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Foreword

These notes aimed to serve as a rough guideline for the student seminar on
symplectic toric manifolds – abbreviated STMs – at ETH Zurich in the Spring of
2019. This seminar comprised twelve lectures and was an introduction to STMs,
i.e., smooth toric varieties from the symplectic viewpoint. It started from basic
notions in symplectic geometry, went over the classification of STMs and closed
with some advanced topics.

Geometry of manifolds was the basic prerequisite for this seminar, hence
also for these notes. Some familiarity with symplectic geometry is useful to get
through faster, though most of the needed definitions and results are stated
here.

The study of toric manifolds has many different entrances and has been
scoring a wide spectrum of applications. For symplectic geometers, they pro-
vide examples of extremely symmetric and completely integrable hamiltonian
spaces. In order to distinguish the algebraic from the symplectic approach, we
say symplectic toric manifolds when focusing on the symplectic and smooth
properties.

Native to algebraic geometry, the theory of toric varieties has been around
for about thirty years. It was introduced by Demazure in [20] who used toric
varieties for classifying some algebraic subgroups. Since 1970 many nice surveys
of the theory of toric varieties have appeared (see, for instance, [18, 25, 35, 52]).
For the last thirty years, toric geometry became an important tool in physics in
connection with mirror symmetry [17] where research has been intensive.

In this text we emphasize the geometry of the moment map whose image,
the so-called moment polytope, determines the STM by the celebrated classifi-
cation theorem of Delzant [19]. The notion of a moment map associated to a
group action generalizes that of a hamiltonian function associated to a vector
field. Either of these notions formalizes the Noether principle, which states that
to every symmetry (such as a group action) in a mechanical system, there cor-
responds a conserved quantity. The concept of a moment map was introduced
by Souriau [56] under the French name application moment (besides the more
widespread English translation to moment map, the alternative momentum map
is also used). Moment maps have been asserting themselves as a main tool to
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study problems in geometry and topology when there is a suitable symmetry,
as illustrated in the book by Gelfand, Kapranov and Zelevinsky [26].

For their contributions, comments, corrections and interesting questions –
some of which have already been incorporated in these notes – I am thank-
ful to the participants of the seminar, namely: Giovanni Ambrosioni, Yannis
Bähni, Joël Beimler, Valentin Bosshard, Gilles Englebert, Alessandro Fasse,
Simon Grüning, Amanda Jenny, Shengxuan Liu, Yefei Ma, Angela Maennel,
Benjamin Pollitt, Marcella Storino, and Johannes Weidenfeller.

Ana Cannas, Zurich, February-May 2019



Chapter 1

Symplectic Preliminaries

We begin by introducing the basic objects in symplectic/hamiltonian geometry
which lead to symplectic toric manifolds.

1.1 Symplectic Manifolds

Definition 1.1.1. A symplectic form1 on a manifold M is a closed 2-form
on M which is nondegenerate at every point of M . A symplectic manifold is
a pair pM,ωq where M is a manifold and ω is a symplectic form on M .

A 2-form ω gives at each point p P M a skew-symmetric bilinear pairing of
tangent vectors at that point,

ωp : TpM ˆ TpM Ñ R .

Nondegeneracy means that, for any nonzero tangent vector u P TpM , there is
v P TpM such that ωppu, vq ‰ 0. By a skew-symmetric version of the Gram-
Schmidt process (see Theorem 1.2.2), we can then conclude that TpM must
be even-dimensional. It follows that a symplectic manifold is necessarily even-
dimensional. When the manifold M has dimension 2n, the nondegeneracy of a
2-form ω amounts to the top wedge power, ωn, being nonzero, i.e., a volume
form. It follows that a symplectic manifold is oriented by its symplectic form, a
volume form being ωn. For more details on these assertions, see for instance [15,
Chapter 1].

1If you consult a major English dictionary, you are likely to find that symplectic is the name
for a bone in a fish’s head. However, as clarified in [58], the word symplectic in mathematics
was coined by Weyl [59, p.165] who substituted the Latin root in complex by the corresponding
Greek root, in order to label the symplectic group. (In linguistics, a word created this way is
called a calque.) Weyl thus avoided that this group connote the complex numbers, and also
spared us from much confusion that would have arisen, had the name remained the former
one in honor of Abel: abelian linear group.

1



2 CHAPTER 1. SYMPLECTIC PRELIMINARIES

Examples.

1. Let M “ R2n with linear coordinates x1, . . . , xn, y1, . . . , yn. The standard
symplectic form on R2n is

ω0 “

n
ÿ

k“1

dxk ^ dyk .

2. Let M “ Cn with linear coordinates z1, . . . , zn. The form

ω0 “
i

2

n
ÿ

k“1

dzk ^ dz̄k

is a symplectic form on Cn. In fact, this form equals that of the previous
example under the identification Cn » R2n, zk “ xk ` iyk.

3. Let X be any n-dimensional manifold and M “ T˚X its cotangent bun-
dle. If the manifold structure on X is described by coordinate charts
pU , x1, . . . , xnq with xk : U Ñ R, then at any x P U , the differentials
pdx1qx, . . . pdxnqx form a basis of T˚xX. Namely, if ξ P T˚xX, then ξ “
řn
k“1 ξkpdxkqx for some real coefficients ξ1, . . . , ξn. This induces a map

T˚U ÝÑ R2n

px, ξq ÞÝÑ px1, . . . , xn, ξ1, . . . , ξnq

and pT˚U , x1, . . . , xn, ξ1, . . . , ξnq is a coordinate chart for T˚X; the coor-
dinates x1, . . . , xn, ξ1, . . . , ξn are the cotangent coordinates associated
to the coordinates x1, . . . , xn on U . The canonical symplectic form on
T˚X is the 2-form given on the coordinate chart T˚U by

ω “
n
ÿ

k“1

dxk ^ dξk .

One can check that this form is well-defined and can be intrinsically defined
in terms of the so-called tautological 1-form. This case will probably be
discussed further in Chapter 3.

4. LetM “ S2 regarded as the set of unit vectors in R3. Tangent vectors to S2

at p may then be identified with vectors orthogonal to p. The euclidean
symplectic form on S2 is the form induced by the inner and exterior
products:

ωppu, vq :“ xp, uˆ vy , for u, v P TpS
2 “ tpuK .

This form is closed because it is of top degree; it is nondegenerate because
xp, uˆ vy ‰ 0 when u ‰ 0 and we take, for instance, v “ uˆ p.

♦



1.1. SYMPLECTIC MANIFOLDS 3

Exercise 1.1.2. Check that, in cylindrical coordinates away from the poles (0 ď
θ ă 2π and ´1 ă h ă 1), the euclidean symplectic form on S2 is the area form
given by

ω
eucl

“ dθ ^ dh .

This confirms that the total area is 4π.

The natural notion of equivalence in the symplectic category is expressed by
a symplectomorphism:

Definition 1.1.3. Let pM1, ω1q and pM2, ω2q be 2n-dimensional symplectic
manifolds, and let ϕ : M1 ÑM2 be a diffeomorphism. Then ϕ is a symplecto-
morphism if ϕ˚ω2 “ ω1. The set of all symplectomorphisms from a symplectic
manifold pM,ωq to itself equipped with composition is called the group of sym-
plectomorphisms of pM,ωq and denoted SymplpM,ωq.

We would like to classify symplectic manifolds up to symplectomorphism.
The Darboux theorem (Section 1.2) takes care of this classification locally: the
dimension is the only local invariant of symplectic manifolds up to symplec-
tomorphisms. Just as any n-dimensional manifold looks locally like Rn, any
2n-dimensional symplectic manifold looks locally like pR2n, ω0q. More precisely,
any symplectic manifold pM2n, ωq is locally symplectomorphic to pR2n, ω0q. In
other words, the prototype of a local piece of a 2n-dimensional symplectic man-
ifold is pR2n, ω0q.

A key feature of symplectic forms is that they provide the mechanism to
associate to any smooth real function on the underlying manifold H : M Ñ R
a nontrivial (eventually local) flow that preserves both the symplectic form and
the given function. This is the hamiltonian flow associated to a (hamiltonian)
function.

Let pM,ωq be a symplectic manifold.

Definition 1.1.4. A vector field X on M is symplectic if the contraction ı
X
ω

is closed. A vector field X on M is hamiltonian if the contraction ı
X
ω is exact.

By Poincaré’s Lemma, locally on every contractible open set, every sym-
plectic vector field is hamiltonian. If the first de Rham cohomology group is
trivial, then globally every symplectic vector field is hamiltonian; in general,
H1

deRhampMq measures the obstruction for symplectic vector fields to be hamil-
tonian.

The flow of a symplectic vector field X preserves the symplectic form:

L
X
ω “ d ı

X
ω

loomoon

closed

`ı
X

dω
loomoon

0

“ 0 .

If a vector field X is hamiltonian with2 ı
X
ω “ ´dH for some smooth function

H : M Ñ R, then the flow of X also preserves the function H:

L
X
H “ ı

X
dH “ ´ı

X
ı
X
ω “ 0 .

2The sign here is included just to be consistent with Definition 1.1.5.
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Therefore, each integral curve tρtpxq | t P Ru of X must be contained in a level
set of H:

Hpxq “ pρ˚tHqpxq “ Hpρtpxqq , @t .

Definition 1.1.5. A hamiltonian function for a hamiltonian vector field X
on M is a smooth function H : M Ñ R such that ı

X
ω “ ´dH.

Note the above sign convention, chosen to produce more positive pictures
later on in this text.

By nondegeneracy of ω, any function H P C8pMq is a hamiltonian function
for some hamiltonian vector field because the equation ı

X
ω “ ´dH can be

always solved for a smooth vector field X. A hamiltonian vector field X defines
a hamiltonian function up to a locally constant function.

Examples.

1. On the symplectic manifold pCn, ω0q, we translate from linear coordinates
z1, . . . , zn to polar coordinates rk, θk on each factor-plane, so that

ω0 “
i

2

n
ÿ

k“1

dzk ^ dz̄k “
n
ÿ

k“1

rkdrk ^ dθk .

Then it is easier to see that the vector field X “
n
ř

k“1

B
Bθk

corresponding

to a diagonal rotation is hamiltonian with hamiltonian function given by
half of the square of the radius, H :“ 1

2 p|z1|
2 ` . . .` |zn|

2q:

ı
X
ω0 “ ´d

`

1
2 p|z1|

2 ` . . .` |zn|
2q
˘

loooooooooooooomoooooooooooooon

H

.

Indeed the diagonal rotation preserves the spheres centered at the origin,
as well as the area on each factor-plane.

2. On the euclidean symplectic 2-sphere pS2, dθ^dhq, the vector field X “ B
Bθ

is hamiltonian with hamiltonian function H “ ´h given by the negative
of the height function:

ı
X
pdθ ^ dhq “ dh “ ´dp´hq .

The motion generated by this vector field is rotation about the vertical
axis, which of course preserves both area and height.

3. On the symplectic 2-torus pT2, dθ1 ^ dθ2q, the vector fields X1 “
B
Bθ1

and

X2 “
B
Bθ2

are symplectic but not hamiltonian.

♦
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1.2 Darboux’s Theorem

Let pM,ωq be a symplectic manifold of dimension 2n.

Definition 1.2.1. A Darboux chart for M is a chart pU , x1, . . . , xn, y1, . . . , ynq
such that

ω|U “
n
ÿ

k“1

dxk ^ dyk .

By the Darboux theorem (Theorem 1.2.4), there exists a Darboux chart cen-
tered at each point of a symplectic manifold. The modern proof of the Darboux
theorem was first noted by Moser and can be broken into the following two key
facts, one from linear algebra and the other based on Moser’s argument.

Theorem 1.2.2. (Standard Form for Skew-symmetric Bilinear Maps)
Let V be an m-dimensional vector space over R, and let Ω : V ˆ V Ñ R

be a bilinear map. Assume that the map Ω is skew-symmetric, i.e., Ωpu, vq “
´Ωpv, uq, for all u, v P V .

Then there is a basis u1, . . . , u`, e1, . . . , en, f1, . . . , fn of V such that

Ωpuj , vq “ 0 , for all i and all v P V ,
Ωpej , ekq “ 0 “ Ωpfj , fkq , for all i, j, and
Ωpej , fkq “ δij , for all i, j.

Proof. This induction proof is a skew-symmetric version of the Gram-Schmidt
process.

Let U :“ tu P V | Ωpu, vq “ 0 for all v P V u. Choose a basis u1, . . . , uk of U ,
and choose a complementary space W to U in V ,

V “ U ‘W .

Take any nonzero e1 PW . Then there is f1 PW such that Ωpe1, f1q ‰ 0. Assume
that Ωpe1, f1q “ 1. Let

W1 “ span of e1, f1

WΩ
1 “ tw PW | Ωpw, vq “ 0 for all v PW1u .

Claim. W1 XW
Ω
1 “ t0u.

Suppose that v “ ae1 ` bf1 PW1 XW
Ω
1 .

0 “ Ωpv, e1q “ ´b
0 “ Ωpv, f1q “ a

*

ùñ v “ 0 .

Claim. W “W1 ‘W
Ω
1 .

Suppose that v PW has Ωpv, e1q “ c and Ωpv, f1q “ d. Then

v “ p´cf1 ` de1q
loooooomoooooon

PW1

`pv ` cf1 ´ de1q
loooooooomoooooooon

PWΩ
1

.
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Go on: let e2 P W
Ω
1 , e2 ‰ 0. There is f2 P W

Ω
1 such that Ωpe2, f2q ‰ 0.

Assume that Ωpe2, f2q “ 1. Let W2 “ span of e2, f2. Etc.
This process eventually stops because dimV ă 8. We hence obtain

V “ U ‘W1 ‘W2 ‘ ¨ ¨ ¨ ‘Wn

where all summands are orthogonal with respect to Ω, and where Wj has basis
ej , fj with Ωpej , fjq “ 1. l

The dimension of the subspace U “ tu P V | Ωpu, vq “ 0, for all v P V u
does not depend on the choice of basis. That is thus an invariant of pV,Ωq,
k :“ dimU . Since k ` 2n “ m “ dimV , the number n is also an invariant of
pV,Ωq and this is called the rank of Ω.

Theorem 1.2.3. (Moser Theorem – Relative Version) Let M be a
manifold, X a compact submanifold of M , i : X ãÑ M the inclusion map, ω0

and ω1 symplectic forms in M . Suppose that ω0|p “ ω1|p ,@p P X.
Then there exist neighborhoods U0,U1 of X in M , and a diffeomorphism

ϕ : U0 Ñ U1 such that

U0
ϕ - U1

X

i

-
�

i commutes and ϕ˚ω1 “ ω0 .

Theorem 1.2.4. (Darboux’s Theorem) Let pM,ωq be a 2n-dimensional sym-
plectic manifold, and let p be any point in M .
Then there is a coordinate chart pU , x1, . . . , xn, y1, . . . , ynq centered at p such
that on U

ω “
n
ÿ

k“1

dxk ^ dyk .

Proof. Apply the Moser relative theorem (Theorem 1.2.3) to X “ tpu:
Use any symplectic basis for TpM to construct coordinates px11, . . . , x

1
n, y

1
1, . . . y

1
nq

centered at p and valid on some neighborhood U 1, so that

ωp “
ÿ

dx1j ^ dy
1
j

ˇ

ˇ

ˇ

p
.

There are two symplectic forms on U 1: the given ω0 “ ω and ω1 “
ř

dx1j ^
dy1j . By the Moser theorem, there are neighborhoods U0 and U1 of p, and a
diffeomorphism ϕ : U0 Ñ U1 such that

ϕppq “ p and ϕ˚p
ÿ

dx1j ^ dy
1
jq “ ω .

Since ϕ˚p
ř

dx1j ^ dy1jq “
ř

dpx1j ˝ ϕq ^ dpy1j ˝ ϕq, we only need to set new
coordinates xj “ x1j ˝ ϕ and yj “ y1j ˝ ϕ. l
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As a consequence of Theorem 1.2.4, if we prove for pR2n,
ř

dxj ^ dyjq a
local assertion which is invariant under symplectomorphisms, then that assertion
holds for any symplectic manifold.

1.3 Moment Maps

We start by recalling notions from Lie group actions.

Definition 1.3.1. An action of a Lie group G on a manifold M is a group
homomorphism

ψ : G ÝÑ DiffpMq
g ÞÝÑ ψg ,

where DiffpMq is the group of diffeomorphisms of M . The evaluation map
associated with an action ψ : GÑ DiffpMq is

evψ : M ˆG ÝÑ M
pp, gq ÞÝÑ ψgppq .

The action ψ is smooth if evψ is a smooth map.

We will always assume that an action is smooth.

Example. Complete vector fields3 on a manifold M are in one-to-one correspon-
dence with actions of R on M . The diffeomorphism ψt : M Ñ M associated to
t P R is the time-t map exp tX defined by the flow of the vector field X. ♦

Let pM,ωq be a symplectic manifold, and G a Lie group with an action
ψ : GÑ DiffpMq.

Definition 1.3.2. The action ψ is a symplectic action if it is by symplecto-
morphisms, i.e.,

ψ : G ÝÑ SymplpM,ωq Ă DiffpMq ,

where SymplpM,ωq is the group of symplectomorphisms of pM,ωq.

Examples.

1. On the symplectic 2-sphere pS2, dθ ^ dhq in cylindrical coordinates, the
one-parameter group of diffeomorphisms given by rotation around the ver-
tical axis, ψtpθ, hq “ pθ ` t, hq (t P R) is a symplectic action of the group
S1 » R{x2πy, as it preserves the area form dθ ^ dh.

2. On the symplectic 2-torus pT2, dθ1 ^ dθ2q, the one-parameter groups of
diffeomorphisms given by rotation around each circle, ψ1,tpθ1, θ2q “ pθ1 `

t, θ2q (t P R) and ψ2,t similarly defined, are symplectic actions of S1.

♦

3A vector field is complete if its integral curves through each point exist for all time.
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Let pM,ωq be a symplectic manifold, G a Lie group with an action ψ : GÑ
DiffpMq, and g the Lie algebra of G with dual vector space g˚.

Definition 1.3.3. The action ψ is a hamiltonian action if there exists a map

µ : M ÝÑ g˚

satisfying the following two conditions:

• For each X P g, let µX : M Ñ R, µXppq :“ xµppq, Xy, be the component
of µ along X, and let X# be the vector field on M generated by the one-
parameter subgroup texp tX | t P Ru Ď G. Then

dµX “ ´ıX#ω

i.e., the function µX is a hamiltonian function for the vector field X#.

• The map µ is equivariant with respect to the given action ψ of G on M
and the coadjoint action Ad˚ of G on g˚:

µ ˝ ψg “ Ad˚g ˝ µ , for all g P G .

Then pM,ω,G, µq is called a hamiltonian GGG-space and µ is called a moment
map. When G is a torus, we will call pM,ω,G, µq a hamiltonian torus space.

Exercise 1.3.4. Check that complete symplectic vector fields on M are in one-
to-one correspondence with symplectic actions of R on M , and that, similarly,
complete hamiltonian vector fields on M are in one-to-one correspondence with
hamiltonian actions of R on M .

Examples. Consider the previous set of two examples The first – regarding
S2 – is an example of a hamiltonian action of S1 with moment map given by
the negative of the height function, under a suitable identification of the dual
of the Lie algebra of S1 with R. The second example – regarding T2 – is not
hamiltonian since the one-forms dθ1 and dθ2 are not exact. ♦

Exercise 1.3.5. Let G be a Lie group and H a closed subgroup of G, with g
and h the respective Lie algebras. The projection i˚ : g˚ Ñ h˚ is the map dual
to the inclusion i : h ãÑ g. Suppose that pM,ω,G, φq is a hamiltonian G-space.
Show that the restriction of the G-action to H is hamiltonian with moment map

i˚ ˝ φ : M ÝÑ h˚ .

Exercise 1.3.6. Suppose that a Lie group G acts in a hamiltonian way on two
symplectic manifolds pMj , ωjq, j “ 1, 2, with moment maps µj : Mj Ñ g˚. The
product manifold M1 ˆM2 has a natural product symplectic structure given by
the sum of the pull-backs of the symplectic forms on each factor, via the two
projections. Prove that the diagonal action of G on M1 ˆM2 is hamiltonian
with moment map µ : M1 ˆM2 Ñ g˚ given by

µpp1, p2q “ µ1pp1q ` µ2pp2q , for pj PMj .
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From now on, we concentrate on actions of a standard torus or rank n ě 1
defined to be the product of n copies of S1:

Tn :“ pS1qn .

We write elements of Tn as n-tuples,

`

eiθ1 , . . . , eiθn
˘

,

of complex numbers of absolute value 1. This now identifies Tn with the quotient

Tn » Rn{p2πZqn » pR{2πZqn

and we view this as the standard identification of a torus Lie group T with its
Lie algebra4 t modulo the integral lattice Γ via the exponential map:

expT : t ÝÑ T has kernel Γ ùñ T » t{Γ ,

where here

exp : Rn ÝÑ Tn has kernel p2πZqn , exppθ1, . . . , θnq “
`

eiθ1 , . . . , eiθn
˘

.

Implicitly, we use the standard basis of Rn as the chosen basis X1, . . . , Xn of
the Lie algebra. This also yields global coordinates (mod 2π) θk on Tn. The
element

rθs :“ rθ1, . . . , θns “
`

eiθ1 , . . . , eiθn
˘

P Tn

can also be viewed as the element achieved from the identity element

1 “ r0, . . . , 0s “ p1, . . . , 1q P Tn

by flowing along X1 for time θ1, along X2 for time θ2, . . ., and along Xn for
time θn.

Because the adjoint and coadjoint actions are trivial for a torus Tn and we
are already indentifying the Lie algebra with Rn, the dual of the Lie algebra
gets also naturally identified with Rn via the standard pairing (standard inner
product). A moment map for an action of Tn on pM,ωq is simply a map

µ : M ÝÑ Rn ,

whose coordinate functions µ1, . . . µn all satisfy:

• µk is Tn-invariant, i.e.:

µkprθs ¨ pq “ µkppq for all rθs P Tn, p PM, k “ 1, . . . , n, and

4Since T is abelian, the Lie algebra t of a T is defined as the set of (say left-)invariant
vector fields on T (equivalently, as the tangent space at the identity) and the Lie bracket is
trivial in this case.
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• µk is a hamiltonian function for the vector field X7k on M induced by the
k-th standard basis vector of Rn, i.e.:

dµk “ ´ı
X
7
k

ω , k “ 1, . . . , n .

If µ : M Ñ Rn is a moment map for a torus action, then clearly any of its
translations µ` c (c P Rn) is also a moment map for that action. Reciprocally,
any two moment maps for a given hamiltonian torus action differ by a constant.

Example. On pC, ω0 “
i
2dz ^ dz̄q, consider the action of the circle S1 “ tt P

C : |t| “ 1u by rotations

ψtpzq “ t`z , t P S1 ,

where ` P Z is fixed. The action ψ : S1 Ñ DiffpCq is hamiltonian with moment
map (or hamiltonian function) µ : CÑ R given by

µpzq “ 1
2`|z|

2 .

This can be easily checked in polar coordinates, since ω0 “ r dr^ dθ, µpreiθq “
1
2`r

2 and the vector field on C corresponding to the generator 1 of the Lie

algebra R is X# “ ` B
Bθ . ♦

Exercise 1.3.7. Let Tn “ tpt1, . . . , tnq P Cn : |tj | “ 1, for all j u be a torus
acting diagonally on Cn by

pt1, . . . , tnq ¨ pz1, . . . , znq “ pt
`1
1 z1, . . . , t

`n
n znq ,

where `1, . . . , `n P Z are fixed. Check that this action is hamiltonian with a
moment map µ : Cn Ñ Rn given by

µpz1, . . . , znq “
1
2 p`1|z1|

2, . . . , `n|zn|
2q ( ` constant ) .

Exercise 1.3.8. Suppose that Tm acts linearly on pCn, ω0q as follows:

peiθ1 , . . . , eiθmq ¨ pz1, . . . , znq “
´

eixλ
p1q,θyz1 , . . . , e

ixλpnq,θyzn

¯

,

for some weights λp1q, . . . , λpnq P Zm.
Show that, this action is hamiltonian with a moment map µ : Cn Ñ Rm

given by

µpz1, . . . , znq “
1
2

n
ř

j“1

λpjq|zj |
2 ( ` constant ) .

It is a remarkable feature of compact connected hamiltonian torus spaces
that the image of a moment map is a convex polytope. This was discovered and
proved independently at about the same time by Atiyah and by Guillemin and
Sternberg, following work of Kostant [38] for the case of coadjoint orbits.
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Theorem 1.3.9. (Atiyah [6], Guillemin-Sternberg [28]) Let pM,ωq be a
compact connected symplectic manifold with a hamiltonian action of an m-torus,
Tm, and with moment map µ : M Ñ Rm. Then:

(a) the levels of µ are connected;

(b) the image of µ is convex;

(c) the image of µ is the convex hull of a finite number of points, that are
images of the fixed points of the action.

The image µpMq of the moment map is called the moment polytope. A
proof of Theorem 1.3.9 following Atiyah can be found in [46].

r
r
rr�������

�
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1.4 Symplectic Toric Manifolds

We start by analysing some crucial properties of the differential of a moment
map. These are needed not only later in this section but also in Section 2.2.

Let pM,ω,G, µq be a hamiltonian G-space. We denote by O the G-orbit
through a point p PM , by Gp the stabilizer5 of p, and by gp the Lie algebra of
Gp.

Lemma 1.4.1. For the differential of the moment map µ : M Ñ g˚ at p,

dµp : TpM ÝÑ g˚ ,

where we identify a tangent space to the vector space g˚ with itself, we have
that:

(I) ker dµp “ pTpOqω and (II) im dµp “ pgpq
0 ,

where pTpOqω is the symplectic orthocomplement6 of TpO in the symplectic vec-
tor space pTpM,ωpq, and pgpq

0 is the annihilator7 of gp.

The proof of this lemma is contained in the next exercise.

Exercise 1.4.2. Recall that, by definition of moment map (Definition 1.3.3),
we have that

xdµppvq, Xy “ ωppv,X
#
p q for all X P g and v P TpM .

5The stabilizer (group) (or isotropy) of a point p is Gp :“ tg P G | g ¨ p “ pu.
6If W is a subspace of a symplectic vector space pV,Ωq, then the symplectic orthocomple-

ment of W is the subspace WΩ :“ tv P V | Ωpv, wq “ 0@w PW u.
7The annihilator of a linear subspace W Ă V is the subset of V ˚ defined by W 0 :“ tξ P

V ˚ | ξpwq “ 0@w PW u.
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1. Prove claim (I) in Lemma 1.4.1 by checking that

dµppvq “ 0 ðñ ωppv,X
#
p q “ 0 , @X P g .

Note that the tangent space to the G-orbit through p is spanned by all the
vectors X#

p .

2. By counting dimensions, check that

dimpker dµpq “ dimM ´ dimG` dimGp

dimpim dµpq “ dimG´ dimGp .

3. Using the dimension count above, for checking claim (II) it is enough to
show that

xdµppvq, Xy “ 0 @X P gp,@v P TpM .

4. Conclude from (II) that the stabilizer group of p is discrete if and only if
dµp is surjective.

5. Conclude from (I) that the orbit through p is open if and only if dµp is
injective.

Effective hamiltonian tori actions

An action of a group G on a manifold M is called effective (or faithful) if
it is injective as a map G Ñ DiffpMq, i.e., each group element g ‰ e moves at
least one point, that is, XpPMGp “ teu.

The following two results use the crucial fact that any effective action Tm Ñ
DiffpMq has at least one orbit of dimension m; a proof may be found in [12,
Ch.IV,§5].

Corollary 1.4.3. Under the conditions of the convexity theorem (Theorem 1.3.9),
if the Tm-action is effective, then there must be at least m` 1 fixed points.

Proof. By Exercise 1.4.2, at any point p of an m-dimensional orbit, the sta-
bilizer is discrete, so dµp is surjective. This means that a the moment map is
a submersion, i.e., pdµ1qp, . . . , pdµmqp are linearly independent. Hence, µppq is
an interior point of µpMq, and µpMq is a nondegenerate convex polytope. Any
nondegenerate convex polytope in Rm must have at least m ` 1 vertices. The
vertices of µpMq are images of fixed points. l

Theorem 1.4.4. Let pM,ω,Tm, µq be a hamiltonian Tm-space. If the Tm-action
is effective, then dimM ě 2m.

Proof. Since the moment map is constant on an orbit O, for p P O the exterior
derivative

dµp : TpM ÝÑ g˚
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maps TpO to 0. Thus

TpO Ď ker dµp “ pTpOqω ,

where pTpOqω is the symplectic orthocomplement of TpO (see Lemma 1.4.1).
This shows that orbits O of a hamiltonian torus action are always isotropic
submanifolds8 of M . In particular, by symplectic linear algebra we have that
dimO ď 1

2 dimM . Now consider an m-dimensional orbit. l

Definition of symplectic toric manifold

The so-called symplectic toric manifolds fit in the optimal case of effective
hamiltonian tori actions:

Definition 1.4.5. A symplectic toric manifold is a compact connected sym-
plectic manifold pM,ωq equipped with an effective hamiltonian action of a stan-
dard torus Tn of dimension equal to half the dimension of the manifold,

dimT “
1

2
dimM ,

and with a choice of a corresponding moment map µ : M Ñ Rn.

In the examples below, we choose a scaling factor giving the Fubini-Study
form on CPn as

ωFS “
i
2BB̄ lnp1` |z|2q

with respect to standard charts with n coordinates zj , 0 ď j ď n, j ‰ k, on
each open set

Uk “ trz0 : . . . : zk´1 : 1 : zk`1 : . . . : zns P CPnu ÝÑ Cn .

In particular for n “ 1, we have that the sphere CP1 has ωFS “
1
4ωeucl and total

area π with respect to ωFS , whereas the euclidean area of a unit sphere in R3 is
4π.

Examples of symplectic toric manifolds.

1. The circle S1 acts on the 2-sphere pS2, ωeucl “ dθ ^ dhq by rotations

eiα ¨ pθ, hq “ pθ ` α, hq

with moment map µ “ ´h equal to minus the height function and moment
polytope r´1, 1s.

8A submanifold X of a symplectic manifold pM,ωq is isotropic, if the restriction of ω to
X is trivial. This means that at each p P X the pairing of two tangent vectors to X by ωp

gives 0. We say that TpX is an isotropic subspace of the symplectic vector space pTpM,ωpq.
When dimX “ 1

2
dimM we say that the isotropic submanifold X is lagrangian.
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Equivalently, the circle S1 acts on CP1 “ C2zt0u{ „ with the Fubini-Study
form ωFS “

1
4ωeucl, by eiα ¨ rz0 : z1s “ rz0 : eiαz1s. This is hamiltonian

with moment map µrz0 : z1s “
1
2 ¨

|z1|
2

|z0|2`|z1|2
, and moment polytope

“

0, 1
2

‰

.

2. Let pCP2, ωFSq be 2-(complex-)dimensional complex projective space equipped
with the Fubini-Study form defined in Section 1.5. The T2-action on CP2

by peiθ1 , eiθ2q ¨ rz0 : z1 : z2s “ rz0 : eiθ1z1 : eiθ2z2s has moment map

µrz0 : z1 : z2s “
1

2

ˆ

|z1|
2

|z0|
2 ` |z1|

2 ` |z2|
2
,

|z2|
2

|z0|
2 ` |z1|

2 ` |z2|
2

˙

.

6

-
p 1

2 , 0qp0, 0q

p0, 1
2 q

t

t

t ����
�

�
�
�

�
�
�

�
�
�

�
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The fixed points get mapped as

r1 : 0 : 0s ÞÝÑ p0, 0q
r0 : 1 : 0s ÞÝÑ

`

1
2 , 0

˘

r0 : 0 : 1s ÞÝÑ
`

0, 1
2

˘

Notice that the stabilizer of a preimage of the edges is S1, while the action
is free at preimages of interior points of the moment polytope.

3. More generally, on pCPn, ωFSq with diagonal action of Tn as peiθ1 , . . . , eiθnq¨
rz0 : z1 : . . . : zns “ rz0 : eiθ1z1 : . . . : eiθnzns we have as moment map

µrz0 : z1 : . . . : zns “
1
2

´

|z1|
2

|z0|2`|z1|2`...`|zn|2
, . . . , |zn|

2

|z0|2`|z1|2`...`|zn|2

¯

,

whose image is an n-dimensional simplex.
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Products of symplectic toric manifolds are naturally symplectic toric man-
ifolds. For instance, on the product manifold pCP1qn with product symplectic
structure given by the Fubini-Study form on each factor and with diagonal ac-
tion of Tn, we have as moment map

µpz1, . . . , znq “
1

2

`

|z1|
2, . . . , |zn|

2
˘

,

whose image is an n-dimensional cube. In particular, the moment polytope for
the T2-action on CP1 ˆ CP1 as

peiθ, eiηq ¨ prz0 : z1s, rw0 : w1sq “ prz0 : eiθz1s, rw0 : eiηw1sq

is a square.

Equivalence between symplectic toric manifolds

The equivalence between symplectic toric manifolds is given by equivariant
symplectomorphisms.

Definition 1.4.6. Two symplectic toric manifolds, pMk, ωk,Tn, µkq, k “ 1, 2,
are isomorphic if there exists an equivariant9 symplectomorphism ϕ : M1 Ñ

M2.

Isomorphic symplectic toric manifolds are often undistinguished. Note that
the torus is fixed and that the moment maps necessarily differ by a constant, in
the sense that

µ1 “ µ2 ˝ ϕ` c for some c P Rn.

(For general hamiltonian torus actions, moment maps are unique up to a con-
stant).

Locally, there is an equivariant version of Darboux’s theorem [58]. At a fixed
point p for an action, there is an induced representation (i.e., a linear action) of
the group on the tangent space TpM given by differentiating the action. This is
called the isotropy representation at the point p.

Theorem 1.4.7. (Equivariant Darboux) Let pM,ω,Tk, µq be a 2n-dimensional
hamiltonian torus space, and let p be a fixed point. Let λp1q, . . . , λpnq P Zk be the
weights of the isotropy representation of Tk on the tangent space TpM .

Then there is a Tk-invariant neighborhood U of p in M and coordinate func-
tions px1, . . . , xn, y1, . . . , ynq centered at p with respect to which we have:

(a)

ω|U “
n
ÿ

j“1

dxj ^ dyj “
i
2

n
ÿ

j“1

dzj ^ dzj ,

where zj “ xj ` iyj, zj “ xj ´ iyj,

9Equivariance means ϕprθs ¨ pq “ rθs ¨ ϕppq.
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(b) the action becomes the linear action of Tk with the given weights:

peiθ1 , . . . , eiθkq ¨ pz1, . . . , znq “
´

ei
ř

j λ
p1q
j θjz1, . . . , e

i
ř

j λ
pnq
j θjzn

¯

and

(c) the moment map becomes

µ|U “ µppq `
1

2

n
ÿ

j“1

λpjqpx2
j ` y

2
j q “ µppq `

1

2

n
ÿ

j“1

λpjq|zj |
2 .

The proof, which we omit, relies on:

• viewing the isotropy representation as a complex representation using a
compatible almost complex structure; and

• adjusting Moser’s argument for the standard Darboux theorem by using
Tk-invariant/equivariant data all along.

Exercise 1.4.8. Suppose that Tm acts linearly on pCn, ω0q as follows:

peiθ1 , . . . , eiθmq ¨ pz1, . . . , znq “
´

eixλ
p1q,θyz1 , . . . , e

ixλpnq,θyzn

¯

,

for some weights λp1q, . . . , λpnq P Zm. In Exercise 1.3.8, we have seen that this
action is hamiltonian with a moment map given by

µpz1, . . . , znq “
1
2

n
ř

j“1

λpjq|zj |
2 ( ` constant ) .

(a) Show that, if the action is effective, then m ď n and the weights λp1q, . . . , λpnq

Z-span Zm.

(b) Conclude that, if such a linear action of Tn on Cn is effective, then any
moment map µ is a submersion, i.e., each differential dµz : Cn Ñ Rn
(z P Cn) is surjective.

Exercise 1.4.9. Show that for a symplectic toric manifold the weights of the
isotropy representation at a fixed point, λp1q, . . . , λpnq, form a Z-basis of Zn.

Hint: Equivariant Darboux and previous exercise.

1.5 Symplectic Reduction

Symplectic reduction is a fundamental construction of (new) symplectic mani-
folds starting from (old) symplectic manifolds with a hamiltonian group action
by taking quotients in the symplectic sense.

Symplectic reduction is also the key for Delzant’s proof of existence in his
classification theorem, by providing the construction of a symplectic toric man-
ifold out of the data encoded in an appropriate polytope.

First we recall orbit spaces. Let ψ : GÑ DiffpMq be any action. The orbit
of G through p PM is tψgppq | g P Gu.
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Exercise 1.5.1. If q is in the orbit of p, then their stabilizers Gq and Gp are
conjugate subgroups. In particular, when G is abelian, all points in the same
orbit have the same stabilizer.

Definition 1.5.2. We say that the action of G on M is:

• transitive if there is just one orbit,

• free if all stabilizers are trivial teu,

• locally free if all stabilizers are discrete.

Let „ be the orbit equivalence relation; for p, q PM ,

p „ q ðñ p and q are on the same orbit.

The space of orbits M{G :“ M{ „ is called the orbit space. Let

Π : M ÝÑ M{G
p ÞÝÑ orbit through p

be the point-orbit projection.

We equip M{G with the weakest topology for which Π is continuous, i.e.,
U ĎM{G is open if and only if Π´1pUq is open in M . This is called the quotient
topology. This topology can be bad. For instance:

Example. Let G “ Czt0u act on M “ Cn by

λ ÞÝÑ ψλ “ multiplication by λ .

The orbits are the punctured complex lines (through non-zero vectors z P Cn),
plus one so-called unstable orbit through 0, which has a single point. The orbit
space is

M{G “ CPn´1 \ tpointu .

The quotient topology restricts to the usual topology on CPn´1. The only open
set containing tpointu in the quotient topology is the full space, hence the topol-
ogy in M{G is not Hausdorff.

However, it suffices to remove 0 from Cn to obtain a Hausdorff orbit space:

´

Cnzt0u
¯M´

Czt0u
¯

“ CPn´1 .

♦

We next address the previous example once again but from a compact and
symplectic (yet not complex) viewpoint:

Example. Let ω “ i
2

ř

dzk ^ dz̄k “
ř

dxk ^ dyk “
ř

rkdrk ^ dθk be the
standard symplectic form on Cn. Consider the following S1-action on pCn, ωq:

θ P S1 ÞÝÑ ψθ “ multiplication by θ .
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The vector field generated by this action is

X# “
B

Bθ1
`

B

Bθ2
` ¨ ¨ ¨ `

B

Bθn
.

This vector field is hamiltonian, i.e., the action ψ is hamiltonian with moment
map

µ : Cn ÝÑ R
z ÞÝÑ

||z||2

2 ` constant

since

ıX#ω “ ´
ÿ

rkdrk “ ´
1
2

ÿ

dpr2
kq “ ´dµ .

If we conveniently choose the constant to be ´ 1
2 , then µ´1p0q “ S2n´1 is the

unit sphere. The orbit space of the zero level of the moment map is

µ´1p0q{S1 “ S2n´1{S1 “ CPn´1 .

This description induces a symplectic form on CPn´1 as a particular instance
of the following major theorem; see below. ♦

Meyer on one side and Marsden and Weinstein on the other proved inde-
pendently the following mathematical formulation of the reduction process from
physics. Later in this text, we will only be concerned with the case where the
Lie group is a torus.

Theorem 1.5.3. (Marsden-Weinstein [44], Meyer [48]) Let pM,ω,G, µq
be a hamiltonian G-space for a compact Lie group G. Let i : µ´1p0q ãÑ M be
the inclusion map. Assume that G acts freely on µ´1p0q. Then

(a) the orbit space Mred “ µ´1p0q{G is a manifold,

(b) Π : µ´1p0q ÑMred is a principal G-bundle, and

(c) there is a symplectic form ωred on Mred satisfying i˚ω “ Π˚ωred.

Note that this theorem does not assume that µ´1p0q is a regular level, but
this is a consequence of G acting freely on this level; see Exercise 1.4.2.

For a proof of Theorem 1.5.3, see for instance [15]. Here is just a sketch of
the idea for the case G “ S1 and dimM “ 4 going back to Bott.

In this case the moment map is µ : M Ñ R. Let p P µ´1p0q. Choose local
coordinates:

• θ along the orbit through p,

• µ given by the moment map, and

• η1, η2 pullback of coordinates on µ´1p0q{S1.
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Then the symplectic form can be written

ω “ A dθ ^ dµ`Bj dθ ^ dηj ` Cj dµ^ dηj `D dη1 ^ dη2 .

Since dµ “ ı
`

B
Bθ

˘

ω, we must have A “ 1, Bj “ 0. Hence,

ω “ dθ ^ dµ` Cj dµ^ dηj `D dη1 ^ dη2 .

Since ω is symplectic, we must have D ‰ 0. Therefore, i˚ω “ D dη1^dη2 is the
pullback of a symplectic form on Mred.

Definition 1.5.4. The pair pMred, ωredq is called the symplectic reduction
of pM,ωq with respect to G and µ (or the reduced space, or the symplectic
quotient, or the Marsden-Weinstein-Meyer quotient, etc.).

Example. Consider the S1-action on pR2n`2, ω0q which, under the usual iden-
tification of R2n`2 with Cn`1, corresponds to multiplication by eiθ. This action
is hamiltonian with a moment map µ : Cn`1 Ñ R given by

µpzq “ 1
2 ||z||

2 ´ 1
2 .

Symplectic reduction yields complex projective space µ´1p0q{S1 “ CPn equipped
with the so-called Fubini-Study symplectic form ω

red
“ ω

FS
. ♦

Exercise 1.5.5. Recall that CP1 » S2 as real 2-dimensional manifolds. Check
that

ω
FS
“

1

4
ω

eucl
,

where ω
eucl

“ dθ ^ dh is the euclidean area form on the unit sphere S2.

We consider here two basic extensions of the procedure of symplectic reduc-
tion. There is a further major extension to the case of symplectic toric orbifolds,
which we briefly address in Chapter 3. Reduction for product groups (a.k.a.
reduction in stages) will be needed in Chapter 2.

Reduction for product groups

Let G1 and G2 be compact connected Lie groups whose actions on a manifold
M commute, and let G “ G1ˆG2. Then g » g1‘g2 and g˚ » g˚1 ‘g˚2 . Suppose
that pM,ω,G, νq is a hamiltonian G-space with moment map

ν : M ÝÑ g˚1 ‘ g˚2 .

Write ν “ pν1, ν2q where νk : M Ñ g˚k for k “ 1, 2. The fact that ν is equivariant
implies that ν1 is invariant under G2 and ν2 is invariant under G1. Now reduce
pM,ωq with respect to the G1-action. Let

Z1 “ ν´1
1 p0q .
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Assume that G1 acts freely on Z1. Let M1 “ Z1{G1 be the reduced space and
let ω1 be the corresponding reduced symplectic form. The action of G2 on Z1

commutes with the G1-action. Since G2 preserves ω, it follows that G2 acts
symplectically on pM1, ω1q. Since G1 preserves ν2, G1 also preserves ν2 ˝ ι1 :
Z1 Ñ g˚2 , where ι1 : Z1 ãÑ M is inclusion. Thus ν2 ˝ ι1 is constant on fibers of

Z1
p1
ÑM1. We conclude that there exists a smooth map µ2 : M1 Ñ g˚2 such that

µ2 ˝ p1 “ ν2 ˝ ι1.

Exercise 1.5.6. Show that:

(a) the map µ2 is a moment map for the action of G2 on pM1, ω1q, and

(b) if G acts freely on ν´1p0, 0q, then G2 acts freely on µ´1
2 p0q, and there is a

natural symplectomorphism

ν´1p0, 0q{G » µ´1
2 p0q{G2 .

This technique of performing reduction with respect to one factor of a prod-
uct group at a time is called reduction in stages. It may be extended to
reduction by a normal subgroup H Ă G and by the corresponding quotient
group G{H.

Example. Consider the hamiltonian S1-action on pCn`1, ω0q by multiplica-
tion by eiθ, for which symplectic reduction yields complex projective space
µ´1p0q{S1 “ CPn (see example above). Now Tn`1 acts also on pCn`1, ω0q by di-
agonal multiplication and this hamiltonian action commutes with the S1-action.
Hence, it descends to the reduced space CPn. The reduced moment map is given
by

CPn ÝÑ Rn`1

rz0 : z1 : . . . : zns ÞÝÑ 1
2

`

|z0|
2, |z1|

2, . . . , |zn|
2
˘

where we choose pz0, z1, . . . , znq P µ
´1p0q. ♦

Reduction at other levels

Suppose that a compact Lie group G acts on a symplectic manifold pM,ωq
in a hamiltonian way with moment map µ : M Ñ g˚. Let ξ P g˚. To reduce
at the level ξ of µ, we need µ´1pξq to be preserved by G, or else take the G-
orbit of µ´1pξq, or equivalently take the inverse image µ´1pOξq of the coadjoint
orbit through ξ, or else take the quotient by the maximal subgroup of G which
preserves µ´1pξq. Of course the level 0 is always preserved. Also, when G is
a torus, any level is preserved and reduction at ξ for the moment map µ, is
equivalent to reduction at 0 for a shifted moment map φ : M Ñ g˚, φppq :“
µppq ´ ξ.

For the case of torus actions, are all levels equally easy, since the coadjoint
action is trivial.
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Example. Consider again the hamiltonian S1-action on pCn`1, ω0q by multi-
plication by eiθ with moment map

µpzq “ 1
2 ||z||

2 ´ 1
2 ,

for which symplectic reduction at level 0 yields complex projective space

µ´1p0q{S1 “ CPn

equipped with the Fubini-Study symplectic form (see example above).
If we now reduce at another level ξ ą ´1

2 , we obtain as reduced space the
same smooth manifold

µ´1pξq{S1 » CPn ,

but the symplectic form will be scaled. ♦





Chapter 2

Delzant’s Classification

Recall that a 2n-dimensional symplectic toric manifold is a compact connected
symplectic manifold pM2n, ωq equipped with an effective hamiltonian action of
a standard n-torus Tn and with a corresponding moment map. Two symplectic
toric manifolds are called isomorphic – and thus considered equivalent – if they
are equivariantly symplectomorphic (Section 1.4).

In this chapter, we state and prove the classification of equivalence classes
of symplectic toric manifolds by their moment polytopes µpMq up to transla-
tion. For the existence part we follow Delzant and for the uniqueness we follow
Lerman. Moreover, we discuss first examples.

Although for the standard torus Tn both the Lie algebra and its dual are
naturally identified with Rn, we will distinguish Rn from pRnq˚ and write for
the natural pairing x¨, ¨y : pRnq˚ ˆ Rn Ñ R. In particular, a moment map will
be denoted µ : M Ñ pRnq˚.

2.1 Delzant’s Theorem

A polytope in Rn is the convex hull1 of a finite number of points in Rn. A
convex polyhedron is a subset of Rn that is the intersection of a finite number
of affine half-spaces. It is a theorem, usually attributed to Weyl and Minkowski,
that polytopes coincide with compact convex polyhedra.

Exercise 2.1.1. (‹)2 Prove Weyl-Minkowski’s theorem for n “ 2. Although the
claim is intuitive, its proof for higher n is involved.

A face of a polytope ∆ is a set of the form F “ ∆Xtx P Rn | fpxq “ cu where
c P R and f P pRnq˚ satisfies fpxq ě c, @x P ∆. A vertex is a 0-dimensional
face, whereas an edge is a 1-dimensional face. A facet of an n-dimensional
polytope is an pn´ 1q-dimensional face.

1The convex hull of a given subset X of a vector space is the intersection of all convex sets
containing X or, equivalently, the set of all convex combinations of points in X.

2Exercises marked with a star are either harder of less central to the exposition.

23
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We now define the class of polytopes which arise in the classification of
symplectic toric manifolds.

Definition 2.1.2. A Delzant polytope ∆ in Rn is a polytope satisfying:

• simplicity, i.e., there are n edges meeting at each vertex;

• rationality, i.e., the edges meeting at the vertex τ are rational in the
sense that each edge is of the form τ ` tuk, t ě 0, where uk P Zn;

• smoothness, i.e., for each vertex, the corresponding u1, . . . , un can be
chosen to form a Z-basis of Zn.

Examples of Delzant polytopes in R2:

@
@
@
@

@
@
@
@

The dotted vertical line in the trapezoidal example is there just to stress that
it is a picture of a rectangle plus an isosceles triangle. For “taller” triangles,
smoothness would be violated. “Wider” triangles may still be Delzant as in
the examples below. There is an integrality condition on the slope of the hy-
pothenuse: n “ 0, 1, 2, . . .. We will call these examples Hirzebruch trapezoids
and denote them Ha,b,n, where a, b ą 0 and n “ 0, 1, 2, . . .. In particular, Ha,b,0

is just a rectangle.

H
HHH

HHH
H

p0, 0q

p0, bq pa, bq

pa` nb, 0q

Ha,b,nr
r

r
r

♦

Examples of polytopes that are not Delzant:

A
A
A
A

H
HHH

HHH
H �

�
�
�
�T
T
T
T
T

@
@
@
@
�

The picture on the left fails the smoothness condition on the upper vertex,
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whereas the one in the middle fails the smoothness condition on the two right
vertices and the one on the right fails the simplicity condition. ♦

Exercise 2.1.3. Show that, up to linear transformations in GLp2;Zq, the Delzant
polytopes in R2 with three vertices are just the isosceles right triangles.

Hint: Once you use a transformation in GLp2;Zq to make one of the angles
into a square angle, how are the lengths of the two edges forming that angle
related?

Conclude that the equivalence classes of Delzant polytopes in R2 up to GLp2;Zq
and translation by arbitrary vectors in R2 is the one-parameter family of trian-
gles with vertices p0, 0q, pa, 0q and p0, aq, where a ą 0.

Exercise 2.1.4. Describe the class of Delzant polytopes in R2 with four vertices,
up to linear transformations in GLp2;Zq.

Hint: Choose any vertex, translate it to zero and use GLp2;Zq to turn the
corresponding edge vectors into the standard basis. Then the vertices will be
of the form p0, 0q, pc, 0q, p0, bq, pa, dq with a, b, c, d ą 0. By a reflection if
necessary, assume that c ą b. By convexity and the Delzant condition at pc, 0q,
p0, bq, the non-axial primitive edge vectors at those vertices must be of the form
u1 “ pC, 1q and u2 “ p1, Bq with C,B P Z. Because those non-axial edges meet
at pa, dq in a convex fashion, we must have that the determinant of the matrix
with columns u1 and u2 must be negative, i.e., BC ă 1. Then the Delzant
condition at pa, dq gives that that determinant must be ´1, i.e., BC “ 0.
Follow on, checking the cases B “ 0 and C “ 0.

Delzant’s theorem classifies (equivalence classes of) symplectic toric mani-
folds in terms of the combinatorial data encoded by a Delzant polytope (up to
translation).

Theorem 2.1.5. (Delzant [19]) Symplectic toric manifolds are classified
up to equivalence by Delzant polytopes up to translation. More specifically, the
bijective correspondence between these two sets is given by the moment map:

tsymplectic toric manifoldsu
1´1
ÝÑ tDelzant polytopesu

(mod equivalence) (mod translation)
pM2n, ω,Tn, µq ÞÝÑ µpMq .

In order to prepare the construction of a symplectic toric manifold from a
Delzant polytope, we will use the description of polytopes as convex polyhedra.
For this passage, we use the following exercise, translating the Delzant condition
into a similar condition in terms of normal vectors to the facets.

Exercise 2.1.6. Consider one vertex of a Delzant polytope in Rn and a Z-basis
of Zn built up of the edge vectors meeting at that vertex,

u1, u2, . . . , un.

Show that then there are n corresponding facets meeting at that vertex (each one
containing all but one of the uk vectors) and that the primitive inward-pointing
normal vectors to these facets also form a Z-basis of Zn.
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Hint: By a change of basis if necessary, you may assume that u1, u2, . . . , un
is the standard basis. Then the corresponding primitive inward-pointing nor-
mal vectors to the facets meeting at that vertex are also the vectors from the
standard basis.

Let ∆ be a Delzant polytope in pRnq˚ and with d facets.3 Let vk P Zn,
k “ 1, . . . , d, be the primitive4 inward-pointing normal vectors to the facets of
∆. Then we can describe ∆ as an intersection of halfspaces

∆ “ tx P pRnq˚ | xx, vky ě λk, k “ 1, . . . , du for some λk P R ,

where x¨, ¨y : pRnq˚ ˆ Rn Ñ R is the natural pairing.

Example. For the picture below, we have

∆ “ tx P pR2q˚ | x1 ě 0, x2 ě 0, x1 ` x2 ď 1u
“ tx P pR2q˚ | xx, p1, 0q

loomoon

v1

y ě 0 , xx, p0, 1q
loomoon

v2

y ě 0 , xx, p´1,´1q
looomooon

v3

y ě ´1u .

@
@
@
@
@
@

p0, 0q p1, 0q

p0, 1q

r

r

r
♦

Exercise 2.1.7. Describe the polytope Ha,b,n as an intersection of four hyper-
planes.

HH
HHH

HHH
p0, 0q

p0, bq pa, bq

pa` nb, 0q
r
r

r
r

Exercise 2.1.8. (‹) This is a generalization of Exercise 2.1.3. Show that, up
to linear transformations in GLpn;Zq, and translations, the Delzant polytopes
in Rn with n` 1 vertices are the simplices with vertices at the origin and at the
points with all coordinates 0 except one equal to a (a ą 0). In particular, in R3

that is the set of simplices with vertices p0, 0, 0q, pa, 0, 0q, p0, a, 0q, p0, 0, aq.

3It may be more clear for now to see ∆ in pRnq˚. In particular, edge vectors will be in
pRnq˚, whereas normal vectors to the facets will be regarded in Rn.

4A lattice vector v P Zn is primitive if it cannot be written as v “ `u with u P Zn, ` P Z
and |`| ą 1; for instance, p1, 1q, p4, 3q, p1, 0q are primitive, but p2, 2q, p4, 6q are not.
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Hint: Choose any vertex, translate it to zero and use GLpn;Zq to turn the
corresponding edge vectors into the standard basis. Now all vertices lie on the
coordinate axes and let pa, 0, 0, . . . , 0q be one of the vertices. By another trans-
formation in GLpn;Zq, you may assume that this is a vertex closest to the ori-
gin. Then by rationality the other vertices will be of the form p0, c2a, 0, . . . , 0q,
p0, 0, c3a, 0, . . . , 0q, etc with c2, c3, . . . , cn P N. Suppose that one of the c1ks,
say c2, is not 1. Write the edge vectors at the vertices pa, 0, 0, . . . , 0q and
p0, c2a, 0, . . . , 0q and impose the Delzant condition.

2.2 Proof of Existence

Following [19, 27], we prove the existence part (or surjectivity) in Delzant’s
theorem, by using symplectic reduction to associate to an n-dimensional Delzant
polytope ∆ a symplectic toric manifold pM∆, ω∆,Tn, µ∆q with µ∆pM∆q “ ∆.

Let ∆ be a Delzant polytope with d facets. Let vk P Zn, k “ 1, . . . , d, be the
primitive inward-pointing normal vectors to the facets. For some λk P R, we can
write

∆ “ tx P pRnq˚ | xx, vky ě λk, k “ 1, . . . , du .

Let e1 “ p1, 0, . . . , 0q, . . . , ed “ p0, . . . , 0, 1q be the standard basis of Rd. Consider

Π : Rd ÝÑ Rn
ek ÞÝÑ vk .

Then the map Π is onto and maps Zd onto Zn since, for each vertex, the vk’s
corresponding to the facets meeting at that vertex form a Z-basis of Zn; see
Exercise 2.1.6.

Therefore, Π induces a surjective map, still called Π, between tori:

Rd{p2πZdq Π
ÝÑ Rn{p2πZnq

} }

Td ÝÑ Tn ÝÑ 1 .

The kernel N of Π is a connected pd´nq-dimensional Lie subgroup of Td, hence
a torus, with inclusion i : N ãÑ Td. Let n be the Lie algebra of N . The exact
sequence of tori

1 ÝÑ N
i
ÝÑ Td Π

ÝÑ Tn ÝÑ 1

induces an exact sequence of Lie algebras

0 ÝÑ n
i
ÝÑ Rd Π

ÝÑ Rn ÝÑ 0

with dual exact sequence

0 ÝÑ pRnq˚ Π˚
ÝÑ pRdq˚ i˚

ÝÑ n˚ ÝÑ 0 .

Now consider Cd with symplectic form ω0 “
i
2

ř

dzk ^ dz̄k, and standard
hamiltonian action of Td given by

peiθ1 , . . . , eiθdq ¨ pz1, . . . , zdq “ pe
iθ1z1, . . . , e

iθdzdq .



28 CHAPTER 2. DELZANT’S CLASSIFICATION

The moment map is φ : Cd ÝÑ pRdq˚ defined by

φpz1, . . . , zdq “
1
2 p|z1|

2, . . . , |zd|
2q ` constant ,

where we will choose the constant to be pλ1, . . . , λdq. By Exercise 1.3.5, the
subtorus N acts on Cd in a hamiltonian way with moment map

i˚ ˝ φ : Cd ÝÑ n˚ .

Let Z “ pi˚˝φq´1p0q be the zero-level set. Note that Z is connected, because
pi˚q´1p0q is a linear subspace of Rd and the fibers φ´1pxq are path-connected.

Claim 1. The submanifold Z is compact and N acts freely on Z.

We postpone the proof of this claim until further down.

Now Z is the zero-level of a moment map for the action of the torus N on
Cd. Knowing that N acts freely on Z ensures that this is a regular level; this
is a consequence of Exercise 1.4.2. Hence, Z is a submanifold of Cd of (real)
dimension 2d ´ pd ´ nq “ d ` n. We now use the following theorem from Lie
theory:

Theorem 2.2.1. If a compact Lie group N acts freely on a manifold Z, then
the orbit space Z{N is a manifold and the point-orbit map p : Z Ñ Z{N is a
principal N -bundle.

In our case, Z is a compact pd` nq-dimensional manifold, so the orbit space
M∆ “ Z{N is a compact manifold of (real) dimension dimZ ´ dimN “ pd `
nq ´ pd ´ nq “ 2n. The point-orbit map p : Z Ñ M∆ is a principal N -bundle
over M∆. Consider the diagram

Z
j

ãÑ Cd
p Ó

M∆

where j : Z ãÑ Cd is inclusion. The Marsden-Weinstein-Meyer theorem (Theo-
rem 1.5.3) guarantees the existence of a symplectic form ω∆ on M∆ satisfying

p˚ω∆ “ j˚ω0 .

Since Z is connected, the compact symplectic 2n-dimensional manifold pM∆, ω∆q

is also connected.

Proof of Claim 1. The set Z is clearly closed, hence in order to show that it
is compact it suffices (by the Heine-Borel theorem) to show that Z is bounded.
Let ∆1 be the image of ∆ by Π˚. We will show that φpZq “ ∆1.

Lemma 2.2.2. Let y P pRdq˚. Then:

y P ∆1 ðñ y P φpZq .
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Proof. The value y is in the image of Z by φ if and only if both of the following
conditions hold:

1. y is in the image of φ;

2. i˚y “ 0.

Using the expression for φ and the dual exact sequence, we see that these
conditions are equivalent to:

1. xy, eky ě λk for k “ 1, . . . , d;

2. y “ Π˚pxq for some x P pRnq˚.

Suppose that the second condition holds, so that y “ Π˚pxq. Then

xy, eky ě λk, @k ðñ xΠ˚pxq, eky ě λk, @k

ðñ xx,Πpekqy ě λk, @k

ðñ xx, vky ě λk, @k

ðñ x P ∆ .

Thus,
y P φpZq ðñ y P Π˚p∆q “ ∆1 .

This concludes the proof of Lemma 2.2.2. l

Since we have that ∆1 is compact, that φ is a proper map5 and that φpZq “
∆1, we conclude that Z must be bounded, and hence compact.

It remains to show that N acts freely on Z.

Pick a vertex τ of ∆, and let I “ tk1, . . . , knu be the set of indices for the n
facets meeting at τ . Pick z P Z such that φpzq “ Π˚pτq. Then τ is characterized
by n equations xτ, vky “ λk where k ranges in I:

xτ, vky “ λk ðñ xτ,Πpekqy “ λk
ðñ xΠ˚pτq, eky “ λk
ðñ xφpzq, eky “ λk
ðñ i-th coordinate of φpzq is equal to λk
ðñ 1

2 |zk|
2 ` λk “ λk

ðñ zk “ 0 .

Hence, those z’s are points whose coordinates in the set I are zero, and whose
other coordinates are nonzero. Without loss of generality, we may assume that
I “ t1, . . . , nu. The stabilizer of z is

pTdqz “ tpeiθ1 , . . . , eiθn , 1, . . . , 1q P Tdu .
5A map between topological spaces is called proper if inverse images of compact subsets

are compact.
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As the restriction Π : pRdqz Ñ Rn maps the vectors e1, . . . , en to a Z-basis
v1, . . . , vn of Zn respectively, at the level of groups the map Π : pTdqz Ñ Tn must
be bijective. Since N “ kerpΠ : Td Ñ Tnq, we conclude that N X pTdqz “ t1u,
i.e., Nz “ t1u. Hence, all N -stabilizers at points mapping to vertices are trivial.
But this was the worst case, since other stabilizers Nz1 (z1 P Z) are contained
in stabilizers for points z which map to vertices. This concludes the proof of
Claim 1. l

Given a Delzant polytope ∆, we have constructed a symplectic manifold
pM∆, ω∆q where M∆ “ Z{N is a compact 2n-dimensional manifold and ω∆ is
the reduced symplectic form.

Claim 2. The manifold pM∆, ω∆q inherits a hamiltonian Tn-action with a mo-
ment map µ∆ having image µ∆pM∆q “ ∆.

Proof of Claim 2. Let z be such that φpzq “ Π˚pτq where τ is a vertex of
∆, as in the proof of Claim 1. Let σ : Tn Ñ pTdqz be the inverse for the earlier
bijection Π : pTdqz Ñ Tn. Since we have found a section, i.e., a right inverse for
Π, in the exact sequence

1 ÝÑ N
i
ÝÑ Td Π

ÝÑ Tn ÝÑ 1 ,
σ
ÐÝ

the exact sequence splits, i.e., becomes like a sequence for a product, as we
obtain an isomorphism

pi, σq : N ˆ Tn »
ÝÑ Td .

The action of the Tn factor (or, more rigorously, σpTnq Ă Td) descends to the
quotient M∆ “ Z{N .

It remains to show that the Tn-action onM∆ is hamiltonian with appropriate
moment map.

Consider the diagram

Z
j

ãÑ Cd φ
ÝÑ pRdq˚ » n˚ ‘ pRnq˚ σ˚

ÝÑ pRnq˚
p Ó
M∆

where the last horizontal map is simply projection onto the second factor. Since
the composition of the horizontal maps is constant along N -orbits, it descends
to a map

µ∆ : M∆ ÝÑ pRnq˚

which satisfies
µ∆ ˝ p “ σ˚ ˝ φ ˝ j .

By Exercise 1.5.6 on reduction for product groups, this is a moment map for
the action of Tn on pM∆, ω∆q. Finally, the image of µ∆ is:

µ∆pM∆q “ pµ∆ ˝ pqpZq “ pσ
˚ ˝ φ ˝ jqpZq “ pσ˚ ˝Π˚qp∆q “ ∆ ,
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because φpZq “ Π˚p∆q and σ˚ ˝Π˚ “ pΠ ˝ σq˚ “ id. l

The above Tn-action is effective because Td, and hence Tn, acts freely on
the open dense subset

φ´1 pΠ˚p∆oqq Ă Z ,

where ∆o denotes the interior of ∆.

We conclude that pM∆, ω∆,Tn, µ∆q is the required toric manifold corre-
sponding to ∆.

2.3 Discussion of Delzant’s Correspondence

Delzant’s theorem asserts that the map

tsymplectic toric manifoldsu ÝÑ tDelzant polytopesu
(mod equivalence) (mod translation)
pM2n, ω,Tn, µq ÞÝÑ µpMq .

is well-defined and bijective.

• In the previous section, we saw that it is indeed surjective.

• We will see now that it is well-defined.

• In the section after next, we will see that it is indeed injective.

Moreover, in this section, we later review the main idea behind Delzant’s
construction, check that the moment polytope is the orbit space of a symplectic
toric manifold, and discuss concrete examples.

In Section 1.4, we had already observed that equivalent (i.e. isomorphic)
symplectic toric manifolds have the same moment map up to a constant, hence
have the same moment polytope up to translation. It remains to show that the
moment polytope is Delzant.

Proposition 2.3.1. Let pM2n, ω,Tn, µq be a symplectic toric manifold. Then
the image ∆ of µ is a Delzant polytope.

Proof. By the Atiyah-Guillemin-Sternberg convexity theorem (Theorem 1.3.9)
the image ∆ is the convex hull of the images of the fixed points of the action.

Let τ be a vertex of ∆. Then there is p PM fixed by Tn and with µppq “ τ .
By the equivariant Darboux theorem (Theorem 1.4.7), we can find a Darboux

chart pU , x1, . . . , xn, y1, . . . , ynq centered at p such that:

• the neighborhood U is Tn-invariant,

• the symplectic form becomes ωU “
ř

k dxk ^ dyk “
i
2

ř

k dzk ^ dzk where
zk “ xk ` iyk, zk “ xk ´ iyk,
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• in these coordinates the action of Tn is linear:

peiθ1 , . . . , eiθkq ¨ pz1, . . . , znq “
´

ei
ř

j λ
p1q
j θjz1, . . . , e

i
ř

j λ
pnq
j θjzn

¯

,

where λp1q, . . . , λpnq P Zn are the corresponding weights,

• thus the moment map has the form:

µU pz1, . . . , znq “ τ ` 1
2

n
ř

k“1

λpkq|zk|
2 .

Moreover, the weights λp1q, . . . , λpnq form a Z-basis of Zn because the action is
effective (cf. Exercise 1.4.8 (a)). This shows that the image of this neighborhood
U by µ is of the form

τ `
n
ÿ

k“1

tkλ
pkq with tk ě 0 ,

which by itself satisfies simplicity, rationality and smoothness.
Moreover, by the Atiyah-Guillemin-Sternberg theorem the levels of µ are

connected, in particular, the level µ´1pτq is connected. The above form shows
that µ´1pτq “ tpu, therefore the preimage of a neighborhood of τ is completely
described by the model above and Delzant’s conditions are globally satisfied. l

Exercise 2.3.2. Use the previous proof to show that the fixed points of a sym-
plectic toric manifold are isolated and the moment map of a symplectic toric
manifold maps the fixed points of the action bijectively onto the vertices of the
moment polytope. (This last fact will be generalized in Theorem 2.3.5.)

Idea behind Delzant’s construction:

The main idea of Delzant’s construction is that the space Rd is universal in
the sense that any n-dimensional (nondegenerate) polytope ∆ with d facets can
be obtained by intersecting the positive orthant Rd` with an affine plane A. (We
now identify Rn with its dual.) Given ∆, to construct A first write ∆ as:

∆ “ tx P Rn | xx, vky ě λk, k “ 1, . . . , du .

Define

Π : Rd ÝÑ Rn with dual map Π˚ : Rn ÝÑ Rd .
ek ÞÝÑ vk

Then Π˚´λ : Rn ÝÑ Rd is an injective affine map, where λ “ pλ1, . . . , λdq. Let
A be the image of Π˚ ´ λ. Then A is an n-dimensional affine space.

Lemma 2.3.3. We have the equality pΠ˚ ´ λqp∆q “ Rd` XA.
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Proof. Let x P Rn. Then

pΠ˚ ´ λqpxq P Rd` ðñ xΠ˚pxq ´ λ, eky ě 0,@i

ðñ xx,Πpekqy ´ λk ě 0,@i

ðñ xx, vky ě λk,@i

ðñ x P ∆ .

l

We conclude that ∆ » Rd` XA.
Now Rd` is the image of the moment map for the standard hamiltonian action

of Td on Cd

φ : Cd ÝÑ Rd

pz1, . . . , zdq ÞÝÑ 1
2 p|z1|

2, . . . , |zd|
2q

and we assume that ∆ is Delzant. Then the following facts hold:

• The set φ´1pAq Ă Cd is a compact submanifold. Let i : φ´1pAq ãÑ Cd
denote inclusion. Then i˚ω0 is a closed 2-form whose kernel is an integrable
distribution. The corresponding foliation is called the null foliation.

• The null foliation of i˚ω0 is a principal fibration, so we take the quotient:

N ýφ´1pAq
Ó p
M∆ :“ φ´1pAq{N

with induced (reduced) symplectic form ω∆ satisfying p˚ω∆ “ i˚ωω0.

• The (non-effective) action of Td “ NˆTn on φ´1pAq has a “moment map”
with image φpφ´1pAqq “ ∆. By “moment map” we mean a map satisfying
the usual definition even though the closed 2-form is not symplectic.

There is a remaining action of Tn onM∆ which is hamiltonian with a moment
map µ∆ : M∆ Ñ Rn defined by the commutative diagram

φ´1pAq
j

ãÑ Cd φ
ÝÑ Rd

p Ó Ó pr2

M∆
µ∆
99K Rn

where pr2 : Td “ N ˆ Tn Ñ Tn, resp. pr2 : Rd “ n ˆ Rn Ñ Rn is projection
onto the second factor.

The moment polytope of a symplectic toric manifold is its orbit space:

Exercise 2.3.4. As an experiment, consider the standard T3-action on pCP3, ω
FS
q,

peiθ1 , eiθ2 , eiθ3q ¨ rz0 : z1 : z2 : z3s “ rz0 : eiθ1z1 : eiθ2z2 : eiθ3z3s ,
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with moment map

µrz0 : z1 : z2 : z3s “
1

2p|z0|2`|z1|2`|z2|2`|z3|2q

`

|z1|
2, |z2|

2, |z3|
2
˘

.

Exhibit explicitly the subsets of CP3 for which the stabilizer under this action
is t1u, a circle, a 2-torus and T3. Show that the images of these subsets under
the moment map are the interior, the facets, the edges and the vertices of ∆ “

µpCP3q, respectively. Given x P ∆, how many T3-orbits is µ´1pxq?

Theorem 2.3.5. For any x P ∆, we have that µ´1
∆ pxq is a single Tn-orbit.

Moreover, the dimension of that orbit is equal to the dimension of the smallest
face to which x belongs.

Proof. First consider the standard Td-action on Cd with moment map φ : Cd Ñ
Rd,

φpz1, . . . , zdq “
1
2 p|z1|

2, . . . , |zd|
2q ` pλ1, . . . , λdq .

Then φ´1pyq is a single Td-orbit for any y P φpCdq, its stabilizer (i.e., the
stabilizer of any point on that orbit) is

tpt1, . . . , tdq P Td | tk “ 1 whenever xy, eky ą λku

and its dimension is equal to the number of indices k with xy, eky ą λk. The
only fixed point is the origin mapping to the only vertex of the image.

Now let x0 P ∆, take y0 “ Π˚px0q and recall from Lemma 2.2.2 and the
definition of Z that

y0 P ∆1 :“ Π˚p∆q ðñ y0 P φpZq ðñ φ´1py0q Ď Z .

Then µ´1
∆ px0q “ φ´1py0q{N . But φ´1py0q is a single Td-orbit where Td “ NˆTn,

hence µ´1
∆ px0q is a single Tn-orbit.

Let F be the smallest face to which x0 belongs and let m be the codimension
of F . The face F is given as

F “ ∆X tx P pRnq˚ | xx, vky “ λk, k P IF u

for some index subset IF Ă t1, . . . , du with cardinality |IF | “ m. Then y0

belongs to the face of ∆1 given by

∆1 X ty P pRdq˚ | xy, eky “ λk, k P IF u

and thus has as stabilizer the m-dimensional subtorus

TF :“ tpt1, . . . , tdq P Td | tk “ 1 whenever k R IF u

and the Td-orbit of y0, namely φ´1py0q, is pd´mq-dimensional. It follows that
the Tn-orbit of x0, namely µ´1

∆ px0q, has stabilizer ΠpTF q. Since N acts freely



2.3. DISCUSSION OF DELZANT’S CORRESPONDENCE 35

on Z, we see that ΠpTF q is also an m-dimensional torus and the orbit µ´1
∆ px0q

has dimension

dim
`

µ´1
∆ px0q

˘

“ dim
`

φ´1py0q
˘

looooooomooooooon

d´m

´ dimN
loomoon

d´n

“ n´m .

l

Therefore, in particular, for a symplectic toric manifold the moment polytope
∆ is the orbit space.

Concrete instances of Delzant’s construction:

We will follow through the details of Delzant’s construction for specific cases.

Example. We consider the case of ∆ “ r0, as Ă R˚ pn “ 1, d “ 2q. Let v “ 1
be the standard basis vector in R. Then ∆ is described by

xx, vy ě 0 and xx,´vy ě ´a ,

so we have v1 “ v, v2 “ ´v, λ1 “ 0 and λ2 “ ´a.

a

0 v1 “ v

v2 “ ´v

t
t

?

6

The projection

R2 Π
ÝÑ R

e1 ÞÝÑ v
e2 ÞÝÑ ´v

has kernel equal to the span of pe1 ` e2q, so that N is the diagonal subgroup of
T2 “ S1 ˆ S1. The exact sequences become

1 ÝÑ N
i
ÝÑ T2 Π

ÝÑ S1 ÝÑ 1

t ÞÝÑ pt, tq
pt1, t2q ÞÝÑ t1t

´1
2

0 ÝÑ n
i
ÝÑ R2 Π

ÝÑ R ÝÑ 0
x ÞÝÑ px, xq

px1, x2q ÞÝÑ x1 ´ x2

0 ÝÑ R˚ Π˚
ÝÑ pR2q˚

i˚
ÝÑ n˚ ÝÑ 0

x ÞÝÑ px,´xq
px1, x2q ÞÝÑ x1 ` x2 .
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We choose the moment map for the standard T2-action on C2:

φpz1, z2q “
1
2 p|z1|

2, |z2|
2q ` p0,´aq

loomoon

pλ1,λ2q

.

The action of the diagonal subgroup N “ tpeiθ, eiθq P S1 ˆ S1u on C2,

peiθ, eiθq ¨ pz1, z2q “ pe
iθz1, e

iθz2q ,

has moment map

pi˚ ˝ φqpz1, z2q “
1
2 p|z1|

2 ` |z2|
2q ´ a ,

with zero-level set

Z “ pi˚ ˝ φq´1p0q “ tpz1, z2q P C2 : |z1|
2 ` |z2|

2 “ 2au .

Hence, the reduced space is a projective space:

pi˚ ˝ φq´1p0q{N “ CP1 .

One can further check that the induced symplectic form is a multiple of the
Fubini-Study form: ω∆ “ 2aω

FS
; cf. Sections 1.4 and 1.5.

Here we see clearly the point-orbit correspondence given by the moment map.
The boundary points of the moment polytope ∆ “ r0, as correspond to the fixed
points – North pole and South pole – whereas interior points correspond to free
orbits – the other latitude circles.

-
µ

&%
'$

t
t

t
t

♦

Exercise 2.3.6. (‹) Let ∆ be the n-simplex in Rn spanned by the origin and the
standard basis vectors p1, 0, . . . , 0q, . . . , p0, . . . , 0, 1q. Show that the corresponding
symplectic toric manifold is n-dimensional complex projective space, M∆ “ CPn.

Exercise 2.3.7. (‹) Which 2n-dimensional toric manifolds have exactly n` 1
fixed points?

Example. We consider Delzant’s construction for the case of ∆ “ Ha,b,n Ă

pR2q˚. The manifolds we will obtain are known as Hirzebruch surfaces, M∆ “

Ha,b,n [33].
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HH
HHH

HHH
p0, 0q

p0, bq pa, bq

pa` nb, 0q

Ha,b,nr
r

r
r

The polytope ∆ “ Ha,b,n is described by

∆ “ tx P pR2q˚ | x1 ě 0, x2 ě 0, x1 ` nx2 ď a` nb, x2 ď b, u
“ tx P pR2q˚ | xx, p1, 0q

loomoon

v1

y ě 0
loomoon

λ1

, xx, p0, 1q
loomoon

v2

y ě 0
loomoon

λ2

,

xx, p´1,´nq
loooomoooon

v3

y ě ´a´ nb
looomooon

λ3

, xx, p0,´1q
loomoon

v4

y ě ´b
loomoon

λ4

u .

The projection

R4 Π
ÝÑ R2

e1 ÞÝÑ v1 “ p1, 0q
e2 ÞÝÑ v2 “ p0, 1q
e3 ÞÝÑ v3 “ p´1,´nq
e4 ÞÝÑ v4 “ p0,´1q

has kernel equal to the span of te2 ` e4, e1 ` ne2 ` e3u, so that

N :“ t
´

eiβ , eipα`nβq, eiβ , eiα
¯

u Ă T4,

the exact sequences are

1 ÝÑ N
i
ÝÑ T4 Π

ÝÑ T2 ÝÑ 1

pa, bq ÞÝÑ pb, abn, b, aq
pt1, t2, t3, t4q ÞÝÑ pt1t

´1
3 , t2t

´n
3 t´1

4 q

0 ÝÑ n
i
ÝÑ R4 Π

ÝÑ R2 ÝÑ 0
px, yq ÞÝÑ py, x` ny, y, xq

px1, x2, x3, x4q ÞÝÑ px1-x3, x2-nx3-x4q

0 ÝÑ pR2q˚
Π˚
ÝÑ pR4q˚

i˚
ÝÑ n˚ ÝÑ 0

px, yq ÞÝÑ px, y, -x-ny, -yq
px1, x2, x3, x4q ÞÝÑ px2 ` x4, x1 ` nx2 ` x3q .

and the action of N has moment map

pi˚ ˝ φqpz1, z2, z3, z4q “
1
2 p|z2|

2 ` |z4|
2, |z1|

2 ` n|z2|
2 ` |z3|

2q ` p´b,´a´ nbq ,

with zero-level set

Z “ pi˚ ˝ φq´1p0q “tpz1, z2, z3, z4q P C4 :

|z2|
2 ` |z4|

2 “ 2b, |z1|
2 ` n|z2|

2 ` |z3|
2 “ 2pa` nbqu .
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Hence, the reduced space is a so-called Hirzebruch (complex) surface

Ha,b,n :“ Z{ „ ,

where the equivalence relation given by N is

pz1, z2, z3, z4q „

´

eiβz1, e
ipα`nβqz2, e

iβz3, e
iαz4

¯

.

♦

Remark. One can see that each 4-dimensional manifold Ha,b,n is a sphere
bundle over a sphere, by considering the projection p : Ha,b,n Ñ CP1 induced
by the map

rp : Z ÝÑ CP1

pz1, z2, z3, z4q ÞÝÑ rz1 : z3s .

The map p is well-defined because rp is invariant by N . Moreover, one can check
that the fibers of p are copies of CP1 and that it is locally trivial, hence actually
a fibration. In particular, for n “ 0 we get a product of spheres,

Ha,b,0 » CP1 ˆ CP1

and all Ha,b,n for n even are diffeomorphic to this,6 whereas all Ha,b,n for n
odd are diffeomorphic to Ha,b,1, the nontrivial S2-bundle over S2. Note that all
these Ha,b,n’s are distinct as complex manifolds, as well as symplectic manifolds
(as well as symplectic toric manifolds). ♦

Exercise 2.3.8. What are all the 4-dimensional symplectic toric manifolds that
have exactly four fixed points?

Hint: Exercise 2.1.4, observation after Theorem 2.3.5 and previous example.

2.4 Lerman’s Construction

In the 1990’s Eugene Lerman gave an alternative version of Delzant’s construc-
tion using his symplectic cutting trick. Whereas we will deal with the original
symplectic cutting technique in Chapter 3, we will now follow the exposition
in [47, Ch.7, §5] to do cutting w.r.t. a Delzant polytope by working with the
cotangent bundle of the torus, T˚pTnq.

6Orientable sphere bundles over the sphere S2 are trivializable over each half-sphere and
hence obtained by gluing two trival bundles over a disk along the boundary by a map from
the equator S1 to the group of orientation preserving diffeomorphisms of S2. Milnor showed
that this group of diffeomorphisms retracts onto SOp3q, and we have that π1pSOp3qq “ Z{2Z.
So there are only two diffeomorphism classes of such bundles: the class of the trivial bundle
S2 ˆ S2 and the class of the nontrivial bundle.
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Symplectic cutting w.r.t. a Delzant polytope:

Let ∆ be a Delzant polytope given as an intersection of halfspaces as

∆ “ tx P pRnq˚ | xx, vky ě λk, k “ 1, . . . , du ,

where the vk P Zn, k “ 1, . . . , d, are the primitive inward-pointing normal
vectors to the facets of ∆ and where λk P R. We set λ :“ pλ1, . . . , λdq.

We trivialize the tangent bundle T pTnq as Tn ˆ tn by invariant vector fields
and, correspondingly, the cotangent bundle T˚pTnq as Tn ˆ ptnq˚. We equip
T˚pTnq » Tn ˆ ptnq˚ with the symplectic form given by

n
ÿ

k“1

dξk ^ dθk

with respect to cotangent coordinates pθ1, . . . , θn, ξ1, . . . , ξnq, to which we refer
as action coordinates ξk and angle coordinates θk. Note the sign convention
for this symplectic form.

We call standard action to the action of Tn on its cotangent bundle T˚Tn
by the lift of its multiplication action on itself.7 W.r.t. the action-angle coordi-
nates above, the element peiθ

1
1 , . . . , eiθ

1
nq P Tn acts by

pθ1, . . . , θn, ξ1, . . . , ξnq ÞÝÑ pθ1 ` θ
1
1, . . . , θn ` θ

1
n, ξ1, . . . , ξnq .

This action is hamiltonian with moment map given by projection onto the second
factor pr2 : Tn ˆ ptnq˚ Ñ ptnq˚, pθ, ξq ÞÑ ξ.

Now consider the Lie group homomorphism

ρ∆ : Td ÝÑ Tn

peiα1 , . . . , eiαdq ÞÝÑ exp

ˆ

d
ř

k“1

αkvk

˙

.

Notice that the differential of this homomorphism is the linear map from Sec-
tion 2.2

Dρ∆ » Π : td » Rd ÝÑ tn » Rn
ek ÞÝÑ vk .

The action of Td on T˚pTnq via the composition of ρ
∆

with the standard
Tn-action is hamiltonian with moment map ν∆ given by the composition of the
projection pr2 with the adjoint of Dρ∆ up to a constant. We fix the following
moment map:

ν
∆
“ pDρ

∆
q˚ ˝ pr2 : Tn ˆ ptnq˚ Ñ ptdq˚

pθ, ξq ÞÝÑ
d
ř

k“1

xξ, vkyek ´ λ ,

7If ϕ : X Ñ X is a diffeomorphism, then its (cotangent) lift is ϕ7 : T˚X Ñ T˚X,

px, ξq ÞÑ
´

ϕpxq,
`

pdϕxq
´1

˘˚
ξ
¯

. Then ϕ7 is a symplectomorphism for any (nonzero) multiple

of the canonical symplectic form,
ř

dxk ^ dξk.
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where we added the constant ´λ for later convenience.
Let Td act on pCd, i2

ř

dzk ^ dz̄kq by

peiα1 , . . . , eiαdq ¨ pz1, . . . , zdq “ pe
´iα1z1, . . . , e

´iαdzdq

with moment map

pz1, . . . , zdq ÞÝÑ ´ 1
2 p|z1|

2, . . . , |zd|
2q .

Proposition 2.4.1. Given a Delzant polytope ∆, consider the product manifold

pT˚Tnq ˆ Cd

with:

• product symplectic form

n
ÿ

k“1

dξk ^ dθk `
i
2

d
ÿ

k“1

dzk ^ dz̄k ,

• product action of Td, where Td acts on each factor as above, and

• moment map

ppθ, ξq, zq ÞÝÑ

d
ÿ

k“1

xξ, vkyek ´ λ´
1
2 p|z1|

2, . . . , |zd|
2q .

Then the Td-action is free on the zero level set of the moment map, so the
reduced space is a symplectic manifold. Moreover, this reduced space is naturally
a 2n-dimensional symplectic toric manifold with moment map image ∆.

We denote this reduced space by pE∆, ω∆,Tn, µ∆q and call it Lerman’s
symplectic toric manifold associated with ∆∆∆.

Proof. Let ppθ, ξq, zq P T˚Tn ˆ Cd be a point in the zero level, i.e.,

d
ÿ

k“1

xξ, vkyek “ λ` 1
2 p|z1|

2, . . . , |zd|
2q .

If zk ‰ 0, then the kth factor of Td acts freely on ppθ, ξq, zq. Thus we need only
worry about the set I of indices k with zk “ 0. For such an index k P I, we have
that xξ, vky “ λk. Let

TI :“ tpt1, . . . , tdq P Td | tk “ 1 whenever k R Iu .

By the Delzant condition (see the end of the proof of Claim 1 in Section 2.2),
the restriction to TI of the homomorphism ρ

∆
,

ρ
∆
|TI : TI ÝÑ Tn ,
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is injective. Therefore, since Tn acts freely on T˚pTnq, so does TI . This shows
that the Td-action on the zero level set is free, so, by the Marsden-Weinstein-
Meyer theorem (Theorem 1.5.3), the reduced space is a symplectic manifold,
pE∆, ω∆q.

This reduced space inherits a hamiltonian Tn-action induced by the standard
Tn-action on T˚pTnq “ Tnˆptnq˚ with moment map rpθ, ξq, zs ÞÑ ξ (this is well-
defined since the Td-action preserves ξ). A point ξ P ptnq˚ is in the image by the
moment map of some ppθ, ξq, zq P T˚Tn ˆ Cd from the zero level exactly when
we can find z such that

d
ÿ

k“1

xξ, vkyek “ λ` 1
2 p|z1|

2, . . . , |zd|
2q ,

that is, when

xξ, vky ě λk , k “ 1, . . . , d ,

that is, when ξ P ∆. l

Interpretation of Lerman’s construction:

We may view ∆ as a manifold with corners in ptnq˚. At every point x in the
interior of a face F , the tangent space Tx∆ is the subspace of ptnq˚ » pRnq˚
tangent to F .

The interior of ∆ is the set of points given by strict inequalities:

∆o :“ tx P pRnq˚ | xx, vky ą λk, k “ 1, . . . , du

and this is a manifold (just an open subset of euclidean space).
Essentially, what we do is take the product Tn ˆ∆. Let x lie in the interior

Tn ˆ∆o. The tangent space at x is tn ˆ ptnq˚ » Rn ˆ pRnq˚. Define ωox by:

ωoxpv, ξq “ ´ξpvq “ ´ω
o
xpξ, vq and ωoxpv, v

1q “ ωoxpξ, ξ
1q “ 0 ,

for all v, v1 P tn and ξ, ξ1 P ptnq˚. Then ωo is a closed nondegenerate 2-form on
the interior of Tn ˆ∆.

We will see that we can close the open subset Tn ˆ ∆o in a smooth and
symplectic way.

At corners, there are tangent directions missing in ptnq˚, so the extension of
ωo above would be a degenerate pairing. The missing directions at each corner
point x are the normal directions to the facets of ∆ meeting at that point. For
all ξ in the tangent space to the kth facet, we have ωpvk, ξq :“ ´ξpvkq “ 0,
where vk is the vector defining that facet, and vk spans the annihilator of that
tangent space. We fix the degeneracy by eliminating in the tn component of the
tangent space the directions of the vectors vk defining the facets that meet at
the point x. To do this, we collapse the orbit of the subgroup of Tn generated
by those vk’s. This is a blow-down process and the result is a smooth compact
manifold. We thus simultaneously eliminate corners and singularities of ω .
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Finally, Tn acts on Tn ˆ ∆ by multiplication on the Tn factor. The mo-
ment map for this action is projection onto the ∆ factor. We thus obtain
pE∆, ω∆,Tn, µ∆q.

Note that the interior Tn ˆ∆o with symplectic form ωo embeds symplecti-
cally into pE∆, ω∆q and here we have action-angle coordinates, namely the
ξk’s and the θk’s, with respect to which the symplectic form is

ω∆|Tnˆ∆o “ ωo “
n
ÿ

k“1

dξk ^ dθk .

Example. Consider

pS2, ω “ dh^ dθ, S1, µ “ hq ,

where S1 acts on S2 by rotation (with vector field B
Bθ ). The image of µ is the line

segment I “ r´1, 1s. The product S1ˆI is an open-ended cylinder. By collapsing
each circle end of the cylinder to a point, we recover the 2-sphere. Note that
the notation for the symplectic form is only valid in the interior p´1, 1q ˆ S1,
so that is actually ωo “ dh^ dθ presuming the extension. ♦

Example. We want to build CP2 from T2 ˆ ∆ where ∆ is the right-angled
isosceles triangle below, following the above construction.

6

-
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Consider, for instance, the edge of the triangle lying on the x-axis, whose
tangent vectors ξ satisfy xξ, v1y “ 0, where v1 “ p0, 1q P t2. For points of that
edge, we collapse the subgroup of T2 generated by v1, namely, the second circle
factor. Similarly, for the edge of the triangle lying on the y-axis we collapse the
first circle factor in T2, and for the hypothenuse we collapse the diagonal circle
tpeiθ, eiθq P T2u. At the vertices (points lying in two facets), we collapse the
whole T2.

All together, after the above collapses, the map

T2 ˆ∆ ÝÑ CP2

peiθ1 , eiθ2q, pµ1, µ2q ÞÝÑ

”

a

1´ 2pµ1 ` µ2q :
?

2µ1e
iθ1 :

?
2µ2e

iθ2
ı

.

provides an equivariant symplectomorphism. ♦
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Exercise 2.4.2. Build CPn from Tnˆ∆n where ∆n is simplex with vertices at
the origin and at the points

p 1
2 , 0, . . . , 0q, p0,

1
2 , 0, . . . , 0q, . . . p0, . . . , 0,

1
2 q .

Exercise 2.4.3. (‹) Build a Hirzebruch surface from T2ˆ∆ where ∆ “ Ha,b,n

is the polytope in Section 2.3.

2.5 Proof of Uniqueness

For Delzant’s theorem, it remains to prove:

Theorem 2.5.1. Let pM2n, ω,Tn, µq be a symplectic toric manifold with mo-
ment polytope ∆ :“ µpMq. Then pM2n, ω,Tn, µq is equivariantly symplectomor-
phic to Lerman’s symplectic toric manifold associated with ∆, pE∆, ω∆,Tn, µ∆q,
defined in Section 2.4

The original proof due to Delzant uses a sheaf-theoretic argument. We will
sketch here an alternative proof going back to ideas of Lerman [40] and Mein-
renken [47].

Definition 2.5.2. Let ∆ be an n-dimensional Delzant polytope with d facets
and let pM,ω,Tn, µq be a hamiltonian Tn-space. The cut space of pM,ω,Tn, µqpM,ω,Tn, µqpM,ω,Tn, µq
w.r.t. ∆∆∆ is the hamiltonian Tn-space obtained by symplectic reduction at level
0 of the the product manifold

M ˆ Cd

with:

• product symplectic form

ω ` i
2

d
ÿ

k“1

dzk ^ dz̄k ,

• diagonal action of Td, where Td acts on M via the composition with the
homomorphism ρ

∆
: Td Ñ Tn from Section 2.4 and on Cd as in Propos-

tion 2.4.1, and

• moment map

pp, zq ÞÝÑ

d
ÿ

k“1

xµppq, vkyek ´ λ´
1
2 p|z1|

2, . . . , |zd|
2q .

In particular, we saw in Section 2.4 that the cut space of

pT˚Tn,
ÿ

dξk ^ dθk,Tn,pr2q



44 CHAPTER 2. DELZANT’S CLASSIFICATION

w.r.t. ∆ is Lerman’s symplectic toric manifold associated with ∆, pE∆, ω∆,Tn, µ∆q.

Remark. If we extend the above construction to a half-line (instead of ∆),
say rλ,`8q, we get the first instance of cut space defined by Lerman in [40];
cf. Section 3.3. ♦

Proof. (of Theorem 2.5.1)
Warning: This proof uses concepts such as compatible almost complex struc-

ture, principal bundles and symplectic neighborhood, which we have not yet dis-
cussed in these notes.

The idea is to present pM2n, ω,Tn, µq as a cut space w.r.t. its moment poly-

tope ∆ of a hamiltonian torus space pĂM2n, rω,Tn, rµq with free Tn-action. Then

the moment map rµ : ĂM2n Ñ Rn may be viewed as a lagrangian (torus) fibra-
tion over its image and we can introduce action-angle coordinates (ξk, θk), thus

identifying ĂM2n (up to equivariant symplectomorphism) with an open subset of
T˚Tn. It then follows that pM2n, ω,Tn, µq is the cut space w.r.t. ∆ of

pT˚Tn,
ÿ

dξk ^ dθk,Tn,pr2q ,

i.e., is (equivariantly symplectomorphic to) Lerman’s symplectic toric manifold
pE∆, ω∆,Tn, µ∆q.

Here is a sketch of how to construct such a pĂM2n, rω,Tn, rµq.
Let

∆ “ tx P pRnq˚ | xx, vky ě λk, k “ 1, . . . , du ,

let k1 P t1, . . . , du, consider the corresponding facet

∆1 :“ ∆X tx P pRnq˚ | xx, vk1
y “ λk1

u

and let S “ µ´1p∆1q ĂM be the preimage of that facet. Then S is a connected
component of the fixed point set of the subgroup

T :“ texp ptvk1
q | t P Ru

and is a symplectic submanifold of codimension 2. We denote by ωS the symplec-
tic form on S. We consider its symplectic normal bundle8, TSω. We can equip
TSω with the structure of an hermitian line bundle (this involves choosing a
compatible almost complex structure on M) and thus extract its unit circle bun-
dle, ΠQ : QÑ S, which is a Tn-equivariant principal circle bundle and satisfies
TSω “ Q ˆS1 C. Choose a corresponding Tn-invariant connection form α, i.e.,
a Tn-invariant 1-form on Q satisfying, for the vertical vector field v generated
by the circle action:

ıvα “ 1 and ıvdα “ 0 .

8The symplectic normal bundle of a symplectic submanifold S Ă M is the vector
bundle over S whose fiber at each point s is given by the symplectic orthogonal of TsS in
pTsM,ωsq.
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Consider the closed 2-form on Qˆ C:

ωQˆC :“ Π˚QωS ` ωC `
1
2d

`

|z|2α
˘

.

This 2-form is invariant for the circle action and vanishes on the vertical vector
field,

ıv´ B
Bθ
ωQˆC “ ı´ B

Bθ
ωC ` ıvrdr ^ α “ rdr ´ rdr “ 0 ,

so it descends to a closed 2-form ωTSω . Moreover, ωTSω is nondegenerate near its
zero section, S0. It follows that there exists an equivariant symplectomorphism
between tubular neighborhoods of S in M and of S0 in TSω.

Now the symplectic normal bundle TSω may be viewed as a cut space w.r.t.
the interval r0,`8q of the hamiltonian S1-space QˆR equipped with the sym-
plectic form

ωQˆR :“ Π˚QωS ` d ptαq

(where t is the coordinate function on R). There is a natural Tn-equivariant
diffeomorphism between Q ˆ R` and TSωzS0 preserving the 2-forms. We can
thus glue MzS with a small neighborhood of Q in Q ˆ R, to obtain a new
hamiltonian Tn-space pM1, ω1,Tn, µ1q with one orbit type stratum less. The
original space is obtained from this M1 by cutting with respect to the affine
half-space

H1 :“ tx P pRnq˚ | xx, vk1
y ě λk1

u .

Continuing in this fashion for each facet of ∆, we obtain a sequence of spaces
M1,M2, . . . ,Md with the property that the final space Md has a free action and
each Mk is the cut space of Mk´1 w.r.t. Hk, setting M0 :“M . Hence, we have

M “ pM1qH1
“ pM2qH1XH2

“ . . . “ pMdq∆

and we set Md “ ĂM . l

Exercise 2.5.3. What would be the classification of symplectic toric manifolds
if, instead of the equivalence relation defined in Section 1.4, one considered to
be equivalent those pMj , ωj ,Tn, µjq, j “ 1, 2, related by:

(a) a Tn-equivariant symplectomorphism ϕ sucht that µ1 “ µ2 ˝ ϕ?

(b) an isomorphism λ : Tn Ñ Tn and a λ-equivariant9 symplectomorphism
ϕ : M1 ÑM2?

Hint: The general affine group, AGLpn;Zq :“ Rn¸GLpn;Zq, is the group of
all invertible affine integral transformations, whose elements are compositions
of linear maps in GLpn;Zq and translations by arbitrary vectors in Rn.

9λ-equivariance means that ϕpt ¨pq “ λptq ¨ϕppq for all p PM1 and t P Tn. An isomorphism
of Tn is given by an element of GLpn;Zq (those are the linear maps Rn Ñ Rn that are
isomorphisms of the lattice p2πZqn).





Chapter 3

Further Topics

This chapter goes on exploring how to understand a toric manifold from its
polytope.

3.1 Homology of Symplectic Toric Manifolds

After reviewing the basics of Morse theory following [50], we compute the ho-
mology of symplectic toric manifolds using Morse theory; an appropriate Morse
function is provided by a moment map with respect to a suitable circle subgroup.

Review of Morse theory

Let M be an m-dimensional manifold and let f : M Ñ R be a smooth
function.

A point q P M is a critical point of f if dfq “ 0. A critical point is
nondegenerate if the hessian matrix

ˆ

B2f

BxiBxj

˙

q

is nonsingular, where the xi’s are local coordinates near q. (The condition that
the hessian matrix is nonsingular is independent of the choice of coordinates.)
The hessian matrix defines a symmetric bilinear function Hq : Rm ˆ Rm Ñ R
given by inner product

pv, wq ÞÝÑ xv,

ˆ

B2f

BxiBxj

˙

q

wy

and also called the hessian of f at q relative to the local coordinates xi; the
hessian is in fact the expression in coordinates of a natural bilinear form on the
tangent space at q.

The index of a bilinear function H : RmˆRm Ñ R is the maximal dimension
of a subspace of Rm where H is negative definite. The nullity of H is the
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dimension of its nullspace, that is, the subspace consisting of all v P Rm such
that Hpv, wq “ 0 for all w P Rm. Hence, a critical point q of f : M Ñ R is
nondegenerate if and only if the hessian Hq : Rm ˆ Rm Ñ R has nullity equal
to zero.

Let q be a nondegenerate critical point for f : M Ñ R. The index of fff at
qqq is the index of the hessian Hq : Rm ˆ Rm Ñ R. This is well-defined, i.e., the
index is independent of the choice of local coordinates. Moreover, the Morse
lemma states that there is a coordinate chart pU , x1, . . . , xmq centered at q such
that

f |U “ fpqq ´ px1q
2 ´ . . .´ pxλq

2 ` pxλ`1q
2 ` . . .` pxmq

2 ,

where λ is the index of f at q. In particular, nondegenerate critical points are
necessarily isolated.

A smooth function f : M Ñ R is a Morse function on M if all of its
critical points are nondegenerate.

For a P R and a Morse function f on M , we define the corresponding sub-
level set as

Ma “ f´1p´8, as “ tp PM | fppq ď au .

Theorem 3.1.1. (Morse [51], Milnor [50])
Let f be a Morse function on M .

(a) Let a ă b and suppose that the set f´1ra, bs, consisting of all p P M with
a ď fppq ď b, is compact, and contains no critical points of f . Then Ma

is diffeomorphic to M b. Furthermore, Ma is a deformation retract of M b,
so that the inclusion map Ma ãÑM b is a homotopy equivalence.

(b) Let q be a nondegenerate critical point with index λ and fpqq “ c. Suppose
that f´1rc´ ε, c` εs is compact, and contains no critical point of f other
than q, for some ε ą 0. Then, for all sufficiently small ε, the set M c`ε

has the homotopy type of M c´ε with a λ-cell attached.

(c) If each set Ma is compact, then the manifold M has the homotopy type
of a CW-complex with one cell of dimension λ for each critical point of
index λ.

A k-cell is simply a k-dimensional disk Dk, and it gets attached along its
boundary Sk´1. Morse’s original treatment did not include part (c) of Theo-
rem 3.1.1. Instead, his main results were phrased in terms of inequalities. Let
bkpMq :“ dimHkpMq be the kkk-th Betti number of MMM . Let M be a compact
manifold and f a Morse function on M . Let Cλ be the number of critical points
of f with index λ.

Theorem 3.1.2. (Morse inequalities [51])
In the conditions and notation of the above paragraph, we have:

(a)

bλpMq ď Cλ ,
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(b)
ÿ

λ

p´1qλbλpMq “
ÿ

λ

p´1qλCλ , and

(c)
bλpMq ´ bλ´1pMq ` . . .˘ b0pMq ď Cλ ´ Cλ´1 ` . . .˘ C0 .

A perfect Morse function is a Morse function for which the inequalities
in the previous statement are equalities.

Corollary 3.1.3. If all critical points of a Morse function f have even index,
then f is a perfect Morse function.

Homology of symplectic toric manifolds

Let pM,ω,Tn, µq be a 2n-dimensional symplectic toric manifold. Choose a
suitably generic direction in Rn by picking a vector X whose components are
independent over Q. This condition ensures that:

• the one-dimensional subgroup, TX Ă Tn, generated by the vector X is
dense in Tn,

• X is not parallel to the facets of the moment polytope ∆ :“ µpMq, and

• the vertices of ∆ have different projections along X.

Exercise 3.1.4. Check that the fixed points for the Tn-action are exactly the
fixed points of the action restricted to TX , that is, are the zeros of the vector
field, X# on M corresponding to the TX-action.
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Let µX :“ xµ,Xy : M Ñ R be the projection of µ along X. By definition of
moment map, µX is a hamiltonian function for the vector field X# generated
by X. We conclude from the previous exercise that the critical points of µX are
precisely the fixed points of the Tn-action.

By Theorem 1.4.7, if q is a fixed point for the Tn-action, then there exists
a chart pU , x1, . . . , xn, y1, . . . , ynq centered at q and weights λp1q, . . . , λpnq P Zn
such that

µX
ˇ

ˇ

U “ xµ,Xy|U “ µXpqq ` 1
2

n
ÿ

k“1

xλpkq, Xypx2
k ` y

2
kq .
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Since the components of X are independent over Q, all coefficients xλpkq, Xy are
nonzero, so q is a nondegenerate critical point of µX . Moreover, the index of q is
twice the number of labels k such that xλpkq, Xy ă 0. But the λpkq’s are precisely
the edge vectors ui which satisfy Delzant’s conditions. Therefore, geometrically,
the index of q can be read from the moment polytope ∆, by taking twice the
number of edges whose inward-pointing edge vectors at µpqq point down relative
to X, that is, whose inner product with X is negative. In particular, µX is a
perfect Morse function. By applying Corollary 3.1.3 we conclude that:

Theorem 3.1.5. Let X P Rn have components independent over Q. The degree-
2k homology group of the symplectic toric manifold pM,ω,Tn, µq has dimension
equal to the number of vertices of the moment polytope ∆ where there are ex-
actly k (primitive inward-pointing) edge vectors which point down relative to the
projection along the X. All odd-degree homology groups of M are zero.

By Poincaré duality (or by taking ´X instead of X), the words “point down”
may be replaced by “point up”.

Exercise 3.1.6. Let pM,ω,Tn, µq be a symplectic toric manifold. What is the
Euler characteristic of M?

3.2 Cutting Symplectic Toric Manifolds

Symplectic cutting is a construction proposed by Eugene Lerman [40] in the
1990’s, which has since found many applications. It is basically the application of
symplectic reduction to the product of a hamiltonian S1-space with a standard
C, in a way that the reduced space for the original hamiltonian S1-space embeds
symplectically as a codimension 2 submanifold in the symplectic cut manifold.

Let pM,ωq be a symplectic manifold where S1 acts in a hamiltonian way,
ρ : S1 Ñ DiffpMq, with moment map µ : M Ñ R. Suppose that:

• M has a unique nondegenerate minimum at q where µpqq “ 0, and

• for ε sufficiently small, S1 acts freely on the level set µ´1pεq.

Let C be equipped with the symplectic form ´ i
2dz ^ dz̄ (note the sign here for

later convenience) and with standard circle action. Then the diagonal action of
S1 on the product M ˆ C is hamiltonian with moment map

φ : M ˆ C ÝÑ R , φpp, zq “ µppq ´ 1
2 |z|

2 .

Observe that S1 acts freely on the ε-level of φ for ε small enough:

φ´1pεq “ tpp, zq PM ˆ C | µppq ´ 1
2 |z|

2 “ εu
“ tpp, 0q PM ˆ C | µppq “ εu

Y tpp, zq PM ˆ C | 1
2 |z|

2 “ µppq ´ ε ą 0u .
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The reduced space is hence

φ´1pεq{S1 » µ´1pεq{S1 \ tp PM | µppq ą εu .

One can check that the open submanifold of M given by tp P M | µppq ą
εu embeds as an open dense symplectic submanifold into φ´1pεq{S1, and the
reduced space µ´1pεq{S1 embeds as a codimension 2 symplectic submanifold
into φ´1pεq{S1.

As it is a local construction, the cutting operation may be more generally
performed at a local minimum (or maximum) of the moment map µ.

There is a remaining S1-action on the εεε-cut space

Měε
cut :“ φ´1pεq{S1

induced by

τ : S1 ÝÑ DiffpM ˆ Cq , τtpp, zq “ pρtppq, zq .

In fact, τ is a hamiltonian S1-action on MˆC which commutes with the diagonal
action, thus descends to an action rτ : S1 Ñ DiffpMěε

cutq.

Exercise 3.2.1. Show that rτ is hamiltonian by describing a moment map.

Loosely speaking, the cutting technique provides a hamiltonian way to close
the open manifold tp P M | µppq ą εu, by using the reduced space at level ε,
µ´1pεq{S1. We may similarly close tp P M | µppq ă εu. The resulting hamilto-
nian S1-spaces are called cut spaces, and denoted Měε

cut and Mďε
cut.

If another group G acts on M in a hamiltonian way which commutes with
the S1-action, then the cut spaces are also hamiltonian G-spaces: Suppose that
a compact Lie group G acts on a symplectic manifold pM,ωq in a hamiltonian
way, and that q PM is a fixed point for the G-action. Then, by Theorem 1.4.7,
there exists a Darboux chart pU , z1, . . . , znq centered at q which is G-equivariant
with respect to a linear action of G on Cn. Consider an ε-cut space of M relative
to this chart, for ε sufficiently small.

Exercise 3.2.2. Check that G acts on the cut space in a hamiltonian way.
Describe the moment map.

Cutting symplectic toric manifolds

Let ∆ be an n-dimensional Delzant polytope, and let pM∆, ω∆,Tn, µ∆q be
the associated symplectic toric manifold. We consider the action of the diagonal
circle S1 Ď Tn on M∆. The corresponding ε-cut space of pM∆, ω∆q at a fixed
point of the Tn-action is a new symplectic toric manifold. What is the moment
polytope ∆ε corresponding to this new symplectic toric manifold?

Let q be a fixed point of the Tn-action on pM∆, ω∆q, and let p “ µ∆pqq
be the corresponding vertex of ∆. (Cf. Exercise 2.3.2.) Let u1, . . . , un be the
primitive (inward-pointing) edge vectors at p, so that the rays p ` tui, t ě 0,
form the edges of ∆ at p.
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Theorem 3.2.3. The ε-cut space of pM∆, ω∆q at a fixed point q is the symplectic
toric manifold associated to the polytope ∆ε obtained from ∆ by replacing the
vertex p by the n vertices

p` εui , i “ 1, . . . , n .

In other words, the moment polytope for a cut space of pM∆, ω∆q at q is
obtained from ∆ by chopping off the corner corresponding to q, thus substituting
the original set of vertices by the same set with the vertex corresponding to q
replaced by exactly n new vertices:

p

   
  
�

@
@

@
@

b
b
b
b

Proof. Exercise: Check that the new polytope is Delzant. We may view the
ε-cut space of pM∆, ω∆q as being obtained from M∆ by smoothly replacing q by
pCPn´1, εω

FS
q. Compute the restriction of the moment map to this set. Recall

Exercise 2.3.6. l

@
@

@

Example. The moment polytope for the standard T2-action on pCP2, ω
FS
q is

a right isosceles triangle ∆. If we cut CP2 at r0 : 0 : 1s we obtain a symplectic
toric manifold associated to the trapezoid below. This manifold is a Hirzebruch
surface, defined in Section 2.3.
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Example. The following moment polytope corresponds to a toric manifold ob-
tained by cutting CP2 at each of its three fixed points:

@
@
@

@
@

♦

3.3 Blow-Up of Symplectic Toric Manifolds

There is a close connection between symplectic cutting and the classical blow-up
construction in the category of symplectic toric manifolds.

Review of classic blow-up

Let L be the tautological line bundle over CPn´1, that is,

L “ tprps, zq | p P Cnzt0u , z “ λp for some λ P Cu

with projection to CPn´1 given by prps, zq ÞÑ rps. The fiber of L over the point
rps P CPn´1 is the complex line in Cn represented by that point.

Definition 3.3.1. The blow-up of CnCnCn at the origin is the total space of the
bundle L. The corresponding blow-down map is the map β : L Ñ Cn defined
by βprps, zq “ z.

Notice that the total space of L may be decomposed as the disjoint union of
two sets,

E :“ tprps, 0q | p P Cnzt0uu

and
S :“ tprps, zq | p P Cnzt0u , z “ λp for some λ P C˚u .

The set E is called the exceptional divisor; it is diffeomorphic to CPn´1 and
gets mapped to the origin by β. On the other hand, the restriction of β to the
complementary set S is a diffeomorphism onto Cnzt0u. Hence, we may regard L
as being obtained from Cn by smoothly replacing the origin by a copy of CPn´1.

There are actions of the unitary group Upnq on all of these sets induced by
the standard linear action on Cn, and the map β is Upnq-equivariant.

Remark. Blow-up extends to an operation along a complex submanifold by
considering the projectivization of the normal bundle to the submanifold. ♦

Symplectic blow-up

According to its first printed exposition in [45], the symplectic version of
blow-up is due to Gromov.
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Definition 3.3.2. A blow-up symplectic form on L is a Upnq-invariant
symplectic form ω such that the difference ω ´ β˚ω0 is compactly supported,

where ω0 “
i
2

n
ř

k“1

dzk ^ dz̄k is the standard symplectic form on Cn.

Two blow-up symplectic forms are called equivalent if one is the pullback
of the other by a Upnq-equivariant diffeomorphism of L. Guillemin and Stern-
berg [29] have shown that two blow-up symplectic forms are equivalent if and
only if they have equal restrictions to the exceptional divisor E Ă L.

Let Ωε (ε ą 0) be the set of all blow-up symplectic forms on L whose
restriction to the exceptional divisor E » CPn´1 is εωFS , where ωFS is the
Fubini-Study form on CPn´1 described in Section 1.4. An εεε-blow-up of Cn at
the origin is a pair pL, ωq with ω P Ωε.

Let pM,ωq be a 2n-dimensional symplectic manifold. It is a consequence
of the Darboux theorem that, for each point q P M , there exists a chart
pU , z1, . . . , znq centered at q and with image in Cn where

ω|U “
i

2

n
ÿ

k“1

dzk ^ dz̄k .

It is shown in [29] that, for ε small enough, we can perform an ε-blow-up of M
at q modeled on Cn at the origin, without changing the symplectic structure
outside of a small neighborhood of q. The resulting manifold is then called an
εεε-blow-up of MMM at qqq.

Example. Let CPpL ‘ Cq be the CP1-bundle over CPn´1 obtained by projec-
tivizing the direct sum of the tautological line bundle L with a trivial complex
line bundle. Consider the map

β : CPpL‘ Cq ÝÑ CPn
prps, rλp : wsq ÞÝÑ rλp : ws ,

where rλp : ws on the right represents a line in Cn`1, forgetting that, for each
rps P CPn´1, that line sits in the 2-complex-dimensional subspace Lrps ‘ C Ă

Cn ‘ C. Notice that β maps the exceptional divisor

E :“ tprps, r0 : . . . : 0 : 1sq | rps P CPn´1u » CPn´1

to the point r0 : . . . : 0 : 1s P CPn, whereas β is a diffeomorphism on the
complement

S :“ tprps, rλp : wsq | rps P CPn´1 , λ P C˚ , w P Cu » CPnztr0 : . . . : 0 : 1su .

Therefore, we may regard CPpL‘Cq as being obtained from CPn by smoothly
replacing the point r0 : . . . : 0 : 1s by a copy of CPn´1. The space CPpL ‘ Cq
is the blow-up of CPn at the point r0 : . . . : 0 : 1s, and β is the corresponding
blow-down map. The manifold CPpL ‘ Cq for n “ 2 is a Hirzebruch surface;
cf. Section 2.3. Notice that it coincides with a cut-space of CPn at the fixed
point r0 : . . . : 0 : 1s. ♦
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Exercise 3.3.3. (‹) Write a definition for blow-up of a symplectic manifold
along a complex submanifold by considering the projectivization of the normal
bundle to the submanifold.

3.4 Symplectic Toric Orbifolds

Orbifold singularities.
Roughly speaking, orbifolds (introduced by Satake in [54]) are singular man-

ifolds where each singularity is locally modeled on Rm{Γ, for some finite group
Γ Ă GLpm;Rq. For the precise definition, let |M | be a Hausdorff topological
space satisfying the second axiom of countability.

Definition 3.4.1. An orbifold chart on |M | is a triple pV,Γ, ϕq, where V is
a connected open subset of some euclidean space Rm, Γ is a finite group which
acts linearly on V so that the set of points where the action is not free has
codimension at least two, and ϕ : V Ñ |M | is a Γ-invariant map inducing a
homeomorphism from V{Γ onto its image U Ă |M |. An orbifold atlas A for
|M | is a collection of orbifold charts on |M | such that: the collection of images U
forms a basis of open sets in |M |, and the charts are compatible in the sense that,
whenever two charts pV1,Γ1, ϕ1q and pV2,Γ2, ϕ2q satisfy U1 Ď U2, there exists
an injective homomorphism λ : Γ1 Ñ Γ2 and a λ-equivariant open embedding
ψ : V1 Ñ V2 such that ϕ2 ˝ψ “ ϕ1. Two orbifold atlases are equivalent if their
union is still an atlas. An m-dimensional orbifold M is a Hausdorff topological
space |M | satisfying the second axiom of countability, plus an equivalence class
of orbifold atlases on |M |.

Notice that we do not require the action of each group Γ to be effective. Given
a point p on an orbifold M , let pV,Γ, ϕq be an orbifold chart for a neighborhood
U of p. The orbifold structure group of p, Γp, is (the isomorphism class
of) the isotropy group of a pre-image of p under ϕ. We may always choose an
orbifold chart pV,Γ, ϕq such that ϕ´1ppq is a single point (which is fixed by Γ).
In this case Γ » Γp, and we say that pV,Γ, ϕq is a structure chart for p.

An ordinary manifold is a special case of orbifold where each group Γ is the
identity group. Quotients of manifolds by locally free actions of Lie groups are
orbifolds. In fact, any orbifold M has a presentation of this form obtained as
follows. Given a structure chart pV,Γ, ϕq for p PM with image U , the orbifold
tangent space at p is the quotient of the tangent space to V at ϕ´1ppq by the
induced action of Γ:

TpM :“ Tϕ´1ppqV{Γ .

The collection of the orbifold tangent spaces at all p, builds up the orbifold
tangent bundle TM , which has a natural structure of smooth manifold out-
side the zero section. The general linear group GLpm;Rq acts locally freely on
TMzt0u, and M » pTMzt0uq{GLpm;Rq. Choosing a riemannian metric and
taking the orthonormal frame bundle, OpTMq, we present M as OpTMq{Opmq.
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Examples.

1. Let G “ Tn be an n-torus acting on a symplectic manifold pM,ωq in a
hamiltonian way with moment map µ : M Ñ g˚. For any ξ P g˚, the
level µ´1pξq is preserved by the Tn-action. Suppose that ξ is a regular
value of µ.1 Then µ´1pξq is a submanifold of codimension n. Let Gp be
the stabilizer of p, and gp its Lie algebra. Note that

ξ regular ðñ dµp is surjective at all p P µ´1pξq
ðñ gp “ 0 for all p P µ´1pξq
ðñ the stabilizers on µ´1pξq are finite .

By the slice theorem (see, for instance, [9, 15]), near Op the orbit space
µ´1pξq{G is modeled by S{Gp, where S is a Gp-invariant disk in µ´1pξq
through p and transverse to Op. Hence, µ´1pξq{G is an orbifold.

2. Consider the S1-action on C2 by eiθ ¨ pz1, z2q “ peikθz1, e
iθz2q for some

fixed integer k ě 2. This is hamiltonian with moment map

µ : C2 ÝÑ R
pz1, z2q ÞÝÑ 1

2 pk|z1|
2 ` |z2|

2q .

Any ξ ą 0 is a regular value and µ´1pξq is a 3-dimensional ellipsoid. The
stabilizer of pz1, z2q P µ

´1pξq is t1u if z2 ‰ 0, and is

Zk “
!

ei
2π`
k | ` “ 0, 1, . . . , k ´ 1

)

if z2 “ 0. The reduced space µ´1pξq{S1 is called a teardrop orbifold or
conehead; it has one cone (also known as a dunce cap) singularity with
cone angle 2π

k , that is, a point with orbifold structure group Zk.

3. Let S1 act on C2 by eiθ ¨pz1, z2q “ pe
ikθz1, e

i`θz2q for some integers k, ` ě 2.
Suppose that k and ` are relatively prime. Then

pz1, 0q has stabilizer Zk pfor z1 ‰ 0q ,
p0, z2q has stabilizer Z` pfor z2 ‰ 0q ,
pz1, z2q has stabilizer t1u pfor z1, z2 ‰ 0q .

The quotient µ´1pξq{S1 is called a football orbifold. It has two cone
singularities, one with angle 2π

k and another with angle 2π
` .

4. More generally, the reduced spaces of S1 acting on Cn by

eiθ ¨ pz1, . . . , znq “ pe
i`1θz1, . . . , e

i`nθznq ,

are called weighted (or twisted) projective spaces.

1By Sard’s theorem, the singular values of µ form a set of measure zero.
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♦

The differential-geometric notions of vector fields, differential forms, exterior
differentiation, group actions, etc., extend naturally to orbifolds by gluing corre-
sponding local Γ-invariant or Γ-equivariant objects. In particular, a symplectic
orbifold is a pair pM,ωq where M is an orbifold and ω is a closed 2-form on
M which is nondegenerate at every point of M .

Definition 3.4.2. A symplectic toric orbifold is a compact connected sym-
plectic orbifold pM,ωq equipped with an effective hamiltonian action of a torus
T of dimension equal to half the dimension of the orbifold,

dimT “
1

2
dimM ,

and with a choice of a corresponding moment map µ.

Symplectic toric orbifolds have been classified by Lerman and Tolman [43]
in a theorem which generalizes Delzant’s theorem: a symplectic toric orbifold
is determined by its moment polytope plus a positive integer label attached to
each of the polytope facets. The polytopes which occur in the Lerman-Tolman
classification are more general than the Delzant polytopes in the sense that only
simplicity and rationality are required; the edge vectors u1, . . . , un need only
form a rational basis of Zn. In the case where the integer labels are all equal to
1, the failure of the polytope smoothness accounts for all orbifold singularities.
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[42] Lerman, E., Meinrenken, E., Tolman, S., Woodward, C., Nonabelian con-
vexity by symplectic cuts, Topology 37 (1998), 245-259.

[43] Lerman, E., Tolman, S., Hamiltonian torus actions on symplectic orbifolds
and toric varieties, Trans. Amer. Math. Soc. 349 (1997), 4201-4230.



62 BIBLIOGRAPHY

[44] Marsden, J., Weinstein, A., Reduction of symplectic manifolds with sym-
metry, Rep. Mathematical Phys. 5 (1974), 121-130.

[45] McDuff, D., Examples of simply-connected symplectic non-Kählerian man-
ifolds, J. Differential Geom. 20 (1984), 267-277.

[46] McDuff, D., Salamon, D., Introduction to Symplectic Topology, third edi-
tion. Oxford University Press, Oxford, 2017.

[47] Meinrenken, E., Symplectic geometry. Lecture notes in the author’s website
www.math.toronto.edu/mein/teaching/LectureNotes/sympl.pdf.

[48] Meyer, K., Symmetries and integrals in mechanics, Dynamical Systems
(Proc. Sympos., Univ. Bahia, Salvador, 1971), 259-272. Academic Press,
New York, 1973.

[49] Mikhalkin, G., Examples of tropical-to-lagrangian correspondence,
preprint, arXiv:1802.06473v2.

[50] Milnor, J., Morse Theory, based on lecture notes by M. Spivak and R. Wells,
Annals of Mathematics Studies 51, Princeton University Press, Princeton,
1963.

[51] Morse, M., The foundations of a theory in the calculus of variations in the
large, Trans. Amer. Math. Soc. 30 (1928), 213-274.

[52] Oda, T., Convex Bodies and Algebraic Geometry – An Introduction to the
Theory of Toric Varieties, Ergebnisse der Mathematik und ihrer Grenzge-
biete (3) 15, Springer-Verlag, Berlin, 1988.

[53] Oesinghaus, J., Symplectic Toric Bestiary, Bachelor Thesis at ETH Zurich,
2012.

[54] Satake, I., On a generalization of the notion of manifold, Proc. Nat. Acad.
Sci. U.S.A. 42 (1956), 359-363.

[55] Scott, P., The geometries of 3-manifolds, Bull. London Math. Soc. 15
(1983), 401-487.

[56] Souriau, J.-M. , Structure des Systèmes Dynamiques, Mâıtrises de
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