covering the identity on X so that J?=—Idrx. A complexification
of a smooth T-action ¥ on a symplectic manifold (X,w) is a smooth T¢-action on X,

w(c: T(C — Diﬂ(X), u — 'lb(c;u, s.t.
dyvc(v+iv') = dpp(v)+Jdgy(v') € T(X;TX) Vo, o' €TyT, (1.6)



for some almost complex structure J on X compatible with w and preserved by %, i.e.

ww,Jw) >0 VweTX, w#0, w(Jw,Juw')=ww,w') Yw,w eTX, and
{dwu}_loJodxwu:J: T, X —T,X YueT, zeX.

If X is compact, the conditions (1.6) with v =0 determine R-actions in the imaginary directions.
However, these actions may not commute with 1) or each other and thus not give rise to a T¢-action.

Theorem 2. Suppose T is a torus and (X,w,, u) is a closed connected Hamiltonian T-manifold.
(1) All edges of the polytope p(X)CT;T are rational.

(2) If Yc is a complezification of ¥, x € X, and O, C X is the closure of the Tc-orbit O, =Tcx
of x, then

(2a) Ver(u({Y €mo(X¥): YNO, #0})=p({Y €mo(X¥): YNOL #0});

(20) u(Oz)=CH(u({Y €mo(X?): YNO, #0});

(2¢) for every open face o of the polytope u(Oy), =1 (0)NO, is a single Tc-orbit;
(2d) the map Oy /T — u(O,), ('] — u(a'), is a well-defined homeomorphism.

If T~ S! or J is an integrable almost complex structure on X compatible with w and preserved by
a smooth T-action 1 on (X,w), then (1.6) determines a complexification ¢¢ of 1; see Exercise 5.1.
In the latter case, Theorem 2(2) reduces to [1, Theorem 2|, but the argument in [1] applies to the
general case of Theorem 2(2). The crucial implication of (1.6) is that the action of the imaginary
components (which correspond to the radial direction in C*) is given by the gradient flow of
projections of i to one-dimensional subspaces of T;T; see (3.18).

Remark 1.4. As stated, [1, (3.6)] is wrong. For example, it fails if C'C N*—N consists of a single
point. However, [1, (3.6)] is used in the proof of Theorem 2(2) in [1] only to obtain the second
statement in [1, (3.7)]. The latter is correct, as it follows from Proposition 4.7(6), which corrects |1,
(3.6)].

1.3 Symplectic toric manifolds

Let T be a torus. A polytope P CTyT is Delzant if there exists a full tuple (e )ccrdg(p) of (integral)
edge vectors for P such that for each vertex 7 of P the components o, with e € Edg, (P) form a Z-
basis for (75 T)z; this property of P is typically called smoothness in the literature. In particular,
all edges of a Delzant polytope are rational. Furthermore, the number of edges containing any
given vertex is the same as the dimension of T; this property of P is typically called simplicity. A
symplectic toric T-manifold is a closed connected Hamiltonian T-manifold (X, w, ¥, u) so that

dim X =2dim T (1.7)
and the action ¥ on X is effective. By Delzant’s Theorem, Theorem 3 below, the map
(X7OJ,¢,,U,) — M(X)

induces a bijection between the equivalence classes of symplectic toric T-manifolds and Delzant
polytopes in T5T.



Theorem 3 ([11, Théoreme 2.1, Section 3.2]). Let T be a torus.

(0) If (X,w,v¥,u) is a symplectic toric T-manifold, then the moment polytope p(X)CTyT is
Delzant.

(1) For every Delzant polytope P C TyT, there exists a symplectic toric T-manifold (X,w, v, u)
with p(X)=P.

(2) If (X,w,,pn) and (X', ¢, 1) are symplectic toric T-manifolds with pw(X)=u(X’), then
there exists a T-equivariant diffeomorphism

o: X — X' st w=0" p=pod.

Claim 0 of this theorem is a consequence of the following description of the moment map p1: X — T7T.

(0T) If (X,w,,u) is a symplectic toric T-manifold, then there exist a subtorus Tp C T for every
face I of the polytope p(X) and a full tuple (ae)ececpag(p) of integral edge vectors for p(X)
so that

(0Fta) Tp={e": veTyT, a.(v) :0V66Edgn(F)} for every face F' of P and n€ Ver(F);
(0*b) T,(¢)=Tp for every face F of P and every € u~'(F°);

(0*c) the restriction p: p~'(F°) — F° is a principal T /T g-bundle with w-isotropic fibers,
i.e.w|p,-1(; =0 for every ne F°.

Similarly to Theorems 1(Ex) and 2(1), this statement is a consequence of the equivariant split-
ting (3.5) of T X |y for each Y € mo(X?) and Corollary 3.28; we establish it at the end of Section 5.2.
By (1.7) and (07c), the dimension of u(X) is the same as the dimension of T and T, x)={1}.
Along with (0*a), the latter implies that for each vertex n of u(X) the components o, with nee
span (T5T)z over Z. Combining this with the last claim of Theorem 1(Cy) and (1.7) again, we
conclude that these components form a Z-basis for (T3T)z.

Theorem 3(1) is readily obtained by applying the Hamiltonian symplectic cut of [19, Proposition 2.4],
which is detailed in Section 6.2, to the Hamiltonian T-manifold (73 TXT, wr, 1T, pt) of Exercise 2.11
with respect to the collection .7 of half-spaces of 77T cutting out the polytope P. We establish
Theorem 3(2) by describing a reverse of the Hamiltonian symplectic cut in Section 6.3; this imple-
ments the argument sketched in the proof of [22, Theorem 7.5.10].

1.4 Alternative approaches to Convexity Theorem

Other approaches to Theorem 1(Cy) on page 4, with R replaced by a torus T, have appeared in
particular in [15, 16, 5, 6]. In contrast to [1, 2, 21, 8], they clearly emphasize the significance of the
local form of the moment map p as in Corollary 3.28 and make it possible to relax the compactness
condition on X to the properness of y. These approaches differ in how they pass from the local
versions of (Ag), (Bg), and (Dg) implied by this local form to the global versions appearing in The-
orem 1. The global, Morse-Bott theory statement of Proposition 4.8 and the first, local statement
of Proposition 4.5 used in [1, 2, 21, 8] to inductively confirm (Aj) on page 4 is used in [15, §5]
instead to deduce (By) from its local version and to establish (Cg); the remaining statements of



Theorem 1 do not appear in [15]. An enlightening summary of the reasoning in [15] appears in [27].

The most succinct approach to passing from the local properties provided by the first part of
Corollary 3.28 to the global statements of Theorem 1 is arguably presented in [6]. It is motivated
by the following point set topology result from the 1920s.

Proposition 1.5 (Tietze-Nakajima Theorem, [29, Satz 1], [6, Theorem 1]). A closed connected
locally convex subset of R¥ is convex.

Remark 1.6. Nakajima’s paper [26] typically credited for Proposition 1.5 contains several state-
ments in the same spirit, most concerning subsets of R? and R3, but not the actual statement of
this proposition.

Let f: X — V be a continuous map between topological spaces. Such a map is fiber connected if
f~Y(v) € X is connected for every v € V. If in addition V is a vector space, f is convex if for any
xo,x1 € X there exists a path

v:([0,1],0,1) — (X, zo,21)

from zy to z1 in X such that the map fo<y is fiber connected and f(7([0,1])) is contained in the
line segment from f(z¢) to f(z1) in V. The conditions on v mean that the path

fo’y: ([07 1]707 1) — (V,f(l’o),f(ﬂ?l))

traces the line segment from f(zp) to f(z1) in V without reversing the direction at any point in
time.

Proposition 1.7 ([6, Theorem 15]). Suppose X is a connected Hausdorff topological space, V is
a finite-dimensional vector space, and f: X — V' is a proper continuous map. If for every xre X
there exists an open neighborhood U C X of x such that f|y is convex and f: U — ®(U) is open,
then f is a convex map and f: X — f(X) is an open map. In particular, f is fiber connected and
f(X)CV is convex.

Taking V =R*, X C R* to be a closed connected locally convex subset, and f: X —V to be the
inclusion in this proposition, we recover Proposition 1.5; the closedness of X implies the properness
of f. By Exercises 1.8-1.10 below, Corollary 3.28 implies that the moment map p of Theorem 1
satisfies the local condition on f in Proposition 1.7.

Exercise 1.8. Suppose f;: X; —V; for i=1,2 are convex maps. Show that the map
fixfa: X1 xXo — Vi x Vs
is also convex.

Exercise 1.9. Suppose k,meZ=0, f: R¥ —R™ is a smooth function so that the differential dof
is surjective, and U is a neighborhood of 0 in R¥. Show that f is open and convex on some
neighborhood U’ of 0 in U.

Exercise 1.10. Suppose meZ=" S CR™ is a finite subset,

[:CF =R f((wa)aes) = Y [wal’e,

a€es



and U is a neighborhood of 0 in C°. Show that the map

F:C5 — Co(S) E{Ztaa:taeRzo \mes}

a€eS
is open and f is convex on some neighborhood U’ of 0 in U.

Proposition 1.7 is a variation on the purely topological local-to-global theorems of [16, 17, 4, 5],
which do not involve geometric input as in Propositions 4.8 and 4.5 used in [1, 15, 2, 21, 8]. The
conditions on the continuous function f in [17, Theorem 3.10] and [5, Theorem 2.28], for example,
are arguably more ad hoc, explicitly involving an assignment of a cone in the target vector space V
of f to each point in the domain topological space X and thus fitting more closely with the output
of Corollary 3.28; see Proposition 1.11 below.

Let V be a vector space. For SCV and v€ S, define
RT(S—v) = {r(v'—v): v €S, reR"}, L,(S) =Rt (S—v)C WV

A subset S C V is locally polyhedral if for every v € S there exists a neighborhood U C V of v
such that
SNU = {v+v": v € Ly(9)}NU.

A closed convex subset S CV is a (closed) cone with vertex at v eV if v+¢(v' —v) € S whenever v' € S
and t € RT. Such a subset is locally polyhedral. If S#V is a cone and V is a finite-dimensional
vector space, then S is contained in a (closed) half-space, i.e.

Sc{weV: L(w)>c}

for some nonzero linear functional L: V —R and ceR.

Let f: X — V be a continuous map between topological spaces. Such a map is locally fiber
connected if for every x € X and open neighborhood U C X of = there exists an open neighborhood
U’ C U such that f|y is fiber connected. If in addition V is a finite-dimensional vector space, a
tuple (Cy)zex of closed convex cones in V' based at 0 is called local convexity data if for every y € X
and an open neighborhood U C X of y there exists an open neighborhood U, CU such that f|y, is
fiber connected, f(x)—f(y) €C, for every z€U,, and

Uy — Cy, z— f(z)—f(y),
is an open map.

Proposition 1.11 ([16, Theorem 3.4],[17, Theorem 3.10]). Suppose X is a connected Hausdorff
topological space, V is a finite-dimensional vector space, and f: X — V' is a proper locally fiber
connected map. If f admits local convezity data (Cy)rex, then f is a fiber connected map, f(X)CV
is a closed convex locally polyhedral subset, f: X — f(X) is an open map, and Cy= L) (f(X))
for every xe X.

For a topological space X, A C X, and x € A, the connected component of A containing x is the
maximal connected subset A, C A containing x. For a continuous map f: X — V between
reasonable topological spaces, the Reeb quotient space,

Xp=X/~  a~d i fl@)=f@) eV, (F(f@), = (F(f@), C X,
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is Hausdorff; see [12, Theorem 4.5]. A continuous map f: X —V is fiber connected if and only if
the induced map
Xp—V, ] — fa),

is injective. This perspective on fiber connectivity appearing in [10] provides the motivation for
the proof of Proposition 1.11 in [17].

2 Preliminaries
2.1 Notation and terminology
m preparation
For k€Z=0, let [k]={1,2,...,k}. If Y C X is a smooth submanifold of a smooth manifold, let
NxY =TX|y/TY —Y
denote the normal bundle of Y in X. If H: X — R is a smooth function, we denote by
Crit(H) = {zeX:d,H=0}

its set of critical points. The gradient of H with respect to a Riemannian metric g on X is the
vector field VIH on M defined by

g(VIH |z, w) = d H (w) VeeX, weT,X. (2.1)

Let X be a smooth manifold and G be a Lie group. For a map p: X —77G and veT1G, define

y: X — R, () = {p(x) }(v). (2.2)
A basis vq,...,v; for TyG determines identifications
k
RY — T1G, (r1,...,m%) — Zrivi, and TyG — R, a— (a(vi),...,a(vy)).  (2.3)
=1

The latter isomorphism identifies smooth (G-invariant) maps p: X — TG with smooth (G-
invariant) maps H: X — R* by

[T HE(Mv17--~,ka)~ (2.4)

If G is a connected abelian Lie group and w is a symplectic form on X, a moment map p: X —17G
for a smooth action ¢ of G on (X,w) corresponds via (2.4) to a smooth G-invariant map

H=(Hy,...,Hy): X — R" st. —dH; =, w, where ¢, =dgip(v;) € T(X;TX).  (25)

We will call such a smooth function a Hamiltonian for ¢ with respect to basis vy, ..., v for T1G.
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We denote by eq,...,e; €R the standard orthonormal basis and by R; C R* the R-span of e;. A
smooth action v of R* on a smooth manifold X (resp. symplectic manifold (X,w)) is equivalent
to k commuting smooth R-actions ¢; =|g, on X (resp. (X,w)). In such a case, we will call

d .
G=dwle) = i) €D(XTX), i€kl (2.6)
t=0
the generating vector fields of 1) and a Hamiltonian H as in (2.5) with respect to the basis ey, ..., ex

for ToR* simply a Hamiltonian for ¢. If k=1 or X is compact, such a Hamiltonian corresponds to
k smooth functions H;: X — R satisfying the condition in (2.5) with (,, =(;; see Exercise 3.11(c).

Suppose T is a torus and vy, ...,v; € T1T is a Z-basis for the lattice (T3T)z C T3 T and thus an R-
basis for T3 T. The isomorphisms in (2.3) then identify (74T)z and (T3 T)z C T3 T with Z* CR*. The
first isomorphism in (2.3) also induces a Lie group identification of T with the standard torus T,

k
o .vp: Tk = (R/Z)k :]Rk/Zk — T, ¢U1...vk([rla ... J‘k]) — H TV (2.7)
=1

Exercise 2.1. Suppose T is a torus and vy, ...,vx €T3 T is Z-basis for the lattice (1T3T)z C Ty T.
Let ai,...,a; € (I3 T)z be the dual basis. For u €T, let m,: T—T be the multiplication by w.
Show that the diffeomorphism

k
Duy. 0 REXTH — TYTXT, @vl...vk.((asl,...,m,M):(inai,%..vk([ﬂ)), (2.5)
=1

is equivariant with respect to the identification ¢y, ., in (2.7) and satisfies
dmo ({d@vlmvk}(a@i )) =0 and
@ (@1 20 DA,y M0y (1) (@72 (AP }D1,) =

where 7y, mo: Ty TXT — 17T, T are the projections, 0,, is the i-th coordinate vector field on R,
and 0, is the coordinate vector field on T* induced by the i-th coordinate vector field on R¥.

vielkl, (2.9)

We take the standard Z-basis for (T3T*)z to be
2miey, ..., 2wieg € Ty T* T(Lm’l)(Ck.

A smooth action ¢ of T* on a smooth manifold X (resp. symplectic manifold (X,w)) is equivalent
to k commuting smooth S!-actions ¥; =1|g1 on X (resp. (X,w)), where S} C TF=(S)* is the i-th
component subgroup S!. Similarly to the affine case, we then call

d
G = dgy(2mie;) = awi;ezm el X;TX), i€ k],
t=0

the generating vector fields of ¢ and a Hamiltonian H as in (2.5) with respect to the basis
2miey, ..., 2miey for T4 TF simply a Hamiltonian for ¢. By Exercise 3.11(c), such a Hamiltonian
corresponds to k smooth functions H;: X — R satisfying the condition in (2.5) with (,, =(;.

12



Exercise 2.2. Suppose G, G’ are Lie groups, (X, w, ¢, 1) is a Hamiltonian G-manifold, and p: G' — G
is a Lie group homomorphism. Show that (X,w,¥op, p*ou), where

p=(dip)*: T;G — TG
is the homomorphism induced by p, is a Hamiltonian G’-manifold.

Exercise 2.3. Suppose G is a compact Lie group, ()Nf, w, 1;, ) is a Hamiltonian G-manifold, YcX
is a smooth submanifold preserved by 1, (X,w) is a symplectic manifold, ¢ is a smooth G-action
on X, u: X —T7G is amap, and p: Y — X is a G-equivariant surjective submersion so that

pw =Wy and pop = fils.
Show that (X,w, v, u) is also a Hamiltonian G-manifold.

Exercise 2.4. Suppose 1) is a smooth R¥-action on a symplectic manifold (X, w) with Hamiltonian
H: X — R and A is a real kxm-matrix (determining a linear map from R™ to R¥). Show that yoA
is a smooth R™-action on (X,w) with Hamiltonian Ao H: X — R™, where A" is the transpose
of A.

2.2 Paradigmatic examples
i preparation

Exercise 2.5. Let k,nc€Z" with k<n and
n
wen = dei/\dyi (2.10)
i=1

be the standard symplectic form on wcn. Show that the action of S* on C" given by
ezWﬁ'(Zl,...,Zn) ::(21,...,Zk_l,GQWﬁZk,Zk+1,...,zn)
is Hamiltonian with respect to wcr with a Hamiltonian

H:C" —R, H(z1,...,2n) = 7|z|*

Exercise 2.6. Suppose (V1) is a finite-dimensional complex vector space and €2 is a nondegenerate
2-form on V' compatible with i, i.e.

Qw,iw) >0 YVweV—-{0}, Q(iw,iw')=Qw,w') Yw,w' eV.

Via the canonical identification T,V =~V for each w € V, i and 2 determine an almost complex
structure J on V and a symplectic form w compatible with J. Let ¢: T— GLcV be a complex
representation of a torus T on V. Show that

(a) there exist a subset S(Y)C(75T)z and a splitting

V=PVe st te((Wa)aes) = (2" Wwy), o VvETT, (Wa)acs € EPVas
a€es acs

13



(b)

Figure 1: The images of CP? under Hamiltonians for the torus actions of Exercise 2.7.

the action 1 is Hamiltonian with respect to w with a moment map

w:V— 17T, ,u((wa)aeg) =T Z\wa\Qa i (wa)aesE@Va,
a€esS a€eS

where | - | is the norm on V with respect to the metric g(-,-) =Q(-,i-).

Exercise 2.7. Let n€Z" and ¢: C"—{0} — CP""! be the usual quotient projection.

(a)

Suppose U C CP™! is an open subset and s: U — C"—{0} is a holomorphic section of g,
i.e. gos=idy. Show that the 2-form

i —
WFS;nfl‘U = ﬂaaln|s|2, (2.11)

where | - | is the standard (round) norm on C", is independent of the choice of s.

By (a), (2.11) determines a global 2-form ws.,—1 on CP"~1, called the Fubini-Study symplectic
form. Show that this form is indeed symplectic,
. |gans =~ | d —1
q WFS;n—1 TS2n—1 — WW(C” TS2n—15 an op1 Wrs;1 = 1.

Hint. The restriction of ¢ to the interior of the upper hemisphere Si CS?2=893N(CxR) is a
diffeomorphism onto the complement of a point in CP?.

Show that the actions of T"=(SY)" and T"~1=(S!)""! on CP"! given by
(e%itl, ... ,eth”)-[zl, ceyZp) = [62”“121, ... ,e%it”zn],

(™, et 2y, ] = [Tz, @ 2 2

are Hamiltonian with respect to the symplectic form wgs.,—1. Determine the moment poly-
topes for these actions, in particular showing that in the n=3 they are as depicted in Figure 1.

Exercise 2.8. Let k€ Z*, T*=R*/Z* is the standard k-torus, and

xz(a;l,...,xk),yz(yl,...,yk):ka]Rk — RF

be the projections to the two components. Show that
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k
(a) wg EZ dz;Ady; is a well-defined symplectic form on R¥ x T*;
i=1

(b) the action vy, of T* on R¥ xT* given by
vy (2 [9]) = (2, ly+7]),
is well-defined, free, and smooth, preserves wy, and has
Hy: RExTF — R¥, Hy(z,[y]) = =,
as a Hamiltonian with respect to wg.

An automorphism ¢: X — X of a set X is an involution if ¢ =idx. If (X,w) is a symplectic man-
ifold, a smooth involution ¢ on X is called anti-symplectic if ¢*w=—w. A Lagrangian submanifold
of a symplectic manifold (X,w) is a submanifold Y C X such that

1
dimY = 3 dim X and w|ry = 0.

Exercise 2.9. Suppose (X,w) and (X’,w’) are symplectic manifolds of the same dimension and
f: X — X' is a smooth map. Show that f is a symplectomorphism with respect to w and w’ if
and only if the graph of f,

Gr(f) ={(z, f(z): veX} C Xx X',
is a Lagrangian submanifold of X x X’ with respect to the symplectic form njw—mjw’, where
m, e Xx X — X, X'
are the component projections.

Exercise 2.10. Let Y be a smooth manifold and Ap+«y be the 1-form on (the total space of) its
cotangent bundle 7: T*Y — Y given by

Aoy |p(w) = {m*0} (w) = 0({dgm }(w)) YV OET*Y, weTy(T*Y).
Show that

(a) {df}* }*Apsy =Ap=ys for every diffeomorphism f:Y — Y’ between smooth manifolds (thus
{df}y: T*Y'—T*Y is well-defined);

(b) wry+=—dAp«y is a symplectic form on (the total space of) T*Y and wp+gn =wcn under the
natural identification of T*R™"=R" x R" with C";

(c) for every y €Y, there is a canonical decomposition T, (T*Y)=T,Y ®T;Y and

(U’w):{o, ifv,weTyY or v, weTyY;

wr+yl, .
w(v), veT,Y and weT,Y.

Suppose in addition « is 1-form on X. Show that
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(d) a*Ar+y =« and the map
Ga: TY —TY,  ¢a(l) = az@g) —"b,
is a smooth involution satisfying ¢} Ap+y =7"a—Ar«y;
(e) the involution ¢, above is anti-symplectic with respect to wr«y if and only if da=0.

Exercise 2.11. Let T, vy, ..., v, @y, 4y, and my, for u€ T be as in Exercise 2.1, (RFXT*, wy, ¢y, Hy,)
be as in Exercise 2.8, and wp,m be as in Exercise 2.10. Define

Op: TiTXT — T3T, Op(ay,u) = {dym,-1} o, and wr={&, 1 .

V1.V

Denote by 1t the action of T on 77T xT by the multiplication on the second component and
by pr: T{TxT—T7T the projection to the first component. Show that wr = —®Lwr+r and
(T;TXT,wr, ¥, pr) is a Hamiltonian T-manifold which does not depend on the choice of a Z-basis
v, ..., €TT for the lattice (T4T)z C T4T and is identified with (R¥ xT*, wy,, vy, Hy) via @y, .y, -

Exercise 2.12. (a) Suppose ¢ is an involution on a neighborhood of 0 € R with ¢(0) =0. Let
Jaco(¢): R" — R" be its Jacobian at 0 so that

¢(z) = {Jaco($)}z+Q()

for some quadratic term @: R" —R" (Q(0)=0, Jaco(Q)=0) and all = in a neighborhood of
0€R™. Show that there exist neighborhoods U and W of 0 € R™ so that

h:U — W, h(z) = x—i—%{Jaco(gb)}Q(x),

is a well-defined diffeomorphism satisfying ho¢p={Jacy(¢)}h.

(b) Let X be a smooth manifold and ¢ : X — X be a smooth involution. Show that every
connected component of the fixed locus of ¢,

X? = {zeX: ¢(z)=1},
is a smooth submanifold of X.

(¢) Suppose in addition w is a nondegenerate 2-form on X such that ¢*w=—w. Show that X PcX
is a Lagrangian submanifold of (X, w).

Exercise 2.13. Suppose (X,w) is a symplectic manifold, ¥ C X is a Lagrangian submanifold, J
is an w-compatible almost complex structure on X, and wp+y is the canonical symplectic form
on T*Y as in Exercise 2.10. Show that

(a) J(TY)CTX]|y is a subbundle complementary to 7Y
(b) themap ®y.;: J(TY) —T*Y, Py, j(w)=w(-,w), is an isomorphism of vector bundles over Y;

(¢) @y wr+v|r,(s(ry) =w|T,x under the canonical identification

T,(J(TY)) = T,Y®J(T,Y) = T, X.
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3 Group Actions on Manifolds

3.1 Basic properties of group actions

This section collects basic facts about smooth actions of Lie groups, especially abelian ones, on
smooth manifolds.

Exercise 3.1. Let ¢ be a smooth action of a Lie group G on a smooth manifold X as in (1.1).
Show that

CAdu_l(v) = 102 v = dwll(g)owu% C[v,v’} = - [va C’u’] € P(X; TX) VueaG, v?vl € TG,
where [v,v'] is the Lie bracket on T3G; see [30, Sections 3.8]. Furthermore, the maps
dy: G — Dff(TX), u—> dp,, and dop*: G — DIff(T*X), u— dyj={dy; "},

are smooth actions of G on T'X and T* X, respectively, lifting the G-action ¢ on X and linear on
the fibers of the vector bundles TX,T*X — X. The 1-form Ap«x of Exercise 2.10 is preserved by
the action d*.

Exercise 3.2. Let @ be a smooth action of a compact Lie group on a smooth manifold X as
n (1.1). Show that there exists a 1-invariant Riemannian metric on X, i.e. a Riemannian metric g
on X such that

g(dxwu(w),dxlbu(w’)) = g(w,w") VueG, zeX, w,w' €T, X.

Suppose Y C X is a closed submanifold of a smooth manifold. A tubular neighborhood identification
for Y in X is a diffeomorphism ®:U/ — U from an open neighborhood of Y in a subbundle
TY°CTX|y complementary to TY to an open neighborhood of Y C X such that

O(y) =y, dy®=id: TU=T,(TY)=T,Y oTY*| — T,YSTY"| =T, X=T,U VyeY. (3.1)

Proposition 3.3. Let ¢ be a smooth action of a compact Lie group G on a smooth manifold X as
in (1.1).

(1) The fized locus X¥ C X of ¢ is a closed submanifold with

T(XY) = (TX)%, (3.2)

(2) If Y C X is a closed submanifold preserved by 1» and TY CTX |y is a subbundle complementary
to TY and preserved by v, then there exists a tubular neighborhood identification ®: U — U
for'Y in X with U CTYC which is G-equivariant with respect to the actions ¥ on X and dvy
onTX.

Proof. Let g be a Riemannian metric preserved by the group action v, as provided by Exercise 3.2.
Its Levi-Civita connection V is also preserved by G. If weTX, ~,: (a,b) — X with a<0<b is
the geodesic with respect to V of g with ~/,(0)=w, and u€ G, then

Yy oYy (a,b) — X
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is the geodesic with respect to V with (1,07,)(0) = {d,, (0)%u}(w), i.e. Yuoyy = V{d, 0y} (w)-
Thus, the exponential map

exp: W — X, exp(w) = y(1) YweWcTX,
with respect to V satisfies
{d,}(OW) =W and  exp ({d¢y}(w)) = ¢y (exp(w)) VueG, weWw, (3.3)

i.e. it is G-equivariant with respect to the actions ¥ on X and dy on T'X.

(2) Since
{dgexp}(w) =w € T, X VeeX, weW, (3.4)
for each y €Y the restriction of exp to a neighborhood of y in TY“NW is a diffeomorphism onto an

open neighborhood of y in X by the Inverse Function Theorem. Since Y C X is closed, it follows
that there exists a neighborhood U’ of Y in TY“NW so that

exp: U — U (U")

is a diffeomorphism onto an open subset of X. This map satisfies both conditions in (3.1) by the
definition of the exponential map. Since G is compact,

U= deu) U CTYNW
ueG

is a neighborhood of Y CTY ¢ preserved by the G-action. By (3.3), the restriction
O=exply:U — U=exp(Ud) C X

is a G-equivariant diffeomorphism from an open neighborhood of Y in TY ¢ to an open neighbor-
hood of Y in X with the required properties. This establishes (2).

(1) Tt is immediate that X% C X is a closed subset. For each y € XV, let ®, : U, — U, be a
G-equivariant tubular neighborhood identification as in (2) with Y ={y} and U, C T, X. By the
G-equivariance of ®,,

®,: (T,X)" Uy, — X¥NU,

is a homeomorphism for every y € X¥. Thus, each topological component of X% is a submanifold
of X; see [30, 1.33(b)]. By the G-equivariance of ®,, (3.2) holds as well. O

Remark 3.4. The conclusion of Proposition 3.3(1) also holds if 7o(G) is finite and X admits
a G-invariant metric (but G is not necessarily compact). The first paragraph in the proof of
Proposition 3.3 still applies. For (1) in this proof, U, CT, X can be taken to be any neighborhood
of 0€T, X on which the map exp is injective.

Corollary 3.5. Let ¢ be an irreducible almost periodic action of R*¥ on a smooth manifold X as
in (1.1). The subspace Crit() of points of X with stabilizers containing a one-dimensional linear
subspace of R¥ is a countable union of (not necessarily disjoint) closed proper submanifolds of X .
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Proof. Let p: R¥ — T and ¢’ be as in (1.5). For each one-dimensional linear subspace L CR¥, the
closure T7, C T of p(L) in T is a torus. By (1.5), the fixed locus X% C X of the smooth action ¢/'|r,
on X is the same as the fixed locus X of the smooth action v|r. By Proposition 3.3(1), X* is thus
a closed submanifold of X (possibly empty). Since the action 1) is irreducible, 1|1, is a nontrivial
action and X%+ X. Thus, Crit(¢) is the union of the closed submanifolds X T' £ X taken over the
subcollection

A= {T,: LeRP*'}

of subtori of T. Since the subtori of T are generated by finite sets of vectors in (771T)z, the
collection A is (at most) countable. O

For a torus T and o€ (75T)z, let
To = {": veTT, a(v) €Z}.

If «#0, T, C T is a codimension 1 closed subgroup. If « is primitive, i.e. a#ka/ for any o € (T;T)y
and k € Z with k> 2, then T, C T is a codimension 1 subtorus. For a subset S C (I7T)z and a
closed subgroup G CT, let

Ts=[]Ta and Sg={a€S:GCTa}.
a€eS

Thus, Tg C T is a closed subgroup of codimension at most |S|, S¢CS is the maximal subset so
that GCTg,., and Stq=>5.

Proposition 3.6. Let v be a smooth action of a torus T on a smooth manifold X as in (1.1) and
Y C XY be a topological component of the v-fized locus.

(1) There exist a subset S(Y)C (T5T)z—{0} and a splitting

TX|y =TY & PNFY —Y (3.5)
aeS(Y)

of TX|y into a direct sum of vector bundles preserved by di so that the bundles N¢Y are
nonzero and complex with

diper (w) = 2™ Wy VoeTiT, we NYY, aeS(Y). (3.6)

In particular, 2|S(Y)| <codimxY . If X is connected and the action v is irreducible (resp. ef-
fective), then the R-span (resp. Z-span) of S(Y') is Ty T (resp. (13T)z). If T X|y is a complex
vector bundle and dip preserves its complex structure J, then the complex structure on each
subbundle N¢Y CTX |y can be taken to be the restriction of J.

(2) If GCT is a closed subgroup, Z C X% is a topological component of the G-action ¥|g on X,
and Y CZ, then
TZly =TY & PNRY CTX|y —Y
aeS(Y)a

and Z is a topological component of the fixed locus XTsne of the Ts(y) -action 1/J|TS(Y)G on X.
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Proof. (1) For each y €Y, dyt is a real representation of T on T, X. Every such representation
splits as a direct sum of a trivial real representation and of one-dimensional complex representations
with the action on each factor given by (3.6) for some a € (T;T)z nonzero. By (3.2), the trivial
representation summand is 7,,Y". Since dyt depends smoothly on y, the weights o are independent
of y €Y and the corresponding component representations vary smoothly with y € Y. Thus, the
latter form vector subbundles N¢Y C T X|y as in (3.5) with complex structures. If TX |y is a com-
plex vector bundle and d¢ preserves its complex structure, then dy is a complex representation
of T on T,,Y and the same reasoning applies.

If S(Y) does not span 75T over R (resp. (13 T)z over Z), there exists veT1T—(T1T)z such that
a(v)=0 (resp. a(v) €Z) for all a € S(Y). Let G be the closure of the subgroup {e!”: t R} (resp. the
subgroup generated by v) in T. This subgroup acts trivially on TX|y. By Proposition 3.3(1),
this implies that the connected component of the G-fixed locus X containing Y is a connected
component of X, i.e. G acts trivially on X (and so the action 1 is not effective) if X is connected.
If a(v)=0 for all € S(Y) and X is connected, then

Co=dith(v) =0 € T(X;TX),
i.e. the action v is reducible.

(2) By Proposition 3.3(1) applied to |, ¥, and MTS(Y)G,

TZly = {weTX|y: d¢y(w)=wVueG} =TY® @J\/}%Y =TX"sMal,, .
aeS(Y)a

This establishes both claims. O

Corollary 3.7. Let ¢ be an irreducible almost periodic action of R*¥ on a smooth manifold X as
in (1.1). For each L € RP*~1, let X' C X be the fized locus of the action |r. If X is compact,
then the set

75 (Crit(y)) = {Zem(XY): LeRPF, ZnXY #£0}

1$ finite.

Proof. Let p: R¥ — T and ¢’ be as in (1.5). We can assume that the image of p is dense in T
and so X¥ = X¥. For each L € RP*~1, let T, C T be as in the proof of Corollary 3.5. For each
subtorus T/ € T, let X' C X be the fixed locus of the action ¢/|p. In particular, X* = XTr,
By Proposition 3.6(2), every element Z of 7j(Crit(¢)) intersecting a topological component Y of
X% =X"" is thus the unique topological component of XTs € X for some S C S(Y) intersecting Y.
The number of subsets of S C S(Y) is finite for each Y € mo(X¥). Since X is compact, mo(X?) is
finite as well. O

Proposition 3.8. Let X be a smooth manifold.
(1) The flow of a complete vector field ( on X determines a smooth R-action v on X by

d

Yo = idx, &wt(.@ =((¢i(z) VteR, z€X.
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Conversely, a smooth R-action b on X is the flow of the vector field { on X given by

((z) = %wt(x) o VeeX. (3.7)

In particular, X¥={z€ X : {(x)=0}.

(2) Ifv is a smooth R-action on X with associated vector field ¢ and x € XV, the linear R-action dz1)
on T, X 1is the flow of the vector field

Vil ToX — ToX,  w— Vi, (3.8)

on T X, where V is any connection in the vector bundle TX — X. If in addition J is a
W-invariant endomorphism of this vector bundle, i.e.

{dwtp} TodJodpthy=J: TwX — TwX  VieR, 2/ €X, (3.9)

then
ViwC = IV VweTl,X. (3.10)

Proof. (1) If ¢p: X — X is the time ¢ flow of (€'(X;TX) for each t€R, then
Vst =1s0th: X — X

see [30, Theorem 1.48]. Thus, the map (1.1) is a group homomorphism and 1) is a smooth R-action
on X. Conversely, if ¥ is a smooth R-action on X and (€I'(X;TX) is given by (3.7), then

d

Yo = idx, @ = ((¢(@));

s=0

d
= &@bs (¢t($))

d
Yi(x) = g%ﬂ(x) .
the second equality above holds because (1.1) is a group homomorphism. Thus, v is the time ¢
flow of . The last claim in (1) follows immediately.

(2) Let z€ X¥ and 7: (—0,0) — X be a smooth curve such that «(0)=z. Then,

d , d d d
Cam©)) =S Ths)], = o sts)

D
o = @C(’Y(S))

= V)¢,

s,t=0 s=0

where D/ds denotes the covariant derivative with respect to any torsion-free connection in T'X; the
penultimate equality above holds by the second claim in (1) for the R-action ¥ on X. By second
claim of (1) for the R-action d; ¢ on T,X, d v is thus the time ¢ flow of the vector field V(|,
on T, X given by (3.8) (which is independent of the choice of V because {(x)=0).

If in addition J is a ¥-invariant endomorphism of the vector bundle T X — X, then
d$/1pt(Jw) = Jd$/1/1t(w) VTUETI/X7 ,CCIEX_

Setting 2’ =z above, differentiating the resulting equation at t =0, and using the previous state-
ment, we obtain (3.10). O
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Exercise 3.9. Suppose k€729, 1 is a smooth R*-action on a smooth manifold X, and z€ X. Let
R? C R* be the largest linear subspace fixing 2 and RS C RF be a complementary linear subspace.
Show that

d
— () #0e T, X VvV veRS—{0}.
dt =0

Exercise 3.10. Let v be a nontrivial smooth action of R¥ (resp. k-torus T* = (R/Z)*) on a smooth
manifold X as in (1.1). Show that there exist an irreducible smooth action ¢’ of R™ (resp. T™)
on X for some meZ"' and a full-rank real (resp. integer) m x k-matrix A so that =104, i.e.

y = )y, € Diff(X) VuveR" (resp. veTk).
Furthermore, if the action 1 is almost periodic in the first case, then so is the action /. Hint.
Let G be a compact Lie group. For every v € T1G, the closure of the one-parameter subgroup
{e': teR} is a torus.

3.2 Group actions on symplectic manifolds

This section provides an analogue of Proposition 3.3 in the symplectic setting. In particular,
Proposition 3.14(2) is an equivariant version of the Symplectic Tubular Neighborhood Theorem.

Exercise 3.11. Let (X,w) be a symplectic manifold and ¢ be a smooth action of a Lie group G
on X asin (1.1).

(a) Suppose G is connected. Show that 1) preserves w if and only if d(¢,w)=0 for all veT1G.
(b) Suppose 9 preserves w. Show that
d(w((v, Cv’)) = Uy, ¢ W Vo, v’ eT1G.

(¢) Suppose in addition G is connected and abelian. Let p: X — TG be a smooth map satisfying
the first condition in (1.4). Show that p is G-invariant if G =R, or G is compact, or X is
compact.

Hint: use Proposition 3.8(1) for the restriction of v to the one-parameter subgroup {e®:tcR}
of G.

Exercise 3.12. Let 9 be a smooth action of a compact Lie group on a symplectic manifold (X, w)
as in (1.1). Show that there exists a t-invariant w-compatible almost complex structure on X,
i.e. an w-compatible almost complex structure J on X such that

{dothu} tododptpy=J: T,X — T,X  VueG, zeX.

Hint: a Riemannian metric g and a nondegenerate 2-form w on X determine an w-compatible
almost complex structure Jj,, on X; see the proof of Proposition 2.3 in [32].

Exercise 3.13. Suppose v is a smooth action of a Lie group on a symplectic manifold (X, w) as
n (1.1), J is a ¢-invariant w-compatible almost complex structure on X, and Y C X is a Lagrangian
submanifold. Show that the isomorphism

Dy, ;e J(TY) — T7Y, (I)Y;J(w) = w(-,w),

of real vector bundles over Y is G-equivariant with respect to the actions dy and dv* of Exercise 3.1.
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Proposition 3.14. Let ¥ be a smooth action of a compact Lie group G on a symplectic mani-
fold (X,w) as in (1.1).

(1) The fived locus X¥ C X of 1 is a closed symplectic submanifold with T(X¥)=(TX).
(2) Suppose Y C X is a closed submanifold preserved by v, TY*CTX|y is a subbundle comple-

mentary to TY and preserved by dy, and @ is a G-invariant closed 2-form on a neighborhood
of Y in TY® preserved by dvy. If

Olp gy =wlpx  YYEY, (3.11)

there exists a G-equivariant tubular neighborhood identification ®: U — U for Y in X such
that UCTYC and P*w=w|y.

Proof. (1) Let J be a G-invariant w-compatible almost complex structure on X, as provided by
Exercise 3.12. By Proposition 3.3(1), X¥ C X is a closed submanifold with T(X¥)= (T X ). Since
J is G-invariant, J(TX¥)CTXY by (3.2). Since J is w-compatible, w(v, Jv)>0 for all v € TX
nonzero. Thus, w|pyw is nondegenerate.

(2) Let ®: U4 — U be a G-equivariant tubular neighborhood identification for Y in X witht/ CTY*,
as provided by Proposition 3.3(2). In particular, ®*w is a symplectic form on /. By (3.11) and (3.1),

(®*w)

n@ye) =l gqve  VYEY. (3.12)

Since ® is G-equivariant, the 2-form ®*w is G-invariant. Since the subset of & on which @ is non-
degenerate contains Y by (3.11) and is open and preserved by G, we can assume that the 2-form
w is nondegenerate on U (by replacing U by its subset on which w is nondegenerate) .

Let m,: TY®—TY*° be the scalar multiplication by 7 as in (A.1) and {7y € (TYT(TY®)) be
the canonical vertical vector field as in (A.5). Define a 1-form a on U by

1
a= / M (br=1¢pye (PFw—w))dT.
0
By Exercise A.1 and (3.12),

da = d*w—a, da}T( 0, 0, Va\T( =0, (3.13)

TY®) |y — a‘T(TYC)|y = TY )|y

where V is any connection in 7*(T'Y¢).

By the second statement in (3.13) and the compactness of [0, 1],
w; = w+tda
is a symplectic form on a neighborhood U’ of Y CU for every t€[0,1]. For each ¢t € [0, 1], define
&el(U;Tu) by tewi = —a. (3.14)

By the third statement in (3.13), &|y = 0. Since [0, 1] is compact, it follows that there exists a
neighborhood U” of Y in U’ so that the flow of &,

d
(I u —u, Po(w) =w Vweld”, 7% = oy,

d
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is well-defined for every t€ [0, 1]. By the first, third, and fourth statements in (3.13),
O =tfw, Y(w)=w Ywel”, and dYilprye), =idrrye), Vtelo,1]; (3.15)
see Exercise 3.15 below for the first identity.

Since G is compact, the set
u/// = m dwu(uﬁ) C ul cTY®
ueG
is a neighborhood of Y C TY¢ preserved by the G-action so that vy : U"” — U is a well-defined
diffeomorphism onto an open subset of /. Since the 2-forms ®*w and @w are G-invariant, so are
the 1-form « and the vector fields &. Thus, the smooth map 17 is G-equivariant, as is the

diffeomorphism
Potp: U" — (Y1 (U")) CU C X.

By the second and third statements in (3.15), this diffeomorphism is a tubular neighborhood
identification for Y in X (because ® is). By the first statement in (3.15), {®Po¢)1 Prw=w|yw. O

Exercise 3.15. Suppose X is a smooth manifold, (wt)sc[o,1] is @ smooth family of symplectic forms
on X, (&)ie0,1) is the smooth family of vector fields on X defined by

d
d(Lgtwt) = —awt,

and ¢ : U — X is a flow of (&)e[o,1) on an open subset of X, i.e.

d
Yo(x) =z, a(i/)t(ﬂf)) = & (1 (2)) Vaxel, tel0,1].
Show that 1] w; =wply for all t€ [0, 1]. Hint: differentiate both sides and use Cartan’s formula.

Example 3.16 (Symplectic Tubular Neighborhood Theorem). Suppose 1 is a smooth action of a
compact Lie group G on a symplectic manifold (X, w) and Y is a symplectic submanifold of (X, w)
preserved by 1. The restriction w? of w to the w-symplectic complement

TYY = {weTX|y: w(w,w)=0Vuw' €TY} — Y

of TY in T'X |y is then a G-invariant nondegenerate fiberwise 2-form. Let (py« e (TY“; T(TY¥))
be the canonical vertical vector field as in (A.5). A G-invariant connection V in the real vector
bundle 7: TY* —Y extends wi- to a G-invariant 2-form wg on (the total space of) TY¥; see
Exercise A.5. By (A.19), the G-invariant closed 2-form

- « 1

Wy =T w+ §d(LCTWw$)
satisfies (3.11) with W=wy. If in addition Y C X is a closed subspace, by Proposition 3.14(2) there
then exists a G-equivariant tubular neighborhood identification ®: &/ — U for Y in X such that

UCTY? and P*w=wy|y. If Y ={x} is a one-point set, TY¥ =T, X and wy =7*w,. This yields
Corollary 3.17 below.
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Corollary 3.17 (Darboux Theorem). Suppose v is a smooth action of a compact Lie group G on
a symplectic manifold (X,w) and x € X¥. There exist a G-invariant tubular neighborhood U of 0
in T, X and a G-equivariant diffeomorphism ®: U — U onto a neighborhood U of x in X such that

®(0) = «x, do®=id: TH(T X)) =T, X — T, X, and O*'w = 1wy,
where w: T, X — {x} is the projection.

Corollary 3.18 (Lagrangian Tubular Neighborhood Theorem). Suppose v is a closed action of a
compact Lie group G on a symplectic manifold (X,w), Y C X is a compact Lagrangian submanifold
preserved by v, and wp-y is the canonical symplectic form on T*Y as in Ezercise 2.10. There
ezists a G-equivariant diffeomorphism ®: U — U from an open neighborhood of Y in T*Y onto an
open neighborhood of Y in X so that

O(y) =y VyeY and P'w = wT*Y|u . (3.16)

Proof. By Exercise 3.12, there exists a y-invariant w-compatible almost complex structure J on X.
By Exercise 3.13, the isomorphism

(I)Y;J: J(TY) — T*}/, (I)Y;J(w) = w('7w)?

of real vector bundles over Y is G-equivariant with respect to the actions dy and di* of Exercise 3.1.
Along with the latter exercise, this implies that the closed 2-form ®y. ;wr«x on (the total space of)
J(TY) is G-invariant. By Exercise 2.13(c), this form satisfies (3.11). 7By Proposition 3.14(2), there
thus exists a G-equivariant tubular neighborhood identification ®: U — U for Y in X such that
UCJ(TY) and *w=®y ;wr+y|y. The map

ody ! @y U) — U
is then a G-equivariant diffeomorphism satisfying (3.16) with & replaced by <I>o<I>;,;1 - O

Exercise 3.19 (Moser’s Stability). Let X be a closed manifold. Suppose peZ= and (wy)sepo,1) is
a smooth family of cohomologous closed smooth p-forms on X, i.e. [wi] =[wo] € H; 1 (X) for every
telo,1].

(a) Show that there exists a smooth family (7:);c[0,1) of (p—1)-forms on X such that
wy —wo = dny vV telo,1].

(b) With 7, as in (a), suppose also that ((¢);e[0,1] i3 @ smooth family of vector fields on X satisfying

d
Lo We = = Vtelo,1]

and 1;: X — X for t€]0, 1] is its flow. Show that 1w, =wq for all t€]0, 1].

(¢) Suppose w; is a symplectic form on X for every t€[0,1]. Show that there exists a diffeomor-
phism : X — X such that ¢¥*w; =wy.

(d) Suppose X is connected and oriented and g, €2; are volume forms on X. Show that there

exists a diffeomorphism ¥ : X — X such that ¢*Q; = if and only if /Qg = /Ql.
X X
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The assumptions that X is compact and the symplectic forms w; are cohomologous necessary for
the conclusion of Exercise 3.19(c). For example, C" with n > 2 admits a symplectic structure w
so that (C",w) is not symplectomorphic to (C™, wen); see [14, 0.4.A}]. A smooth family (w)ier
of symplectic forms on a closed 8-dimensional smooth manifold Y is constructed in [20] so that
all forms wy with k € Z are cohomologous and the symplectic manifolds (?,wk) and (}7,0.)5) with
k,l € Z are symplectomorphic if and only if |k| = |¢|; see Theorem 2.1 in [20]. In the case of
Exercise 3.19(d), the equality of the integrals implies that

Q= (1-)Qo+t, telo,1],
is a smooth family of cohomologous volume forms.

Remark 3.20. The analogue of Proposition 3.14(2) in [21] is Lemma 3.2.1, which unnecessarily
requires Y (@ in [21]) to be compact. As a consequence, the Symplectic and Lagrangian Tubular
Neighborhood Theorems, i.e. Example 3.16 and Corollary 3.18 above, are restricted to compact
submanifolds in [21]; see Theorems 3.4.10 and 3.4.13 in [21]. Even if one is interested only in
compact symplectic manifolds, the Symplectic Tubular Neighborhood Theorem without the com-
pactness restriction is needed for the proof of Proposition 6.13. The latter is a key step in the proof
of Delzant’s Theorem, Theorem 3, following the modern efficient approach sketched in [19, 22]; see
page 62.

3.3 Hamiltonian group actions

We next obtain structural results for Hamiltonian group actions and their moment maps, in par-
ticular Proposition 4.5 and Corollary 3.28.

Exercise 3.21. Suppose G is a Lie group, (X,w, 9, ) is a Hamiltonian G-manifold, and z € X.
For each v€ Ty G, let (, €eT'(X;TX) be as in (1.2). Show that

ker dyp = {Cu(z): v€TIG} = {weT, X w(w,((2) =0 Ve TG},
Imdypu = Amn({veT1G: ((2)=0}) = {a €Ty G: a(v)=0 YVveT1Gs.t. ((x)=0}. (3.17)

Conclude that

(a) the G-orbit Gx C X of x is open if and only if d,u is injective;

(b) the stabilizer Stab,(v)) CG of x is discrete if and only if d,u is surjective.

Exercise 3.22. Suppose T is a torus and (X,w,, x) is a Hamiltonian T-manifold so that (1.7)
holds, the action % is free, and the fibers of y are connected.

(a) Show that u(X) C T3T is an open subset, p: X — p(X) is a principal T-bundle, and the
fibers of p are Lagrangian submanifolds of (X,w), i.e.

dimpu'(a)=n and W}Tu 0 VaepuX).

“1(a) —

(b) Let 1 be a 1-form on u(X). Show that the vector field ¢, on X defined by t¢,w=pu"n is
p-vertical, i.e.
du(Cy) =0 € T ((X); Tp(X)).
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(¢) Let (T4 TXT,wr, ¥, pr) be the Hamiltonian T-manifold of Exercise 2.11, with k=n. Suppose
s: u(X)— X is a (smooth) Lagrangian section of y, i.e. pos=id,x) and s*w=0. Show that
the map

O u(X)xT — X, P(a,u) = Py (s()),

is a T-equivariant diffeomorphism such that ®*w = wr|,(x)xt and po®=pr|,x)xr- Hint:
choose a Z-basis vy,...,v, €I1T for the lattice (1T1T)z C T3T and replace p by the corre-
sponding Hamiltonian H: X — R"™ and (T; TxT, wr, ¢, Hr) by the Hamiltonian T-manifold
(R"xT", wp, ¥n, Hy) as in Exercise 2.8.

Exercise 3.23. Suppose G is a positive-dimensional Lie group, (X,w) is a compact positive-
dimensional symplectic manifold, and 9 is a smooth G-action on (X, w).

(a) Suppose 1 is a Hamiltonian action. Show that the v-fixed locus X¥ contains at least 2 points.

(b) Give an example of a compact positive-dimensional symplectic manifold (X, w) and an action v
on (X,w) so that X¥=0.

Exercise 3.24. Suppose T is a torus, (X,w,®, u) is a compact Hamiltonian T-manifold, = € X,
and ZEWO(XT’P(‘”)) is the topological component of the WM(];)—ﬁxed locus containing x. For each

Y €mo(XY¥), let S(Y)CT;T be as in Proposition 3.6(1). Show that
(a) ZNXY #0;

(b) if Y €mo(XY) and Y C Z, then T,(¢))=Tg for some SCS(Y).
Hint: use Exercise 3.23(a) and Proposition 3.6(2).

Exercise 3.25. Suppose G is a Lie group, (X,w) is a symplectic manifold, 1 is a smooth G-action
on (X,w), J is an w-compatible almost complex structure on X, and z € X. For each ve€T1G, let
Gel(X;TX) be as in (1.2).

(a) Let pu: X — T3 G be a smooth map satisfying the first condition in (1.4) and g(-,-)=w(:, J)
be the Riemannian metric on X determined by w and J. Show that

VIpy = —=JG € T(X;TX) VveTiG. (3.18)

(b) Let p: X — T7G be a G-invariant smooth map satisfying the first condition in (1.4).
Show that
{¢o(@): veT1GIN{J¢(z): veTHG} = {0} C T X.

Suppose in addition that o = u(z) € TG is a regular value of p and thus g~ '(a) C X is a
smooth submanifold. Show that

T, X =T, (0 (o) ®{J((2): vETLG}. (3.19)

(c) Give an example of a positive-dimensional symplectic manifold (X,w) and an action 1 on
(X,w) so that
{Cv(x): UGT]lG} = {JCU(:B): UET]lG} =T, X.
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Exercise 3.26. Suppose (X,w) is a symplectic manifold, 1 is a smooth action of R¥ on (X,w),
X' C X is an w-symplectic manifold preserved ¢ so that the inclusion i: X' — X is a homo-
topy equivalence, and u': X' —>T§Rk is a moment map for the restriction of the action v to X'.
Show that 4/ extends to a moment map p: X — 1} R* for ¢). Hint: first show this for k=1.

Proposition 3.27. Suppose k € Z*, (X,w,, u) is a Hamiltonian R*-manifold, ' is a smooth
action of a torus T on X, p: RF—T is a homomorphism with dense image so that ¢ =1 op,
Y C X is a topological component of XV = XY and J is a Y-invariant (or equivalently 1’ -
invariant) w-compatible almost complex structure on X. Let S(Y) C (I5T)z and NYY C TX|y
for each a€ S(Y') be as in Proposition 3.6(1) with 1 replaced by 1" so that the complex structure
on NYY is induced by J. For every y € Y, there exists a T-equivariant tubular neighborhood
identification ®,: U, — Uy for y in X such that

Orw=wyly, and p(Py(wo, (Wa)acsy))) = p(Y)+ 7Y [wal’p
aeS(Y) (3 20)
¥ (w0, (Wa)acsr)) €Uy C T X =T, Y © EPNRY|

aeS(Y)

where | - | is the norm on T X with respect to the metric g(-,-)=w(-, J-). If in addition X is closed
and connected, then

1w(X) CCpuyy(p™S(Y)) = {,u,(Y)—i— Ztap*a Dt €RZO VaeS(Y)}. (3.21)
aeS(Y)

Proof. By Corollary 3.17 with 1 replaced by 1/, there exists a T-equivariant (or equivalently
R*-equivariant) tubular neighborhood identification &, : U, — U, for y in X satisfying the first
condition in (3.20). By Proposition 3.6(1), the complex vector space (T, X, J,) splits as

Ixly =Ty e @NEY),
aeS(Y)

with the T-action d, ¢’ given by (3.6) with ¢ replaced by ¢/’. By Example 2.6, a moment map for
this action with respect to wy is

p: Ty X — TyT, p (wo, (Wa)aes(y))) = WZ lwa|?a ¥ (wo, (Wa)acsy)) €TY & @Nj’fY‘y.
aeS(Y) aeS(Y)

Since a moment map is unique up to an additive constant on each connected component of the
domain, it follows that
k
‘I)Zlu:'u,(y)—kp*o'u/‘uy : Z/fy — T;R .

This establishes the second condition in (3.20).

Suppose in addition that X is closed and connected and ny € TGRF —C,y)(p*S(Y)). Thus,
Cuv)(p*S(Y)) is contained in a (closed) half-space in T R* and there exists v€ TpR* so that

no(v) < inf{n(v): n€Cuyy(P*SY)} = {n(¥)} (v) = o (Y). (3.22)
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By the second equality in (3.20), this implies that {p*a}(v) >0 for all €€ S(Y). Thus,

1o (Y) = inf{ o (2): z €Uy}

Combining this with Proposition 4.5(2), we conclude that

1o (Y) = inf{ pu () ={p(2)} (v) : z€ X} VyeY.
Along with (3.22), this implies that 79 ¢ ;(X) and establishes (3.21). O
Suppose 1 is a smooth action of R¥ on a smooth manifold X. For y€ X, let ]R’; CR” be the largest

linear subspace preserving y and Ry CR” be a complementary linear subspace. The decomposition
RF = R’; @R}, induces decompositions

ToR* = ToRy x )RS and  p=(py, p5) 1 X — TyREXTERS = TyRF (3.23)

for any map p: X — TO*‘Rk. If v is a moment map for the action ¥ on X with respect to a
symplectic form w, then py, and py are moment maps for the R’y“-action (% E¢|R§ and Rj-action

w;;wm, respectively, on X with respect to w. If the action v is almost periodic, then so are the
actions v, and ¢7. By Proposition 3.14(1), (X L] P ¥y, piy) is then a Hamiltonian Rf-manifold.
By Exercises 3.21(b) and 3.9 with (X, w, 1, u) replaced by (X¥¥,w|yuw,, ¥y, ug), the differential

dyps: T, XV — TyR (3.24)
is surjective in this case.

Corollary 3.28. Suppose k € Z+, (X,w,v, ) is a Hamiltonian R*-manifold, the R*-action
18 almost periodic, y € X, and R’;,R; C R*, My, Hys and Yy are as above. There exist a finite

subset S(y) CTyRY, neighborhoods Uy, of y in X%, Uy of 0 in C3W) and U, of y in X, and a
diffeomorphism ®: Uy.1 xUy,o — Uy such that
1S(y)| < (dim X)/2—dim R, (3.25)
Oy(y,0) = py(Py(y,w) = py(y),
(@ (1 (Waacs()) = i) +7Y_wala Y €U, w=(wadaes() Ely2 € C.

a€eS(y)

In particular, the map p is locally convex. If in addition X is closed and connected, then there exist
a cone Cy(1) CTER® with vertex at u(y) and a neighborhood U, C X of y so that u(X)CCy(¢)) and
the restriction p: Uy —Cy (%)) is an open map.

Proof. Let Y € mo(X¥¥) be the connected component of Yy-fixed locus containing y and vy be
as above. With S(Y') and p as in Proposition 3.27 with (¢, ) replaced by (1y, py), let

S(y) =p*S(Y) C TI’L‘RI;.

By Proposition 3.14(1), Y C X is a symplectic submanifold with p,(Y") =, (y). Since the actions v,
and vy, commute, X Yy is preserved by by Since the differential (3.24) is surjective, the second
equations in (3.17) and in (3.18) applied to (Y, w|y,¥yly, pgly) imply that

dimY >2dimR; = 2|S(y)| <dimT,X —dimT,Y <dim X —2dimR; .
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This establishes (3.25). The remainder of the first claim of the corollary follows from the first state-
ment of Proposition 3.27 with (¢, ) replaced by (v, py) and Exercise 3.29 below with k=dim Y,
¢{=codimY, m=R}, and f=pg. Along with Exercises 1.8-1.10, this claim implies the convexity
claim.

Suppose in addition that X is closed and connected. By the second statement of Proposition 3.27,
[1(X) C Cy()=Cpy (S(y) x TERS € TERY

By the first claim of the corollary and Exercises 1.8-1.10, there exists a neighborhood U, C X of y
so that the restriction p: Uy — Cy(¢)) is an open map. O

Exercise 3.29. Suppose k,£,m € ZZ° and f: R¥ xR! — R™ is a smooth function so that the
restriction of the differential dg ) f to R*x{0} is surjective. Show that there exist neighborhoods U
of 0eRF and Uy of 0€R! and a smooth map

¢: Uy xUs— R st (2,0) =, f(o(z,w),w) = f(2,0) Yoelh, wells,

and for each w € Uy the map U; — R¥, 2 — ¢(x,w), is a diffeomorphism onto an open subset
of R¥. Hint: assume that the restriction of d(g)f to R™x {0} x {0} CRF x {0} is surjective; show
that there exist neighborhoods U7 of 0€RF and Uy of 0 R so that for each we Us the map

D, : U —>Rk, (I)w(l'l, .7}2) = (f((xl, .1‘2), w) , xg) A (1'1, ZL‘Q) ey CcR™ XRk_m,
is a diffeomorphism onto an open subset of R¥.

Proposition 3.30. Suppose T is a torus and (X,w, ¥, u) is a Hamiltonian T-manifold so that (1.7)
holds, the action 1 is free, the fibers of p are connected, and p(X) C Ty T is contractible. Let
(T3 TXT,wr, ¥, pur) be the Hamiltonian T-manifold of Exercise 2.11. Then u(X)CT;T is an open

subset and there exists a T-equivariant diffeomorphism
O: u(X)XxT — X s.t. @*w:wﬂu(x)xw '“O(D:“T‘M(X)xﬂ“

Proof. The subset u(X) C T5T is open by Exercise 3.21(b). By Exercise 3.22(c), it remains to
show that p admits a Lagrangian section p(X)— X. Since p(X)CT;T is contractible, p admits
a section s: u(X)— X and s*w=dn for some 1-form 7 on u(X). Let (,€l'(X;TX) be the u-
vertical vector field of Exercise 3.22(b). Since the fibers of y1 are compact and the vector field ¢, is
vertical, the flow of —¢,,

d
— Py = —(poty,

: X X =id
,l/}t — ) wo dx, dt

is defined for all t€R, ¢py0s: pu(X)— X is a section of p for every t€R, and
d
Tl = Ui (Loqw) = ¥F (¢, w)F1-g, (dw)) = &7 (A" (=) +0) = —d(u"n) = —p"s"w,
where L is the Lie derivative; the second equality above holds by Cartan’s formula. Thus,
sPjw = " (w—p*s*w) =0,

i.e. Yros: u(X)— X is a Lagrangian section of p. O
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4 Morse-Bott Theory

4.1 Definitions and notation

Let X be a smooth manifold and H : X — R be a smooth function. If z € Crit(H), then the
gradient VIH of H with respect to any Riemannian metric g vanishes at x and the Hessian

VPH| =V(VIH)| : T,X — T.X,  V?H| (w) =V, (V/H), (4.1)

of H at = does not depend on the choice of a connection V in T'X (it does depend on the metric g
though). If in addition &, & are vector fields on X and V is the Levi-Civita connection of g, then

9(V2H,(6(@). €' @) = 9(Vee) Vng (2)) = {£@)} (9(V/H, &) =g (V' H o, Vew)€)
= (€@} (dH(E) ~de H (Vew') = {€()} (£( >)—{Vs<x>€’}(H
= {& @) (€H) + {6 1@ ()~ {Vew &} (H
= 1@} (E(H) ~{VewsH(H —g(V2H\x(£’(w)),§(w))-

Thus, the linear automorphism (4.1) is symmetric with respect to the metric g and therefore
diagonalizable. We denote by

EV(H),E; (H),Ef(H) c T,X and  n2(H),n,

xT

(H),n; (H) € 27"

x

the nullspace of V2H|,, the negative eigenspace of V2H]|,., the positive eigenspace of V2H|,, and
their respective dimensions. In particular,

T.X =EX(H)oE, (H)®EFH(H) and  dim X = n0(H)+n, (H)+n; (H).

Exercise 4.1. Let X be a smooth manifold, H: X — R be a smooth function, and z € Crit(H).
Show that

a) the negative and positive eigenspaces E- (H),E}(H) C T, X of V2H|, depend on the choice
2 p gensp P z p
of a Riemannian metric g on X, but

(b) their dimensions n; (H),n} (H) and the nullspace EX(H)C T, X of V2H|, do not.

Definition 4.2. Let X be a smooth manifold. A smooth function H : X — R is Morse-Bott if
Crit(H)C X is a closed submanifold of X with T,,Y = E9(H) for all Y € mo(Crit(H)) and z €Y.

If H: X — R is a Morse-Bott function and Y € mo(Crit(H)), H|y is constant. Furthermore, the
numbers n, (H),n} (H) do not depend on z €Y we denote them by ny (H),ny:(H), respectively.
The subspaces E; (H),E} (H) of T, X form subbundles Ey,(H),E{:(H) of TX|y so that

TX|y =TY ®Ey(H)®E; (H).

Exercise 4.3. Suppose X is a smooth manifold, H : X — R is a Morse-Bott function, and
Y €my(Crit(H)). Show that H reaches a local minimum (resp. maximum) on Y if and only if
ny (H)=0 (resp. ny.(H)=0).

Exercise 4.4. Suppose H: X — R and Y C Crit(H) are in Exercise 4.3 and Z C X is a smooth
submanifold transverse to the closed submanifold Y C X. Show that YNZ is a closed submanifold
of Z, is an open subset of Crit(H|z), and

T.(YNZ)=T,YNT,Z = EY(H|z), ni(H|z)=ni(H) VYzeYNZ
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Proposition 4.5. Let ¢ be an almost periodic R-action on a symplectic manifold (X,w). If
H: X —R is a Hamiltonian for 1, then Crit(H)C X is a closed symplectic submanifold and H is
a Morse-Bott function with nt(H)€27Z2° for every x€Crit(H). If in addition X is compact and
connected, then

(2) H has a unique local minimum and a unique local maximum;
(3) H1(c)C X is connected for every c€R.

Proof. Let p: R — T and ¢’ be as in (1.5) and ( € I'(X;TX) be the generating vector field
for the t-action as in (3.7). We can assume that the image of p is dense in T and so X¥=X"".
By Exercise 3.12, there exist a w-invariant w-compatible almost complex structure J on X. Let
g(+,-)=w(-,J-) be the Riemannian metric on X determined by w and J. By (2.1) and (2.5), the
gradient of H with respect to g is then given by

VIH = —J( e T(X;TX). (4.2)
By (2.5) and Proposition 3.8(1),
Crit(H) = {zeX: d,H=0} = {ze X: ((z)=0} = X¥=X"". (4.3)
Along with (4.1), (4.2), and (3.10), this implies that the Hessian V2H of H satisfies
VPH| (w) =—JVy(, V?H| (Jw)=JV?H| (w) VweT,X, zecCrit(H). (4.4)

By (4.3), Propositions 3.14(1) and 3.8(2), and the first equation in (4.4), Crit(H)C X is thus a
closed symplectic submanifold of (X,w) with

T,Y = (LX) = (L.X)% = {weT,X: V,(=0} = ES(H) VY emy(Crit(H)), z€Y.

By the second equation in (4.4), the subspaces EX (H) C T, X are preserved by .J for every x € Crit(H)
and thus n (H)€2Z>° for every x € Crit(H). The remaining claims of the proposition now follow
immediately from Proposition 4.8. O

The second proof of Proposition 4.8 is based on standard properties of gradient flows of Morse-Bott
functions. As these properties are also used in the proof of Theorem 2(2) in Section 5.1, we collect
them in Proposition 4.7 below and justify at the end of this section.

Exercise 4.6. Suppose (X, g) is a compact Riemannian manifold and H : X — R is a smooth
function. Since X is compact, the negative gradient flow of H,

d
— V9
Qph’;t =-V H‘wH;t’

Y X — X, Y = idx, &

is defined for all t€R. Show that the limits
:t p— ]
= t—)hlglzloo,(ﬁH;t(x)

exist for every x€ X.
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Let (X, g) be a compact Riemannian manifold and H : X — R be a Morse-Bott function. For
Y emo(Crit(H)), we denote by
Thy EE(H) — Y

the bundle projections and by S (Exi,(H ) CE}jE(H ) the sphere bundle of E}jE(H ). Let
XF(H)={zeX:23;€Y} DY
be the H-stable and unstable manifolds of Y. For AcC X3 (H), let
AL = {xﬁ zeA} CY.

Proposition 4.7. Suppose (X, g) is a compact Riemannian manifold, H: X — R is a Morse-Bott
function, and 'Y €mo(Crit(H)).

(1) The subspaces Xi£(H)C X are smooth submanifolds with

T(X3(H))|, = TY ®EF(H) C TX|y . (4.5)
(2) There exist diffeomorphisms @ﬁ;yz EX(H)— Xi£(H) such that

+
dy®p.y (w) =w YV yeY, weEy(H)CT,(Ey (H)).
(3) For every ceR, the submanifolds X;E(H) and H=Y(c)—Crit(H) of X are transverse.

(4) For every e eR™ such that H(Y') is the only critical value of H in [H(Y)—e, H(Y)+¢|, there
exist diffeomorphisms

Oyt S(EV(H) — XT(H)NH ™ (H(Y)+e) C X
satisfying the first property in (4.6) with (@i;y, EZ(H)) replaced by ((IJ;EI;Y;G, S(ES(H)).

(5) The intersection of the closure Xy (H)C X of XiE(H) with the level set H-'(H(Y)) is Y.

- and AC X is the closure of A, ANH~ C AL, Ifin addition A is preserve
6) If ACXiE(H) and AC X is the cl f A, ANH=Y(H(Y)) C AF;. If in addition A d
by the gradient flow of H, i.e. Yvp+(A)=A for all teR, then ZﬁH‘l(H(Y)):AE.

Proof. By the Tubular Neighborhood Theorem, there are neighborhoods U C Ey.(H)®E;, (H) and
UcCX of Y and a diffeomorphism ®: U/ — U such that

d(y)=y VyeY, d,®(w)=w Vy€eY, wekEy,(H)®E}(H)CT,(Ey(H)®E](H)).

By the statement and proof of [3, Theorem A.9], there are then neighborhoods U’ CU and U’ CU
of Y and smooth embeddings

Oy Uy =UNEL(H) — U
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so that ®%., (Us.) = U'NXE(H), the first identity in (4.6) holds whenever w € U ., and the
other two identities in (4.6) hold as stated. For all § e R* sufficiently small, U’ contains the closed
disk bundle of Ey, (H)&E{ (H) of radius § and

d
iaﬂ(@gy(tw))‘ >0 YVweBE(H), |w|=4. (4.7)

The smooth maps
Uiy Ev(H)-Y — X, Uiy (W) = Yurm(u)/s) (Phy (Sw/|wl])),

are then smooth embeddings onto X;-(H )Y that agree with &3 - on the sphere bundle S;(E3: (H))
in B (H) of radius §, satisfy the first identity in (4.6) whenever w#0, and satisfy (4.7) with @E;Y
replaced by ‘Pﬁ_y. We can thus paste @E,Y and \Ifﬁ,y together on a neighborhood of Sg(EfE(H))
in ES(H) to obtain smooth embeddings @ﬁ;y of EZ(H) into X with image X;-(H) which sat-
isfy (4.6). This establishes (1) and (2).

Let c€R and z € X5 (H)N(H ' (c)—Crit(H)). Thus, d,H #0, H(c)—Crit(H) C X is a smooth
submanifold with
T, (H ' (c)—Crit(H)) = kerd, H ,

and ¥pr4(2) is a curve in X (H) with

%H(wH;t(x))L:O = d H(~VIH) = —g(VIH,VIH) # 0.
This gives (3).
Let ¢, 6 €R™ be as in (4) and above, respectively, with

Wy (SHEE(H)) € B (H(Y)—e H(Y)+e).

Since the norm of V9 H is bounded below on H ' (H(Y)—e, H(Y)—")) and H Y (H(Y )+, H(Y )+¢))
for every € €(0,¢€), (4.7) and the smoothness of the negative gradient flow 15+ imply that there is
a smooth function

p: Ss(Ey(H) — R st H(Yppg) (P (w) = H(Y) e
Along with (4.7) again, the map
Prirye: S(By (H) — XFH)NHT (HY)Ee),  Phiye = Yrripqu) Py (W),

is then a diffeomorphism satisfying the first property in (4.6) with (@fl,y,Eii/(H )) replaced by
(q)E;Y;U S(E}:‘;(H)))

Suppose ' € H-1(H(Y))—Y. Choose disjoint open neighborhoods U, U’ C X of Y and z/, respec-
tively. By (4.7), there exists e ER™ so that

|H(z)-H(Y)|>€e VazeXy(H)-U.
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By shrinking U’ if necessary, we can assume that
|H(z)-H(Y)|<e VazeU.
It then follows that U’ is disjoint from X3 (H) and thus from Xj:(H). This establishes (5).

Let AC X (H). By ((5)), ANH-Y(H(Y))=ANY. Suppose y € ANY and U C X is a neighborhood
of y. By (2), there exists a neighborhood U’ of y in U so that :Eﬁ e U’ for every x €U’. Since y€ A,

U’ contains some x € A and thus xﬁ € Aﬁ. We conclude that yeAIj}.

Suppose A is preserved by the gradient flow of H and y EE. Let U C X be a neighborhood of y
and z € A a point such that :L‘fl €U. Thus, Y.+ (x) € ANU for all t€R sufficiently large. Therefore,
ycA. O

4.2 Fiber connectedness

The next proposition is the main point-set topology input in the proof of (A}) on page 4 in [1]
and [21].

Proposition 4.8 ([1, Lemma 2.1], [21, Lemma 5.5.5]). Suppose M is a compact connected smooth
manifold and H: X —R is a Morse-Bott function. If nt(H)#1 for every x € Crit(H), then

(1) H has a unique local minimum and a unique local maximum;
(2) H1(c)C X is connected for every c€R.

We give two proofs of this proposition, which are essentially two different formulations of the same
reasoning. The first one is in the style of classical Morse theory, as in [24]. It is based on describing
the changes in the homotopy type of H~1((—co,¢]) as ¢ passes through critical values as adding
“handles” of various kinds; see (4.8) below. The second proof is in the style of the modern take on
Morse theory originating in [31]. It is based on partitioning X into stable or unstable manifolds
of the negative gradient flow; see (4.9) below. In both cases, we first show that there are unique
connected critical submanifolds Y_,Y, C X with ny (Y_)=0 and ng (Y;)=0. The function H
reaches its global minimum along Y_ and maximum along Y, ; there are no other local minima or
maxima. We then show that H~!(c) is connected whenever ¢ € (min H, max H) is a regular value
of H. The claim for arbitrary c€R then follows from Lemma 4.9 below.

Proof 1 of Proposition 4.8 ([1]). For Y € my(Crit(H)), we denote by D(Ey (H)) CEy (H) the
disk bundle of Ey/(H). For ceR, let

X.(H)=H '((~00,c]) C X.

If ¢ is a regular value of H, i.e. c¢Z H(Crit(H)), then X (H) is a smooth manifold with boundary
OX.(H)=H"(c). If c_,cy €R are regular values of H with c_ <c,, then

Xe, (H) ~ X._ (H)U U pEyH), (4.8)

Yemng(Crit(H))
H(Y)E(— )

with ~ denoting homotopy equivalence; see [7, Section 1]. The boundaries of the disk bundles
on the right-hand side above are attached to 0X._(H); the right-hand side is then a deformation
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retract of the left-hand side.

If Y € mo(Crit(H)) and ny (H)=0 (i.e. H has a local minimum along Y’), then adding D(E; (H))
as in (4.8) adds a topological component to X._ (H). If Y € mo(Crit(H)) and ny (H) > 2, then at-
taching D(E; (H)) as in (4.8) has no impact on the topological components of X._ (H) vs X., (H).
Since ny (H)#1 for any Y € mo(Crit(H)) and X is connected, it follows that there is a unique
Y_ € mo(Crit(H)) with ny, (H)=0; thus, H(Y_)=min H. Since ny(—H)=n; (H), the same rea-
soning shows that there is a unique Y} € mo(Crit(H)) with n;a (H) =0; thus, H(Y}) = max H.
Furthermore, X .(H) is connected for every c€R.

We can assume that H is not a constant function. Let ¢ € (min H, max H) be a regular value.
By (4.8), X.(H) is a homotopy equivalent to a CW complex with cells of dimension at most the
maximum of the numbers

dim D (Ey (H)) = n{(H)+ny(H) = dim X —n{ (H) < dim X —1 = dim 0X.(H)

taken over Y € mo(Crit(H)) with H(Y) < c. The inequality above holds because ny.(H) # 0 for
Y#Y, and ny.(H)#1 for any Y € mo(Crit(H)). Thus, Hy(Xc(H);Z2)=0 for k>dim dX.(H) and
the boundary homomorphism

0: Haim x (Xe(H); Zo) — Haimox, (i) (0Xc(H); Za)

in the homology exact sequence for (X.(H),0X.(H)) is surjective. Since X.(H) is connected, the
domain of this homomorphism is isomorphic to Zs. It follows that 0X.(H)=H!(c) is connected.

Thus, H~!(¢) C X is connected for every c€ R—H (Crit(H)). Since H(Crit(H)) CR is a finite subset,
Lemma 4.9 below implies that H~!(c) C X is connected for every c€R. O

Proof 2 of Proposition 4.8 (modification of [21, pp233,4]). By definition,

X = | | x3H) = | | x5 (H). (4.9)
Y emo(Crit(H)) Y emo(Crit(H))

Since ny, (H)#1 for any Y € mo(Crit(H)),

U xdmE) =x - U x ).
Y emg(Crit(H)) Y emg(Crit(H))
ny (H)=0 ny (H)>2

Since X is connected and each submanifold X{f(H ) C X on the right-hand side above is of codi-
mension ny (H) > 2 by Proposition 4.7(1), the union on the left-hand side is connected. Since
each submanifold X;’ (H) C X on the left-hand side is open, it follows that there is a unique
Y_ e mo(Crit(H)) with ny, (H)=0; thus, H(Y_) =min H. By the same reasoning with the second

partition in (4.9), there is a unique Y, € mo(Crit(H)) with n;a (H)=0; thus, H(Y,)=max H.
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We can assume that H is not a constant function. Let € be as in Proposition 4.7(4) with Y =Y_
and c€ (min H, max H) be a regular value. By (4.9),

H o)~ JXFH) = H (enXy (H)
Y emo(Crit(H))
ny ()22 (4.10)
~ H ! (min H+e) — UH_l(minH—i—e)ﬂX;(H);

Yemg(Crit(H))

H(Y)€(min H,c)
the diffeomorphism = above is obtained via the gradient flow. Since H~!(min H +¢) is transverse
to each Xy (H), the codimension of the last intersection above in H ! (min H+e¢) is the codimen-
sion of Xy (H) in X, i.e. n{-(H)>2. The last inequality holds because ny,(H)#0 for Y#Y, and
ny(H)#1 for any Y € mo(Crit(H)). Since H~!(min H+e¢) is diffeomorphic to the connected man-
ifold S(Ey (H)) by Proposition 4.7(2), the right-hand side in (4.10) is connected as well. Since
the codimension of H~!(¢)NX;F(H) in H™1(c) is ny(H) and ny (H)>0 whenever Y #Y_, it then
follows from (4.10) that H~'(c) is also connected.

By the above H~!(¢) C X is connected for every ¢ € R— H(Crit(H)). Since H(Crit(H))CR is a
finite subset, Lemma 4.9 below implies that H~!(c) C X is connected for every c€R. O

Lemma 4.9. Let X be a compact connected manifold (or more generally a topological space which
is sequentially compact, connected, locally connected, and normal). Suppose f: X — R is a
continuous function and P* CR is a dense subset. If f~'(c) C X is connected for every c€ P*, then
f~1(c)C X is connected for every cER.

Proof. Suppose ¢ € R—P* and f~!(c) = AUB for some disjoint nonempty subsets A, B that are
closed in f~!(c) and thus in X. Let Us,Up C X be disjoint open subsets such that A C U4 and
B CUg. Let W CR be a neighborhood of ¢ such that f~1(W) c UosUUg (its existence follows
from the first countability of R, sequential compactness of X, and the continuity of f). For each
x€ AUB, choose a connected neighborhood V, of z in f~'(W). The subsets

Va= UVZE and Vg = UVT
z€eA z€B

of X are then open disjoint neighborhoods of A and B, respectively, in X. If f~1(ca)NVa4#0 for
some ¢y <c, then
NV #D YV E(ea o).
If in addition f(z)<c for some x € Vp, then there exists ¢* € (c4, ¢) such that
c* € P, U e)NUL #0, and  fH(c*)NUp # 0.

Since f~!(c*) € UaNUpg, this would contradict the assumption that f~!(c*)C M is connected for
every ¢* € P*. We can thus assume that f(z)<c for all z€Vy4 and f(z)>c for all z€Vp. Then

Us=f! (=00, c)) UV and Ug=f" (c,00)UVB

are disjoint nonempty open subsets of X that cover X. However, this contradicts the assumption
that X is connected. O
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Exercise 4.10. Let X be a compact connected manifold (or more generally a topological space
which is sequentially compact, connected, and normal). Suppose P is a first countable topological
space, f: X — P is a continuous open surjective map, and P* C P is a dense subset. Show that if
f~Y(c) C X is connected for every c€ P*, then f~!(c) C X is connected for every c€ P.

5 Properties of Moment Polytopes

5.1 Complexified Hamiltonian group actions

This section establishes Theorem 2(2). The key steps in the proof are Lemma 5.2, which describes
the behavior of the moment map p on O, and Proposition 5.6, which concerns the images of O,
and O, — O, under pu.

Exercise 5.1. Suppose 1 is a smooth action of a torus T on a compact almost complex mani-
fold (M, J), i.e. 1) preserves J. Show that (1.6) determines a complexification ¢ of ¢ if either T
is one-dimensional or J is integrable. Hint: J is preserved by ¢ if and only if £, J =0 for every
v€TyT*, where L is the Lie derivative and ¢, €['(X;TX) is as in (1.2); J is integrable if and only
LyeJ=J(LeJ) for every {eT(X;TX).

Lemma 5.2. Suppose T is a torus, (X,w, ¥, ) is a Hamiltonian T-manifold, and ¢ is a complez-
ification of 1 with respect to a T-invariant w-compatible almost complex structure J as in (1.6).
For each veTqT, let (, €eT(X;TX) and p, € C®(X) be as in (1.2) and (2.2), respectively. Then,

d

7:“’1) ("p(C;[itv’] (x)) = _g(CUv Cv’)

q Vv, €T, z€X, (5.1)

ey fien’) (@)
where g(+,-)=w(-, J-) is the Riemannian metric determined by w and J. Furthermore,
M(Tﬁtc;[w} (z)) # p(z) € Ty T* VoeiT, z€ X s.t. ((x)#0.

Proof. By (1.4), (1.6), and Proposition 3.8(1),

%Mv (Yesfieer) () = dy @) <§t¢c;[itv/] (33)> = —w (Cv (Vesito (@) (IS (Yt (51?)))>‘
This gives (5.1). Along with Proposition 3.8(1) again, this implies that
R—R,  t— py(dhen(2),
is a strictly decreasing function unless (,(z)=0. This gives the second claim of the lemma. O

Exercise 5.3. Suppose T, (X,w,u, ), ¥c, J, g, ¢y, and p, are as in Lemma 5.2. Suppose in
addition X is compact. Show that the limit

Too(v) = lim ¢C;[itv] () € X (5.2)

t—00
exists for all veT;T and z € X and satisfies
Cv (xoo(v)) =0, dxoo(v),uv =0, Wy (l‘oo(v)) = tlgﬂg Moy (xoo (U))7
(¢C;u($))oo(v) = w@;u (l'oo(v)) VueTc.

38



Suppose ¥ is a smooth action of a torus T on a smooth manifold X. For z € X and v € T;T, let
T,(¢) CT be as in (1.3) with G=T and T.,(¢) CT be the closed subgroup spanned by T, () and
the closure of {e’: t€R} in T.

Corollary 5.4. Suppose T, (X,w, v, 1), ¥c, and p, are as in Lemma 5.2, with X compact, € X,
ve T, and z. (v)€X is as in (5.2). Let O, C O, be the Tc-orbit of x and its closure in X,
respectively. Then, there exists a topological component Zy.,, of the Ty, (¢)-fized locus XTai(¥) « X
so that

2. (V) € Zypy and inf py, (21, (V) = po(Zew) = inf pu, = inf p, Va'eO,. 5.4
(v) € Zs, inf 10 (25 (v)) = p10(Z;0) inf YEWO(X%( ) (5.4)
YNO,#0

Proof. Let 2/ € O,. By the continuity of the action ¢, 2/ _(v) is fixed by T (¢) = T.(¢)). By
the first equation in (5.3), 2/ (v) is also fixed by the closure of {e®: ¢t € R} in T. Thus, 2/ (v)
lies in X Te»(¥) which is a closed symplectic submanifold of (X,w) by Proposition 3.14(1). Let
Zpw C X Tz0(¥) be the component containing . (v). Since T¢ is connected, the last equation
in (5.3) implies that 2/ (v) € Z.,, as well.

Since dyi, vanishes on X =) 1 is constant on Zy. Along with the third equation in (5.3), this
yields the first equality in the second equation in (5.4). Thus,

inf py = inf py = po(Zzpw)- (5.5)
[0} O

T

If veTqT is generic, Ty (1) =T and so Z., C X¥. Thus,

inf p, < inf py(Y) < o (Zz;v) =infpu, = infp,= inf p,(Y).
Oy Yem(XY) O [ Yem(XY)
YNO,#0D YNO,#D

By the compactness of O, and the continuity of x in both inputs, the last equality holds for all
v €T T. Combining this equality with (5.5), we obtain the last equality in the second equation
n (5.4). O

Corollary 5.5. Suppose T, (X,w, v, ), ¢, and u, are as in Lemma 5.2, v € X, and O, C O,
are as in Corollary 5.4. Then,

O0,—0, ={2/€0,: FveTLT s.t. py(2')=inf py, dype #0}. (5.6)
Oy

Proof. Let TfT CT1T be a complement of

T1To(¢p) = {veTiT: dppy =0} (5.7)

and S(T5T) CT5T be the unit sphere with respect to some metric. In particular,

O, = {¢(C;v+iv’( ‘U, eTﬂT}

By (1.6) and (3.18), %c.ity is the negative gradient flow .+ of p, with respect to the metric
) Hoj;
g(+,)=w(,J-), with J as in (1.6). Since dypu, #0 for all 2’ € O,, the continuous function

TxS(TET)xR — R,  h(u,v,t) = po(Vesiee(Vu(@)),
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is thus decreasing in ¢. In particular, the left-hand set in (5.6) contains the right-hand set. By (5.4),

tgn h(u,v,t) = inf p, VueT, ve S(ITT). (5.8)

Suppose y € O, — O, is the limit of a sequence ¥c.it, v, (¥u, (7)) with uy € T converging to some u,
v € S(TET) converging to some v, and t; € R converging to co. Since the functions h(ug, vg,t) are
decreasing in ¢ and p, is a continuous function on X, (5.8) implies that p,(y) =infg_ s O

For a polytope P C T T, we denote by 0P C P the union of the proper faces of P. Let Int P=P—0P.
With T, (X,w, v, u), ¥c, € X, and O, C X as in Theorem 2(2), let

Py () = CH(p{Y emo(X?): YNO, #0}).
Proposition 5.6. Suppose T, (X,w, v, 1), Yc, € X, and Op C O, are as in Theorem 2(2). Then,
wOy) =t Py (vc),  n(0r—0z) = 9Py (vc), (5.9)
and the map Oy /T —T;T induced by p is injective.

Proof. For each v € T1T, the map
L,:T;T — R, Ly(a)=a), (5.10)

is a linear functional and p, = Lyop: X — R. Let TS C T be a subtorus complementary to the
identity component (T;(1))o of T,(¢) and ¢: TS — T be the inclusion so that

pe=1op: X — T7TS
is a moment map for the restriction of the T-action ¢) on T%. In particular,

O, =Tex = (TS)ex, {Yem(XY):YNO,#£0} = {YVer(X™): YNO, #0},
O,/T = 0,/Ts,  w(0z) C (T4 pw={a €Ty T: Ly(e) =Ly (u(z)) VoeThTL(¥)}.

Since ¢*: (T{T) . —> T3 TS is a homeomorphism sending line segments to line segments, it suffices
to establish the claims with (v, u) replaced by (¢|1c, ug). We can thus assume that (T, ())o={1},
as is done below.

For veTyT, let ¢, €'(X;TX) be as in (1.2). Since
(Tur () = (Ta(¥), = {1}  Va'€O,,
Co(2')#0 for all veT3T—{0} and 2’ € O,. By Lemma 5.2, the map
T — 15T, v — ,u(w(c;w(:c)),

is thus a diffeomorphism onto an open subset of T7T. Since p is T-invariant, this open subset

is u(O,). By the last equality in the second equation in (5.4), u(O,) C Py(¢¢c). Thus, the polytope
P,(¢c) CTyT is of full dimension, u(O;) CInt Py(1c), and the last claim of the proposition holds.
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For v € TyT—{0}, the level sets of L, are hyperplanes. Thus, the restriction of u,=L,ou to O,
achieves its minimum along the preimage of a proper face of P,(t¢¢) under p and not at any point
of 1~ (Int P,(1c)); the former preimage contains Y NO,, for at least one element Y € mo(X?) with
YNO,#0. From the compactness of O, and (5.6), we then conclude that

1(O0z) = 11(Og) C p(Op—0y) = {pu(2'): 2’ €Oy, 3 vETT—{0} s.t. uv(x'):igf,uv} C 0P, (¢¢).

Thus, ©(O,) DInt P, (¢c), which establishes the first equality in (5.9). The second equality in (5.9)
then follows from the compactness of O,. O

Proof of Theorem 2(2). The two equations in (5.9) give (2b), as well as (2¢) with o =Int P, (¢¢).
Suppose ¢ is the interior of a proper face F' of P, (¢c). Choose v€T;T and c€R be so that

F = Py(vc)NL, ' (0),
with L, as in (5.10). Let Z,,, CX be as in (5.4). Thus,
pH(F)NO, C Crit(m),  polu-1(m) = ¢,

and Z, is a topological component of Crit(u,) with py|z,, = c. By (1.6) and (3.18), ¥ciit
is the negative gradient flow 1, .+ of p, with respect to the metric g(-,-)=w(:,J-), with J as
in (1.6). By the first statement in (5.4), O;,;CX}H (y). The first statement of Proposition 4.5,

Proposition 4.7(6), and the last equation in (5.3) then imply that

W F)ND; = 17 ()10, € [oa(0): 7 €05 = Oy,
Thus, O,y =4~ (F)NO,. From (5.9) with z replaced by o (v), we then conclude that
M_I(U)m@ = M_I(U)m Too (V) — Ozoo(v)'

This establishes (2c). Since O, ={y} for any y€ X", (2a) follows from (2c).

Since the moment map p is T-invariant, the map
/T — w(@y), @] — pla'), (5.11)

is well-defined. It is surjective by definition. Its domain is compact, while the target is Hausdorff.
By (2c), for every open face o of the polytope u(O,) there exists z, € O, so that u~(a)NO, =0, .
By the last statement of Proposition 5.6 with = replaced by z,, the restriction of the map (5.11) to
p~1(0)NO, /T is thus injective for every open face o of u(O,). It follows that the entire map (5.11)
is injective as well and thus a homeomorphism. O

Exercise 5.7. Show that
(a) the S'-action on CP? given by
stxcp? — (CPZ, u- [zo, Z1, 22] = [zo,uZZl, u322],
is effective and Hamiltonian with respect to the symplectic form wrs.2 of Exercise 2.7;
(b) the closure O, of the C*-orbit O, is a rational cubic curve for any point = = [zq, 21, 2] in CP?

with zg, 21, 20 #0.
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5.2 Proofs of Theorems 1, 2(1), and 3(0")

The last statement of Corollary 3.28 establishes (Dy). As already noted in Section 1, (Fj) is a
straightforward consequence of the equivariant splitting (3.5) of TX|y for each Y € mo(X¥) and is
deduced first below. We then establish the main part of the proof of Theorem 1, (A}) on page 4,
and wrap up this section with the remaining statements of Theorem 1, Theorem 2(1), and (0) on
page 8.

Proof of (Fy). For each L € RP*~1 let X C X be the fixed locus of the action v|;. By the
second equality in (3.17) and Proposition 3.8(1),

Crit(p) = {ze X*: LeRP* '}

By Proposition 3.14(1), X* C X is a compact symplectic submanifold. Every topological component
Z C X" is preserved 1. The restriction of the 1/-action to such a component is Hamiltonian. Thus,

ZINXY =2Y 40 VYV Zemy(X"), LeRP*!

by Exercise 3.23(a). Along with Corollary 3.7, this implies that Crit(u) is a finite union of the
topological components Z of the symplectic submanifolds X* C X with LeRP*~!. By the second
equality in (3.17) and Proposition 3.8(1), the smooth map

po: X — TIRY, (@) = {p(@)}(v), (5.12)

is constant along each topological component Z C X for every v € L, i.e. for any v € L there exists
¢y €R so that
w(Z) c {aeTng: a(v)=cy };

the right-hand side above is a hyperplane in T;RF if v 0. O

Lemma 5.8. Suppose k€ Z>°, (X,w) is a symplectic manifold, V1, . .., Yp1 are R-actions on (M,w)
with Hamiltonians
Hl,...,Hk_HZX —)R,

respectively, the R-action g1 is almost periodic, and its Hamiltonian Hy1q s Y;-itnvariant for
every i € [k]. If c€R¥ is a regular value of the map

H=(Hy,...,Hy): X — R,

then the submanifolds Z=H1(c) and Crit(Hyy1) of X are transverse, ZNCrit(Hyy1) is an open
subset of Crit(Hg41|z), and

T, (ZNCrit(Hyt1)) = To ZNT,Crit(Hyi1) = B (His1|z), nE(Hii|z) = ni (Hyp) € 222°
for all x€ ZNCrit(Hy41).

Proof. By the first statement of Proposition 4.5, Crit(Hy,1) C X is a closed symplectic submanifold
and Hypy1: X — R is a Morse-Bott function. Since c€R¥ is a regular value of H, Z=H"1(c) is a
submanifold of X. In light of Exercise 4.4 and the first statement of Proposition 4.5, it remains to
prove that the submanifolds Crit(Hy41), Z C X are transverse. Let Y € mo(Crit(Hy1)).
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Let (1,...,(x € T(X;TX) be the vector fields generating the R-actions 1)1, ...,y and thus sat-
isfying the middle equation in (2.5) with (,, = (;. Since Hyii0%;=Hy41 for each i € [k],
preserves Crit(Hy41) and thus Y. Therefore,

Gly eDYTY) CT(YV;TX|y)  Vielk].
If x€Z, then d.Hy, . ..,d;Hy vanish on T,,Z. Since d,H is surjective, it follows that
dyH=(dzHy, ..., doHy): T, X/ T2 — RF (5.13)

is a well-defined isomorphism. The middle equation in (2.5) with (,, = (; then implies that the
tangent vectors (i(x),...,(x(z) €T, X are linearly independent.

Suppose x€YNZ and (ry,...,r;) €R¥—{0}. Since
r-¢(z) =rii(z)+. .. +rple(z) € T,Y —{0}

and w|r,y is a nondegenerate, there exists weT,Y so that

k

ZridxHi(w) = fw(r-C(az),w) #0.

i=1
Thus, the restrictions of d, Hi,...,dyHg to T,Y are linearly independent. Since (5.13) is a well-
defined isomorphism, it follows that T, X =T, Y &1, Z, i.e. the submanifolds Y, Z C X are transverse
at x. O

Corollary 5.9. Suppose k€ Z=Y, (X,w) is a symplectic manifold, {Dv is an almost periodic RF+1-
action on (X,w) with Hamiltonian

H=(H,Hp1): X — RExR=RF1,

If c€RF is a regular value of H, then the restriction of Hy1 to the submanifold Z=H"'(c) of X
is a Morse-Bott function with n(H)€2Z>° for every x € Crit(Hyy1|z)-

Proof. Let H=(Hj,...,Hy) and z € Crit(Hp4+1|z). Suppose x € Crit(Hyy1|z). Since the map (5.13)
is a well-defined isomorphism,

dek+1 =riHi+... +r H,: T, X — R
for some r=(ry,...,r;) ER*. The map
Hk+1;TEHk+1—(7”1H1+...+Tka):X — R

is then a Hamiltonian for an almost periodic R-action on (X,w) so that x € ZNCrit(Hy1,r). This

Hamiltonian is preserved by the restriction of the action J to RFx{0}. Since H, k41;r—Hp 11 restricts
to the constant r-c on Z,

Crit(Hgy1:r|z) = Crit(Hyi1|2), ES(His1:l2) = EQ(Hisa|z), ni (Hesrlz) = 0 (Hes1lz)-
By Lemma 5.8, the closed submanifold ZNCrit(Hy41.,) of Z is thus an open subset of Crit(Hj41),
T, (ZNCrit(Hyt1,)) = ES (Hiy1l2), and  ni(Hgs1|z) € 22°°. (5.14)

We conclude that Crit(Hy41|z) is a finite union of submanifolds ZNCrit(Hy1.,) of Z with r €R¥,
each of which is a union of the topological components of Crit(Hyy1|z) and satisfies (5.14) for all
x € ZNCrit(Hpy1,r). O

43



Proof of (A}) on page 4. The claim is trivially true for £k =0. We assume that it is true for
some k€ Z>% and show that it also holds with k replaced by k-+1. Let

H=(H,Hp1): X — RFExR=R"!
be a Hamiltonian for an almost periodic RF+!-action 1 on (X,w) and ¢= (¢, cpy1) ERF xR.

Suppose first that c€ R is a regular value of H and thus ZC H~!(c) is a closed submanifold of X.
It is connected by the inductive assumption. By Corollary 5.9, Hy11|z is a Morse-Bott function
with n (Hyy1|z) €2Z2°. By Proposition 4.8,

H'(2) = {Hk+1|Z}_1(Ck+1) cX

is thus connected.

Let R’;{ C R* and R%H C R**1 be the subsets of regular values of H and H , respectively. In
particular,

R%“ = {Ee RF: A Hy, ... ,dyHp11 €Ty X are lin. independent Vxef]il(a}.

Since the subset H(¢) C X is compact for every ¢€ R, the subset R%H C RF*1 is open. The
function ~
R — 720 & — |mo(H ' (9)], (5.15)

is constant on the connected components of R%H and takes value 0 or 1 on R%Hﬂ(R]}{ xR). Since
the subset RI}_I C R* is dense by Sard’s Theorem and each connected component of R%H is open
in R*+1 the function (5.15) takes value 0 or 1 on each connected component of R%H, ie. H1(@)cX

is connected for every ¢ce R%H. O

Proof of (Ay). By Exercises 3.10 and 2.4, we can assume that the action 1 is irreducible. Let
(TgRF),, C TER* be the subset of regular values of u. By (Fi), u~*((T¢R¥),) C X is the complement
of a finite union of submanifolds of positive codimensions. Thus, the subset

P* = p(p (ToRY),) € w(X)=P

is dense in P. By (D), the map p: X — P is open. By (A}), p~!(a) C X is connected for every
a€ P*. Thus, (Aj) now follows from Exercise 4.10. O

Proof of (By). This claim is trivially true for k = 0. Suppose k € Z* and H: X —RFis a
Hamiltonian for an almost periodic R¥-action ¢ on (X,w). For a kx (k—1) real matrix A, the
R*~1_action 14 =10 A is then also almost periodic with Hamiltonian

Hy=A%oH: X — RF L,
Suppose xg,x1 € X. Let A be a kx (k—1) injective real matrix A so that

H(z1)—H(xo) € ker A™.

44



Thus, 21 € H; ' (Ha(20)) and
H(z1) € H(Hy' (Ha(z0)) C {H(wo)+c: c€ker A"}
Since ker A is a line and H ' (Ha(zo)) C X is connected by (Ay),
H(H ' (Ha(z)) C H(X)
contains the line segment between H(xg) and H(x1). Thus, H(X)CRF is convex. O

Proof of (Cy). Let p: R¥ — T and ¢ be as in (1.5). We can assume that the image of p is
dense in T and so X¥=X?". The first claim then follows from Proposition 3.14(1). By Proposi-
tion 3.8(1) and the first equation in (1.4), du vanishes along X¥; this implies the second claim.
By (Bk), n(X)C CH(u(X?).

Suppose 179 € T¢RF —CH(u(X?)). Thus, there exists v € ToR¥ so that

no(v) < min{n(v): T]Eu(Xw)} = min{n(v): n€ CH(u(X?))}. (5.16)

Let y€ X be a minimum of the smooth function p, as in (5.12) Thus, dyu, =0, the vector field ¢,
as in (1.2) vanishes at g, and y lies in the fixed locus X®? of the restriction of the v-action to
Rv CR*. For a generic choice of v € R¥ satisfying (5.16), p(Rv) C T is dense and thus X%’ =X?. It
follows that

no(v) < min{n(v): nE,u(Xw)} = min{u,(z): € X} = min{n(v): neu(X)},
Le. mo & w(X).

Thus, u(X) = CH(u(X?)). The vertices of this polytope are of the form u(Y) with Y € mo(X¥).
By (3.25), the number of edges at any such vertex u(Y') is at most [S(Y')|. Since the real rank of
each subbundle N¢Y CTX |y is at least 2, |S(Y)|<(dim X)/2. O

Proof of (Ej). Suppose Y emo(X?). Let p, J, S(Y), N§Y for each € S(Y), and C,,y) (p*S(Y))
be as in Proposition 3.27. If p*S(Y) does not span TS‘Rk over R, there exists

v € ToR*—{0} s.t. {p*a}(v) =0 VaeS(Y).

The subgroup Rv C R¥ then acts trivially on TX|y. By Proposition 3.3(1), this implies that the
connected component of the Ro-fixed locus X®? containing Y is a connected component of X,
i.e. Rv acts trivially on X (and so the action 1) is reducible), since X is connected. If the action ¢
is reducible, then Rv C R* acts trivially on X and thus on TX|y for some v € ToR* nonzero and
thus {p*a}(v) =0 for every a€S(Y), i.e. p*S(Y) does not span T¢R* over R.

Thus, p*S(Y) spans T R¥ over R if and only if the action 1 is irreducible. Suppose p(Y) € Ver(u(X?))
is a vertex of the polytope u(X)=CH(u(X%)). By Proposition 3.27, the edges of u(X) at u(Y)
are the edges of the cone C,y)(p*S(Y)). A subset S, (Y) of p*S(Y) thus forms a collection of
edge vectors of the polytope p(X) at the vertex p(Y'), while the elements of p*S(Y)—S,(Y) lie
in the span of S,(Y). We conclude that S,(Y) spans T¢R¥ over R if and only if the action ¢ is
irreducible. O
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Proof of Theorem 2(1). Suppose Y € mo(X¥). Let p, J, S(Y), and NgY for each a € S(Y)
be as in Proposition 3.27 with (R 0) replaced by (T,1) and thus p = id. As above, a sub-
set S, (Y) of p*S(Y)=S5(Y) forms a collection of edge vectors of the polytope p(X) at p(Y'). Since
S(Y)C (T5T)z, all edges of the polytope u(X) at u(Y) are rational. O

Proof of (07) on page 8. Let p, J, S(Y) for each Y € mo(XV¥), NgY for each o € S(Y), and
Cuv)(p*S(Y)) be as in Proposition 3.27 with (R¥,0) replaced by (T, 1) and thus p=id. By (3.25)
and (1.7), |S(Y)| is at most the dimension of T. Since the action 1 is effective, Proposition 3.6(1)
then implies that S(Y) is a Z-basis for T3'T for every Y € mo(X¥); this remains the case if some
of the elements of S(Y) are negated. In particular, the polytope u(X)CT;T is of full dimension.
Furthermore, for every Y € mo(X¥), the cone C.(v)(S(Y)) contains no lines, u(Y) € Ver(u(X)), and
for every S CS(Y) the pu-image of the topological component X3 of the v|r4-fixed locus X con-
taining Y lies in the cone C,,(y(S) of dimension |S| and contains a neighborhood of the vertex (Y’)
of this cone.

By Proposition 3.14(1), (X&,w| X§,¢| XgaM X;g) is a closed connected Hamiltonian T-manifold for
every Y €mg(X?) and ScS(Y). Thus,
u(XP) = CH(u((X7)")) = CH(u(XYNXY))
by Theorem 1(Cy). Since u(X¥NX3)C Ver(u(X)), it follows that u(X3) is the face Fuivys(p(X))
of the polytope u(X) containing the edges
eu(vye = (X)N{u(Y)+taa: to €RZ0Y

with a € S. Since S(Y) is a Z-basis for T; T for every Y € mo(X?), Exercise 3.24 implies that for
each z € X there exist Y, € m9(X?) and S, C S(Y;) so that the t-stabilizer T, (1)) C T of z is the
subtorus Tg, CT and xeX%. It follows that

p (s (X)) = {reXys: T, ()=Ts} VYem(X¥), SCS(Y), (5.17)
where F:(Y);S('U’(X)) C Fuyvy;s(pu(X)) is the interior.

Suppose e€ Edg(u(X)) is an edge of the polytope p(X) and thus e=e,y),, for some Y emo(X?)
and o € S(Y). We then set ae =a. If Y/ € m(X?) is such that u(Y”) is the vertex of €,y
other than x(Y), then —a € S(Y’) and e=e,(y/),—q- Thus, (ae)eccrdg(u(x)) is a full tuple of integral
edge vectors for the polytope p(X) such that for each vertex n of u(X) the components o, with
e€Edg, (u(X)) form a Z-basis for (T7T)z and

Tg = ﬂf]rawm VY em(X?), SCS(Y). (5.18)
aesS

Suppose F C p(X) is a face of the polytope p(X) and thus F=F,yy.s(u(X)) for some Y € mo(X?)
and S C S(Y). We then set Tp=Tg. Thus, Tz CT is a subtorus. By (5.17), (0*b) holds. This
implies that Tr is independent of the choice of u(Y)€ F. By (5.18), (07a) thus holds for all n€ F.

Let Y em(X¥), SCS(Y), and F=F,y).s(u(X)). Since

dimY+ ) rkNRY =dimX, tkN§Y >2VaeS(Y), and |S(Y)| =dimT = (dim X)/2,
aeS(Y)
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we conclude that dimY =0 and rk N§Y =2 for every a€ S(Y). Along with Proposition 3.6(2),
this implies that
dim X5 = 2|S| = 2dim F = 2dim(T/T). (5.19)

Since a(v)=0 for all «€ S and v€T;Tg, the affine map
Oy.5: {u(Y)+ Y ta: ta €R} — Ty (T/Ts), {®y.s(m)}(v) = n(v)—{u(¥)}(v),
a€Ees

is a well-defined surjection and thus affine isomorphism by the last equality in (5.19). By (5.17), the
torus T/Tr acts freely on p~(F°)C X;ﬂ;s via 1; we denote this action by ¢y.g. By Theorem 1(A),
the fibers of the restriction

pip H(F°) — F°

are connected. Since F° C F is open, u~1(F°) C XEES is a symplectic submanifold. Thus, (07c)
follows from Exercise 3.22(a) with T and (X, w, v, 1) replaced by T/Tg and

(M_I(Fo)a w’u—l(Fo)a Q,Z)Y;S, ¢Y;SOM‘IJ/_1(FO))7

respectively. O

6 Symplectic Quotient and Cut Constructions

6.1 Symplectic quotient

For a Lie group G, let
(TEG)G = {aeT{G: Ad}(a)=a VgeG}

be the fixed locus of the dual of the adjoint action of G on T1G. If ¢ is a G-action on a space X,
p: X —TyG is a map satisfying the second condition in (1.4), and a € (T G)%, then 1 restricts
to a G-action on p~!(a)C X. If G is abelian, then (T3G)¢ =Ty G.

Theorem 4 ([23, Theorems 3,4]). Suppose G is a compact Lie group, ()?, w, J, @) is a Hamiltonian
G-manifold, and a € (T;G)® are such that G acts freely on i~ *(a). Then,

(0) a€T;G is a regular of [i;
(1) there is a unique smooth structure on Xo = ' (a)/G so that the quotient projection
Pai i (@) — X
s a principal G-bundle;
(2) there exists a unique 2-form wa on Xq so that phwe=0|pp-1(a);
(3) the 2-form wq is symplectic.

If G' is another Lie group and ()?,(7.1,1;’,[7/) is a Hamiltonian G'-manifold such that the actions "
and Y commute, [’ is -invariant, and i is ' -invariant, then ¢’ and i’ descend to a G'-action 1.,
on Xo and a smooth map ), : Xo — TaG', respectively, so that (Xo,wa, V¥, ith) is a Hamiltonian
G’-manifold.
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The symplectic manifold (X, wq) of Theorem 4 is called the symplectic quotient of ()?, w, {bv, ) at a.
We will similarly call the Hamiltonian G'-manifold (X, we, ¥y, ti,) of this theorem the Hamiltonian
qUOtient of <X7 aa (T% wl)u (/77 ﬁ/)) at a.

Proof of Theorem 4. Exercise 3.21(b) establishes (0). Since G is compact, the quotient projec-
tion p, is a closed map. By [25, Lemma 37.1], the quotient space X, is thus Hausdorff. By (0) and
the Implicit Function Theorem, i~ («) C X is a smooth submanifold on which the compact Lie G
acts smoothly and freely. By the Slice Theorem (equivariant version of the Tubular Neighborhood
Theorem), for every x € i~ () there thus exists a submanifold S, C X so that z € S, and the map

Sy xG — X, (2, u) — Py (a),

is a diffeomorphism onto an open neighborhood ﬁx CXofz preserved by G. This submanifold is
then transverse to the orbits Gz’ of G and thus to ji~!(a). The restriction

Do ﬂ_l(a)ﬂSx — pa(u 1((1)0&,;) C Xo

of the quotient map is a homeomorphism onto an open subset of X, and induces a smooth structure
on po (i~ (a)NU,) so that the restriction

DPa: ﬁil(a)ﬁﬁx — Pa (ljil(a)mﬁr)

is a (trivial) principle G-bundle. Since there is at most one smooth structure on pq (7~ (a)NU,) so
that the latter restriction is a submersion, the smooth structures on open subset of X, obtained
in this way overlap smoothly. This establishes (1).

By (1), for every €~ !(a) the map
dgpa: Txﬁ_l(Q)/Tx(Gﬂf) — Ty (2) Xa

is a well-defined isomorphism. For each v € T1G, let ¢, € [(X;TX) be as in (1.2) with (X, )
replaced by (X, ). Thus,

Ty(Gz) = {Go(z): veTLG} Vzen () and
—(tey(@)@) ymfl(a) = dx({ﬂ(.)}(v)‘nﬁfl(a)) =d, (a(v)ym,l(a)) =0 YveTiG, zei Y(a).
It follows that there is a unique alternating 2-tensor wq|,,, (@) o0 T, ()X for each z € i~ () so that
woz|pa (x) (dxpa (w)7 dzpa ('w/)) = &\z(w, w/) vV w, w'e Tx/jil(a)a

ie. Ph(Walpa(z)) = @l -1(a)- Since w is G-invariant, wa|p, (2) does not depend on the choice
of x in pyl(pa()), ie. wy is a well-defined 2-form on X,. Since p, is a submersion and the 2-
form &|pg-1(q) is smooth and closed, so is the 2-form w,. Since « is a regular value of 1 and w is

nondegenerate on X, the first statement of Exercise 3.21 with (w, p1) replaced by (@, i) implies that
(Tmﬁ_l(a))w = (ker dmﬁ)w =T,(Gx).

Thus, w, is nondegenerate.
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Suppose G’ is another Lie group and (X @, i ) is a Hamiltonian G’-manifold such that the
actions ¢ and 1/ commute, i’ is - invariant, and 7 is ¢-invariant. Since j is ¢’-invariant, v’
preserves fi~(a) C X. Since the actions 1/1 and 1// commute and fi’ is i-invariant, the restriction
of ¢/ and [’ to ﬁ_l(Na) descend to a G’-action 1, on X, and a smooth map py,: Xo —T1G’. By
Exercise 2.3 with (1,1)) replaced by (¢/,¢), (Xa,wa, ¥, pl,) is thus a Hamiltonian G’-manifold.

O

Exercise 6.1. Suppose G, ()Z,o?,lz, i), @, (Xo,wa), and p, are as in Theorem 4 and X'cX is an
w-symplectic submanifold preserved by the G-action .

(a) Show that the symplectic quotient (X ,w!,) of ()A(/’,&|)~(,, 7:/;])?,, [ilz,) at a is a symplectic sub-
manifold of (X,,ws) and the bundle homomorphisms

N X ‘~,1

pa
g € Mm@ (B @)NXY) =3 {palzoa @z F N, X (6.1)
over ﬁ_l(a)ﬂ)? " induced by the inclusions and the quotient projection are isomorphisms.

(b) Suppose that G', Y, i, and (Xa,Wa, Vg, 1ig,) are also as in Theorem 4 and the submanifold
X' C X is preserved by the G’-action v¢’. Show that the submanifold X/, C X, is preserved by
the G'-action ', (X[, ws,, ¥4 |x1 s tg|x: ) is the Hamiltonian quotient of

(X,7 a|)?/7 (1/1, ¢,)|)?/7 (ﬁa ﬁ/)|)?/)
at a, and the bundle isomorphisms in (6.1) are G’-equivariant.

Exercise 6.2. Suppose G, ()N(,@,QZ, i), a, (Xa,wa), and p, are as in Theorem 4 and J is a
Y-invariant almost complex structure on X compatible with w. Show that

(a) the restriction of the differential
depa: Tmﬁ_l(a)ﬂj(Txﬁ_l(a)) — Ty () Xa

is an isomorphism for every z € i '(a) and thus induces an almost complex structure .J,
on X, compatible with w,;

(b) if &, V', i, and (Xa, Wa, YL, 1h,) are also as in Theorem 4 and the almost complex structure J
on X is w’ 1nvariant as well, then the almost complex structure J,, is ¢, -invariant;

(¢) if X'C X is an almost complex submanifold preserved by the G-action ¢ and (X!, w!,) is the
symplectic quotient of ()? ", Olzn Yl 5 11l 5.) at a, then X, is an almost complex submanifold
of X, and the composite isomorphism from the left-hand side in (6.1) to the right-hand side
is C-linear with respect to the complex structures induced by J and Jo.

Example 6.3. Let n€Z". By Exercise 2.5,

n
H:C" —R, H(zl,...,zn):7r2|zk|2,

is a Hamiltonian for the standard action 1 of S' on C,

Uy : C" — C",  y(z) = uz, YueStccC.
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For each r € R™, the group S! acts freely on H~!(7r?), the sphere of radius r centered at the origin.
The associated quotient of Theorem 4 is the complex projective space CP"~! with a symplectic
form wepn-1,.. By Exercise 2.7(b),

2
wepn—1; = Tr WES;n—1 -

Exercise 6.4. Let n€Z* and q: C"—{0} — CP"~! be the usual quotient projection. The C*-
action on C" by the coordinate multiplication restricts to a C*-action on C*—{0} and S'-actions
on C" and the unit sphere S?*~!C C". Show that

(a) the quotient topologies on CP"~! given by (C"—{0})/C* and S$?"~1/S! are the same (i.e. the
map $2"~1/St — (C"—{0})/C* induced by inclusions is a homeomorphism);

(b) CP"!is a compact topological 2(n—1)-manifold that admits a complex structure so that the
quotient projections

q: C"—{0} — CP" '=(C"—{0})/C* and p:S* 1 —cprl=52""1/g1
are a holomorphic submersion and a smooth submersion, respectively.
(c) the above complex structure is compatible with the Fubini-Study symplectic form wrg,,—1 of
Exercise 2.7(b).
6.2 Hamiltonian symplectic cut
Suppose T is a torus. For v=(v,c) €T3T xR, let
Cy =6 Hy = {aeTyT: a(v) >c}, and OH, = {aeTiT: av)=c};

the subspaces H,,0H, C T;T are a (closed) half-space and an affine hyperplane, respectively, if
v#0. For ' CTiTxR and 7' C I, let

()= (Mo CTET, (HY = (OH, C(H), (A = (A P(t)— [P
veH veEHN H'CH CH
In particular, (0) = (0)° = (0)] =T;T, (")}, C (" is an open subset,
(AN =" = (), and (AP0 = (A
We call a collection 57 C (T3 T—{0}) xR minimal if 9H,N{H#") £ for every ve # . Every collection
H C(T3T—{0}) xR with () #0 contains a unique minimal subcollection " with ()= ().

If 72 C(ThT—{0}) xR is a finite collection, () is a polyhedron by definition. A polytope is easily
seen to be a compact polyhedron. The converse, which is not needed for our purposes, follows
from the Minkowski-Weyl Theorem [9, Theorem 3.13], which states that a polyhedron is a finitely
generated cone on a polytope.

If 7 C (11T)z xR is a finite subset, define

Ly:R” — TT, Ly((roc)weer) = Z?“u,cv,
(v,c)e

D T =R7 )27 — T, @([r]) = el @ Ty =Im® . (6.2)
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In particular, T » C T is a subtorus. We call a finite subset . C (T1T)z xR Delzant if @ is
injective for every subset ' C J# such that (') N () # (). This implies in particular that
v € (T1T)z is primitive for every element (v,c) € 7 such that OH, N () #0) and T, C T is a
subtorus of dimension || for every subset %’ C # such that (N () #0.

Exercise 6.5. Let T be a torus and 7 C (T3T)z xR be a finite subset.
(a) Suppose T'CT is a subtorus of T so that s C (T3T')z x R. Show that the images of

(VAP NAPAY, (A CT;T  with ' C A

under the restriction homomorphism 77T — 75T’ are the corresponding subsets of 77T’
Conclude that 7 is Delzant with respect to T if and only if 7# is Delzant with respect to T’.

(b) Suppose () #0. Show that there exists a subset ' C 7 such that
(AVNAYVADCT;T  and  ImLy =Im Ly, C TyT.

(c) Suppose S is Delzant. Show that ker ® , C T is a subtorus of codimension equal to the
dimension of Im L j,» C Ty T.

Exercise 6.6. Suppose T is a torus and P C 77T is a polytope. Show that P is Delzant if and
only if P = (J¢) for some Delzant subset ¢ C (11T)z xR such that the homomorphism L is
surjective.

Exercise 6.7. Suppose T is a torus, 5 C (T1T)z xR is finite subset, and (X,w, ¥, p) is a Hamil-
tonian T-manifold. Show that

(a) p~t(s£)Y)C X is a fiber of a moment map for the restriction of the action ¢ to T, CT;

(b) if T acts freely on p~'(#)?), then p~'(#)°) C X is a closed submanifold of codimension
equal to the dimension of T ,;

(c) if w(X)C (), then T 4 acts trivially on X;
(d) if w(X)C (A, x€ X, and Stab,(1)) =T, then the differential dypu: T X — T}, (A is
surjective.
Definition 6.8. Let T be a torus and .7 C (T1T)zxR be a finite subset. A Hamiltonian T-manifold
(X, w, ¥, ) is
e J7-cuttable if for every subset #' C J such that pu~'(#")#0 the Lie group homomor-
phism ® ;s as in (6.2) is injective and the subtorus T 4 CT acts freely on pu~1((#"));

o -cut if u(X) C () and for every ' C ¢ the subspace Yy =p~ (') is a union of
topological components of the fixed locus XT#" C X of I e and there is a T-equivariant
splitting '

TX’Y%, =TY p & @/\/}éy%ﬂ/ — Y (63)
veH"!

of TXly,,, with a i-invariant complex structure J compatible with w so that

rkc/\/}%Yyﬂ =1 Yove# and

; / / 6.4
Vs s (((r) e ) (W) = ¥ Y (1) pesr ERT weNY Yoy, v € . (64)

o1



Suppose T is a torus, # C(TyT)z xR, (X,w, 1, u) is a Hamiltonian T-manifold, and ¢’ C 7 is
subset such that u~' (7)) #0. If (X, w,, p) is an J#-cuttable, then u~1(#")°) C X is a closed
submanifold of codimension || by Exercise 6.7(b) and thus

() =T () = (e (Y
HOCAHCH

is an open subset. If (X,w, v, ) is #-cut, then pu~'(#"Y)C X is a closed w-symplectic sub-
manifold of codimension 2|7#”| and the Lie group homomorphism ® o as in (6.2) is injective by
Proposition 3.14(1), (6.3), and (6.4). Thus, u~1(#")9,) C u~ (")) is again an open subset; it
is dense in this case, since u(X)C (). If in addition ], 7 C H are disjoint subsets, then
the restriction of y to the symplectic submanifold p~'((74)?) C X is transverse to ()’ C T4T
by (6.3) and (6.4).

Exercise 6.9. Suppose (X,w,, 1) is a symplectic toric T-manifold, 57 C (1T3T)z xR is a Delzant
subset so that u(X) = (), and ' C . Show that T CT is the subtorus T ,nonq:) CT
as in (01) on page 8, Yy =p~1(#")9) is a connected component of the fixed locus XT#" C X
of ¥|r ,,, and TX|y,,, splits as in (6.3) and (6.4). Conclude that the Hamiltonian T-manifold
(X, w, ¥, p) is H-cut.

Exercise 6.10. Suppose T is a torus, 5 =J# .75 is a partition of a finite subset of (77 T)z xR,
and (X, w, v, u) is an J-cuttable Hamiltonian T-manifold. Show that

(a) (X,w,,u) is Hq-cuttable;

(b) for all 7 C 74 and #5 C #5 such that u=1(24))?) #0 the Lie group homomorphism Py as
in (6.2) is injective and the subtorus T CT acts freely on u—l((%’u%’>a)/T%/.

Theorem 5 ([19, Proposition 2.4]). Suppose T is a torus, 7 C (T1T)z xR is a finite subset, and
(X, w, ¥, p) is an A -cuttable Hamiltonian T-manifold. There exists a unique S -cut Hamiltonian
T-manifold

(X, w, ¥, W) = (X, woe, o, 1) (6.5)

so that

(1) Xpp=pu () )~ with x ~2 if there exist #' C A and u €Ty so that u(x) € ('Y and
o' =ty (z);

(2) the quotient projection py: = (H)) — X s is T-equivariant and =1y = oo ;

(3) for every H' C A, py: u(H"V,) — w(H'Y) is a submersion (onto a dense open
subset) and

ol ez} @rlrspoamp) = @log e,y (6.6)
For any partition 7 =70U6, (X,w, ¥, u) .z is an H3-cuttable Hamiltonian T-manifold and

(X,wﬂ/%ﬂ)' ((X w 1/}7 ) )%02 (67)
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Proof. Let ¢ = (¢y)vewr € R?. With wy denoting the standard symplectic form on C*, analo-
gously to (2.10), define
W= mwdmwe ,

where 71, m5: X xC? — X, C” are the component projections. Let 1’/; be the R”/Z” -action on
X xC? given by

Vraoer] (@ (20)verr) = (Yo (ro)uern) (@) (€72 20) ) (6.8)
This action commutes with the T-action 1 on the first component and preserves its moment map
pomy: X xC¥ — TFT (6.9)

with respect to w. By Exercises 2.2 and 2.5, the smooth function

H: XxC¥ — Ty (R?/27) =R,  H(z,(20c)weper) = (ho(@)=7|20.c]) (6.10)

(v,0)e”’

is a Hamiltonian for the action Q,Z with respect to w. It is preserved by the T-action ¢ on the first
component.

Suppose (z, (2, )ver) eﬁfl(c), ueR¥?/Z7 | and ibvu(x, (z0)vesw)=(x, (2v)ven). Let
H = {ve%”: zU:O}.
From (6.10) and (6.8), we then obtain
u(z) € (A", C T;T and ueR? 177" c R7 )77 . (6.11)

Since (X,w,v, u) is #-cuttable, it follows that u = 1. Thus, R?/Z” acts freely on IA—I/'*l(c)
via (6.8). Let
(Xop,woes b i) = (XarWas Ya, fa)

be the associated quotient Hamiltonian T-manifold of Theorem 4 and
p: H ' (c) — Xp=H '(c)/(R"/27)
be the quotient projection.

The map
P i) — X =N R JZ7), por(e) = [, (V@) =) /7)oy )

is well-defined, continuous, surjective, and T-equivariant and satisfies the last condition in (2). In
particular, p»(X ) C (). By the first statement in (6.11), p, induces an injective map from
the quotient u~1((7#))/~ in (1) to X . Since the map

Bor: () — HN ) Borl) = (2, (V(0(@) =) /) oy ) (6.12)

is closed and the group R‘”/ Z7 is compact, py is a closed map and thus so is the induced map
from p~1((#)). This confirms (1) and (2).
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Let J be a ¢-invariant almost complex structure on X compatible with w, J, be the standard
complex structure on C*, and v be the action of T on X xC* given by

Vo ((re)oese]) (T (20)vert) = Vi r)uese] (Vo () oere)) () (20)ver)

. (6.13)
— (.CI}, (627r1rvzv)

vej{,ﬂ)'

This action commutes with the R”/Z” -action J and thus induces a T y-action on X . By the
middle expression in (6.13), the latter is the restriction of the T-action v, to T,r. The almost
complex structure J=JaJ v on X xC? is -, {bv—, and zZ’ -invariant and compatible with w. By
Exercise 6.2, J thus descends to a 1 y-invariant almost complex structure Jy on X 4 which is
compatible with w 4.

Let s’ C 7. By the first statement in (6.11)
Yoo = (™ () xC*)NH ™ (e) ={H] x xcor—oer} (€) 614
CXXCJf i (chf)w|T%/

Since the moment map p: X » — T;T is induced by (6.9),

Yo = 2 () = p(Yorr) = poe (0 (")) € X020 € Xopes

the first inclusion above follows from the last equality in (6.14). The w-symplectic submanifold
XxCH =" XxC¥ is preserved by the R’f/Z Z _action ¢, the T-action 1, and the T y--action w’
By Exercise 6.1, Y »» C X 5 is thus an w y-symplectic submanifold preserved by the T-action .
By (6.13), the natural splitting

NXX(CL%”(XX(ijir%M) = @(XX(C{U})
veH"’

is T—, R”/7Z7 -, and T y-equivariant with respect to the actions du, dzz, and dlZ’ on the left-hand
side and the actions

u-(l‘,ZU) = (%Z)u(m),zv), [(rv’)v’eif} -(fL',ZU),: (1#@%([(%/)”/6%})(1'),e_QWiTUZU),
and (p%([(rv’)v’g,;f]) . (:E, ZU) — (x,e%rirvzu)

on the summand X xC{¥} on the right-hand side. By Exercises 6.1 and 6.2, TX;AY%, thus splits
T-equivariantly as in (6.3) and (6.4). It follows that Y, C X, is a union of topological compo-

nents of the fixed locus Xiif " of the restriction of the T-action 1 to T CT,r. Thus, (6.5) is
an J7-cut Hamiltonian T-manifold.

The restriction of the map p in (6.12) to u~*(#")Y),) is a smooth embedding; its image is
Y N(X x (RT)#="). Thus,
ol et Ghw,,) = @lrga e, ) - (6.15)

Since p* (ij‘TY%,):a’Tg}%, by Theorem 4(2) and Exercise 6.1, (6.6) follows from (6.15). The map
ﬁjf;%ﬂ/ : (R%_%//Z%_’%M) X H_l (<<%ﬂ,>8;f) — ?jf/ N (X X (C*)‘%’)_%/),
Py (u, ) = Yo (De (),
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is a diffeomorphism. Since the map p: Yy —> Yy is a principal R /77 -bundle (and thus a
submersion) by Theorem 4(2),

1 () = Yo (X x (C)7 =),

Réf—f’/zjf—jf’))

and dp vanishes on dﬁ%ﬂ;%ﬂ/ (T( , the composition

P =popw: 1 () — Wi () C up ()

is a submersion. This confirms (3). The conditions (1)-(3) ensure the uniqueness of J#-cut Hamil-
tonian T-manifold satisfying these properties.

Suppose # =74 U#5. By Exercise 6.10, the Hamiltonian T-manifold (X, w, ¥, u) is J#-cuttable.
Let

(X w ¢7 ) (ij’ivwﬁy’ith%ﬁaﬂﬁﬁ) (616)
be the corresponding 4 -cut Hamiltonian T-manifold as in (6.5). If 54 C %,

B = U UmhA s = | Ue (A0 ) /T

in"CJ"fi %’CJfNCJfQ Jfl”C% %’Cﬂ”Csz

the last equality holds by (1) with J# replaced by 4. If u;fll (4))9) #0, Exercise 6.10 thus implies
that the Lie group homomorphism @ - as in (6.2) is injective and T, acts freely on “«'_)2}1 ().
We conclude that the Hamiltonian T-manifold (6.16) is .7%-cuttable.

By (1) and (2) with .# replaced by .4 and /%,
(Xo4) 5, = Ho (PN~ 1= P (0 (GAN T (BN~ = (1 (SN /~om))~t5

with z, 2" € u=1((2#)) being equivalent in the double quotient if there exist J# C 4, H#5 C /53,
and u in the subgroup generated by T A T A CT such that

wla) € (AP (A = (AU and 2l =u(a).
By definition, the subgroup generated by T %Jl/,’]l‘%ér CTisT A Thus,
pasopsa=pw: X — (Xon),=Xor,  (wm)m=nr: Xp — TH'T,

and the T-actions (¢4 ). and ¥ on X, are the same (as they are induced by the same T-
action ¢ on X). Since (0)9, = <@>gﬁ ﬂ(@)% is an open subset of 75T, (6.6) gives

{pr| I )} won )t = {pi = )}* {r.rel () )}* (W)

= {pm ‘u-l«@&)}*“’ﬁﬁ =l op, = Pl wr

Since py is a submersion on p~1((#)9,), it follows that (w,4)s =w on the dense open subset
1157 (0)9,) C X and thus everywhere on X . This establishes (6.7). O
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6.3 Hamiltonian symplectic uncut

In this section, we show that the Hamiltonian symplectic cut construction is reversible and complete
the proof of Theorem 3. This formalizes the argument sketched in the proof of [22, Theorem 7.5.10].

Exercise 6.11. Suppose T is a torus, s = ¢ .7 is a partition of a finite subset of (7T1T)z xR,
(X,w, 1, p) is an s#-cuttable Hamiltonian T-manifold so that (X, w, v, 1) is an J€-cut Hamil-
tonian T-manifold, and Y C X, is a topological component of u;{}z (4)9). Show that

(a) there exists a (unique) topological component Y C X of 1 (#4)?) which contains p;%(Y);
(b) Y is a topological component of the fixed locus X1 C X of Y| s, With its normal bundle
admitting a splitting as in (6.3) and (6.4) with (Y, .#") replaced by (V,.4).

Corollary 6.12. Suppose T is a torus, A =745 is a partition of a finite subset of (T3 T)z xR,
and (X, w, ¥, 1) is an H-cuttable Hamiltonian T-manifold. If (X, w, ¥, 1) is an F€-cut Hamil-
tonian T-manifold, then there exists an open T-invariant subset X' C X so that

(X/>W|X’a¢|X'7M|X')% = (X>w>w7,u)-7fé (617)

and the Hamiltonian T-manifold (X' ,w|xr,¥|xs, ulx:) is H-cut. If Xy is connected and/or the
restriction
i n T (A ) — (A s (X)) (6.18)

is a principal T/T yz-bundle for every J C JA, then (X' W', 4, i) can be chosen so that X' is
also connected and/or the restriction

o (A )X — (A (X (6.19)
s also a principal T/T%J{—bundle for every J C A4, respectively.

Proof. Suppose ] C 74 and Y C X, is a topological component of u;é (4?). Tt is thus
contained in a topological component Yz» C X, of ,uf%&lz (]"?) for every 4" C . By Exer-
cise 6.11(a), there exists a (unique) topological component }N/'%iu C X of p='(s#"Y) which con-

tains p;éz (Yyz). In particular, 17%1/ is disjoint from the closed subsets p~1 (4" )‘9)—17?%01// of X with
" C .

By Exercise 6.11(b) and the first part of Proposition 3.27 with T replaced by T A there thus exists
a T-invariant neighborhood Uy of }7%;1/ in X so that

uOy) c ()  and  Uynp ' (HG"Y) C Y VI CH . (6.20)
The T-invariant neighborhood
Uy =Uynp (<®><8yfryfl/) cp! () np™! (A —ot) = pt (A))

of f’%ﬂl/m_l«e%”l’ )8%)1) in X is then disjoint from p =1 ((74")?) for every subset /%" C ./ not contained
in »#]. Thus,

x= U Ul cutoa) (6.21)

I Coa YGWO(H;% (o))
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is a T-invariant neighborhood of

U U e A Y0) > U Uria(Y) =034 (Xon) = 7' (95))
T CHLY emo(u g, (H7)2)) A CHY €mo (1, (H7))

in X. By Theorem 5(1) with . replaced by .73, the above inclusion implies (6.17).

By (6.21), u(X') C (#4). Let 2" C A be such that u~'(74"°) # 0. Since 173’, c Uy with
Yemn (u;flz (24")9)) is disjoint from p~1 (")) whenever 4" ¢ ], the second statement in (6.20)
implies that

X' 1Py UYwe = UYw - (6.22)
A CH]CHLY emo(usg, (H)2) Y Emo(uyg, (#)2)

Since (X,w, ¥, p) . is F-cut, it follows that the Lie group homomorphism & s as in (6.2) is
injective. By (6.22), X'Nu~1(24"’) C X is the disjoint union of the open subspaces X’ﬂff%p{/
of ?74” with Yeﬂo(u;g}z (]")?)). By Exercise 6.11(b), X'Nu~' (")) is thus a union of topo-

logical components of the fixed locus X" of the restriction of the T-action Y to T s C T
and X' C X with its normal bundles admitting a splitting as in (6.3) and (6.4) with (Y, 7#”)
replaced by (X'Nu~L(A"0), A7), Thus, (X,w|x,¥lx:, ulxe) is H-cut.

Since pum(Xm) C (#3), the subspaces )7%»1/ﬂu*1(<%”1’)%) C X above intersect p~((24)) and

thus so do their neighborhoods U} C X’ C X. TIf X, is connected, then so is p~'(s4) C X
by Theorem 5(1) with 2 replaced by . It follows that X’ C X is then connected. If the
restriction (6.18) is a principal T/T s»-bundle for some 7 C /4, then T acts transitively on the

fibers of p over (4%, Nu(X). Since X’ C X is a T-invariant subset, (6.19) is the restriction
of principal T/T ,-bundle (6.18) to <%”1’)% Nu(X")C <%/>% Nu(X) and thus is still a principal
T/T ;z;-bundle. O

Proposition 6.13. Suppose T is a torus, 7 = ALUH5 is a partition of a finite subset of (T3T)z xR,
and (X, w, ¥, p) is an H-cut Hamiltonian T-manifold. Then,

(X, w, 9, 1) = (X', 9" 1) (6.23)
for some 4 -cuttable Hamiltonian T-manifold (X', ' ' 1), If
(a) X is connected and/or
(b) (X,w, v, ) is H-cut and the restriction
s 1 (o) — (P O(X) (624)
is a principal T /T o -bundle for every ' C A,
then (X', 0,4, 1) can be chosen so that

(a’) X' is connected and/or
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(b’) (X' ' ' 1) is Hi-cut and the restriction
Wl (A ) — (A i (X) (6.25)
is a principal T/Tﬁl—bundle for every 4 C 74,
respectively.

Proof. By (6.7) and Corollary 6.12, it is sufficient to establish this proposition with % consisting
of a single element v=(v,¢) of (T1T)z xR with v#0. We assume that the closed codimension 2

symplectic submanifold
Y =p 7 ()°) = {ze X p(x)=c}

of (X,w) is nonempty; otherwise, we can take (X', w’, ¢/, p') = (X, w, ¥, u). Since (X,w, ¥, p) is H5-
cut, the Lie group homomorphism ® 4 as in (6.2) is then injective. We establish the proposition by
removing Y and continuing the radial directions in the normal bundle of Y in X into the negative
values without them coming together at 0. Since (X, w, ), ) is H-cut,

X-Y ={2eX: py(x)>c} =pu 1 (0),)- (6.26)

Let J be a T"-invariant almost complex structure on X compatible with w and g(-,-)=w(-, J-) be
the associated T™-invariant metric compatible with J.

Since (X,w, 1, i) is J#-cut, Y is a union of topological components of the fixed locus X of the
restriction of the T-action v to the circle T,, C T generated by v e (13T)z and

T TYY = {weTX|y: ww,w)=0Vuw' eTY} — Y
is a complex line bundle complementary to TY . It is preserved by the T™-action di and
dpere (w) = ™ VEER, weTYY (6.27)

by (6.4). Let

d
G ET(TYTTY?),  Gw) = S (w)| = 2miw,

be the (vertical) vector field on TY* generating the S'-action (6.27). Since this action preserves
the unit circle bundle of TY?,

m: S(TYY) = {weTY": g(w,w)=1} — Y, (6.28)
the vector field (y|g(ry~) is tangent to S(TY*). The maps

T: S(TY¥) xRt — S(TY¥)xC, Uw,t) = (w,V2t),
p: S(TY“’) xC—TYY pw,z)=zw,

are smooth. The map p descends to a T-equivariant diffeomorphism from the quotient S(7Y“) x g1 C
of S(TY*)xC by the S'-action

S'x (S(TY*?)xC) — S(TY*) xC, u(w, 2) = (uw,u'z), (6.29)
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to TY“. The generating vector field for this action is sz (v, —27m0y). The map
v=pot: S(TY¥)xR" — TY™
is a T-equivariant diffeomorphism onto TY“—-Y.

Let A be a T-invariant connection 1-form on the principal S'-bundle S(TY%) — Y, i.e. A is a
1-form on S(T'Y*) so that
ACy) =27 and e, (dA) =0. (6.30)

In light of the first condition above, the second condition is equivalent to A being S'-invariant. Let
@ and &' be the T-invariant closed 2-forms on S(TY¥)xC and S(TY*) xR, respectively, given by

1
W= W*w+wc+§d(|z|2>\) and &' = mrw+d(tN),

where wc is the standard symplectic form on C as in Example 2.5, z is the standard coordinate
on C, and t is the standard coordinate on R. Since

&V)Ew,o) = wﬂ.(w)—i-dot/\)\w VweS(TYY), (6.31)

the 2-form &’ is nondegenerate (and thus symplectic) on some neighborhood U’ C S(TY%) xR of
S(TY*“)x{0}.

By (6.30) and the last coordinate of the map ¢ taking only real values,

L, = —2mdt and =Tw, (6.32)

~/
w ‘S(TYW)XR‘F

respectively. With (r, 0) denoting the standard radius-angle coordinates on C so that wc=rdrAde,
1
(‘Eﬁ)(w,rew) = 0—2mg,we+ic, (rdr/\)\+§r2d)\) = 2mrdr —27rdr+0 = 0; (6.33)

the middle equality above follows again from (6.30). Since the S'-action (6.29) preserves the 2-
form w, (6.33) implies that there is a unique 2-form wpyw on (the total space of) TY“ so that
p*wryw =w. This form is T-equivariant and closed and satisfies

&/|S(TY“’)><]R+ = Cwrye; (6.34)
see the second equation in (6.32).

Let A\g be the 1-form on Lg=TY* determined by A as in Exercise A.8(a). Thus,
. 1
Wryw =T w+§d)\5.

Along with Exercise A.8(b), this implies that the closed 2-form wry« on TY* satisfies (3.11)
with TY¢=TY“. By Proposition 3.14(2), there thus exists a T-equivariant tubular neighborhood
identification ®: U/ — U for Y in X such that Y CTY* and ®*w=wryw|y. Along with (6.34), the
last identity gives

o ) = U w. (6.35)
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Let U cU' C S(TY*) xR be a T-invariant tubular neighborhood of S(TY*) x {0} so that
UT=U"N(STYY)xRT) C o HU).

Since the diffeomorphism ®oc: YT — ®(,(UT)) is T-equivariant and satisfies (6.35) with ¢~ (Uf)
replaced by U™,
po®or: Ut — THT (6.36)

is a moment map for the T-action on (UT,&’|,+). By Exercise 3.26, it extends to a moment map
p':U" —T5T for the T-action on (U”,&'|y). Since

lim «(w,t) =m(w) €Y CTY?, tirré+u(<1>(L(w,t))) = p(m(w)) VweS(TY"),

t—0+

the first equation in (6.32) implies that
fy(w,t) =2mt+c, iy () = S(TY*)x{0}, (6.37)

and ' =pom on S(TYY)x{0}=S(TY?).

We define
X' =(X-Y)uU")/~, UT> (w,t) ~ @((w, 1)) € X-Y, (6.38)
, wy, fzeX-Y; , u(x), ifreX-Y;
w[fE] = ~ . . ([.’L‘]) = ~ . 1
Wy, ifxeld”; w(x), ifxeld”.

Suppose £ € XY —®(,(U1)) and 2’ eU”—U™T. If 2’ does not lie in the closure ClywUt of UT in U,
then the images of X —Y and U” —Cly»U™ in X’ under the quotient projection

¢ (X-Y)uu" — X'
are disjoint open subsets around [z] and [2'], respectively. If
2’ € Clypd™ —UT =Y x{0}
and U, U’ C X are disjoint open neighborhoods of x and Y, respectively, then
a(U),q(U'N(S(TY*)xR=)uc (2 1 (U") c X

are disjoint open subsets around [z] and [z'], respectively. Since the restrictions of ¢ to the Haus-
dorff spaces X —Y and U” are homeomorphisms onto open subsets of X', it follows that X’ is a
Hausdorff space and a smooth manifold. By (6.35) and the assumption on U’ below (6.31), ' is a
well-defined symplectic form on X’. Since the smooth map p’ is an extension of the map (6.36),
p': X' —T7T is a well-defined smooth map.

Since the identification of the spaces X —Y and U” over UT CU” in (6.38) is T-equivariant, the
T-action ¥ on X —Y C X and the T-action di) on U” C S(TY*) xR induce a smooth T-action 1)
on X’ which preserves w’. Since p|x_y and i’ are moment maps for the T-actions on (X—Y, w|x_y)
and (U",& |y), 1 is a moment map for the T-action ¥’ on (X', ). By (6.26) and (6.37),

1 (YY) = q(S(TY*)x{0}) C X".
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Since the restriction of g to U” is a diffeomorphism onto ¢(U") and T,, acts freely on S(TY*)x{0},
T, acts freely on p/~'(/4)?) as well. Thus, (X',w ¢’ ') is an %-cuttable Hamiltonian T-
manifold with

W) = aX=Y) =Y, 7 (5)) = q(S(TY¥)x{0}) C X,
X = M,_1(<‘%>)/N7 x ~ w&(x) vxeﬂl—1(<%>8)’ ueT,, Y = //_1(<%>8)/TU7
lalxv}paw = wix-y, {dsayvexon {Paluoma) @Iry) =& grye) o -
where pg 1 1/ H(5%4)) — X is the quotient projection; the two identities on the first line above

follow from (6.26) and the second statement in (6.37). Furthermore, the map p is T-equivariant
and the compositions

Ppoq: X—=Y — p? (<(Z)>g¢2) and  pumoq: S(TYY)x {0} — p! ((%’@a)
are submersions. By the uniqueness statement of Theorem 5, (6.23) thus holds.

Every topological component of the tubular neighborhood q(U") C X' of q(Y x {0}) intersects
q(X-Y). If X is connected, then so is X —Y (because Y C X is a submanifold of codimension 2).
It then follows that X’ is also connected. If (X, w,, ) is F-cut, then (X', w' ¢/, 1') is JA4-cut
by Corollary 6.12 if 4" is sufficiently small.

Suppose both conditions in (b) hold and 77 C s = —{v}. Let Jv=¢U{v}. By the above,
1)) € X' is an w'-symplectic submanifold consisting of components of the fixed locus X "o
of the restriction of the action ¢’ to the subtorus ’]ijl/ C T. Since the restriction of the quotient
projection ¢ above to U” is a T-equivariant diffeomorphism onto the open subset ¢(U”) C X’ and
i =p'oq on U, it follows that @'~ (4)?) CU" is an &'-symplectic submanifold consisting of
components of U By (6.24) with ' =#v, the restriction

p: (A0 ) =i (A ) Y — (A0 nu(X) = (A (YY)

is a principal T/T ,,-bundle. Since T, acts freely on the fibers of the circle bundle (6.28), it
follows that the restriction

i =por: S(TY)| o <40} = B (AR N (STY) < {0)) — (A ()

pH (A 0) e

is a principal T/T -bundle. By Exercise 6.7(d) with ¢ replaced by 7 and the submanifold
(40 (Y being closed, the moment map

A i (A o) — (A

is then a submersion and thus also a principal T/T fl’—bundle over its image if U” is sufficiently
small. Since gy~ is a T-equivariant diffeomorphism onto q(U”) C X’ and i’ = p’oq on U”, it follows
that

Wl (A 5n) NaU") — (G O U") = (5 O (aU™)).
By (6.24) with ' =2 and (6.26), the restriction

e () (X =Y) =i ()00 ) (X =Y ) — (o nu(X —Y)
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is a principal T/T s¢;-bundle. Since the restriction of ¢ to X —Y is a T-equivariant diffeomorphism
onto the open subset ¢(X —Y)C X’ and p=p'oq on X —Y, it follows that the restriction

s (A ) Na(X=Y) — (A X —=Y) = (A il (q(X =)

is also a principal T/T yy-bundle. Since X'=qU")Uq(X~Y), we conclude that the restric-
tion (6.25) is a principal T/T ,-bundle. O

Proof of Theorem 3. Since (0) in the statement of this theorem follows from (0") on page 8,
which was established in Section 5.2, it remains to establish (1) and (2). Suppose P C T;T is a
Delzant polytope and 2 C (T3T)z xR is a Delzant subset so that u(X)= (), and #' C 7. Let
(TyT xT,wr, ¥, pr) be the Hamiltonian T-manifold of Exercise 2.11, with k=n. By Theorem 5,
the Hamiltonian T-manifold

(X, w, v, 1) = (T T T, wr, ¥, 1),

as in (6.5) is then a closed connected Hamiltonian T-manifold so that (1.7) holds, the T-action
is effective (it is free on u=1((0)9,), and u(X)=P. This gives (1).

Suppose (X,w, ¥, 1) is any symplectic toric T-manifold with u(X) = P. In particular, X is con-
nected. By Exercise 6.9 and (0"¢) on page 8, (X,w,,u) also satisfies (b) in the statement of
Proposition 6.13. By Proposition 6.13 with 7 =0 and % =7,

(X, w, 9, 1) = (X', 4", 1 ) (6.39)
for some J#-cuttable Hamiltonian T-manifold (X', ', ¢, 1) so that X’ is connected and
Iul . X/ :ul—l (<@><(92)) N <@>%QNI(X/) :,U«I(X/)

is a principal T-bundle. By Exercise 3.21(b) and (6.39), x/(X") CT;T is an open neighborhood of
the polytope P. By replacing X’ with the preimage of a contractible neighborhood of P in u/(X”),
we can assume p'(X') is contractible. By Proposition 3.30, (X',«’,’, 1) is then isomorphic
to (U, wr|v, ¥r|u, pr|v) for an open neighborhood U C Ty Tx T of pur'(P). Along with (6.39) and
Theorem 5, this implies that

<X7w71/}7:u’) ~ (U7 WT|U7¢T|U7MT|U)%J = (TETXT7MT71/]T7/JLT) .

This gives (2). O

7 Symplectic Toric Manifolds

In this chapter, we describe a construction of toric symplectic manifolds along the lines of [11,
Section 3.2] and use it to obtain key properties of these manifolds. Example 2.7 is a special case of
this construction. The structure of this chapter is motivated by [28, Chapter 2|, which efficiently
summarizes these properties from a more concrete perspective. We fix a torus T of dimension n
and continue with the notation and terminology introduced at the beginning of Section 6.2.
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7.1 Delzant’s construction

Let .2 C(T1T)z xR be a Delzant subset so that the homomorphism L, in (6.2) is surjective.
In this section, we use the symplectic reduction of Theorem 4 to construct a connected Hamil-
tonian T-manifold (X,w,,w) with an effective T-action ¢ and p(X) = (). The manifold X
obtained in this way is compact if and only if (J#) is compact. By Exercise 6.6, every Delzant
polytope P equals (%) for some Delzant subset 7 C (T3T)z xR so that the homomorphism L
in (6.2) is surjective. Thus, the construction of this section provides another proof of Theorem 3(1).

By Exercise 6.5(c), the kernel of the homomorphism ® 4 in (6.2),
Ky =ker®, c T =R?/77
is then a codimension n subtorus. Let
VR =Ty T — Ty K

be the composition of the standard identification of R” with Ti“]l‘jf and the homomorphism
induced by the inclusion K, — T? . We note that the sequence

L . B *
0 — TIT 25 ToT7 =R” 25 T, — 0 (7.1)
of vector spaces is exact and

L3, () = {(sv)ver Eker iy sy, >, YVEA} . (7.2)

Denote by w the standard symplectic form on C# as in Example 2.5. By this example, the map
H oy c” — R%a H ((Zv)veif) = (W|ZU‘2+CU>U€%07 (7.3)

is a Hamiltonian with respect to w - for the standard action v of T on C*,

@27y (7.4)

Vi) eene] (Z0)ver) = ( %) pesr -

Thus,
pw =y Hyp: CF — TiK

is a moment map with respect to w_» for the restriction @Z of the action 1 to K CT#. By (7.2),
H (C7)n, 1 (0) = L, (7). (7.5)

Lemma 7.1. The subspace ,u;i,}(O) CC” is preserved by the T -action (7.4); if (H) is compact,
then so is ,u;fl(O). The codimension n subtorus K C T acts freely on M}}(O) For some
€4 (0), Stab (vsr) ={1}.

Proof. Since the Hamiltonian H is T -invariant, the T -action (7.4) preserves u;f} (0). Since the
subspace in (7.5) and the fibers of H are path-connected, so is the subspace

,u;il (0) = H;fl (L;gl (O))
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If () is compact, then so is the subspace in (7.5). Since the map H is proper, it follows that the
subspace 1, (0) is also compact if () is compact.

Suppose (2o)ver € 11 (0), €K, and Ypu(20)ver) = (20)ver- Let
A = {ve%”: zuzo}.
From (7.3), (7.4), and (7.5), we then obtain
H(2) € L3y (") cR” and uweR? /727" c R?/77.

Since 7 is a Delzant subset, it follows from the first statement above that the homomorphism &y
as in (6.2) is injective and thus from the second that u=1. We conclude that K, C T acts freely
on yi,(0). By (7.5), there exists 2= (2y)ven € 1, (0) such that H(z)€ L*,(0)9,) and thus 2z, #0
for any ve. 7. It follows that Stab,(¢.»)={1}. O

Thus, (C*,w e, Y, ) is a Hamiltonian K 4-manifold such that K 4 acts freely on ,u;; (0). Let
(X,w) = (Xo,wp) be the quotient symplectic manifold provided by the first part of Theorem 4.
By (0) and (1) in this theorem,

dim X = dimgC” — 2dim K = 2|#| — 2(|#|—n) = 2n.

By Lemma 7.1, X =4} (0)/K  is connected; if (/) C Ty T is compact, then so is X.

The torus actions 1|k, and 1 commute, the Hamiltonian H for Y 18 Y|k, -invariant, and
the moment map 1 for ¢ 7|k, is Y -invariant. Let ¢ and p be the T# -action on X induced
by ¥, and its Hamiltonian with respect to w induced by H -, as provided by the last part of
Theorem 4.

By Exercise 6.5(b), there exists a subset ' C J be such that (') is a vertex of (),
ie. ()9 C(HA) is a single point. Let . T — T7 be the inclusion. Since .# is Delzant,
the Lie homomorphism group ®, as in (6.2) is an isomorphism and thus so is the Lie group
homomorphism

Ko xT?" — T, (u,u') — uad.

By the last statement of Lemma 7.1 above and Exercise 7.2 below, the composition v of the
T -action ), on X with the homomorphism

T o, ot Lt o

is therefore an effective T-action on X. The composition

* 1

p: X Lo e Lopioet TeT? —2L, TFT

is its moment map with respect to w. Thus, (X,w,®, ) is a connected Hamiltonian T-manifold
with an effective T-action ¥ and moment polytope

(X) = Lo (S0 (X)) = Lo (0300 (Hoe (15 (0))
= Liffl(bjf;ff (L5 () = Lo (Lo () = (H) 5

the second equality above holds by (7.5).
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Exercise 7.2. Suppose 1 and 92 are commuting actions of groups GG1 and Gz on a set Z and z€ Z
is a point such that Stab,(y1 x12)={1}. Let 1, be the induced Gz-action on the quotient Z/G1
and G1z € Z /Gy be the Gi-orbit of z. Show that Stabg, . (1) ={1}.

Exercise 7.3. Show that the Hamiltonian T-manifold (X,w, 1, ) constructed above does not
depend on the choice of subset 7’ C # such that (") is a vertex of 7.

Exercise 7.4. Suppose J C (T3T)z xR is a Delzant subset such that <% = () and HDH .
Show that

(a) there exists a group homomorphism ¢ T T# 7 T 5o that the group homomorphism
K xT# =7 — T# x T~ =17, (u,u') — (uqf)%’%{u), u'),

is an isomorphism onto 7

(b) there exist (unique) linear functionals £, : Im L%, — R with v € 4 — A such that

Im L= {(s, (b (s) ye ) - s€EIM L } C R XRY ™7 =R7;

(c) £y(s)>cy for all vEH — A and se L%, (o)) and

L) = {(5. (0 () e i7rp) : SELS ()} C R x RZ—# _R7 .

(d) the projection C” — C restricts to a principal T~ bundle ,u;%l«(())—> 1154 (0) with

smooth T -equivariant section

Sz 1 (0) — u%(o) c CHxCH $70(%) = (2, (V(€o(Hpe(2) — o)/ T) e n)i

(e) s;?’%w%r:w%b@;(o) and

H o

* * _* .1 * A /
L%%lo 0% S];fj/’f—L%o”%/OHyfﬂ%(O) —>ImL¢%)/ CcR VA CIH.

Conclude the Hamiltonian T-manifold (X, w, ¥, ) constructed above does not depend on the choice
of Delzant subset J# C (T1T)z xR with () fixed.

7.2 Kahler structure

i preparation

As before, let 2 C(T1T)z xR be a Delzant subset so that the homomorphism L, in (6.2) is
surjective. In this section, we show that the Hamiltonian T-manifold (X,w,1,w) constructed in
in Section 7.1, admits a compatible (integrable) complex structure .J, i.e. J is compatible with
the symplectic form w and is preserved by the effective T-action v on X. We continue with the
notation introduced in Section 7.1.
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Let (Kz)c C Téf be the complexification of K C T and (K ,»); C (K )c be the purely imaginary

subgroup (it corresponds to a subgroup of (R*)” C (C*)” via e?™). The group TZ ~(C*)” acts
on C” by the coordinate-wise multiplication in the usual way, i.e. as in (7.4); we denote this
complexified action in the same way. Define

Xﬁo:@%— U(ij/, XjfEXjf/(le)(C
H'CH
C7' M5 (0)=0

In particular, X wCC? isa Téf -invariant path-connected open subset containing “;z} (0).
Exercise 7.5. Show that

(a) )N(j'fv: Xﬁox(@*)ﬁ_%) for any Delzant subset 7 C (T1T)z xR with Q% = () and HDH;
(b) (K, ¢)c acts freely on the subspace X,y CC¥,

(c) the subspace X w CC? is simply connected if # is minimal.

Hint: see the proof of Lemma 7.1 for (b).

Lemma 7.6. The smooth map
Vot (Ko )ix i (0) — Xopy  Wop(u,2) = dop(2),
s a diffeomorphism.

Proof. O

7.3 Line bundles and projectivity
Define

ay ==ty ((co)ver) € TiK o .
P ={se (RZO)N: Gi(s)=a}, Y& ={JC[N]:|J|=n, pgm(RZO)[N}—J#@}’

N

fien = > (= yjdzj+a;dy;).
j=1

Let P= {TGR": vg-T>cp VkE[N]} be a Delzant polytope with the inward normals vy, ..., vy to
the facets (codimension 1 faces) meeting at each vertex of P forming a Z-basis for Z". Define

A=(v1 ... oN): RN, ZNY — (R, Z™), c¢=(c1,...,en) €ERY, a=—1%(c) e TyTa.
Thus, Zj CCY is the preimage of the regular value o € Ty T* of H A, T 4 acts freely on Zf{, and
(Mp,wP) = (Z?\’MCN’TZ%)/TA

is the compact connected symplectic manifold obtained from P via the Delzant construction in class.
Show that
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(a) the inclusions Zj —>Mf{ and T4 — (T4)c induce a homeomorphism
M§=M§/(Ta)c — Z5/Ta=Mp
with respect to the quotient topologies;

b) the smooth manifold M$ = Mp is simply connected and admits a complex manifold struc-
A
ture, compatible with the smooth and symplectic structures, so that the quotient projection
q: MG — M$ is a holomorphic submersion and (T 4)c acts on M by biholomorphisms.

A Bundle Connections

A.1 Connections and splittings

Suppose X is a smooth manifold and 7g: F— X is a (smooth) real vector bundle. We identify X
with the zero section of E. Denote by

a: F&F — FE and Tpep: FOE — X

the associated addition map and the induced projection map, respectively. For feC®(X;R),
define
ms: E— F by my(v) = f(rp(v)) v VveE. (A.1)

In particular,
TEQE = TEoa, g =7ngomys YV feC(X;R).

The total spaces of the vector bundles
Tpep: EOF — X and mpE—FE
consist of the pairs (v, w) in Ex E such that mg(v)=7g(w).
Define a smooth bundle homomorphism
tp:mpE — TE, tg(v,w) = %(QH—tw)‘ . (A.2)

Since the restriction of tg to the fiber over v € F is the composition of the isomorphism

d
ET('E(’U) — TUEWE(U), w — E(UHM)‘

with the differential of the embedding of the fiber E (,) into F, ¢g is an injective bundle homo-
morphism. Furthermore,

=0

drgotp=0: TRl — 1pTX, muporgmy =dmysorp: Tl — m}TE,

A3
a"tgoTpepa = daotper: Tpep(EQE) — o'TE, (A-3)

Let
(e € T(E;TE), Ce(v) = tp(v,v) € TLE, (A.5)

be the canonical vertical vector field on E.
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Exercise A.1. Suppose p€Z™", mg: E— X is areal vector bundle, U C F is a tubular neighborhood
of X in F, i.e. tv €U whenever veld and t€[0,1], and w is a closed p-form on Y. Show that the
family (m}cw)iep,1) of p-forms on U satisfies

d
Emfw =m(Ly-10,@) = d(my (y-10,@)) Vtelo,1],

where L is the Lie derivative.
By the first statement in (A.3), the injectivity of g, and surjectivity of dng,

drg

0 — nyFE 25 TE TTX — 0 (A.6)

is an exact sequence of real vector bundles over E. By the second statement in (A.3), the diagram

| o SRR, f o Y 5 gu—
lwgmf idmf iﬂj{;idTX (A?)
m?LE m;dﬂE
0—>mtE mTE T TX —= 0

of real vector bundle homomorphisms over E commutes. By the third statement in (A.3), the
diagram

d
0——>Thep(EGE) —2E ~ T(EQE) — 2 o np o TX ——0
lﬂ—E*‘eBEa lda lﬂ'g@EidTX (A8)
PR o WTE — 2 e TX >0

of real vector bundle homomorphisms over E® E commutes.

A connection in F is an R-linear map

V:I'(X;E) —T(X;T"X®rE) s.t.
V(fs)=dfes+ fVs V feC®(X), seT'(X;E). (A.9)
The Leibnitz property (A.9) implies that any two connections in E differ by a 1-form on X. In other
words, if V and V' are connections in F there exists
0 € I'(X;T*X @rHomg(E, E)) s.t.
Vs = Vs + {0(v)} (s(2)) Vsel(X;E), veT, X, veX. (A.10)
If U is a neighborhood of z € X and f is a smooth function on X supported in U such that f(z)=1,

then
Vs‘x :V(fs)‘x—dxf@)s(x) (A.11)

by (A.9). The right-hand side of (A.11) depends only on s|y. Thus, a connection V in F is
a local operator, i.e. the value of V¢ at a point z € X depends only on the restriction of s to any
neighborhood U of z.
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Exercise A.2. Suppose V,V’ are connections in real vector bundles E, ' — X, respectively.
Show that the map

VeV T (X;EsE) —T'(X;T*Xer(E®E"), VaV(ss)= (Vs V'),
is a connection in the real vector bundle E®E — X.
Exercise A.3. Suppose V is a connection in a real vector bundle ng: EF— X. Show that

(a) the linear map V extends to a linear map on the E-valued p-forms by
V:D(X; AP (T*X)®rE) — T(X; AP (T*X)®RE), V(n®s) = (dn)@s+(-1)Pne(Vs);
(b) there exists ny € T(X; A2(T*X)®r Endg (E)) so that
V(V) = kAl Vel (X; A (T*X)®rE), pe Z7°.
Note: the bundle section kv above is called the curvature of V.
Suppose U is an open subset of X and s1,...,s,€T'(U; E) is a frame for E on U, i.e.
s1(x),...,sn(x) € By

is a basis for E, for all z€U. By definition of V, there exist

k=n k=n
0f eD(U;T*U)  st.  Vsg=» spff = 0j®sp VI=1,...,n.
k=1 k=1
We call
0=(0;),,, ,c€T(U;T*U®rMat,R)

the connection 1-form of V with respect to the frame (sg)y.

For an arbitrary section

{=n
s=Y f'se e T(U;E),
(=1
by (A.9) we have
k=n l=n
Vs=Y se(dff +306f7),  ie V(s-ff) =s-{d+6}f, (A.12)
k=1 =1
where s= (81, 8n), f=(f i f"). (A.13)
This implies that
Vs|z = ma|godys: T, X — E, VzeX, sel'(X; E) s.t. s(x)=0, (A.14)

where g, : T, E— E, is the projection to the second component in (A.4).
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Lemma A.4. Suppose X is a smooth manifold and ng : E — X is a real vector bundle. A
connection V in E induces a splitting

TE ~ nyTX & nE (A.15)
of the exact sequence (A.6) extending the splitting (A.4) such that
Vs|, =myodys: T, X — E,  Vsel(X;E), z€X, (A.16)
where my : TE — 7y, E is the projection onto the second component in (A.15). Furthermore,
dmy = mpid @ mpme V teR and  a=x Tpepid ® Tpepa, (A.17)

with respect to the splitting (A.15) and the corresponding splitting for the connection V&V in the real
vector bundle E&E — X, i.e. these splittings are consistent with the commutative diagrams (A.7)
and (A.8).

Proof. Given z€ X and v € E,, choose s€I'(X; E) such that s(z)=v and let
T,E" = {dss(w)—1p(Vws): weT, X} C T,E.
Since mgos=idx and drgotg =0,
dyrgo{ds—ipoVsl| =idr,x =  TE~T,E"®E,~T,X & E,.

This splitting of T, E satisfies (A.16) at v=s(z).

With the notation as in (A.12),
{=n {=n
{ds—tpoVsl| = (dmidx, = @) = > f’f(x)egu) T, X — T,X®R"  (A.18)
(=1 (=1

with respect to the identification E|y ~ U x R" determined by the frame (sj),. Thus, T,E" is
independent of the choice of s. Since T, E® =T, X for every z € X, the resulting splitting (A.15)
of (A.6) extends (A.4). By (A.18), it also satisfies (A.17). O

Exercise A.5. Suppose pcZ™', ng: E— X is a real vector bundle, ) is a fiberwise p-form on E,
and V is a connection in F with the associated projection ny:TFE — 7 FE as in Lemma A.4.
Thus, Qy =752 is a p-form on the total space of E. Let (g € '(E;TE) be the canonical vertical
vector field on E as in (A.5). Show that

Uz (d(ee, Qv)) = pQ and (d(LCEQV))‘TQCX =0 VzeX. (A.19)

Suppose g is a metric on a real vector bundle £ — X, i.e.
geI‘(X;E*@RE*) s.t. g(v,w) = g(w,v), gv,v)>0 YvwéeE,, v£0, zeX.
A connection V in E is g-compatible if

d(g(s,s")) = g(Vs,s') +g(s,Vs) e D(X;T*X)  Vs,s eT(X;E).
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Suppose U is an open subset of X and sy,...,s, €T'(U; E) is a frame for E on U. For i,j=1,...,n,
let
9ij = 9(si, s5) € C=(U).

If V is a connection in E and 6 is the connection 1-form for V with respect to the frame {sy},
then V is g-compatible on U if and only if

e
Il

n

(glkﬁf + gjkﬁf) = dgij A i,j = 1, 2, Lo, n. (A.ZO)

>
Il
—_

A.2 Complex vector bundles

Suppose X is a smooth manifold and g : £ — X is a complex vector bundle. Similarly to
Section A.1, there is an exact sequence

0—=mhE L TE -5 X — 0 (A.21)

of complex vector bundles over E. The homomorphism ¢g is now C-linear. If f € C*(X;C) and
my: E— FE is defined as in (A.1), there is a commutative diagram

| O N R b B N D gu—
lwgmf ldmf in;}idm (A.22)
0 cp e TP e

of complex vector bundle maps over E.
Suppose V is a (C-linear) connection in the complex vector bundle 7g: E— X, i.e.
Vu(is) = i(Vys) Vse'(X;E),veTX.
If U is an open subset of X and sy,...,s, €['(U; E) is a C-frame for E on U, then there exist

k=n k=n
0 eT(U;T"UxgC)  st. V&= spf =) 0j®s, VI=1...n.
k=1 k=1

For an arbitrary section

{=n
s=Y f'seeT(U;E),
=1
by (A.9) and C-linearity of V we have
k=n l=n
ve=Y si(arf 306, e V(s f) =¢-{d+ 0}/, (A.23)
k=1 (=1

where s and f are as (A.13).
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Let g be a Hermitian metric on F, i.e.

g e F(X;Hom(c(E&cE, (C)) st. g(v,w) =g(w,v), gv,v)>0 Yov,wéeE,, v#£0, r€X.
A (C-linear) connection V in E is g-compatible if
d(g(s,s")) = g(Vs,s') + g(s,Vs') e N(X;T*X®rC)  Vs,8 €(X;E).
With the notation as in the previous paragraph, let
gij = 9(si,85) € C(U;C) Vi,j=1,...,n.

Then V is g-compatible on U if and only if

i

n

(905 + gj0F) =dgi; Vi j=12,....n (A.24)

e
Il
—

Exercise A.6. Suppose V is a connection in a complex vector bundle 7 : E — X. Let
wy €0(X; A%(T* X)®rEndr (E)) be the curvature of V as in Exercise A.3 and TE" CTE be the
complement of vg(7E) CTE determined by V as in the proof of Lemma A.4.

(a) Show that the splitting (A.15) satisfies the first property in (A.17) for all t € C and that
ky €0(X; A*(T*X)@rEndc(E));

(b) Suppose V is compatible with a Hermitian metric g on E and
vE Spg={weE: g(w,w)=1}.
Show that T, E® CT,SE,q-

(c) Suppose in addition that rkcE=1. Show that kv is a 1-form on X with values in iR.

A.3 Principal S'-bundles

Suppose X is a smooth manifold and 7g: S — X is a (smooth) principal S'-bundle. Let

(s €T(S;TS),  (s(v) = %(e%itw) : (A.25)
t=0

be the vector field generating the S'-action. This vector field generates the vertical tangent bundle
of mg, i.e.
TS =kerdrg = {t(s(v): veS, teR} — S.

A connection 1-form on S is an S'-invariant 1-form A on (the total space of) S such that A\((s)=2m.
Such a form determines an S'-equivariant splitting of the exact sequence

0— TS — TS -5 rtTX — 0

of real vector bundles over S with

TS =TS @ (ker \).
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Exercise A.7. Suppose mg: S — X is a principal S'-bundle.

(a) Show that the S'-invariance condition on 1-form A being a connection 1-form can be equiva-
lently replaced by the condition ¢¢,dA=0;

(b) Let A be a connection 1-form on S. Show that there exists a 2-form ) on X so that dA=7¢k.

Note: the 2-form k) above is called the curvature of .

A principal S'-bundle mg: S — X determines a complex line bundle
Trg: Ls=(Sx5C)/~— X,
(v,2) ~ (wv,u2) ¥ (v,2) ESXC, ue s, T ([v, 2]) = Ts(v),
with a Hermitian metric specified by
gs([v, z], [v, z']) =22

Conversely, a complex line bundle 7y, : L — X with a Hermitian metric g determines a principal
S1-bundle, the unit circle bundle of L,

Ts, Spg={veL:glv,v)=1} — X, mg, (v) =mL(v).
With S and (L, g) as above, the maps
S— SLS)QS’ v [Uv 1]7 and LSLSvQS — L, [’U,Z] — 2, (A26)

are isomorphism of principal S'-bundles over X and of complex line bundles with Hermitian metrics
over X . Thus, we have constructed a bijective correspondence between the isomorphism classes of
principal S'-bundles over X and the isomorphism classes of complex line bundles with Hermitian
metrics over X.

Exercise A.8. Suppose A is a connection 1-form on a principal S'-bundle 7g: S — X and
p: SxC— Lg is the quotient projection. Show that

(a) there is a unique 1-form A\g on Lg so that
* _ 2 i = = .
D )\5}(%2) = 7| )\v+§(zdz—zdz) V (v,2) € LxC;

(b) ¢7,(dAs)=2Regs(i-,-) and ¢y(dAg)=0 for all v€T, X CT;Lg, € X;

(c) there is a unique (C-linear) connection V* in the complex line bundle Lg — X compatible
with the Hermitian metric gg so that the 1-form \g vanishes on the complement T'LP C T'L of
v,(75 L) CTL determined by V* as in the proof of Lemma A.4.

Thus, a connection 1-form X in a principal S'-bundle g : S — X determines a connection V>
in the associated complex line bundle 7 : Lg— X compatible with the Hermitian metric gg
on Lg. Suppose 7;,: L — X is a complex line bundle with a Hermitian metric g and V is a (C-
linear) connection in L compatible with g. Let (; € '(L; T'L) be the canonical vertical vector field
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as in (A.5) and TL® CTL be the complement of ¢z (7} L) C TL determined by V as in the proof
of Lemma A.4. In particular, 27i¢y, € I'(L; TL) is the vector field generating the S'-action on L
by scalar multiplication. By Exercise A.6, the S'-action on L preserves the subbundle TLh\ Si.g
of 'Sy 4. Thus, the 1-form Ay on Sy, defined by

Av (27i¢L(v)) =27, Av|p =0  VoveSi,

is a connection 1-form on the principal S'-bundle S;, — X. By Exercise A.9 below, we have
constructed a bijective correspondence between the isomorphism classes of principal S'-bundles
over X with connection 1-forms and the isomorphism classes of complex line bundles with Hermitian
metrics over X and compatible connections.

Exercise A.9. Suppose ) is a connection 1-form on a principal S'-bundle 7g: S — X and V is
a connection in a complex line bundle 7y : L — X compatible with a Hermitian metric g. Show
that

A=Ag» and VNV =V

under the isomorphisms (A.26) and that rKyx =ik).
Remark A.10. By a Cech cohomology computation [13, p141] and Exercise A.9,
i

= o [wv] = —5= [m2] € Him(X),

CI(L) 27

if V is a connection in a complex line bundle L — X and A is a connection 1-form in an associated
principal S'-bundle.
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