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Abstract of the Dissertation

Two-Point Gromov-Witten Formulas

for Symplectic Toric Manifolds

by

Alexandra Mihaela Popa

Doctor of Philosophy

in

Mathematics

Stony Brook University

2012

We show that the standard generating functions for genus 0 two-point twisted Gromov-
Witten invariants arising from concavex vector bundles over symplectic toric manifolds are
explicit transforms of the corresponding one-point generating functions. The latter are, in
turn, transforms of Givental’s J-function. We obtain closed formulas for them and, in partic-
ular, for two-point Gromov-Witten invariants of non-negative toric complete intersections.
Such two-point formulas should play a key role in the computation of genus 1 Gromov-Witten
invariants (closed, open, and unoriented) of toric complete intersections as they indeed do
in the case of the projective complete intersections.
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Chapter 1

Introduction

Torus actions on moduli spaces of stable maps into a smooth projective variety facilitate
the computation of equivariant Gromov-Witten invariants [Gi1] via the Localization The-
orem [ABo], [GraPa]. Equivariant formulas lead to other interesting consequences beyond
the computation of non-equivariant Gromov-Witten invariants. In the case of the projective
spaces, two-point equivariant Gromov-Witten formulas in [PoZ] lead to the confirmation
of mirror symmetry predictions concerning open and unoriented genus 1 Gromov-Witten
invariants in the same paper and to the computation of closed genus 1 Gromov-Witten in-
variants in [Po]. In this dissertation we obtain equivariant formulas expressing the standard
two-point closed genus 0 generating function for certain twisted Gromov-Witten invariants
of symplectic toric manifolds in terms of the corresponding one-point generating functions.
We also obtain explicit formulas for the latter. In particular, we show that the standard gen-
erating function for these two-point invariants is a fairly simple transform of the well-known
Givental’s J-function. The formulas obtained in this dissertation compute, in particular, the
twisted/un-twisted Gromov-Witten numbers (1.0.2)/(1.0.3) below.

For a smooth projective variety X and a class A PH2pX;Zq, M0,mpX,Aq denotes the
moduli space of stable maps from genus 0 curves with m marked points into X representing
A. Let

evi : M0,mpX,Aq ÝÑ X

be the evaluation map at the i-th marked point; see [MirSym, Chapter 24]. All cohomology
groups in this dissertation will be with rational coefficients unless otherwise specified. For
each i “ 1, 2, . . . ,m, let ψi P H2pM0,mpX,Aqq be the first Chern class of the universal
cotangent line bundle for the i-th marked point. Let

π : U ÝÑ M0,mpX,Aq

be the universal curve and ev : U ÝÑ X the natural evaluation map; see [MirSym, Sec-
tion 24.3].

A holomorphic vector bundle EÝÑX is called concavex if

E “ E` ‘ E´, with H1
`
P1, f˚E`

˘
“ 0, H0

`
P1, f˚E´

˘
“ 0 @ f : P1 ÝÑ X.

Such a vector bundle induces a vector orbi-bundle VE over M0,mpX,Aq:

VE ” VE` ‘ VE´ , where VE` ” π˚ev
˚E`, VE´ ” R1π˚ev

˚E´. (1.0.1)
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Given a class A P H2pX;Zq and classes η1, η2 P H˚pXq, the corresponding genus 0 twisted
two-point Gromov-Witten (GW) invariants of X are:

@
ψp1η1, ψ

p2η2
DX
A,E

”
ż

rM0,2pX,Aqsvir

`
ψ

p1
1 ev˚

1η1
˘`
ψ

p2
2 ev˚

2η2
˘
epVEq P Q. (1.0.2)

In particular, if E“E`, the twisted Gromov-Witten invariants (1.0.2) are the genus 0 two-
point Gromov-Witten invariants of a complete intersection Y ” s´1p0q ãÑ X defined by a
generic holomorphic section s :XÝÑE`:

@
ψp1η1, ψ

p2η2
DX
A,E` “

@
ψp1η1, ψ

p2η2
DY
A

”
@
ψp1η1, ψ

p2η2
DY
A,0

@ η1, η2 PH˚pY q; (1.0.3)

the first equality follows from [El, Theorem 0.1.1, Remark 0.1.1].
The numbers (1.0.2) have been computed in the X“Pn´1 case under various assumptions

on E through various approaches. The case when E is a positive line bundle is solved
in [BK] and [Z1] and extended to the case when E is a sum of positive line bundles in [PoZ].
The former led to the computation of the genus 1 Gromov-Witten invariants of Calabi-Yau
hypersurfaces in [Z2], while the latter to the computation of the genus 1 Gromov-Witten
invariants of Calabi-Yau complete intersections in [Po]. The case when E is a concavex vector
bundle has been solved in [Ch] in the setting of [LLY1]. More recently, genus 0 formulas
with any number of ψ classes have been obtained in [Z3]. In this dissertation we extend the
approaches of [Z1] and [PoZ] to the case when X is an arbitrary compact symplectic toric
manifold and E is a sum of non-negative and negative line bundles.

1.1 Some results

If n is a non-negative integer, we write

rns ” t1, 2, . . . , nu .
Let sě1, N1, . . . , Ns ě2 and for each iPrss let

Hi ” pr˚
iH P H2

˜
sź

j“1

PNj´1

¸
,

where pri :
sś

j“1

PNj´1ÝÑPNi´1 is the projection onto the i-th component and H PH2pPNi´1q

is the hyperplane class on PNi´1.

Theorem 1.1.1. Let d“pd1,. . ., dsqPpZą0qs. The degree d genus 0 two-point GW invariants

(1.0.3) of
sś

i“1

PNi´1 are given by the following identity in QrA1,...,As,B1,...,Bss´
A

Ni
i ,B

Ni
i @ iPrss

¯ rr~´1
1 , ~´1

2 ss:

ÿ

a1,...,asě0
b1,...,bsě0

Aa1
1 . . .Aas

s Bb1
1 . . .B

bs
s

B
HN1´1´a1

1 . . .HNs´1´as
s

~1´ψ ,
HN1´1´b1

1 . . .HNs´1´bs
s

~2´ψ

F sś
i“1

PNi´1

d

“ 1

~1`~2

ÿ

ai,bi,ei,fiě0
ai`bi“Ni´1
ei`fi“di

pA1` e1~1qa1 . . . pAs`es~1qas pB1` f1~2qb1 . . . pBs`fs~2qbs
sś

i“1

ˆ
eiś
r“1

pAi`r~1qNi

fiś
r“1

pBi`r~2qNi

˙ .

(1.1.1)
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This follows from Corollary 3.2.4 in Section 3.2.

Remark 1.1.2. The sums on both sides of (1.1.1) are power series in ~´1
1 and ~´1

2 by
expanding at ~´1

1 “ 0 and ~´1
2 “ 0; to see this on the right-hand side, divide both the

numerator and denominator of each ai, bi, ei, fi-summand by ~

sř
i“1

Niei

1 ~

sř
i“1

Nifi

2 . Part of the
statement of Theorem 1.1.1 is that the right-hand side sum in (1.1.1) is divisible by ~1`~2
(i.e. it vanishes when evaluated at p~1, ~2q“p~,´~q). Identity (1.1.1) should be interpreted
by first dividing this sum by ~1`~2 and then setting it equal to the left-hand side.

The results below concern the GW invariants of a compact symplectic toric manifold Xτ
M

defined by (2.1.2) from a minimal toric pair pM, τq as in Definition 2.1.1. We assume that
the vector bundle E splits

E ” E` ‘ E´ ÝÑ Xτ
M , where E` ”

aà
i“1

L`
i , E´ ”

bà
i“1

L´
i , (1.1.2)

L`
i are non-trivial, non-negative line bundles and L´

i are negative line bundles.1 Theo-
rem 1.1.3 and Remark 1.1.4 below describe two-point twisted GW invariants in terms of
one-point ones. As is usually done, the twisted GW invariants will be assembled into a
generating function in the formal variables

Q “ pQ1, . . . , Qkq

with powers indexed by

Λ ”
 
dPH2 pXτ

M ;Zq :
@
ω,d

D
ě0 @ωPKτ

M

(
, (1.1.3)

where K
τ

M is the closed Kähler cone of Xτ
M .2

A ring R and the monoid Λ induce an R-algebra denoted RrrΛss: to each d we associate
a basis element denoted Qd and set

RrrΛss ”
#
ÿ

dPΛ

adQ
d : ad PR @dPΛ

+
.

1Recall that a line bundle L ÝÑ Xτ
M is called positive (respectively negative) if c1pLq P H2pXτ

M ;Rq
(respectively ´c1pLq) can be represented by a Kähler form on Xτ

M . A line bundle L ÝÑ Xτ
M is called

non-negative if c1pLq PH2pXτ
M ;Rq can be represented by a 2-form ω satisfying ωpv, Jvq ě 0 for all v. The

assumptions that the line bundles L`

i are non-trivial and that L´

i are negative (that is, c1pL´

i qă0 as opposed
to just c1pL´

i qď0) are only used in the theorems that rely on the one-point mirror theorem (5.1.2) of [LLY3],
that is Theorems 3.2.1, Corollary 3.2.3, Corollary 3.2.4, and Theorem 4.2.3.

2By [Br, Theorem 4.5], a non-empty closed convex subset of Rd is the intersection of its supporting half-
spaces. The supporting half-spaces of a closed convex cone C in Rd are all sets of the form tvPRd :

@
v, w

D
ě0u

for some wPRd such that
@
v, w

D
ě0 for all vPC. This implies that

ωPK
τ

M ðñ
@
ω,d

D
ě0 @dPΛ.
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Addition in RrrΛss is defined naturally; multiplication is defined by

Qd ¨Qd1 ” Qd`d1 @d,d1 PΛ

and extended by R-linearity.
For each m ě 1 and each d P Λ´t0u, let σi :M0,mpXτ

M ,dq ÝÑ U be the section of the
universal curve given by the i-th marked point,

İ

VE ”R0π˚

`
ev˚E`p´σ1q

˘
‘R1π˚

`
ev˚E´p´σ1q

˘
ÝÑM0,mpXτ

M ,dq, and
İİ

VE ”R0π˚

`
ev˚E`p´σ2q

˘
‘R1π˚

`
ev˚E´p´σ2q

˘
ÝÑM0,mpXτ

M ,dq whenever mě2.
(1.1.4)

If mě 3 and d“ 0,
İ

VE and
İİ

VE are well-defined as well and they are 0. We next define the

genus 0 two-point generating function
İ

Z:

İ

Z p~1, ~2, Qq ” ~1~2

~1 ` ~2

ÿ

dPΛ

Qd pev1ˆev2q˚

«
ep

İ

VEq
p~1´ψ1q p~2´ψ2q

ff
, (1.1.5)

where ev1, ev2 :M0,3pXτ
M ,dqÝÑXτ

M are the evaluation maps at the first two marked points.
This is used - in the case of the projective spaces - for the computation of the genus 1 GW
invariants of Calabi-Yau complete intersections.

With ev1, ev2 : M0,2pXτ
M ,dq ÝÑ Xτ

M denoting the evaluation maps at the two marked
points and for all ηPH2pXτ

Mq, let

İ

Zη p~, Qq ” η`
ÿ

dPΛ´0

Qdev1˚

«
ep

İ

VEqev˚
2η

~´ψ1

ff
PH˚pXτ

Mqr~´1srrΛss,

İİ

Zη p~, Qq ” η`
ÿ

dPΛ´0

Qdev1˚

«
ep

İİ

VEqev˚
2η

~´ψ1

ff
P H˚pXτ

Mqr~´1srrΛss.
(1.1.6)

Theorem 1.1.3. Let pri : X
τ
M ˆXτ

M ÝÑXτ
M denote the projection onto the i-th component

and let ηj, qηj PH˚pXτ
Mq be such that

sÿ

j“1

pr˚
1ηjpr

˚
2qηj PH2pN´kqpXτ

M ˆXτ
Mq

is the Poincaré dual to the diagonal class, where N´k is the complex dimension of Xτ
M .

Then,
İ

Z p~1, ~2, Qq “ 1

~1`~2

sÿ

j“1

pr˚
1

İ

Zηj p~1, Qq pr˚
2

İİ

Zqηj p~2, Qq .

This follows from Theorem 4.2.1 below, which is an equivariant version of Theorem 1.1.3.

Remark 1.1.4. The genus 0 two-point twisted GW invariants (1.0.2) are assembled into

Z˚ p~1, ~2, Qq”
ÿ

dPΛ´0

Qd pev1ˆev2q˚

„
epVEq

p~1´ψ1q p~2´ψ2q


, (1.1.7)
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where ev1, ev2 :M0,2pXτ
M ,dqÝÑXτ

M . By the string relation [MirSym, Section 26.3],

Z˚ p~1, ~2, Qq “ ~1~2

~1 ` ~2

ÿ

dPΛ´0

pev1̂ ev2q˚

„
epVEq

p~1´ψ1qp~2´ψ2q


PH˚pXτ

M ˆXτ
Mq r~´1

1 , ~´1
2 srrΛss,

where ev1, ev2 :M0,3pXτ
M ,dqÝÑXτ

M . By (1.1.4) and (1.0.1),

ep
İ

VEqev˚
1epE`q “ epVEqev˚

1epE´q.

The last two equations imply that

İ

Z˚p~1, ~2, Qqpr˚
1epE`q “ Z˚p~1, ~2, Qqpr˚

1epE´q,

where
İ

Z˚ is obtained from
İ

Z by disregarding the Q0 term and pr1 : X
τ
M ˆXτ

M ÝÑ Xτ
M is

the projection onto the first component. This together with Theorem 1.1.3 expresses Z˚ in

terms of
İ

Zη,
İİ

Zη in the E“E` case. In all other cases, Z˚ can be expressed in terms of one-
point GW generating functions which can be computed under one additional assumption;
see Remark 3.2.5.

Remark 1.1.5. If E“OP2p´1q ‘ OP2p´2q and HPH2pP2q is the hyperplane class, then

ż

M0,2pP2,dq

epVEqev˚
1H

2ev˚
2H “

ż

M0,2pP2,dq

epVEqev˚
1Hev

˚
2H

2 “ p´1qd p2dq!
2dpd!q2 @ dě1.

If E“OP2p´1q ‘ OP2p´1q ‘ OP2p´1q and HPH2pP2q is the hyperplane class, then

ż

M0,2pP2,dq

epVEqev˚
1H

2ev˚
2H

2 “ p´1qd`1

d
@ dě1.

If E“OP1p´1q ‘ OP1p´1q and HPH2pP1q is the hyperplane class, then
ż

M0,2pP1,dq

epVEqev˚
1Hev˚

2H “ 1

d
@ dě1.

These follow from (3.2.12) in Section 3.2 which relies on Theorem 4.2.1, the equivariant
version of Theorem 1.1.3 above. The first of these equations implies the first statement in
[KlPa, Proposition 2] by the divisor relation of [MirSym, Section 26.3], the second recovers the
first statement in [PaZ, Lemma 3.1], and the third implies the Aspinwall-Morrison formula.

1.2 Outline of the dissertation

Chapter 2 presents the facts about symplectic toric manifolds needed for the Gromov-
Witten theory parts of the dissertation. This chapter is inspired by the view in [Gi2] of
a symplectic toric manifold as given by a matrix and the choice of a certain regular value
together with the holomorphic charts of [Ba]. It contains proofs of all statements or references
to the ones that are omitted. The reader interested only in the Gromov-Witten theory part
may want to skip all proofs in Chapter 2.
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Section 3.2 gives formulas for the one-point GW generating functions
İ

Zη,
İİ

Zη of (1.1.6)
under an additional assumption in terms of explicit formal power series constructed in Sec-
tion 3.1. It begins with a short setup.

The explicit GW formulas of Section 3.2 and Theorem 1.1.3 above follow from the equiv-

ariant statements of Section 4.2. In particular, equivariant versions of
İ

Zη and
İİ

Zη are ex-
pressed in terms of explicit power series constructed in Section 4.1. Chapter 4 also begins
with a short setup.

An outline of the proofs of the equivariant theorems of Section 4.2 is given in Section 5.1.
The remaining sections of Chapter 5 provide the details.

6



Chapter 2

Overview of symplectic toric
manifolds

This chapter reviews the basics of symplectic toric manifolds and sets up notation that
will be used throughout the rest of the dissertation. It combines the perspectives of [Au,
Chapter VII], [McDSa, Section 11.3], [Ba, Section 2], [CK, Section 3.3.4], [Gi2], [Gi3], and
[Sp, Sections 5,6].

Sections 2.1-2.2 give the definition and describe the basic properties of a compact sym-
plectic toric manifold. Section 2.3 is a preparation for localization computations in a toric
setting; it describes the fixed points and curves and the equivariant cohomology.

2.1 Definition, charts, and Kähler classes

Throughout this dissertation, k and N denote fixed positive integers such that kďN and

rN s ”
 
1, 2, . . . , N

(
.

If v PRk (or v PCN) and j P rks (or j P rN s), let vj PR (or vj PC) denote the j-th component
of v and define

supppvq ”
 
j : vj ‰0

(
.

If JĎrN s, let

RJ ”
 
vPRN: supppvqĎJ

(
–R|J |, CJ ”

 
z PCN: supppzqĎJ

(
–C|J |.

If A“ paijqiPrks,jPrNs is a kˆN matrix and JĎ rN s, denote by AJ the kˆ|J | submatrix of A
consisting of the columns indexed by the elements of J . Let

ωstd ” i

2

Nÿ

j“1

dzj^dzj

be the standard symplectic form on CN . Let

µstd : C
N ÝÑ RN , µstdpz1, . . . , zNq ”

`
|z1|2, . . . , |zN |2

˘

7



be the moment map for the restriction of the standard action of TN”pC˚qN on pCN ,´2ωstdq,

pt1, . . . , tNq¨pz1, . . . , zNq “ pt1z1, . . . , tNzNq,

to pS1qNĂTN .
An integer k̂ N matrixM“pmijqiPrks,jPrNs induces an action of Tk ”pC˚qk on pCN ,´2ωstdq,

pt1, . . . , tkq¨pz1, . . . , zNq “ ptm11

1 tm21

2 . . . tmk1

k z1, . . . , t
m1N

1 tm2N

2 . . . tmkN

k zNq; (2.1.1)

the moment map of its restriction to pS1qk ĂTk is

µM ” M ˝ µstd : C
N ÝÑ Rk.

If in addition τ PRk, let

P τ
M ” M´1pτq X pRě0qN ,

rXτ
M ” CN ´

ď

JĎrNs

CJXµ´1
M

pτq“H

CJ “
 
z PCN : CsupppzqXµ´1

M pτq‰H
(
, Xτ

M ” rXτ
M

L
Tk ; (2.1.2)

see diagram (2.1.3). By Proposition 2.1.2 below, Xτ
M is a compact projective manifold if the

pair pM, τq is toric in the sense of Definition 2.1.1. In this case, µ´1
stdpP τ

Mq{pS1qk has a unique
smooth structure making the projection

µ´1
stdpP τ

Mq ÝÑ µ´1
stdpP τ

Mq{pS1qk

a submersion. With this smooth structure, µ´1
stdpP τ

Mq{pS1qk is diffeomorphic to Xτ
M via a

diffeomorphism induced by the inclusion µ´1
stdpP τ

Mq ãÑ rXτ
M . We summarize this setup in a

diagram:

P τ
M ”M´1pτqXpRě0qN

� _

��

µ´1
M pτq”µ´1

stdpP τ
Mq

projection
��
��

� � // rXτ
M

projection

��
��

� � // CN µstd
//

µM

++❲❲
❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲ pRě0qN � � // RN

M

��
µ´1
std

pP τ
M q

pS1qk
diffeo

// Xτ
M RkQτ

(2.1.3)

Given a pair pM, τq consisting of an integer kˆN matrixM and a vector τ PRk, we define

V
τ
M ”

!
JĎrN s : |J |“k, P τ

M XRJ ‰H
)

”
!
JĎrN s : |J |“k, D vPM´1pτqXpRě0qN s.t. supppvqĎJ

)
.

(2.1.4)

Definition 2.1.1. A pair pM, τq consisting of an integer kˆN matrix M and a vector τ PRk

is toric if

8



(i) τ is a regular value of µM and P τ
M ‰H;

(ii) detMJ Pt˘1u for all J PV τ
M ;

(iii) P 0
M “t0u (ðñ P τ

M is bounded).

A toric pair pM, τq is minimal if

(iv) P τ
M XRrNs´tju ‰H for all j PrN s.

If a pair pM, τq satisfies (ii) in Definition 2.1.1 above, then

z PCN , supppzqĚJ for some J PV
τ
M ùñ D tPTk such that pt¨zqj “1 @ j PJ.

If pM, τq is a toric pair, then a point z P CN lies in rXτ
M if and only if supppzq Ě J for

some J P V τ
M and the TN -fixed points of Xτ

M are indexed by V τ
M ; see Lemma 2.1.4(i) and

Corollary 2.3.2(a).

Proposition 2.1.2. If pM, τq is a toric pair, then Xτ
M is a connected compact projective

manifold of complex dimension N´k endowed with a TN-action induced from the standard
action of TN on CN .

Proof of Proposition 2.1.2. By Lemmas 2.1.5(a), (g), and (h) below, Xτ
M is a connected,

compact complex manifold. It admits a positive line bundle by Lemmas 2.2.1, 2.1.7(b), and
2.1.9 below. By the Kodaira Embedding Theorem [GriH, p181], Xτ

M is then projective.

Remark 2.1.3. If X is a compact symplectic toric manifold in the sense of [Ca, Defini-
tion 1.6.1], then the image of its moment map is a Delzant polytope P (a polytope with
certain properties [Ca, Definition 2.1.1]); see [At, Theorem 1] or [GuS, Theorem 5.2]. This
polytope P determines a fan ΣP , which in turn determines a compact complex manifoldXΣP

;
see [Au, Section VII.1.ac]. This complex manifold XΣP

is endowed with a symplectic form,
a torus action, and a moment map with image P making it into a symplectic toric manifold;
see [Au, Theorem VII.2.1]. Moreover, this symplectic form is Kähler with respect to the
complex structure, as stated in [Gi2, Section 3] and can be deduced from [Au, Chapter VII].
Since X and XΣP

have the same moment polytope (i.e. image of the moment map), they
are isomorphic as symplectic toric manifolds by Delzant’s uniqueness theorem [De, Theo-
rem 2.1]. On the other hand, XΣP

“Xτ
M for some minimal toric pair pM, τq by the proof of

[Au, Theorem VII.2.1]. Thus, a compact symplectic toric manifold pX2n, ω, pS1qn, µq in the
sense of [Ca, Definition 1.6.1] admits a complex structure J so that pX,ω,J q is Kähler and
pX,J q is isomorphic to Xτ

M for some minimal toric pair pM, τq.

Lemma 2.1.5 relies on parts (i) and (j ) of Lemma 2.1.4 below which in turn rely on the
other parts of Lemma 2.1.4. Lemma 2.1.9 is based on Lemma 2.1.8 and Lemma 2.1.7(d).
Lemma 2.1.7(b) follows from Lemma 2.1.7(a), while the proof of Lemma 2.1.7(d) uses
Lemma 2.1.7(c).

For t“pt1, t2, . . . , tkqPTk and p“pp1, p2, . . . , pkqPZk, let

tp ” t
p1
1 t

p2
2 . . . t

pk
k .
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Lemma 2.1.4. Let pM, τq be a toric pair.

( a) The subset P τ
M ĂpRě0qN is a polytope (i.e. the convex hull of a finite set of points).

(b) Let ηPRk be any regular value of µM . If wPP η
M , then

M : tvPRN : supppvq Ď supppwqu ÝÑ Rk

is onto. In particular, if wPP η
M , then |supppwq|ěk.

( c) If J PV τ
M , then J“supppyq for some yPµ´1

M pτq.

(d) If JĎrN s and supppvqĎJ for some vPP τ
M , then supppwq“J for some wPP τ

M .

( e) The polytope P τ
M has dimension N´k.

( f) If v is a vertex of P τ
M , then supppvqPV τ

M .

( g) If VerticesτM is the set of vertices of the polytope P τ
M , the map

supp : VerticesτM ÝÑ V
τ
M , v ÝÑ supppvq,

is a bijection.

(h) If yPµ´1
M pτq, then supppyqĚJ for some J PV τ

M .

( i) Let z PCN . Then, z P rXτ
M if and only if supppzqĚJ for some J PV τ

M .

( j) Let I, J P V τ
M and tpnq PTk. If |tpnq| ÝÑ 8 and there exists δą 0 such that |tpnq

i | ě δ for

all iPrks, then |ptpnqqM´1
I

Mj | is unbounded for some j PJ .

Proof. (a) By [Zi, Theorem 1.1], a subset of RN is a polytope if and only if it is a bounded
intersection of half-spaces. Thus, the claim follows from (iii) in Definition 2.1.1.
(b) This is immediate from the surjectivity of dwµM .
(c) This follows from the second statement in (b).
(d) Assume that supppvq Ď IŘJ and that there exists v1 PP τ

M with supppv1q “ I. Let I1 Ą I

with I1 ĎJ and |I1|“|I |̀ 1. We show that there exists wPP τ
M with supppwq“I1. By the first

statement in (b), there exists w1 PM´1pτq ĂRN with supppw1q “ I1. Let w“ p1´λqv1 `λw1

with λPR satisfying

λw1
j ą0 if j P I1´I and λ

ˆ
1´

w1
j

v1
j

˙
ă1 @ j PI.

(e) By (d) together with the second condition in (i) in Definition 2.1.1, supppwq “ rN s for
some wPP τ

M and thus dimP τ
M “N´k, since M has rank k by (b).

(f ) By (e), |supppvq|ďk; the opposite inequality follows from the second statement in (b).
(g) By (f ), supppvq P V τ

M for every vertex v of P τ
M . The map supp is injective by (ii) in

Definition 2.1.1 and surjective by (c) and (ii) in Definition 2.1.1.
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(h) By [Zi, Proposition 2.2], every polytope is the convex hull of its vertices; since µstdpyqPP τ
M

and P τ
M is a polytope by (a),

µstdpyq “
rÿ

s“1

λsvs

for some vertices v1, v2, . . . , vr PP τ
M and λ1, λ2, . . . , λr PRą0. Then, supppyq Ě supppv1q and

supppv1qPV τ
M by (f ).

(i) If z P rXτ
M , there exists yPCsupppzqXµ´1

M pτq. By (h), there exists J PV τ
M with JĎsupppyq.

Since supppyqĎsupppzq, it follows that JĎsupppzq. The converse follows from (c).
(j ) By (c), there exist v, wPpRą0qk such that MIv“τ “MJw. By (ii) in Definition 2.1.1, it
follows that there exists aPpZą0qk such that M´1

I MJaPpZą0qk.
Assume by contradiction that |ptpnqqM´1

I
Mj | is a bounded sequence for all j PJ . By passing

to subsequences, we may assume that |ptpnqqM´1
I

Mj | is convergent for all j PJ . It follows that
ź

jPJ

ˇ̌
ptpnqqM´1

I
Mj
ˇ̌aj “

ˇ̌
ptpnqqM´1

I
MJa

ˇ̌
(2.1.5)

is also convergent. On the other hand, by passing to some subsequences, we may assume
that for each i P rks, |tpnq

i | has a limit (possibly 8). Since at least one of these limits is 8
and none is 0, the right-hand side of (2.1.5) diverges leading to a contradiction.

For z PCN and J“tj1 ăj2 ă . . .ă jnuĎrN s, let

zJ ” pzj1 , zj2 , . . . , zjnq.

For z P rXτ
M , let rzsPXτ

M denote the corresponding class.

Lemma 2.1.5. Let pM, τq be a toric pair.

( a) The space rXτ
M is path-connected.

(b) The torus Tk acts freely on rXτ
M .

( c) The subset Tk ¨µ´1
M pτq of CN is open.

(d) The subset Tk ¨µ´1
M pτq of rXτ

M is closed.

( e) There is a unique map

ρτM : X̃τ
M ÝÑ pRą0qk Ă Tk s.t. ρτMpzq¨z P µ´1

M pτq @ z P rXτ
M .

Furthermore, this map is smooth.

( f) The quotient µ´1
M pτq{pS1qk is a compact and Hausdorff.

( g) The inclusion µ´1
M pτq ãÑ rXτ

M induces a homeomorphism

µ´1
M pτq{pS1qk ÝÑ Xτ

M . (2.1.6)

In particular, Xτ
M is compact and Hausdorff.
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(h) The space Xτ
M is a complex manifold of complex dimension N´k.

Proof. (a) This holds since rXτ
M is the complement of coordinate subspaces in CN .

(b) Let t P Tk and z P rXτ
M be such that t ¨z “ z. By Lemma 2.1.4(i), there exists J P V τ

M

such that
J” tj1 ă . . .ăjku Ďsupppzq.

By (ii) in Definition 2.1.1, the group homomorphism

Tk ÝÑ Tk, t ÝÑ ptMj1 , . . . , tMjk q,

is injective and so t“p1, 1, . . . , 1q.
(c) For each z PCN , let

Mz ” M

¨
˚̋

|z1| 0
. . .

0 |zN |

˛
‹‚.

If z Pµ´1
M pτq, supppzqĚJ for some J PV τ

M by Lemma 2.1.4(h). Since MJ is invertible by (ii)
in Definition 2.1.1, so are pMzqJ and MzpMzqtr. Since the differential of the map

`
Rą0

˘k ÝÑ Rk, t ÝÑ µMpt¨zq,

at t“p1, . . . , 1qPpRą0qk Ă Tk is 2MzpMzqtr, the differential of the map

Tk ˆ µ´1
M pτq ÝÑ Rk, pt, zq ÝÑ µMpt¨zq,

is surjective at p1, zq for all z Pµ´1
M pτq. Since the restriction of this differential to the second

component vanishes, the differential of the map

Tk ˆ µ´1
M pτq ÝÑ CN , pt, zq ÝÑ t¨z, (2.1.7)

is surjective at p1, zq for all z Pµ´1
M pτq and so, by the Inverse Function Theorem, the image

of (2.1.7) contains an open neighborhood of µ´1
M pτq in CN .

(d) Let zpnq P rXτ
M and tpnq PTk be sequences such that

lim
nÝÑ8

zpnq “ z P rXτ
M and ypnq ” tpnq ¨zpnq P µ´1

M pτq.

By (iii) in Definition 2.1.1, we can assume that ypnq ÝÑyPµ´1
M pτq. By Lemma 2.1.4(i), there

exist Jpyq, JpzqPV τ
M such that

Jpyq ” tj1 ă . . .ăjk
(

Ď supppyq and Jpzq Ď supppzq;

we can assume that Jpyq, JpzqĎsupppypnqq“supppzpnqq for all n. By (ii) in Definition 2.1.1,
MJpyq is invertible and so

t
pnq
i “

`
t̃pnq

˘pM´1
Jpyqqi , where

`
t̃pnq

˘
i

“ pypnqqji
pzpnqqji

@ i “ 1, . . . , k.
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Since pypnqqj ÝÑyj ‰0 for all j PJpyq and pzpnqqj ÝÑzj , |pt̃pnqqi| ě δ for some δ PRą0 and for
all n and i. If |pt̃pnqq| is not bounded above, after passing to a subsequence we can assume
that |t̃pnq| ÝÑ 8. By Lemma 2.1.4(j ), there exists j P Jpzq such that, after passing to a
subsequence, ˇ̌

ptpnqqMj
ˇ̌

“
ˇ̌
pt̃pnqqM

´1
Jpyq

Mj
ˇ̌

ÝÑ 8.

Since tpnq z̈pnq ÝÑy, it follows that pzpnqqj ÝÑ0 and so j Rsupppzq, contrary to the assumption.
Thus, tt̃pnqu is a compact subset of Tk. After passing to a subsequence, we can thus assume
that tpnq ÝÑ tPTk. It follows that

t ¨ z “ lim
nÝÑ8

tpnq ¨ lim
nÝÑ8

zpnq “ lim
nÝÑ8

tpnq ¨zpnq “ lim
nÝÑ8

ypnq “ y.

Thus, z PTk ¨µ´1
M pτq.

(e) By the proof of (c), τ is a regular value of the smooth map

Φ:
`
Rą0

˘k ˆ rXτ
M ÝÑ Rk, pt, zq ÝÑ µMpt¨zq,

and the projection map π2 :Φ
´1pτq ÝÑ rXτ

M is a submersion. By (a), (c), and (d), this map
is surjective. We show that it is also injective; by (a), (c), and (d), this is equivalent to
showing that

pr1, . . . , rkqPRk, z, per1 , . . . , erkq¨z P µ´1
M pτq ùñ ri “ 0 @ i “ 1, . . . , k,

where the action of per1 , . . . , erkq P Tk on z is defined by (2.1.1) as above. We present the
argument in the proof of [Ki, 7.2 Lemma]. Let

f : R ÝÑ R, fpuq ”
A
µM rpeur1 , . . . , eurkq¨zs , pr1, . . . , rkq

E
@uPR.

Since fp0q“fp1q, there exists u0 Pp0, 1q such that f 1pu0q“0. Since

f 1pu0q“2
Nÿ

j“1

e2u0xpr1,...,rkq,Mjy
A

pr1, . . . , rkq,Mj

E2

|zj|2,

f 1pu0q “ 0 implies that xpr1, . . . , rkq,Mjyzj “ 0 for all j P rN s. By Lemma 2.1.4(i), there
exists J P V τ

M such that J Ď supppzq and so xpr1, . . . , rkq,Mjy “ 0 for all j P J . By (ii) in
Definition 2.1.1, this implies that ri “0 for all iPrks. The map ρτM is π´1

2 composed with the
projection pRą0qkˆXτ

M ÝÑpRą0qk.
(f ) Since µ´1

M pτq is compact by (iii) in Definition 2.1.1, so is the quotient space µ´1
M pτq{pS1qk.

If p is the quotient projection map and AĂµ´1
M pτq is a closed subset,

p´1
`
ppAq

˘
“ pS1qk ¨ A ”

 
t¨z : z PA, tPpS1qk

(

is the image of the compact subset pS1qkˆA in µ´1
M pτq under the continuous multiplication

map
pS1qk ˆ µ´1

M pτq ÝÑ µ´1
M pτq

and thus compact. Since µ´1
M pτq is Hausdorff, it follows that p´1pppAqq is a closed subset

of µ´1
M pτq. We conclude the quotient map p is a closed map. Since µ´1

M pτq is a normal
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topological space, by [Mu, Lemma 73.3] so is µ´1
M pτq{pS1qk.

(g) The map (2.1.6) is well-defined, since the inclusion µ´1
M pτq ãÑ rXτ

M is equivariant under the
inclusion pS1qk ãÑ Tk, and is continuous by the defining property of the quotient topology.
The map

rXτ
M ÝÑ µ´1

M pτq, z ÝÑ ρτMpzq ¨ z,
is equivariant with respect to the natural projection Tk ÝÑ pS1qk by the uniqueness prop-
erty in (e) and thus induces a continuous map in the opposite direction to (2.1.6). Since
ρτM |pµ´1

M
pτqq “p1, . . . , 1q, the two maps are easily seen to be mutual inverses.

(h) We cover Xτ
M by holomorphic charts as in [Ba, Propositions 2.17, 2.18]. For each J PV τ

M ,
let

rN s´J ” ti1 ă i2 ă . . .ă iN´ku, rUJ ”
 
z PCN: supppzqĚJ

(
, UJ ” rUJ{Tk,

hJ : UJ ÝÑ CN´k, hJ rzs ”

¨
˝ zi1

z
M´1

J
Mi1

J

,
zi2

z
M´1

J
Mi2

J

, . . . ,
ziN´k

z
M´1

J
MiN´k

J

˛
‚. (2.1.8)

By Lemma 2.1.4(i), the collections trUJ : J P V τ
Mu and tUJ : J P V τ

Mu cover rXτ
M and Xτ

M ,
respectively. The map hJ is well-defined. First, M´1

J exists and is an integer matrix by (ii)

in Definition 2.1.1. Second, if tPTk, z P rUJ , and J”tj1 ăj2 ă . . .ăjku, then

pt¨zq´M´1
J

Mis

J pt¨zqis “
ˆ`
tMj1zj1

˘´pM´1
J

Misq1 . . .
`
tMjkzjk

˘´pM´1
J

Misq
k

˙
tMiszis

“ t´MJpM´1
J

Misq`Misz
´M´1

J
Mis

J zis “z
´M´1

J
Mis

J zis , @ sPrN´ks.

The map h´1
J is the composition of the continuous maps

CN´k
Ą
h´1
JÝÝÑ rUJ

projectionÝÝÝÝÝÝÑ UJ ,
´Ąh´1

J pzq
¯
i

“
#
zs, if i“ is,

1, if iPJ,
@ iPrN s.

The composition CN´k ÝÑ UJ
hJÝÑ CN´k is obviously the identity. The other relevant

composition is given by UJ Qrzs ÝÑ rysPUJ , where

yi “
#
z

´M´1
J

Mis

J ¨ zis , if i“ is,

1, if iPJ,
@ j PrN s.

Let tr ”z
´pM´1

J
qr

J for all rPrks; it follows that t¨z“y.
If in addition J 1 PV τ

M , the domain and image of the overlap map hJ˝h´1
J 1 are complements

of some the coordinate subspaces in CN´k, and every component of this map is a ratio of
monomials in the complex coordinates. In particular, this map is holomorphic.

Remark 2.1.6. Let pM, τq be a toric pair. The projection π : rXτ
M ÝÑXτ

M is a holomorphic
submersion; this can be seen using the charts (2.1.8).

Let Kτ
M be the connected component of τ inside the regular value locus of µM .
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Lemma 2.1.7. Let pM, τq be a toric pair.

( a) Let η P Rk. Then, η is a regular value of µM if and only if η R MJpRě0q|J | for every
JĂrN s with |J |ďk´1.

(b) The subset Kτ
M of Rk is an open cone (i.e. an open subset of Rk such that λη PKτ

M

whenever λą0 and ηPKτ
M).

( c) For every ηPKτ
M , V

η
M “V τ

M .

(d) For every ηPKτ
M , pM, ηq is a toric pair and Xη

M “Xτ
M .

Proof. (a) If η is a regular value of µM , η RMJpRě0q|J | for every J Ă rN s with |J | ď k´1
by the second statement in Lemma 2.1.4(b). Suppose ηRMJpRě0q|J | for every JĂrN s with
|J | ď k´1. We prove that for every v P P η

M there exists J Ď supppvq such that |J | “ k and
detMJ ‰0. Suppose not, i.e. detMJ “0 for all JĎsupppvq with |J |“k. We show that there
exists v1 P P η

M with |supppv1q| ă k; this contradicts the assumption on η. If |supppvq| ě k,
there exists wPM´1p0qĂRN such that supppwqĎsupppvq and wj0 ą0 for some j0 Psupppvq.
Let

λ ” min

"
vj

wj

: j Psupppvq such that wj ą0

*
.

It follows that v´λw PP η
M and supppv´λwq Ř supppvq. Continuing in this way, we obtain

v1 PP η
M with |supppv1q|ăk.

(b) This follows immediately from (a).
(c) We show that the set tη PKτ

M : V
η
M “ V τ

Mu is open and closed in Kτ
M and thus equals

Kτ
M . It suffices to show that for any P ĎtJĎrN s : |J |“ku the set

tηPKτ
M : V

η
M “Pu“

č

JPP

 
ηPKτ

M : P η
M XRJ ‰H

(
X

č

JĎrNs,|J |“k
JRP

 
ηPKτ

M : P η
M XRJ “H

(

is open. We show that the set

 
ηPKτ

M : P η
M XRJ ‰H

(

with J Ď rN s and |J | “k is open. Let η1 be any of its elements and let w PP η1

M XRJ . By the
surjectivity of dwµM , supppwq“J and detMJ ‰0; this shows that MJpRą0qk is open and

η1 PMJ

`
Rą0

˘kXKτ
M ĎtηPKτ

M : P η
M XRJ ‰Hu.

The set  
ηPKτ

M : P η
M XRJ “H

(
“ Kτ

M ´MJpRě0q|J |

with JĎrN s and |J |“k is open as well.
(d) Since P τ

M ‰ H, µ´1
M pτq ‰ H and so V τ

M ‰ H by Lemma 2.1.4(h). Since V τ
M ‰ H,

V
η
M ‰ H by (c) and so P η

M ‰ H. Since pM, τq satisfies (ii) in Definition 2.1.1, by (c) so
does pM, ηq. Thus, pM, ηq is toric. The equality Xη

M “Xτ
M follows from (c) together with

Lemma 2.1.4(i).
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Lemma 2.1.8. Let pM, τq be a toric pair.

( a) The quotient µ´1
M pτq{pS1qk admits a unique smooth structure such that the projection

πτ : µ´1
M pτq ÝÑ µ´1

M pτq{pS1qk (2.1.9)

is a submersion.

(b) There exists a unique symplectic form ωτ on µ´1
M pτq{pS1qk such that

π˚
τωτ “ ωstd

ˇ̌
ˇ
µ´1
M

pτq
,

where πτ is the projection (2.1.9).

( c) The map (2.1.6) is a diffeomorphism.

Proof. (a) By [tD, Proposition 5.2], if G is a compact Lie group acting freely and smoothly
on a manifold M , then the quotient M{G carries a unique differentiable structure such that
the projection

M ÝÑ M{G
is a submersion. Thus, the claim follows from (i) in Definition 2.1.1 and Lemma 2.1.5(b).
(b) This follows from the Marsden-Weinstein symplectic reduction theorem [MW, Theo-
rem 1].
(c) By (a) and Lemma 2.1.5(g), it is enough to show that the restriction

π
ˇ̌
ˇ
µ´1
M

pτq
: µ´1

M pτq ÝÑ Xτ
M

of the projection π : rXτ
M ÝÑXτ

M is a submersion. This follows from the fact that the map

Tkˆµ´1
M pτq ÝÑ Xτ

M , pt, zq ÝÑ rzs,

is a submersion whose differential at pt, zq vanishes on TtT
kˆ0. This map is a submersion

because it is the composition of two submersions,

Tkˆµ´1
M pτq ÝÑ rXτ

M , pt, zq ÝÑ t¨z and π : rXτ
M ÝÑ Xτ

M .

The former map is a submersion by the proof of Lemma 2.1.5(c), while π is a submersion
by Remark 2.1.6.

If pM, τq is a toric pair, we abuse notation and denote by ωτ not only the form on
µ´1
M pτq{pS1qk defined by Lemma 2.1.8(b), but also the form it induces on Xτ

M via the diffeo-
morphism (2.1.6) of Lemma 2.1.8(c). In this case, by Lemma 2.1.7(d) and Lemma 2.1.8(b),
for every ηPKτ

M , ωη is the unique symplectic form on Xτ
M satisfying

π˚ωη

ˇ̌
µ´1
M

pηq
“ ωstd

ˇ̌
µ´1
M

pηq
, where π : rXτ

M ÝÑ Xτ
M (2.1.10)

is the projection; see also diagram (2.1.3).
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Lemma 2.1.9. Let pM, τq be a toric pair. For every η PKτ
M , ωη is Kähler with respect to

the complex structure on Xτ
M .

Proof. The form ωη is positive with respect to the complex structure on Xτ
M by (2.1.10)

together with the equality Tk ¨ µ´1
M pηq “ rXτ

M (justified by Lemmas 2.1.5(g) and 2.1.7(d)),
Remark 2.1.6, and the positivity of ωstd.

Remark 2.1.10. If pM, τq is a toric pair and J Ď rN s, the pair pMJ , τq is toric if and
only if P τ

MJ
‰ H. In this case, Xτ

MJ
is a connected compact projective manifold of complex

dimension |J |´k by Proposition 2.1.2. It is biholomorphic to

Xτ
MpJq”trzsPXτ

M : supppzqĎJu
via the map

Xτ
MJ

Q rzs ÝÑ rιJpzqsPXτ
MpJq, where

`
ιJpzq

˘
j

”
#
zr, if j“jr,

0, if j RJ,
(2.1.11)

if J“tj1 ăj2 ă . . .ăjru. In particular, if pM, τq is a minimal toric pair and Mpj is the matrix
obtained from M by deleting the j-th column, then Xτ

Mpj
is a connected compact projective

manifold of complex dimension N´1. The map (2.1.11) identifies Xτ
Mpj

with the hypersurface

Xτ
MprN s´tjuq ” Dj ” trzs P Xτ

M : zj “0u . (2.1.12)

If J PV τ
M with V τ

M defined by (2.1.4), then Xτ
MpJq is the point

rJs ” rz1, . . . , zN s, where zj ”
#
1, if j PJ ;
0, otherwise.

(2.1.13)

This follows from Lemma 2.1.4(i) and (ii) in Definition 2.1.1.
If J Ď rN s is such that P τ

M XRJ ‰ H and |J | “ k`1, then Xτ
MpJq is a one-dimensional

complex manifold and there exist exactly 2 multi-indices I PV τ
M with IĂJ . The latter follows

since multi-indices I PV τ
M with IĂJ correspond bijectively via ιJ to elements of V τ

MJ
, which

in turn correspond to the vertices of P τ
MJ

by Lemma 2.1.4(g); P τ
MJ

has dimension 1 by
Lemma 2.1.4(e).

Remark 2.1.11. If pM, τq is a toric pair withM a k̂ N matrix, then pVM, V τq is a toric pair
whenever V PGLkpZq. In this case, V τ

M “V V τ
VM and Xτ

M is biholomorphic to XV τ
VM . The pair

pVM, V τq satisfies the first condition of (i) in Definition 2.1.1, since V is an isomorphism.
Since P τ

M “P V τ
VM , V τ

M “V V τ
VM and so pVM, V τq satisfies the second condition of (i), (ii), and

(iii) in Definition 2.1.1 as well.

Remark 2.1.12. If pM, τq is a toric pair withM a k̂ pk̀ 1q matrix, thenXτ
M is biholomorphic

to P1. In order to see this, note first that |V τ
M |“2 by Lemma 2.1.4(g) and Lemma 2.1.4(e).

By Remark 2.1.11, we can assume that MJ “ Idk for some J P V τ
M . The claim now follows

from (2.1.8): Xτ
M is a compact manifold covered by two charts

hJ : UJ
„Ñ C, hI : UI

„Ñ C

satisfying hJpUJ XUIq “hIpUJ XUIq “C˚ since IYJ “ rk`1s and hI ˝h´1
J pzq “ z˘1 by (ii) in

Definition 2.1.1.
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2.2 Cohomology, Kähler cone, and Picard group

Throughout the remaining part of this dissertation, pM, τq is a toric pair. In order to
complete the proof in Section 2.1 that Xτ

M is projective, we describe some holomorphic line
bundles over it. For each pPZk, let

Lp ” rXτ
M ˆp C ” rXτ

M ˆC
L

„, where pz, cq „ pt´1 ¨z, tpcq, @ t P Tk. (2.2.1)

Since π : rXτ
M ÝÑ Xτ

M with πpzq ” rzs is a Tk-principal bundle by Lemma 2.1.5(b) and
Remark 2.1.6,

Lp ÝÑ Xτ
M , rz, cs ÝÑ rzs,

is a holomorphic line bundle. Furthermore,

L0 “ OXτ
M
, L˚

p “ L´p, Lp b Lr “ Lp`r.

The line bundle L´Mj
admits a holomorphic section

sj : X
τ
M ÝÑ L´Mj

, rzs ÝÑ rz, zjs. (2.2.2)

Since sj is transverse to the zero set by (2.1.8) and s´1
j p0q “ Dj by (2.1.12), c1pL´Mj

q “
PDpDjq.

For all j PrN s and iPrks, let

Uj ” c1pL´Mj
q, γi ” Lei , Hi ” c1pγ˚

i q, (2.2.3)

where tei : iPrksuĂZk is the standard basis. Thus,

L´Mj
“ γ

˚bm1j

1 b γ
˚bm2j

2 b . . . b γ
˚bmkj

k ùñ Uj “
kÿ

i“1

mijHi @ j PrN s. (2.2.4)

Lemma 2.2.1 below is used in the proof of Proposition 2.1.2 in Section 2.1 and to describe
the Kähler cone of Xτ

M in Proposition 2.2.4 below.

Lemma 2.2.1. For every ηPZkXKτ
M ,

c1pL´ηq“ 1

π
rωηs,

where ωη is the Kähler form defined by (2.1.10).

Proof. We follow closely the proof of [Au, Proposition VII.3.1]. Let

LR
´η ÝÑ µ´1

M pηq
L

pS1qk

be the pull-back of L´η via the diffeomorphism (2.1.6) of Lemma 2.1.8(c) and

LS1

´η ” µ´1
M pηq ˆ´η S

1 pÝÑ µ´1
M pηq

pS1qk

18



be its sphere bundle. Let

µ´1
M pηqˆS1

q

��

rp
// µ´1

M pηq

πη

��

LS1

´η

p
//
µ´1
M

pηq

pS1qk

be the natural projections.
Let e#i be the fundamental vector field on µ´1

M pηqˆS1 corresponding to ei P Rk for the
Tk-action given by (2.2.1) with p“´η. Thus,

e
#
i ” d

dt

ˇ̌
ˇ̌
t“0

pexppiteiq ¨ px1`iy1,. . ., xN `iyN , x`iyqq

“
Nÿ

j“1

mij

ˆ
yj

B
Bxj

´xj
B

Byj

˙
` ηi

ˆ
y

B
Bx´x B

By

˙
,

where xj , yj, x, y are the standard coordinates on CN ”pR2qN and C”R2, respectively. Let

α ”
Nÿ

j“1

p´xjdyj ` yjdxjq P Ω1
`
µ´1
M pηq

˘
and σ ” xdy´ydx P Ω1pS1q.

Since ι
e
#
i

pα ‘ σq “ 0 on µ´1
M pηqˆS1 for all i P rks, α ‘ σ descends to a 1-form pα ‘ σqS1 on

LS1

´η. This form is a connection 1-form for the principal S1-bundle LS1

´η because it satisfies

LX#pα ‘ σqS1 “0, ιX#pα ‘ σqS1 “1,

where

X# “ ´y B
Bx ` x

B
By

is the fundamental vector field for the S1-action on LS1

´η as a principal S1-bundle; see [Au,
Exercises V.4,V.5]. Let β denote the curvature form associated to pα ‘ σqS1 . By [Au,
Section V.4.c], it is uniquely determined by

p˚β “ dpα ‘ σqS1 .

Since q˚dppα ‘ σqS1q “ ´2rp˚ωstd, β “ ´2ωη by the uniqueness of reduced symplectic form
ωη of Lemma 2.1.8(b). Thus, by [Au, Proposition VI.1.18] and [Au, Section VI.5.b],

c1pLR
´ηq “ ´1

2π
rβs “ 1

π
rωηsPH2

deRpµ´1
M pηq{pS1qkq,

as claimed.

We define

Eτ
M ”

#
JĎrN s :

č

jPJ

Dj “H
+

“
 
JĎrN s :M´1

Jc pτqXpRą0q|Jc| “H
(
; (2.2.5)

the second equality follows from Lemma 2.1.4(i)(c)(d) and (2.1.12).
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Proposition 2.2.2. If pM, τqis a toric pair,

H˚ pXτ
Mq – Q rH1,H2, . . . ,Hk,U1,U2, . . . ,UN s

ˆ
Uj ´

kř
i“1

mijHi, 1ďjďrN s
˙

`
˜
ś
jPJ

Uj : J PEτ
M

¸ .

If, in addition pM, τq is minimal, H2 pXτ
M ;Zq is free with basis tH1,H2, . . . ,Hku.

Proof. This follows from [McDSa, Section 11.3] together with Lemma 2.1.8(c).

Remark 2.2.3. By Proposition 2.2.2, H˚pXτ
Mq is generated as a Q-algebra by tH1, . . . ,Hku.

Along with (ii) in Definition 2.1.1, this implies that H˚pXτ
Mq is generated as a Q-algebra by

tU1, . . . ,UNu.

Proposition 2.2.4. If pM, τq is a minimal toric pair, there is a basis tc1pL´ηiq : iPrksu for
H2pXτ

Mq formed by the first Chern classes of ample line bundles, with L´ηi as in (2.2.1). In
particular, the Kähler cone Kτ

M of Xτ
M has dimension k.

Proof. By Lemmas 2.2.1, 2.1.9, and 2.1.7(b)(d), there exists a subset tη1, . . . , ηku Ď Zk,
linearly independent over Q, such that the line bundles L´ηj are positive. The first Chern
classes of these line bundles form a Q-basis of H2pXτ

Mq by the last statement in Proposi-
tion 2.2.2.

Proposition 2.2.5. If pM, τq is a minimal toric pair, the Picard group of Xτ
M is free of rank

k and has a Z-basis given by γ1, . . . , γk defined by (2.2.3).

Proof. The first Chern class homomorphism is an isomorphism because h0,1pXτ
Mq“h0,2pXτ

Mq“
0 which in turn follows from Proposition 2.2.2.

Remark 2.2.6. If pM, τq is a toric pair, there is a short exact sequence

0 ÝÑ O‘k
Xτ

M

FÝÑ
Nà
j“1

L´Mj

GÝÑ TXτ
M ÝÑ 0. (2.2.6)

Specifically, we can take

F przs, eiq ”
“
z,mi1z1,mi2z2, . . . ,miNzN

‰
@ iPrks, rzsPXτ

M ,

Gpz, y1, . . . , yNq ”
Nÿ

j“1

yjdzπ

ˆ B
Bzj

ˇ̌
ˇ
z

˙
, @ z P rXτ

M , y1, . . . , yN PC,

where tei : iPrksu is the standard basis for Ck and π : rXτ
M ÝÑXτ

M is the projection. Thus,

c1 pTXτ
Mq “

Nÿ

j“1

Uj. (2.2.7)
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2.3 Torus action and equivariant notation

The equivariant cohomology of a topological spaceX endowed with a continuous TN-action
is

H˚
TN pXq ” H˚

`
ETN ˆTNX

˘
,

where ETN ” pC8 ´ 0qN is the classifying space for TN. In particular, the equivariant
cohomology of a point is

H˚
TN ppointq – H˚

TN ” H˚p
`
P8qN

˘
“ Qrα1, . . . , αN s ” Qrαs,

where αj ” c1pπ˚
jOP8p1qq, πj : pP8qN ÝÑP8 is the projection onto the j-th component and

OP8p1q is dual to the tautological line bundle over P8. The equivariant Euler class of an
oriented vector bundle V ÝÑX endowed with a lift of the TN -action on X is

epV q ” epETN ˆTN V q P H˚
TN pXq.

A TN -equivariant map f : X ÝÑ Y between compact oriented manifolds induces a push-
forward map

f˚ :H
s
TN pXq ÝÑ Hs`dimY ´dimX

TN pY q
characterized by

ż

X

pf˚ηqη1 “
ż

Y

ηpf˚η
1q @ ηPH˚

TN pY q, η1 PH˚
TN pXq. (2.3.1)

If Y is a point, f˚ is the integration along the fiber homomorphism
ş
X
:Hs

TN pXqÝÑHs´dimX
TN .

The push-forward map f˚ extends to a homomorphism between the modules of fractions with
denominators in Qrαs; in particular, the integration along the fiber homomorphism extends
to ż

X

: H˚
TN pXq bQrαs Qpαq ÝÑ Qpαq, where Qpαq ” Qpα1, . . . , αNq

is the field of fractions of Qrαs. If X is a compact oriented manifold on which TN acts
smoothly, then, by the classical Localization Theorem [ABo]

Qrαs Q
ż

X

η “
ÿ

FĂXTN

ż

F

η

epNF {Xq P Qpαq, @ ηPH˚
TN pXq, (2.3.2)

where the sum runs over the components of the TN pointwise fixed locus XTN

of X.

Lemma 2.3.1. If pM, τq is a toric pair, pTN ¨z{Tkq is diffeomorphic to T|supppzq|´k for every

z P rXτ
M .

Proof. By Lemma 2.1.4(i) and (ii) in Definition 2.1.1, there exists J Ď supppzq with |J | “k

and detMJ Pt˘1u. The map

TN ¨z
Tk

Q ry1, . . . , yN s ÝÑ
´
y

´M´1
J

Ms

J ys

¯
s P supppzq´J

P T|supppzq|´k

21



is a diffeomorphism with inverse

T|supppzq|´k Q λ ÝÑ rt1z1, . . . , tNzN s P TN ¨z
Tk

, where tj ”

$
’&
’%

1, if j Rsupppzq,
λs

zjs
, if j “ js,

1
zj
, if j PJ,

and supppzq´J”tj1 ă . . .ăj|supppzq|´ku; see the proof of Lemma 2.1.5(h) in Section 2.1.

Corollary 2.3.2. ( a) The TN-fixed points in Xτ
M are the points rJs of (2.1.13).

(b) The closed TN-fixed curves in Xτ
M are the submanifolds Xτ

MpJq of Remark 2.1.10 with
|J | “ k`1; all such tuples J are of the form J “ I1 Y I2 with with I1, I2 P V τ

M and
|I1XI2|“k´1. These curves are biholomorphic to P1.

Proof. The first two statements follow from Lemma 2.3.1. The third follows from the last
part of Remark 2.1.10. The last follows from Remarks 2.1.10 and 2.1.12.

We next consider lifts of the standard action of TN on Xτ
M to the line bundles Lp of

(2.2.1) which will be used in describing the equivariant cohomology of Xτ
M . One such lift is

the canonical one
pt1, . . . , tNq¨rz1, . . . , zN , cs ” rt1z1, . . . , tNzN , cs (2.3.3)

for all pt1, . . . , tNqPTN , pz1, . . . , zNqP rXτ
M , and cPC. We denote by

ETN ˆtrivLp ÝÑETN ˆTNXτ
M

the induced line bundle. Another lift is given by

pt1, . . . , tNq¨rz1, . . . , zN , cs ” rt1z1, . . . , tNzN , tjcs (2.3.4)

for all pt1, . . . , tNqPTN , pz1, . . . , zNqP rXτ
M , and cPC. We denote by

ETN ˆjLp ÝÑETN ˆTNXτ
M

the induced line bundle. These line bundles are related by isomorphisms

pETN ˆtrivLpqbpETN ˆjL0q – ETN ˆjLp, (2.3.5)

ETN ˆjL0 – pr˚
1π

˚
jOP8p´1q, (2.3.6)

where pr1 :ET
NˆTNXτ

M ÝÑ pP8qN denotes the natural projection. The first of these follows
by considering the isomorphism

LpbL0 ÝÑLp, rz, c1sb rz, c2s ÝÑ rz, c1c2s @ z P rXτ
M , c1, c2 PC

which is TN -equivariant with respect to the TN action on Lp bL0 obtained by tensoring
(2.3.3) with (2.3.4) and the action (2.3.4) on Lp. The second is given by

ETN ˆjL0 Q pe, z, cq ÝÑ pe, z, cejq P pr˚
1π

˚
jOP8p´1q @ e“pe1, . . . , eNqPETN , z P rXτ

M , cPC.
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For all j PrN s, iPrks and with γi defined by (2.2.3), let

rDjs”ETNˆjL´Mj
, γi ”ETNˆtrivγi; uj ”c1prDjsq, xi ”c1pγ˚

i qPH˚
TN pXτ

Mq. (2.3.7)

For each J PV τ
M , the inclusion rJs ãÑXτ

M induces a restriction map

¨ pJq, ¨
ˇ̌
J
: H˚

TN pXτ
Mq ÝÑ H˚

TN prJsq – H˚
TN . (2.3.8)

By (2.2.4), (2.3.5) and (2.3.6),

uj “
kÿ

i“1

mijxi´αj @ j PrN s. (2.3.9)

For each j P rN s, the section (2.2.2) of L´Mj
ÝÑXτ

M is TN -equivariant with respect to the
action (2.3.4) and thus induces a section sj of rDjs over ETN ˆTNXτ

M . If J PV τ
M and j PJ ,

sj does not vanish on ETN ˆTN rJs and thus

J PV
τ
M ùñ ujpJq “ 0 @ j PJ. (2.3.10)

On the other hand, if J P Eτ
M , with Eτ

M defined by (2.2.5), then
À

jPJ sj is a nowhere zero
section of

À
jPJ rDjs and thus

J PEτ
M ùñ

ź

jPJ

uj “ 0 P H˚
TN pXτ

Mq. (2.3.11)

Proposition 2.3.3. Let pM, τq be a toric pair.

( a) If J“pj1 ă . . .ăjkqPV τ
M ,

´
x1pJq x2pJq . . . xkpJq

¯
“
´
αj1 αj2 . . . αjk

¯
M´1

J .

(b) With xi and uj defined by (2.3.7),

H˚
TN pXτ

Mq “ Qrαs rx1, x2, . . . , xk, u1, u2, . . . , uN s
ˆ
uj ´

kř
i“1

mijxi ` αj, 1ď jď N

˙
`
˜
ś
jPJ

uj : J PEτ
M

¸ . (2.3.12)

If in addition P PH˚
TN pXτ

Mq, then P “0 if and only if P pJq“0 for all J PV τ
M .

Proof. (a) This follows from (2.3.9) and (2.3.10).
(b) By Remark 2.2.3, there exists BĂpZě0qk such that tHp : pPBu is a Q-basis for H˚pXτ

Mq.
The map

H˚pXτ
Mq Q Hp ÝÑ xp P H˚

TNpXτ
Mq @pPB

defines a cohomology extension of the fiber for the fiber bundle ETN ˆTN Xτ
M ÝÑ pP8qN .

Thus, by the Leray-Hirsch Theorem [Spa, Chapter 5], the map

H˚
TN bH˚pXτ

Mq Q P b Hp ÝÑ Pxp P H˚
TN pXτ

Mq @pPB
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is an isomorphism of vector spaces. The relations in (2.3.12) hold by (2.3.9) and (2.3.11).
We show below that there are no other relations and simultaneously verify the last claim.

Suppose P PH˚
TN pXτ

Mq, P pJq“0 for all J PV τ
M . By (ii) in Definition 2.1.1, any element P

of H˚
TN pXτ

Mq is a polynomial in u1, . . . , uN with coefficients in Qrαs. If J PV τ
M and j PrN s´J ,

then
ujpJq

ˇ̌
ˇ
αi“0@ iPJ

“´αj (2.3.13)

by (2.3.9) and (a). By (2.3.10) and (2.3.13), whenever ua1i1 . . . u
as
is

is a monomial appearing
in P and J PV τ

M , ti1, . . . , isuXJ‰H. This shows that

P PH˚
TN pXτ

Mq, P pJq“0 @ J PV
τ
M ùñ P PH1,

where H1 is the ideal

H1 ”
´
ui1 . . . uis : ti1, . . . , isuXJ‰H @ J PV

τ
M

¯
ĂQrαsru1, . . . , uN s.

Since H1 ĎpśjPJ uj : J PEτ
Mq by Lemma 2.1.4(i),

P PH˚
TN pXτ

Mq, P pJq“0 @ J PV
τ
M ùñ P P

˜
ź

jPJ

uj : J PEτ
M

¸
.

By (2.3.11), this implies that P “0 P H˚
TN pXτ

Mq if P pJq“0 for all J PV τ
M .

For every J PV τ
M , let

φJ ”
ź

jPrNs´J

uj.

By (2.2.6) and (2.3.10),

φJpJq “ e
`
TrJsX

τ
M

˘
, φJpIq “ 0 @ I P V

τ
M ´tJu. (2.3.14)

Thus, by the Localization Theorem (2.3.2),
ż

Xτ
M

PφJ “ P pJq @P PH˚
TN pXτ

Mq, J PV
τ
M , (2.3.15)

i.e. φJ is the equivariant Poincaré dual of the point rJsPXτ
M .

2.4 Examples

Example 2.4.1 (the complex projective space PN´1 with the standard action of TN). If

M ” p1, . . . , 1q P RN and τ P Rą0,

then

µM : CN ÝÑ R, µMpzq“|z1|2`. . . `|zN |2, P τ
M “

!
vP

`
Rě0

˘N
: v1`. . .`vN “τ

)
,

pM, τq is a minimal toric pair, rXτ
M “CN ´0,

Xτ
M “ PN´1 – pS2n´1p

?
τqq{S1, H˚

TN pPN´1q – Qrα1, . . . , αN srxs
L Nź

k“1

px´αkq.
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Example 2.4.2 (the Hirzebruch surfaces Fk ”P pOP1 ‘ OP1pkqq). If kě0,

M”
ˆ
0 0 1 1
1 1 0 k

˙
, τ ”

ˆ
1

k ` 1

˙
,

then

pt1, t2q ¨ pz1, z2, z3, z4q”
`
t2z1, t2z2, t1z3, t1t

k
2z4

˘
,

µM : C4 ÝÑ R2, µMpzq ”
ˆ

|z3|2 ` |z4|2
|z1|2 ` |z2|2 ` k|z4|2

˙
,

P τ
M “

!
vP

`
Rě0

˘4
: v3`v4 “1, v1`v2`kv4 “k`1

)
,

pM, τq is a minimal toric pair,

rXτ
M “ C4 ´

´
C2ˆ0Y0ˆC2

¯
, Xτ

M “ rXτ
M

L
T2.

The map

Xτ
M

„Ñ Fk, rz1, z2, z3, z4s ÝÑ
“
rz1, z2s, z3,

`
pz1, z2qbk ÝÑ z4

˘‰
, (2.4.1)

is a T4-equivariant biholomorphism with respect to the action of T4 on Fk given by

pt1, t2, t3, t4q ¨ rrz1, z2s, z3, ϕs”
”
rt1z1, t2z2s, t3z3, pt1y1, t2y2qbk ÝÑ t4ϕ

´
py1, y2qbk

¯ı
,

@rz1, z2s P P1, z3 P C, ϕ P OP1pkq
ˇ̌
rz1,z2s

.

By Proposition 2.2.2,

H˚ pFkq “ Q rH1,H2,U1,U2,U3,U4s
pU1 ´ H2,U2 ´ H2,U3 ´ H1,U4 ´ H1 ´ kH2q ` pU1U2,U3U4q

– Q rH1,H2s`
H2

2,H1 pH1 ` kH2q
˘ .

Since the toric hypersurfaces D2 and D3 defined by (2.1.12) intersect at one point,

H1H2 “ U2U3 “ 1, H2
1 “´kH1H2 “´k.

The isomorphism (2.4.1) maps D4 onto E0 and D3 onto E8, where

E0 ” image of the section p1, 0q in Fk,

E8 ” closure of the image of p0, σq in Fk,

where σ is any non-zero holomorphic section of OP1pkq.
Since V τ

M “ tp1, 3q, p1, 4q, p2, 3q, p2, 4qu, by Corollary 2.3.2, the T4-fixed points in Xτ
M are

r1, 0, 1, 0s, r1, 0, 0, 1s, r0, 1, 1, 0s, and r0, 1, 0, 1s,
while the closed T4-fixed curves are all 4 toric hypersurfaces D1, D2, D3, and D4. By
Proposition 2.3.3(b),

H˚
T4 pFkq” Qrα1, α2, α3, α4srx1, x2s´

px2 ´ α1qpx2 ´ α2q, px1 ´ α3qpx1 ` kx2 ´ α4q
¯ .
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Example 2.4.3 (products). Let pM1, τ1q and pM2, τ2q be (minimal) toric pairs, where Mj is
a kjˆNj matrix. Define

M1 ‘ M2 ”
ˆ
M1 0
0 M2

˙
.

Then, pM1 ‘ M2, pτ1, τ2qq is a (minimal) toric pair,

P
pτ1,τ2q
M1‘M2

“ P τ1
M1

ˆ P τ2
M2
, and rXpτ1,τ2q

M1‘M2
“ rXτ1

M1
ˆ rXτ2

M2
.

The projections πj :C
N1`N2ÝÑCNj induce a TN1`N2-equivariant biholomorphism

X
pτ1,τ2q
M1‘M2

Q rzs „ÝÑ
´

rπ1pzqs, rπ2pzqs
¯

P Xτ1
M1

ˆ Xτ2
M2
,

where the action of TN1`N2 on Xτ1
M1

ˆXτ2
M2

is the product of the standard actions of TN1 on
Xτ1

M1
and of TN2 on Xτ2

M2
. By (2.1.4) and Lemma 2.1.4(a)(g),

V
pτ1,τ2q
M1‘M2

“ V
τ1
M1

ˆ V
τ2
M2
.

Thus, by Corollary 2.3.2(a), the TN1`N2-fixed points of X
pτ1,τ2q
M1‘M2

are the points prI1s, rI2sq for
all Ij PV

τj
Mj

, with rIjs defined by (2.1.13). By Corollary 2.3.2(b) and the second statement in

Lemma 2.1.4(b), the closed TN1`N2-fixed curves in X
pτ1,τ2q
M1‘M2

are all curves of the form C1 r̂I2s
and rI1sˆC2, where Cj is any closed TNj -fixed curve in X

τj
Mj

and Ij PV
τj
Mj

is arbitrary.

In particular, PN1´1ˆ. . .ˆPNs´1 is given by the minimal toric pair

s rows

$
’’’’&
’’’’%

N1 columnshkkikkj Ns columnshkkikkj
¨
˚̊
˚̊
˚̋

1 1 . . . 1 1 . . . 0 0 . . . 0 0

0 0 . . . 0 0 . . . 0 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 . . . 1 1 . . . 1 1

˛
‹‹‹‹‹‚

, τ “

¨
˚̊
˚̋

τ1
τ2
...
τs

˛
‹‹‹‚P pRą0qs. (2.4.2)

By Proposition 2.3.3(b),

H˚
TN

`
PN1´1ˆ. . .ˆPNs´1

˘
“

Qrαpiq
j , 1ď iďs, 1ďjďNisrx1, . . . , xss˜

Niś
j“1

´
xi ´ α

piq
j

¯
, 1ď iďs

¸ . (2.4.3)

Remark 2.4.4. Let σ : rN s ÝÑ rN s be a permutation and pM, τq be a (minimal) toric pair.
Let

Mσ ”
`
miσpjq

˘
1ďiďk
1ďjďN

” M ˝Idσ

be the matrix obtained from M by permuting its columns as dictated by σ. Then pMσ, τq
is a (minimal) toric pair as well and Idσ´1

induces a biholomorphism between Xτ
M and Xτ

Mσ

(since µMσ “µM ˝Idσ) equivariant with respect to

TN ÝÑ TN , pt1, t2, . . . , tNq ÝÑ
`
tσp1q, tσp2q, . . . , tσpNq

˘
.

In particular, taking k“0 in Example 2.4.2 gives - via (2.4.2) - P1ˆP1 as expected, since
the corresponding matrices differ by a permutation of columns.
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Chapter 3

Explicit Gromov-Witten formulas

For the remaining part of this dissertation, Xτ
M is the compact projective manifold defined

by (2.1.2), where pM, τq is a minimal toric pair as in Definition 2.1.1. Theorem 3.2.1 in

Section 3.2 below computes the one-point GW generating functions
İ

Zη and
İİ

Zη of (1.1.6) if
ηPH˚pXτ

Mq is of the form η“Hp, where tH1, . . . ,Hku is the basis for H2pXτ
M ;Zq referred to

in Proposition 2.2.2 and

Hp ” Hp1
1 . . .Hpk

k @p “ pp1, . . . , pkqPpZě0qk.

We denote
İ

Zp ”
İ

ZHp and
İİ

Zp ”
İİ

ZHp . (3.0.1)

Section 3.1 constructs the explicit formal power series in terms of which
İ

Zp and
İİ

Zp are
expressed in Theorem 3.2.1. Throughout this construction, which extends the constructions
in [Z1, Section 2.3] and [PoZ, Sections 2,3] from Pn´1 to an arbitrary toric manifold Xτ

M , we
assume that

νEpdq ě 0 @dPΛ, (3.0.2)

with νE as in (3.1.1), and identify

H2pXτ
M ;Zq – Zk

via the basis tH1, . . . ,Hku. Via this identification Λ ãÑZk, with Λ as in (1.1.3).

3.1 Notation and construction of explicit power series

If R is a ring, we denote by RV~W the ring of formal Laurent series in ~´1 with finite
principal part:

RV~W ” Rrr~´1ss ` Rr~s.
Given f, gPRV~W and sPZě0, we write

f – g mod ~´s if f´g P Rr~s `
#

s´1ÿ

i“1

ai~
´i : ai PR @ iPrs´1s

+
.
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If R is a field, we view Rp~q as a subring of RV~W by associating to each element of Rp~q its
Laurent series at ~´1 “0.

With the line bundles L˘
i as in (1.1.2) and Uj as in (2.2.3) and dPH2pXτ

M ;Zq, we define

Djpdq ”
@
Uj,d

D
, L˘

i pdq ”
@
c1pL˘

i q,d
D
,

νEpdq ”
Nÿ

j“1

Djpdq´
aÿ

i“1

L`
i pdq`

bÿ

i“1

L´
i pdq . 1 (3.1.1)

If in addition Y ĂX is a one-dimensional submanifold, let

DjpY q ” Dj

`
rY sXτ

M

˘
, L˘

i pY q ” L˘
i

`
rY sXτ

M

˘
,

where rY sXτ
M

P H2pXτ
M ;Zq is the homology class represented by Y . By (2.2.7), our assump-

tion (3.0.2), and Footnote 2,

c1pTXτ
Mq ´

aÿ

i“1

c1pL`
i q `

bÿ

i“1

c1pL´
i q P K

τ

M .

Thus, if E ‰E`, then Xτ
M is Fano. In this case, the Cone Theorem [La, Theorem 1.5.33]

implies that the closed R-cone of curves is a polytope spanned by classes of rational curves.
By [La, Proposition 1.4.28] and [La, Theorem 1.4.23(i)], this closed cone is the R-cone
spanned by Λ. Thus, L´

i pdqă0 for all dPΛ´t0u and all iPrbs.2
Let R be a ring. Similarly to Section 1.1, we denote by RrrΛ´0ss and RrrΛ; νE “0ss the

subalgebras of RrrΛss given by

RrrΛ´0ss ”
#
ÿ

dPΛ

adQ
d P RrrΛss : a0 “ 0

+
,

RrrΛ; νE “0ss ”
#
ÿ

dPΛ

adQ
d P RrrΛss : ad “ 0 if νEpdq‰0

+
.

In some cases, the formal variables whose powers are indexed by Λ within RrrΛss will be
denoted by Q”pQ1, . . . , Qkq as in Section 1.1, while in other cases the formal variables will
be q” pq1, . . . , qkq. If f PRrrΛss and dPΛ, we write JfKq;d PR for the coefficient of qd in f .
By Proposition 2.2.4, the set tsPΛ : d´sPΛu is finite for every dPΛ; thus,

f P RrrΛss is invertible ðñ JfKq;0 P R is invertible.

If f” ř
dPΛ

fdq
d PRrrΛss, we define

JfKνE“0 ”
ÿ

dPΛ
νEpdq“0

fdq
d P RrrΛ; νE “0ss.

1By (1.1.2) and (2.2.7), νEpdq “
@
c1pT pE´|Y qq,d

D
if Y is a smooth complete intersection defined by a

holomorphic section of E` and T pE´|Y q is the tangent bundle of the total space of E´|Y .
2In the notation of [La], N1pXτ

M qR “ H1,1pXτ
M q XH2pXτ

M ;Rq as can be seen from Poincaré Duality,
Lefschetz Theorem on p1, 1q-classes, and Hard Lefschetz Theorem.

28



Let A“pA1,. . .,Akq be a tuple of formal variables. If f ” ř
dPΛ

fdpAqqdPRrrAssrrΛss and pě 0,

we write
JfKA;p ”

ÿ

dPΛ

JfdpAqKA;p q
d PRrAsprrΛss,

where JfdpAqKA;p P RrAs denotes the degree p homogeneous part of fdpAq and RrAsp the
space of homogeneous polynomials of degree p in A1, . . . ,Ak with coefficients in R. Finally,
we write

|p| ” p1 ` p2 ` . . . ` pk @p “ pp1, p2, . . . , pkqPpZě0qk.
For each dPΛ, let

Upd; A, ~q ”

ś
jPrNs

Djpdqă0

0ś
s“Djpdq`1

ˆ
kř

i“1

mijAi ` s~

˙

ś
jPrNs

Djpdqě0

Djpdqś
s“1

ˆ
kř

i“1

mijAi ` s~

˙ P QrAsV~W . (3.1.2)

By Proposition 2.2.5, the line bundles γ˚
i of (2.2.3) form a basis for the Picard group of Xτ

M .
Thus, there are well-defined integers ℓ˘

ri such that

L˘
i “ γ

˚ℓ˘
1i

1 b . . . b γ
˚ℓ˘

ki

k . (3.1.3)

With A and d as above, let

İ

Epd;A, ~q ”
aź

i“1

L`
i pdqź

s“1

˜
kÿ

r“1

ℓ`
riAr ` s~

¸
bź

i“1

´L´
i pdq´1ź

s“0

˜
kÿ

r“1

ℓ´
riAr ´ s~

¸
P ZrA, ~s,

İİ

Epd;A, ~q ”
aź

i“1

L`
i pdq´1ź

s“0

˜
kÿ

r“1

ℓ`
riAr ` s~

¸
bź

i“1

´L´
i pdqź

s“1

˜
kÿ

r“1

ℓ´
riAr ´ s~

¸
P ZrA, ~s.

(3.1.4)

The formal power series computing
İ

Zp and
İİ

Zp in Theorem 3.2.1 are obtained from

İ

Y pA, ~, qq ”
ÿ

dPΛ

qdUpd; A, ~q
İ

Epd; A, ~q P QrAs
““
~´1,Λ

‰‰
,

İİ

Y pA, ~, qq ”
ÿ

dPΛ

qdUpd; A, ~q
İİ

Epd; A, ~q P QrAs
““
~´1,Λ

‰‰
.

(3.1.5)

We define

İ

I0pqq ”
İ

Y pA, ~, qq mod ~´1,
İİ

I0pqq ”
İİ

Y pA, ~, qq mod ~´1, (3.1.6)
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and so

İ

I0pqq ” 1 ` δb,0
ÿ

dPΛ´0, νEpdq“0
Djpdqě0 @ jPrNs

qd

aś
i“1

`
L`
i pdq!

˘

Nś
j“1

pDjpdq!q
,

İİ

I0pqq ” 1 `
ÿ

dPΛ´0, νEpdq“0
Djpdqě0 @ jPrNs

L`
i pdq“0@ iPras

qdp´1q
bř

i“1

L´
i pdq

bś
i“1

``
´L´

i pdq
˘
!
˘

Nś
j“1

pDjpdq!q
.

We next describe an operatorDp acting on a subset ofQpA, ~qrrΛss and certain associated

“structure coefficients” in QrrΛss which occur in the formulas for
İ

Zp and
İİ

Zp. Fix an element
Y pA, ~, qq of QpA, ~qrrΛss such that for all dPΛ

JY pA, ~, qqKq;d ” fdpA, ~q
gdpA, ~q

for some homogeneous polynomials fdpA, ~q, gdpA, ~qPQrA, ~s satisfying

f0pA, ~q “ g0pA, ~q , deg fd ´ deg gd “ ´νEpdq, gd
ˇ̌
A“0

‰ 0 @dPΛ. (3.1.7)

This condition is satisfied by the power series
İ

Y and
İİ

Y of (3.1.5) and so the construction

below applies to Y “
İ

Y and Y “
İİ

Y . We inductively define

JppY q P EndQrrΛ;νE“0ss

`
QrrΛ; νE “0ssrAsp

˘
@ pPZě0 , DpY pA, ~, qq P QpA, ~qrrΛss @pPpZě0qk

satisfying

(P1) for every pPpZě0qk with |p|“p, JtJppY qupApqK
q;0

“ Ap;

(P2) there exist Cprq
p,s ”Cprq

p,spY q P QrrΛss with p, rPpZě0qk and sPZě0 such that

DpY pA, ~, qq “ ~|p|
8ÿ

s“0

ÿ

rPpZě0qk

Cprq
p,spqqAr~´s , (3.1.8)

r
Cprq

p,s

z
q;d

“0 if s‰νEpdq`|r|,
r
Cprq

p,s

z
νE“0

“δp,rδ|r|,s if sď|p|,
r
C

prq
p,|r|

z
q;0

“δp,r. (3.1.9)

By (3.1.7), we can define J0pY q P QrrΛ; νE “0ss and D0Y PQpA, ~qrrΛss by

tJ0pY qup1q ” Y pA, ~, qq mod ~´1, D0Y pA, ~, qq ” rtJ0pY qup1qs´1
Y pA, ~, qq. (3.1.10)

Suppose next that p ě 0 and we have constructed an operator JppY q and power series
Dp1

Y for all p1 P pZě0qk with |p1| “ p satisfying the above properties. For each p P pZě0qk
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with |p|“p`1, let

rDpY pA, ~, qq ” 1

|suppppq|
ÿ

iPsuppppq

"
Ai ` ~ qi

d

dqi

*
Dp´eiY pA, ~, qq P QpA, ~qrrΛss,

tJp`1pY qupApq ”
r
rDpY pA, ~, qq mod ~´1

z
A;p`1

,

(3.1.11)

where te1, . . . , eku is the canonical basis for Zk. By (P2),

tJp`1pY qupApq “ 1

|suppppq|
ÿ

iPsuppppq

»
– ÿ

|r|“p

C
prq
p´ei,p

Ai ¨Ar `
ÿ

|r|“p`1

qi
dC

prq
p´ei,p`1

dqi
Ar

fi
fl

“ 1

|suppppq|
ÿ

|r|“p`1

»
– ÿ

iPsuppppq

˜
C

pr´eiq
p´ei,p

` qi
dC

prq
p´ei,p`1

dqi

¸fi
flAr,

(3.1.12)

where we set C
pr´eiq
p´ei,p

”0 if iRsuppprq. By (3.1.12) and (3.1.9),

tJp`1pY qupApq P QrrΛ; νE “0ssrAsp`1 and JtJp`1pY qupApqK
q;0

“ Ap ; (3.1.13)

in particular, Jp`1pY q is invertible. With cp;p1pqq P QrrΛ; νE “ 0ss for p,p1 P pZě0qk with
|p|, |p1|“p`1 given by

tJp`1pY qu´1pApq ”
ÿ

p1PpZě0qk,|p1|“p`1

cp;p1pqqAp1

, (3.1.14)

we define
DpY pA, ~, qq ”

ÿ

p1PpZě0qk,|p1|“p`1

cp;p1pqqrDp1

Y pA, ~, qq. (3.1.15)

By (3.1.15) and the inductive assumption (3.1.8),

DpY pA, ~, qq “ ~p`1

8ÿ

s“0

ÿ

rPpZě0qk

Cprq
p,spqqAr~´s , where

Cprq
p,s “

ÿ

p1PpZě0qk,|p1|“p`1

cp;p1

|supppp1q|
ÿ

iPsupppp1q

˜
C

pr´eiq
p1´ei,s´1 ` qi

dC
prq
p1´ei,s

dqi

¸
, (3.1.16)

where we set C
pr´eiq
p1´ei,s´1 “ 0 if i R suppprq or s “ 0. By the first property in (3.1.9) with p

replaced by p1 ´ei with |p1| “ p`1 and i P supppp1q, Cprq
p,s satisfies this property as well. By

the second property in (3.1.9) with p replaced by p1 ´ei with |p1| “ p`1 and i P supppp1q,r
Cprq

p,s

z
νE“0

“0 if sďp. Since C
prq
p,p`1 “δp,r whenever |r|“p`1 by (3.1.16) and (3.1.14), Cprq

p,s

also satisfies the second property in (3.1.9). By the second statement in (3.1.13) and (3.1.14),
Jcp;p1K

q;0
“δp,p1 . Thus, by the third property in (3.1.9) with p replaced by p1 éi with |p1|“ p̀ 1

and iPsupppp1q, Cprq
p,s satisfies the last property in (3.1.9) as well.
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Define rCprq

p,s ” rCprq

p,spY qPQrrΛss for p, sPpZě0qk and rPZě0 with |s|ď|p|´r and rď|p| by
rÿ

t“0

ÿ

sPpZě0qk

|s|ď|p|´t

rCptq

p,sC
prq
s,|r|`r´t

“ δp,rδr,0 @ rPpZě0qk, |r| ď |p|´r. (3.1.17)

Equations (3.1.17) indeed uniquely determine rCprq

p,s, since

rÿ

t“0

ÿ

sPpZě0qk

|s|ď|p|´t

rCptq

p,sC
prq
s,|r|`r´t

“
r´1ÿ

t“0

ÿ

sPpZě0qk

|s|ď|p|´t

rCptq

p,sC
prq
s,|r|`r´t

`
ÿ

sPpZě0qk

|s|ă|r|

rCprq

p,sC
prq
s,|r| ` rCprq

p,r, (3.1.18)

as follows from (3.1.9). By (3.1.17) together with the first and third statements in (3.1.9),

r
rCprq

p,s

z
q;0

“ δp,sδr,0 . (3.1.19)

By (3.1.17), (3.1.18), and induction on |s|,

rCp0q

p,spqq “ δp,s @p, sPpZě0qk with |s|ď|p|. (3.1.20)

By (3.1.17), (3.1.18), the first statement in (3.1.9), and induction on |s| and r,
r
rCprq

p,s

z
q;d

“ 0 if νEpdq ‰ r. (3.1.21)

Remark 3.1.1. With
İ

Y ,
İİ

Y as in (3.1.5) and
İ

I0,
İİ

I0 as in (3.1.6),

!
J0p

İ

Y q
)

p1q “
İ

I0pqq, D0
İ

Y pA, ~, qq “ 1
İ

I0pqq
İ

Y pA, ~, qq,
!
J0p

İİ

Y q
)

p1q “
İİ

I0pqq, D0
İİ

Y pA, ~, qq “ 1
İİ

I0pqq
İİ

Y pA, ~, qq,

by (3.1.10).

Define
"
A ` ~ q

d

dq

*p

”
"
A1`~ q1

d

dq1

*p1

. . .

"
Ak`~ qk

d

dqk

*pk

@p “ pp1, . . . , pkqPpZě0qk.

Remark 3.1.2. If νEpdqą0 for all dPΛ´t0u and Y pA, ~, qqPQpA, ~qrrΛss satisfies (3.1.7),
then JppY q “ Id for all p P Zě0 by (P1) above. Along with the first equation in (3.1.11),
(3.1.14), (3.1.15), and induction on |p|, this implies that

DpY pA, ~, qq “
"
A`~ q

d

dq

*p

Y pA, ~, qq

for all pPpZě0qk.
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Remark 3.1.3. Suppose p˚ PZě0, Y pA, ~, qqPQpA, ~qrrΛss satisfies (3.1.7), and

deg~ fdpA, ~q ´ deg~ gdpA, ~q ă ´p˚ @dPΛ´t0u.

By the same reasoning as in Remark 3.1.2, we again find that

JppY q “ Id, DpY pA, ~, qq ”
"
A`~ q

d

dq

*p

Y pA, ~, qq,

for all pPZě0 and pPpZě0qk such that p, |p| ďp˚.

Remark 3.1.4. Let pM, τq be the toric pair of Example 2.4.1 with N“n so that Xτ
M “Pn´1.

Let

E ”
aà

i“1

OPn´1pℓ`
i q ‘

bà
i“1

OPn´1pℓ´
i q

with a, bě0, ℓ`
i ą0 for all iPras, ℓ´

i ă0 for all iPrbs, and
ař

i“1

ℓ`
i ´

bř
i“1

ℓ´
i ďn. Thus,

νEpdq “
˜
n ´

aÿ

i“1

ℓ`
i `

bÿ

i“1

ℓ´
i

¸
d

for all dPZě0. By (3.1.5),

İ

Y pA, ~, qq “
8ÿ

d“0

qd

aś
i“1

ℓ`
i dś
s“1

`
ℓ`
i A`s~

˘ bś
i“1

´ℓ´
i d´1ś
s“0

`
ℓ´
i A´s~

˘

dś
s“1

pA`s~qn
,

İİ

Y pA, ~, qq “
8ÿ

d“0

qd

aś
i“1

ℓ`
i d´1ś
s“0

`
ℓ`
i A`s~

˘ bś
i“1

´ℓ´
i dś

s“1

`
ℓ´
i A´s~

˘

dś
s“1

pA`s~qn
.

By Remark 3.1.3,

Jpp
İ

Y q “ Id, Dp
İ

Y pA, ~, qq “
"
A`~ q

d

dq

*p
İ

Y pA, ~, qq @ păb,

Jpp
İİ

Y q “ Id, Dp
İİ

Y pA, ~, qq “
"
A`~ q

d

dq

*p
İİ

Y pA, ~, qq @ păa.

If
ař

i“1

ℓ`
i ´

bř
i“1

ℓ´
i ăn, then

Jpp
İ

Y q, Jpp
İİ

Y q“ Id, Dp
İ

Y “
"
A`~ q

d

dq

*p
İ

Y, Dp
İİ

Y “
"
A`~ q

d

dq

*p
İİ

Y
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for all p by Remark 3.1.2. If
ař

i“1

ℓ`
i ´

bř
i“1

ℓ´
i “n, then we follow [PoZ, (1.1)] and set

F pw, qq ”
8ÿ

d“0

qd

aś
i“1

ℓ`
i dś
r“1

`
ℓ`
i w`r

˘ bś
i“1

´ℓ´
i dś

r“1

`
ℓ´
i w´r

˘

dś
r“1

pw`rqn
,

MF pw, qq ”
"
1` q

w

d

dq

*ˆ
F pw, qq
F p0, qq

˙
, Ippqq ” MpF p0, qq.

(3.1.22)

By (3.1.11) and (3.1.15) above,

Jpp
İ

Y q “ Ip´bpqqId, Dp
İ

Y pA, ~, qq “ Ap 1

Ip´bpqq
Mp´bF

ˆ
A

~
, q

˙
@ pěb,

Jpp
İİ

Y q “ Ip´apqqId, Dp
İİ

Y pA, ~, qq “ Ap 1

Ip´apqqM
p´aF

ˆ
A

~
, q

˙
@ pěa.

3.2 Statements

The statements and proofs of the theorems below rely on the one-point mirror formula
(5.1.2) below, which is proved in [LLY3]. We begin by defining the mirror map occurring in
this formula.

For each iPrks, let

fipqq” 1
İ

I0pqq
ÿ

dPΛ
νEpdq“0

qd
B
!
Upd; A, 1q

İ

Epd; A, 1q
)

BAi

ˇ̌
ˇ
A“0

PQrrΛ´0ss, (3.2.1)

with
İ

I0pqq defined by (3.1.6). The mirror map is the change of variables q ÝÑQ, where

pQ1, . . . , Qkq “
`
q1e

f1pqq, . . . , qke
fkpqq

˘
. (3.2.2)

Finally, let

Gpqq” δb,0
İ

I0pqq
ÿ

dPΛ, νEpdq“1
Djpdqě0@ jPrNs

qd

aś
i“1

`
L`
i pdq!

˘

Nś
j“1

pDjpdq!q
PQrrΛ´0ss. (3.2.3)

Theorem 3.2.1. If νEpdqě0 for all dPΛ, then
İ

Zp and
İİ

Zp of (3.0.1) and (1.1.6) are given
by

İ

Zpp~, Qq “ e
´ 1

~

«
Gpqq`

kř
i“1

Hifipqq

ff

İ

YppH, ~, qqPH˚pXτ
Mqr~´1srrΛss,

İİ

Zpp~, Qq “ e
´ 1

~

«
Gpqq`

kř
i“1

Hifipqq

ff

İİ

YppH, ~, qqPH˚pXτ
Mqr~´1srrΛss,
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where

İ

YppA, ~, qq ” Dp
İ

Y pA, ~, qq `
|p|ÿ

r“1

|p|´rÿ

|s|“0

İ

rCprq

p,spqq~|p|´r´|s|Ds
İ

Y pA, ~, qqPQpA, ~qrrΛss,

İİ

YppA, ~, qq ” Dp
İİ

Y pA, ~, qq `
|p|ÿ

r“1

|p|´rÿ

|s|“0

İİ

rCprq

p,spqq~|p|´r´|s|Ds
İİ

Y pA, ~, qqPQpA, ~qrrΛss,
(3.2.4)

with
İ

rCprq

p,s ” rCprq

p,sp
İ

Y q and
İİ

rCprq

p,s ” rCprq

p,sp
İİ

Y q defined by (3.1.17), Q and q related by the mirror
map (3.2.2), G and fi given by (3.2.3) and (3.2.1), and the operator Dp defined by (3.1.11)
and (3.1.15).

If |p|ăb, Dp
İ

Y “ tA`~ q d
dq

up
İ

Y and
İ

rCprq

p,s “0 for all rPr|p|s. If |p|ăa and L`
i pdqě1 for

all iPras and dPΛ´t0u, then Dp
İİ

Y “ tA`~ q d
dq

up
İİ

Y and
İİ

rCprq

p,s “0 for all rPr|p|s.
This follows from Theorem 4.2.3 together with (4.1.15) and (EP1) below; Theorem 4.2.3

is an equivariant version of Theorem 3.2.1.

Remark 3.2.2. In the inductive construction of DpY with Y “
İ

Y or Y “
İİ

Y , the first
equation in (3.1.11) may be replaced by

rDpY pA, ~, qq”
ÿ

iPsuppppq

cp;i

"
Ai`~ qi

d

dqi

*
Dp´eiY pA, ~, qqPQpA, ~qrrΛss

for any tuple pcp;iqiPsuppppq of rational numbers with
ř

iPsuppppq

cp;i “ 1. The endomorphism

Jp`1pY q and the power series DpY defined by the second equation in (3.1.11) and (3.1.15)

in terms of the new “weighted” rDpY satisfy (P1) and (P2) by the same arguments as in
the case when cp;i “ 1

|suppppq|
for all iPsuppppq. Therefore, (3.1.17) continues to define power

series rCprq

p,spY q in terms of the “new weighted” Cprq
p,spY q. The resulting “weighted” power

series Yp of (3.2.4) do not depend on the “weights” cp;i as elements of H˚pXτ
MqV~WrrΛss; this

follows from Remark 4.2.6.

Corollary 3.2.3. If νEpdq“0 or νEpdqą|p| for all dPΛ´t0u, then

İ

Zpp~, Qq “ e
´ 1

~

«
Gpqq`

kř
i“1

Hifipqq

ff

Dp
İ

Y pH, ~, qq,
İİ

Zpp~, Qq “ e
´ 1

~

«
Gpqq`

kř
i“1

Hifipqq

ff

Dp
İİ

Y pH, ~, qq,
with Q and q related by the mirror map (3.2.2) and G and fi given by (3.2.3) and (3.2.1).

This follows from Theorem 3.2.1 together with (3.1.21).
Let pri :X

τ
M ˆXτ

M ÝÑXτ
M denote the projection onto the i-th component.

Corollary 3.2.4. Let gps PQ be such that
ř

|p|`|s|“N´k

gpspr
˚
1H

ppr˚
2H

s is the Poincaré dual to

the diagonal class in Xτ
M , where N ´k is the complex dimension of Xτ

M . If N ą k and

νEpdqąN´k for all dPΛ´t0u, then the two-point function
İ

Z of (1.1.5) is given by

İ

Zp~1, ~2, qq “ 1

~1 ` ~2

ÿ

|p|`|s|“N´k

gpspr
˚
1

"
H`~1 q

d

dq

*p
İ

Y pH, ~1, qqpr˚
2

"
H`~2 q

d

dq

*s
İİ

Y pH, ~2, qq.
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This follows from Theorem 1.1.3, Corollary 3.2.3, and Remark 3.1.2.

Remark 3.2.5. If

P pAq ”

aś
i“1

ˆ
kř

r“1

ℓ`
riAr

˙

bś
i“1

ˆ
kř

r“1

ℓ´
riAr

˙ P QrAs,

then
Z˚p~1, ~2, Qq “

İ

Z˚p~1, ~2, Qqpr˚
1P pHq,

where pr1 :X
τ
MˆXτ

M ÝÑXτ
M is the projection onto the first component, while

İ

Z˚ and Z˚ are
as in Remark 1.1.4. Via Theorem 1.1.3, this expresses the two-point function Z˚ in terms

of the one-point functions
İ

Zη,
İİ

Zη. In this case and if νEpdq ě 0 for all d P Λ, Z˚ can be

computed explicitly in terms of
İ

Y and
İİ

Y via Theorem 3.2.1.
We next use an idea from [CoZ] to express Z˚ in terms of one-point GW generating

functions and then show how to compute the latter in the bą0 case. If pri :X
τ
MˆXτ

M ÝÑXτ
M

and gps PQ are as in Corollary 3.2.4, then

Z˚p~1, ~2, Qq “ 1

~1 ` ~2

ÿ

|p|`|s|“N´k

gps
“
pr˚

1H
ppr˚

2Z
˚
s p~2, Qq

` pr˚
1Z

˚
pp~1, Qqpr˚

2

İİ

Zsp~2, Qq
‰
,

(3.2.5)

where

Z˚
pp~, Qq ”

ÿ

dPΛ´0

Qdev1˚

„
epVEqev˚

2H
p

~´ψ1


PH˚pXτ

Mq r~´1srrΛss

and ev1 : M0,2pXτ
M ,dqÝÑXτ

M . This follows from (4.2.5).
We next assume that bą0 and νEpdqě0 for all dP Λ and express Z˚

pp~, Qq in terms of ex-
plicit power series. Along with (3.2.5) and Theorem 3.2.1, this will conclude the computation
of Z˚.

With Upd; A, ~q given by (3.1.2), we define

pY pA, ~, qq”
ÿ

dPΛ

qdUpd; A, ~q
aź

i“1

L`
i pdqź

s“1

˜
kÿ

r“1

ℓ`
riAr`s~

¸
bź

i“1

´L´
i pdqź

s“1

˜
kÿ

r“1

ℓ´
riAr´s~

¸
. (3.2.6)

As pY satisfies (3.1.7), we may define DppY and rCprq

p,s ” rCprq

p,sppY q by (3.1.15) and (3.1.17). We

define pYppA, ~, qq by the right-hand side of (3.2.4) above, with
İ

Y replaced by pY and
İ

rCprq

p,s by

rCprq

p,s.
Let

rY ˚pA, ~, qq”
ÿ

dPΛ´0

qdUpd; A, ~q
aź

i“1

L`
i pdqź

s“1

˜
kÿ

r“1

ℓ`
riAr`s~

¸
bź

i“1

´L´
i pdq´1ź

s“1

˜
kÿ

r“1

ℓ´
riAr´s~

¸
. (3.2.7)

36



We define Eprq
p,s PQrrΛss by

"
A ` ~ q

d

dq

*p

rY ˚pA, ~, qq –
|p|´bÿ

s“0

|p|´b´sÿ

|r|“0

Eprq
p,sA

r~s mod ~´1. (3.2.8)

It follows that
r
Eprq
p,s

z
q;d

“0 unless |p|“b`s` νEpdq`|r|. Whenever bě2,

Z˚
pp~, qq“epE`q

»
–
"
H ` ~ q

d

dq

*p

rY ˚pH, ~, qq´
|p|´bÿ

s“0

|p|´b´sÿ

|r|“0

Eprq
p,s~

spYrpH, ~, qq

fi
fl . (3.2.9)

If b“1 and Q and q are related by the mirror map (3.2.2),

Z˚
pp~, Qq “ epE`qe´

epE´qf0pqq
~

«"
H ` ~ q

d

dq

*p

rY ˚pH, ~, qq

´
|p|´bÿ

s“0

|p|´b´sÿ

|r|“0

Eprq
p,s~

spYrpH, ~, qq
ff

´ epE`qHpf0pqq
~

8ÿ

n“0

1

pn ` 1q!

„
´epE´qf0pqq

~

n
,

(3.2.10)

where

f0pqq ”
ÿ

dPΛ´0, νEpdq“0
Djpdqě0@ jPrNs

qdp´1qL´
1 pdq`1

`
´L´

1 pdq´1
˘
!

aś
i“1

`
L`
i pdq!

˘

Nś
j“1

pDjpdqq!
. 3 (3.2.11)

Identities (3.2.9) and (3.2.10) follow by setting α“0 in (4.2.13) and (4.2.14).
As in [CoZ], if Xτ

M “ Pn´1 and b ě 2, (3.2.9) can be be replaced by a simpler formula
in terms of the power series F pw, qq in (3.1.22) above. Assume that E ÝÑ Pn´1 is as in

Remark 3.1.4 and
ař

i“1

ℓ`
i ´

bř
i“1

ℓ´
i “n. Similarly to [CoZ],

Z˚
p p~, qq “ epE`q

epE´q ˆ

$
&
%

!
H`~ q d

dq

)p
İ

Y pH, ~, qq´Hp, if păb,

HpM
p´bF pH

~
,qq

Ip´bpqq
´Hp, if pěb,

where the right-hand side should be first simplified in QpH, ~qrrqss to eliminate division
by H and only afterwards viewed as an element in H˚pPn´1qr~´1srrqss. This follows from
Remarks 4.1.4 and 3.1.4 together with Theorem 4.2.3. By Theorem 3.2.1 and Remark 3.1.4,

İİ

Zpp~, qq “

$
&
%

!
H ` ~ q d

dq

)p İİ

Y pH, ~, qq, if păa,

HpM
p´aF pH

~
,qq

Ip´apqq
, if pěa.

3In this case, fipqq “ ℓ´

i1f0pqq with ℓ´

i1 PZ given by (3.1.3).
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The last two displayed equations together with (3.2.5) imply that

8ÿ

d“1

dqd
ż

M0,2pPn´1,dq

epVEqev˚
1H

c1ev˚
2H

c2 “

aś
i“1

ℓ`
i

bś
i“1

ℓ´
i

pIc1`1´bpqq´1q and Ic1`1´b “Ic2`1´b, (3.2.12)

whenever c1` c2 “n´2´a`b and with Ippqq defined by (3.1.22) if pě0 and Ippqq”1 if pă0.
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Chapter 4

Equivariant theorems

In this chapter we introduce equivariant versions of the GW generating functions
İ

Z,
İ

Zη, and
İİ

Zη of (1.1.5) and (1.1.6). We then present theorems about them which imply the
non-equivariant statements of Section 3.2.

With α ” pα1, . . . , αNq denoting the TN -weights of Section 2.3, H˚
TN pXτ

Mq is generated
over Qrαs by tx1, . . . , xku; see Proposition 2.3.3. The classes xi of (2.3.7) satisfy

H2
TN pXτ

MqQxi restrictionÝÝÝÝÝÝÑ Hi PH2pXτ
Mq @ iPrks, epγ˚

i q “ xi @ iPrks,

where epγ˚
i q is defined by the lift (2.3.3) of the action of TN on Xτ

M to the line bundle γ˚
i .

Let
x ” px1, . . . , xkq, xp ”x

p1
1 ¨. . .¨ xpkk @p “ pp1, . . . , pkqP

`
Zě0

˘k
.

The action of TN on Xτ
M induces an action on M0,mpXτ

M ,dq which lifts to an action on

the vector orbi-bundles VE,
İ

VE, and
İİ

VE of (1.0.1) and (1.1.4). It also lifts to an action on the
universal cotangent line bundle to the i-th marked point whose equivariant Euler class will
also be denoted by ψi. The evaluation maps evi :M0,mpXτ

M ,dqÝÑXτ
M are TN -equivariant.

With ev1, ev2 :M0,3pXτ
M ,dqÝÑXτ

M denoting the evaluation maps at the first two marked
points, let

İ

Zp~1, ~2, Qq ” ~1~2

~1`~2

ÿ

dPΛ

Qdpev1ˆev2q˚

«
ep

İ

VEq
p~1´ψ1q p~2´ψ2q

ff
. (4.0.1)

With ev1, ev2 :M0,2pXτ
M ,dqÝÑXτ

M denoting the evaluation maps at the two marked points
and for all ηPH˚

TN pXτ
Mq, let

İ

Zηp~, Qq ” η`
ÿ

dPΛ´0

Qdev1˚

«
ep

İ

VEqev˚
2η

~´ψ1

ff
PH˚

TN pXτ
Mq rr~´1,Λss,

İİ

Zηp~, Qq ” η`
ÿ

dPΛ´0

Qdev1˚

«
ep

İİ

VEqev˚
2η

~´ψ1

ff
PH˚

TN pXτ
Mq rr~´1,Λss.

(4.0.2)

In the η“xp cases, these are equivariant versions of
İ

Zp and
İİ

Zp in (3.0.1):

İ

Zpp~, Qq ”
İ

Zxpp~, Qq,
İİ

Zpp~, Qq ”
İİ

Zxpp~, QqPH˚
TN pXτ

Mq rr~´1,Λss. (4.0.3)
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In particular,
İ

Z0 ”
İ

Z1, with 0PZk and 1PH˚
TN pXτ

Mq.
Section 4.1 below constructs the explicit formal power series in terms of which

İ

Zp and
İİ

Zp are expressed in Theorem 4.2.3. Throughout this construction, which extends the con-
structions in [Z1, Section 2.3] and [PoZ, Section 3] from Pn´1 to an arbitrary toric manifold
Xτ

M , we assume that νEpdq ě 0 for all d P Λ and identify H2pXτ
M ;Zq – Zk via the basis

tH1, . . . ,Hku of H2pXτ
M ;Zq. Via this identification Λ ãÑZk.

4.1 Construction of equivariant power series

We begin by defining equivariant versions
İ

Y and
İİ

Y of the power series
İ

Y and
İİ

Y in (3.1.5)

as these will compute
İ

Zp and
İİ

Zp in Theorem 4.2.3. We consider the lift (2.3.3) of the
TN-action on Xτ

M to the line bundles L˘
i of (1.1.2) and (3.1.3) so that

λ˘
i ” epL˘

i q“
kÿ

r“1

ℓ˘
rixr. (4.1.1)

An equivariant version of the power series Upd; A, ~q in (3.1.2) is given by

upd; A, ~q”

ś
jPrNs

Djpdqă0

0ś
s“Djpdq`1

ˆ
kř

i“1

mijAi´αj`s~
˙

ś
jPrNs

Djpdqě0

Djpdqś
s“1

ˆ
kř

i“1

mijAi´αj`s~
˙ P Qrα,AsV~W. (4.1.2)

By (2.3.9),

upd; x, ~q“

ś
jPrNs

Djpdqă0

0ś
s“Djpdq`1

puj`s~q

ś
jPrNs

Djpdqě0

Djpdqś
s“1

puj`s~q
. (4.1.3)

With
İ

Epd; A, ~q and
İİ

Epd; A, ~q as in (3.1.4), let

İ

YpA, ~, qq ”
ÿ

dPΛ

qdupd; A, ~q
İ

Epd; A, ~q P Qrα,Asrr~´1,Λss,
İİ

YpA, ~, qq ”
ÿ

dPΛ

qdupd; A, ~q
İİ

Epd; A, ~q P Qrα,Asrr~´1,Λss.
(4.1.4)

In the above definitions of
İ

Y and
İİ

Y and throughout the construction below, the torus
weights α should be thought of as formal variables, in the same way in which A of Section 3.1

are formal variables. With A replaced by x,
İ

Y and
İİ

Y become well-defined elements in
H˚

TN pXτ
Mqrr~´1,Λss. However, this is irrelevant for the purposes of this section and becomes

relevant only when we use
İ

Y and
İİ

Y in the formulas for
İ

Zp and
İİ

Zp.

40



As before, Qα ”Qpαq. We next describe an operatorDp acting on a subset ofQαpA, ~qrrΛss
and certain associated “equivariant structure coefficients” in QrαsrrΛss which occur in the

formulas for
İ

Zp and
İİ

Zp. Fix an element YpA, ~, qqPQαpA, ~qrrΛss such that for all dPΛ

JYpA, ~, qqKq;d ” fdpA, ~q
gdpA, ~q

for some homogeneous polynomials fdpA, ~q, gdpA, ~q PQrα,A, ~s, symmetric in α, and sat-
isfying

f0pA, ~q “ g0pA, ~q, deg fd ´ deg gd “ ´νEpdq, gd

ˇ̌
ˇA“0
α“0

‰0 @d PΛ. (4.1.5)

This condition is satisfied by the power series
İ

Y and
İİ

Y of (4.1.4) and so the construction

below applies to Y “
İ

Y and Y “
İİ

Y . We inductively define DpYpA, ~, qq in QαpA, ~qrrΛss
satisfying

(EP1) with Dp defined in Section 3.1,

DpYpA, ~, qq
ˇ̌
ˇ
α“0

“ Dp
´
YpA, ~, qq

ˇ̌
ˇ
α“0

¯
;

(EP2) there exist C
prq
p,s ”C

prq
p,spYqPQrαsrrΛss with p, rPpZě0qk, sPZě0, such that

r
C

prq
p,s

z
q;d

is

a homogeneous symmetric polynomial in α of degree ´νEpdq´|r|`s,

DpYpA, ~, qq “ ~|p|
8ÿ

s“0

ÿ

rPpZě0qk

Cprq
p,spqqAr~´s, (4.1.6)

q
Cprq
p,s

y
q;0

“δp,rδ|r|,s @p, rPpZě0qk, sPZě0. (4.1.7)

By (4.1.5), (3.1.10), and since
q

tJ0pY
ˇ̌
α“0

qup1q
y
q;0

“1 by (P1), we can define

D0YpA, ~, qq ”
“
tJ0pY

ˇ̌
α“0

qup1q
‰´1

YpA, ~, qqPQαpA, ~qrrΛss. (4.1.8)

Suppose next that p ě 0 and we have constructed power series Dp1
YpA, ~, qq for all

p1 PpZě0qk with |p1|“p satisfying the above properties. For each pPpZě0qk with |p|“p`1,
let

rDpYpA, ~, qq” 1

|suppppq|
ÿ

iPsuppppq

"
Ai`~ qi

d

dqi

*
Dp´eiYpA, ~, qqPQαpA, ~qrrΛss,

DpYpA, ~, qq”
ÿ

p1PpZě0qk,|p1|“p`1

cp;p1pqqrDp1

YpA, ~, qq,
(4.1.9)

where cp;p1pqq PQrrΛ; νE “0ss are defined by (3.1.14) with Y ”Y
ˇ̌
α“0

and where te1, . . . , eku
is the standard basis of Zk. Since (EP1) holds with p replaced by any p1 with |p1|“p,

rDpYpA, ~, qq
ˇ̌
α“0

“ rDp
`
YpA, ~, qq

ˇ̌
α“0

˘
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by (3.1.11); thus, by the second equation in (4.1.9) and (3.1.15), DpY satisfies (EP1). It is
immediate to verify that DpYpA, ~, qq admits an expansion as in (4.1.6). Since Jcp;p1K

q;0
“

δp,p1 by the second statement in (3.1.13) and (3.1.14) and (4.1.7) holds for p´ei with i P
suppppq instead of p, (4.1.7) also holds for p with |p|“p`1.

By (EP1), (3.1.8), and (4.1.6),

Cprq
p,spYq

ˇ̌
α“0

“ Cprq
p,s

´
Y

ˇ̌
ˇ
α“0

¯
, (4.1.10)

with Cprq
p,s as in (P2).

Define rCprq
p,s ” rCprq

p,spYq PQrαsrrΛss for p, sP pZě0qk and r PZě0 with |s| ď |p|´r and rď |p|
by

rÿ

t“0

ÿ

sPpZě0qk

|s|ď|p|´t

rCptq
p,sC

prq
s,|r|`r´t

“ δp,rδr,0 @ rPpZě0qk, |r|ď|p|´r. (4.1.11)

Equations (4.1.11) indeed uniquely determine rCprq
p,s, since

rÿ

t“0

ÿ

sPpZě0qk

|s|ď|p|´t

rCptq
p,sC

prq
s,|r|`r´t

“
r´1ÿ

t“0

ÿ

sPpZě0qk

|s|ď|p|´t

rCptq
p,sC

prq
s,|r|`r´t

`
ÿ

sPpZě0qk

|s|ă|r|

rCprq
p,sC

prq
s,|r| ` rCprq

p,r. (4.1.12)

This follows from
C

prq
p,|r| “ δp,r if |r|ď|p|, (4.1.13)

which in turn follows from (4.1.10), the second equation in (3.1.9), and the first property in
(EP2). By (4.1.11) and (4.1.7), r

rCprq
p,s

z
q;0

“ δp,sδr,0. (4.1.14)

By (4.1.10), (3.1.17), (3.1.18), (4.1.11), (4.1.12), and induction,

rCprq
p,spYq

ˇ̌
α“0

“ rCprq

p,s

`
Y
ˇ̌
α“0

˘
. (4.1.15)

By (4.1.14) in the d“0 case and (4.1.11), (4.1.12), (EP2), and induction in all other cases,r
rCprq
p,spqq

z
q;d

is a degree r´νEpdq homogeneous symmetric polynomial in α. In particular,

rCp0q
p,spqqPQrrΛss. This together with (4.1.15) and (3.1.20) implies that,

rCp0q
p,spqq “ δp,s @p, sPpZě0qk with |s|ď|p|. (4.1.16)

Remark 4.1.1. By (4.1.8),
İ

Y
ˇ̌
α“0

“
İ

Y ,
İİ

Y
ˇ̌
α“0

“
İİ

Y , and Remark 3.1.1,

D0
İ

YpA, ~, qq “ 1
İ

I0pqq
İ

YpA, ~, qq, D0
İİ

YpA, ~, qq “ 1
İİ

I0pqq
İİ

YpA, ~, qq.
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Remark 4.1.2. If νEpdqą0 for all dPΛ´t0u and YpA, ~, qqPQαpA, ~qrrΛss satisfies (4.1.5),
then

DpYpA, ~, qq “
"
A`~ q

d

dq

*p

YpA, ~, qq @p“pp1, . . . , pkqPpZě0qk.

This follows by induction on |p| from (4.1.9) since cp;p1pY
ˇ̌
α“0

q “ δp,p1 with cp;p1 defined by

(3.1.14). The latter follows since JppY
ˇ̌
α“0

q“ Id by Remark 3.1.2.

Remark 4.1.3. Suppose p˚ PZě0, YpA, ~, qqPQαpA, ~qrrΛss satisfies (4.1.5), and

deg~ fdpA, ~q ´ deg~ gdpA, ~qă´p˚ @dPΛ´0.

By the same reasoning as in Remark 4.1.2, but using Remark 3.1.3 instead of 3.1.2,

DpYpA, ~, qq“
"
A`~ q

d

dq

*p

YpA, ~, qq if |p|ďp˚. (4.1.17)

By (4.1.11), (4.1.12), and (4.1.16),

C
prq
p,|r|`r

`
r´1ÿ

t“1

ÿ

sPpZě0qk

|s|ď|p|´t

rCptq
p,sC

prq
s,|r|`r´t̀

ÿ

sPpZě0qk

|s|ă|r|

rCprq
p,sC

prq
s,|r| ` rCprq

p,r “ 0 (4.1.18)

if rě1 and |r|ď|p|´r. By (4.1.17) and (4.1.7),

DpYpA, ~, qq – Ap mod ~´1 if |p|ďp˚.

This together with (4.1.6) implies that whenever |p|ďp˚,

C
prq
p,|r|`r

“ 0 if rě1 and |r|ď|p|´r. (4.1.19)

Finally, using (4.1.18), (4.1.19), and induction, we find that

rCprq
p,s “0 if rě1, |p|ďp˚, |s|ď|p|´r.

Remark 4.1.4. Let pM, τq be the toric pair of Example 2.4.1 with N“n so that Xτ
M “Pn´1

and EÝÑPn´1 be as in Remark 3.1.4. By (4.1.4),

İ

YpA, ~, qq “
8ÿ

d“0

qd

aś
i“1

ℓ`
i dś
s“1

`
ℓ`
i A`s~

˘ bś
i“1

´ℓ´
i d´1ś
s“0

`
ℓ´
i A´s~

˘

nś
j“1

dś
s“1

pA´αj`s~q
,

İİ

YpA, ~, qq “
8ÿ

d“0

qd

aś
i“1

ℓ`
i d´1ś
s“0

`
ℓ`
i A`s~

˘ bś
i“1

´ℓ´
i dś

s“1

`
ℓ´
i A´s~

˘

nś
j“1

dś
s“1

pA´αj`s~q
.
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By Remark 4.1.3,

Dp
İ

YpA, ~, qq “
"
A`~ q

d

dq

*p
İ

YpA, ~, qq and rCprq
p,sp

İ

Yq “ 0 @ păb, 1ďrďp,

Dp
İİ

YpA, ~, qq “
"
A`~ q

d

dq

*p
İİ

YpA, ~, qq and rCprq
p,sp

İİ

Yq “ 0 @ păa, 1ďrďp.

If
ař

i“1

ℓ`
i ´

bř
i“1

ℓ´
i ăn, then

Dp
İ

Y “
"
A`~ q

d

dq

*p
İ

Y , Dp
İİ

Y “
"
A`~ q

d

dq

*p
İİ

Y ,

for all p by Remark 4.1.2. If
ař

i“1

ℓ`
i ´

bř
i“1

ℓ´
i “n, then

Db
İ

Y “ 1

I0pqq

"
A`~ q

d

dq

*b
İ

Y , Dp
İ

Y “ 1

Ip´bpqq

"
A`~ q

d

dq

*
Dp´1

İ

Y @ pąb,

Da
İİ

Y “ 1

I0pqq

"
A` h q

d

dq

*a
İİ

Y , Dp
İİ

Y “ 1

Ip´apqq

"
A`~ q

d

dq

*
Dp´1

İİ

Y @ pąa,

by (4.1.9) and Remark 3.1.4.

4.2 Equivariant statements

Theorem 4.2.1. Suppose pM, τq is a minimal toric pair and pri :X
τ
M ˆXτ

M ÝÑXτ
M is the

projection onto the i-th component. If ηj, qηj PH˚
TN pXτ

Mq are such that

sÿ

j“1

pr˚
1ηj pr

˚
2qηj P H2pN´kq

TN pXτ
M ˆXτ

Mq

is the equivariant Poincaré dual of the diagonal, then

İ

Zp~1, ~2, Qq “ 1

~1`~2

sÿ

j“1

pr˚
1

İ

Zηjp~1, Qq pr˚
2

İİ

Zqηjp~2, Qq. (4.2.1)

Corollary 4.2.2. Let pM, τq be the minimal toric pair (2.4.2) so that Xτ
M“

sś
i“1

PNi´1, N“
sř

i“1

Ni, and H˚
TN

ˆ
sś

i“1

PNi´1

˙
is given by (2.4.3). Let prj : Xτ

M ˆXτ
M ÝÑ Xτ

M denote the

projection onto the j-th component. For all i P rss and r P Zě0, denote by σ
piq
r the r-th

elementary symmetric polynomial in α
piq
1 , . . . , α

piq
Ni
. Then,

İ

Zp~1, ~2, Qq“ 1

~1`~2

ÿ

ri`ai`bi“Ni´1@ iPrss
ri,ai,biě0@ iPrss

p´1q
sř

i“1

ri
σp1q
r1
. . . σpsq

rs
pr˚

1

İ

Zpa1,...,asqp~1, Qq pr˚
2

İİ

Zpb1,...,bsqp~2, Qq.

44



This follows from Theorem 4.2.1 as the equivariant Poincaré dual to the diagonal in
sś

i“1

PNi´1 is

ÿ

ri`ai`bi“Ni´1@ iPrss
ri,ai,biě0@ iPrss

p´1q
sř

i“1

ri
σp1q
r1
. . . σpsq

rs
pr˚

1pxa11 . . . xass q pr˚
2pxb11 . . . xbss q.

Theorem 4.2.3. Let pM, τq be a minimal toric pair. If νEpdqě0 for all dPΛ, then
İ

Zp and
İİ

Zp of (4.0.3) and (4.0.2) are given by

İ

Zpp~, Qq “ e
´ 1

~

«
Gpqq`

kř
i“1

xifipqq`
Nř

j“1

αjgjpqq

ff

İ

Yppx, ~, qqPH˚
TN pXτ

MqV~WrrΛss,

İİ

Zpp~, Qq “ e
´ 1

~

«
Gpqq`

kř
i“1

xifipqq`
Nř

j“1

αjgjpqq

ff

İİ

Yppx, ~, qqPH˚
TN pXτ

MqV~WrrΛss,

(4.2.2)

where

İ

Yppx, ~, qq ” Dp
İ

Ypx, ~, qq `
|p|ÿ

r“1

|p|´rÿ

|s|“0

İ

rCprq
p,spqq~|p|´r´|s|Ds

İ

Ypx, ~, qq,

İİ

Yppx, ~, qq ” Dp
İİ

Ypx, ~, qq `
|p|ÿ

r“1

|p|´rÿ

|s|“0

İİ

rCprq
p,spqq~|p|´r´|s|Ds

İİ

Ypx, ~, qq,
(4.2.3)

with
İ

rCprq
p,s ” rCprq

p,sp
İ

Yq and
İİ

rCprq
p,s ” rCprq

p,sp
İİ

Yq defined by (4.1.11), Q and q related by the mirror
map (3.2.2), G, fi and gj PQrrΛ´0; νE “0ss 1given by (3.2.3), (3.2.1), and (5.1.1), and the

operator Dp defined by (4.1.9). The coefficient of qd within each of
İ

rCprq
p,s and

İİ

rCprq
p,s is a degree

r´νEpdq homogeneous symmetric polynomial in α1, . . . , αN .

If |p|ăb, Dp
İ

Y “ tA`~ q d
dq

up
İ

Y and
İ

rCprq
p,s “0 for all rPr|p|s. If |p|ăa and L`

i pdqě1 for

all iPras and dPΛ´t0u, then Dp
İİ

Y “ tA`~ q d
dq

up
İİ

Y and
İİ

rCprq
p,s “0 for all rPr|p|s.

Corollary 4.2.4. If pPpZě0qk and maxp|p|, 1qăνEpdq for all dPΛ´t0u, then

İ

Zpp~, qq “
"
x ` ~ q

d

dq

*p
İ

Ypx, ~, qq,
İİ

Zpp~, qq “
"
x ` ~ q

d

dq

*p
İİ

Ypx, ~, qq.

This follows from Theorem 4.2.3 and Remark 4.1.2.

Corollary 4.2.5. Let gps PQrαs be homogeneous polynomials such that
ř

|p|`|s|ďN´k

gpspr
˚
1x

ppr˚
2x

s

is the equivariant Poincaré dual to the diagonal in Xτ
M , where N´k is the complex dimension

1Furthermore, gj “0 if bą0 or DjpdqPt´1, 0u for all dPΛ with νEpdq“0.
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of Xτ
M . If N ą k and νEpdq ą N´k for all d P Λ´t0u, then the two-point function

İ

Z of
(4.0.1) is given by

İ

Zp~1, ~2, qq “ 1

~1 ` ~2

ÿ

|p|`|s|ďN´k

gpspr
˚
1

"
x`~1 q

d

dq

*p
İ

Ypx, ~1, qqpr˚
2

"
x`~2 q

d

dq

*s
İİ

Ypx, ~2, qq.

This follows from Theorem 4.2.1 and Corollary 4.2.4.

Remark 4.2.6. In the inductive construction ofDpY with Y “
İ

Y or Y “
İİ

Y , the first equation
in (4.1.9) may be replaced by

rDpYpA, ~, qq”
ÿ

iPsuppppq

cp;i

"
Ai`~ q

d

dq

*
Dp´eiYpA, ~, qqPQαpA, ~qrrΛss,

for any tuple pcp;iqiPsuppppq of rational numbers with
ř

iPsuppppq

cp;i “ 1. The power series DpY

defined by the second equation in (4.1.9) in terms of the “new weighted” rDpY satisfy (EP1)
and (EP2) with Dp correspondingly “weighted” as in Remark 3.2.2. This follows by the
same arguments as in the case when cp;i “ 1

|suppppq|
for all i P suppppq. Therefore, (4.1.11)

continues to define power series rCprq
p,spYq in terms of the “new weighted” C

prq
p,spYq. The resulting

“weighted” power series Yp of (4.2.3) do not depend on the “weights” cp;i as elements of
H˚

TN pXτ
MqV~WrrΛss by the proof of Theorem 4.2.3 outlined in Section 5.1.

Remark 4.2.7. We define an equivariant version of Z˚ in (1.1.7). Let

Z˚p~1, ~2, Qq”
ÿ

dPΛ´0

Qdpev1ˆev2q˚

„
epVEq

p~1´ψ1q p~2´ψ2q


, (4.2.4)

where ev1, ev2 :M0,2pXτ
M ,dqÝÑXτ

M . Since ep
İ

VEqev˚
1epE`q“epVEqev˚

1epE´q,
İ

Z˚p~1, ~2, Qqpr˚
1epE`q “ Z˚p~1, ~2, Qqpr˚

1epE´q,

where
İ

Z˚ is obtained from
İ

Z by disregarding the Q0 term and pr1 :X
τ
M ˆXτ

M ÝÑ Xτ
M is

the projection onto the first component. This together with Theorem 4.2.1 expresses Z˚ in

terms of
İ

Zη and
İİ

Zη in the E“E` case.
Using an idea from [CoZ], we derive a formula for Z˚ in terms of one-point GW generating

functions that holds in all cases. Following [CoZ], we then show how to express the latter
in terms of explicit power series if bą 0. If pri :X

τ
M ˆXτ

M ÝÑXτ
M and gps PQrαs are as in

Corollary 4.2.5, then

Z˚p~1, ~2, Qq “ 1

~1 ` ~2

ÿ

|p|`|s|ďN´k

gps
“
pr˚

1x
ppr˚

2Z
˚
s p~2, Qq

` pr˚
1Z

˚
pp~1, Qqpr˚

2

İİ

Zsp~2, Qq
‰
,

(4.2.5)

where

Z˚
pp~, Qq ”

ÿ

dPΛ´0

Qdev1˚

„
epVEqev˚

2x
p

~´ψ1


PH˚

TN pXτ
Mq rr~´1,Λss.
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This follows from Theorem 4.2.1, using that pr˚
1pepE`q{epE´qqp

İ

Z´J
İ

ZKQ;0q “Z˚, and

pr˚
1

ˆ
epE`q
epE´q

˙ ÿ

|p|`|s|ďN´k

gpspr
˚
1x

ppr˚
2p

İİ

Zsp~, Qq ´ xsq“
ÿ

|p|`|s|ďN´k

gpspr
˚
1x

ppr˚
2Z

˚
s p~, Qq. (4.2.6)

In the Xτ
M “Pn´1 case, (4.2.5) is [CoZ, (2.19)] and the proof of the Xτ

M “Pn´1 case of (4.2.6)
in [CoZ] extends to the case of an arbitrary toric manifold.

We give another proof of (4.2.6), using the Virtual Localization Theorem (5.4.1) on
M0,2pXτ

M ,dq as in Section 5.4. We prove that (4.2.6) holds when restricted to rIsˆrJs for
arbitrary I, J PV τ

M . The left-hand side of (4.2.6) restricted to rIsˆrJs is

epE`q
epE´q

ˇ̌
ˇ
rIs

ÿ

|p|`|s|ďN´k

gpsx
p
ˇ̌
ˇ
rIs

ÿ

dPΛ´0

Qd

ż

rM0,2pXτ
M

,dqsvir
ep

İİ

VEqev˚
2x

sev˚
1φJ

~´ψ1

. (4.2.7)

The right-hand side of (4.2.6) restricted to rIsˆrJs is
ÿ

|p|`|s|ďN´k

gpsx
p
ˇ̌
ˇ
rIs

ÿ

dPΛ´0

Qd

ż

rM0,2pXτ
M

,dqsvir
epVEqev˚

2x
sev˚

1φJ

~´ψ1

. (4.2.8)

Since φI is the equivariant Poincaré dual of rIs,
ÿ

p,s

gpspr
˚
1x

ppr˚
2x

s
ˇ̌
rIsˆrJs

“
ż

∆pXτ
M

q

pr˚
1φIpr

˚
2φJ “

ż

Xτ
M

φIφJ “ φIpJq “ 0 @ I ‰ J PV
τ
M ,

where ∆pXτ
Mq ĂXτ

M ˆXτ
M denotes the diagonal. Thus, by the Virtual Localization Theo-

rem (5.4.1), a graph Γ as in Section 5.4 may contribute to (4.2.7) or (4.2.8) only if its second
marked point is mapped into rIs. Finally, (4.2.6) follows from the above since

epE`q
epE´q

ˇ̌
ˇ
rIs
ep

İİ

VEq
ˇ̌
ˇ
ZΓ

“ epVEq
ˇ̌
ˇ
ZΓ

whenever ZΓ Ă M0,2pXτ
M ,dq is the TN -pointwise fixed locus corresponding to a graph Γ

whose second marked point is mapped into rIs.
We next assume that bą0 and νEpdqě0 for all dP Λ and express Z˚

pp~, Qq in terms of ex-
plicit power series. Along with (4.2.5) and Theorem 4.2.3, this will conclude the computation
of Z˚.

We define

pYpA, ~, qq”
ÿ

dPΛ

qdupd; A, ~q
aź

i“1

L`
i pdqź

s“1

˜
kÿ

r“1

ℓ`
riAr`s~

¸
bź

i“1

´L´
i pdqź

s“1

˜
kÿ

r“1

ℓ´
riAr´s~

¸
. (4.2.9)

As pY satisfies (4.1.5), we may define Dp pY and rCprq
p,s ” rCprq

p,sp pYq by (4.1.9) and (4.1.11). We

define pYppA, ~, qq by the right-hand side of (4.2.3) above, with
İ

Y replaced by pY and
İ

rCprq
p,s by

rCprq
p,s. Let

rY˚pA, ~, qq”
ÿ

dPΛ´0

qdupd; A, ~q
aź

i“1

L`
i pdqź

s“1

˜
kÿ

r“1

ℓ`
riAr`s~

¸
bź

i“1

´L´
i pdq´1ź

s“1

˜
kÿ

r“1

ℓ´
riAr´s~

¸
. (4.2.10)
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Define E
prq
p,s PQrαsrrΛss by

"
A ` ~ q

d

dq

*p

rY˚pA, ~, qq –
|p|´bÿ

s“0

|p|´b´sÿ

|r|“0

E prq
p,sA

r~s mod ~´1. (4.2.11)

It follows that
r
E

prq
p,s

z
q;d

is a degree |p|´b´s´νEpdq´|r| symmetric homogeneous polynomial

in α. Then,

İ

Yppx, ~, Qq “
"
x`~ q

d

dq

*p
İ

Ypx, ~, qq ´ epE´q
|p|´bÿ

s“0

|p|´b´sÿ

|r|“0

E prq
p,s~

s pYrpx, ~, qq, (4.2.12)

where
İ

Yp is defined by (4.2.3); see Section 5.1 for a proof of (4.2.12).
Whenever bě2,

Z˚
pp~, qq“epE`q

»
–
"
x ` ~ q

d

dq

*p

rY˚px, ~, qq´
|p|´bÿ

s“0

|p|´b´sÿ

|r|“0

E prq
p,s~

s pYrpx, ~, qq

fi
fl . (4.2.13)

If b“1,

Z˚
pp~, Qq “ epE`qe´

epE´qf0pqq
~

«"
x ` ~ q

d

dq

*p

rY˚px, ~, qq

´
|p|´bÿ

s“0

|p|´b´sÿ

|r|“0

E prq
p,s~

s pYrpx, ~, qq
ff

´ epE`qxpf0pqq
~

8ÿ

n“0

1

pn ` 1q!

„
´epE´qf0pqq

~

n
,

(4.2.14)

with Q and q related by the mirror map (3.2.2) and f0pqqPQrrΛss given by (3.2.11). Equa-

tions (4.2.13) and (4.2.14) follow from Z˚
p “ epE`q

epE´q

´
İ

Zp´xp
¯
, (4.2.2), and (4.2.12).
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Chapter 5

Proofs

5.1 Outline

In this chapter, we prove Theorems 4.2.1 and 4.2.3 and the identity (4.2.12). The proofs
of the two theorems are in the spirit of the proof of mirror symmetry in [Gi1] and [Gi2] but
with a twist. Similarly to [Gi1] and [Gi2], our argument revolves around the restrictions on
power series imposed by certain recursivity and polynomiality conditions. The concept of
C-recursivity was first introduced in [Gi1] in the Xτ

M “Pn´1 case, extended to an arbitrary
Xτ

M in [Gi2], and re-defined in [Z1]; all these definitions involve an explicit collection C of
structure coefficients. Our concept of C-recursivity introduced in Definition 5.3.1 extends
the notion of C-recursivity with an arbitrary collection of structure coefficients from the
Xτ

M “Pn´1 case considered in [PoZ] to an arbitrary Xτ
M . The concept of (self-) polynomiality

introduced in [Gi1] in the Xτ
M “ Pn´1 case and extended to an arbitrary Xτ

M in [Gi2] was
modified into the concept of mutual polynomiality for a pair of power series in the Xτ

M “Pn´1

case in [Z1]; we extend the latter to an arbitraryXτ
M in Definition 5.3.4. By Proposition 5.3.5,

which extends [Z1, Proposition 2.1] from the Xτ
M “ Pn´1 case to an arbitrary Xτ

M , C-
recursivity and mutual polynomiality impose severe restrictions on power series, more severe
than the restrictions imposed by recursivity and self-polynomiality as discovered in [Gi1].

Analogous to [Z1] and [PoZ], the proof of Theorem 4.2.3 relies on the one-point mirror
theorem of [LLY3]. We begin by stating it. The coefficient of αj{~ for j PrN s in the Laurent

expansion of 1
İ

I0pqq

İ

Y
ˇ̌
A“0

at ~´1 “0 is given by

gjpqq ” δb,0
İ

I0pqq

»
——–

ÿ

dPΛ, νEpdq“0
Dspdqě0 @ sPrNs

qd

aś
i“1

“
L`
i pdq!

‰

Nś
r“1

rDrpdq!s

˜
Djpdqÿ

s“1

1

s

¸

`
ÿ

dPΛ, νEpdq“0
Djpdqă´1

Dspdqě0 @ sPrNs´tju

qdp´1qDjpdq r´Djpdq ´ 1s!

aś
i“1

“
L`
i pdq!

‰

ś
sPrNs´tju

rDspdq!s

fi
ffiffiffiffiffifl
.

(5.1.1)
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By [LLY3, Theorem 4.7] together with [LLY3, Section 5.2], if νEpdqě0 for all dPΛ, then

İ

Z0p~, Qq “ 1
İ

I0pqq
e

´ 1
~

«
Gpqq`

kř
i“1

xifipqq`
Nř

j“1

αjgjpqq

ff

İ

Ypx, ~, qq, (5.1.2)

with Q and q related by the mirror map (3.2.2), G, fi, and gj defined by (3.2.3), (3.2.1), and
(5.1.1).1

Remark 5.1.1. By (4.1.4), (3.2.3), and (3.2.1),

İ

I0pqqGpqq ”
s

İ

YpA, ~, qq
ˇ̌
ˇ
α“0
A“0

{

~´1;1

and
İ

I0pqqfipqq ”
r

İ

YpA, ~, qq
z

Ai
~
;1

@ iPrks,

where J K~´1;1 and J KAi
~
;1

denote the coefficients of ~´1 and Ai

~
respectively within the

Laurent expansion around ~´1 “0 of the power series inside of the brackets. Thus,

r
İ

YpA, ~, qq
z
~´1;1

”
İ

I0pqq
«
Gpqq `

kÿ

i“1

Aifipqq `
Nÿ

j“1

αjgjpqq
ff
.

Some of the proofs in this chapter also hold if we replace Q by any field RĚQ. Given
such a field R, let

Rα ” Qα bQ R “ Rrα1, . . . , αN sxP :PPQrαs´0y and H˚
TN pXτ

M ;Rq ” H˚
TN pXτ

Mq bQ R.

An element in H˚
TNpXτ

M ;RqV~WrrΛss admits a lift to an element inRrα, xsV~WrrΛss and an
element inRrα, xsV~WrrΛss induces an element in H˚

TNpXτ
M ;RqV~WrrΛss via Proposition 2.3.3.

Given Y p~, QqPH˚
TN pXτ

M ;RqV~WrrΛss and J PV τ
M , we write

Y p~, Qq
ˇ̌
rJs

or Y p~, Qq
ˇ̌
J

or Y pxpJq, ~, Qq P RrαsV~WrrΛss

for the power series obtained from Y by replacing each coefficient of ~sQd in Y by its image
via the restriction map ¨pJq of (2.3.8).

In proving Theorem 4.2.3, we follow the steps outlined in [Z1, Section 1.3] and used for
proving [Z1, Theorem 1.1]:

(M1) if RĚQ is any field, Y, Z PH˚
TN pXτ

M ;RqV~WrrΛss, Zp~, Qq is C-recursive in the sense
of Definition 5.3.1 and satisfies the mutual polynomiality condition (MPC) of Defini-
tion 5.3.4 with respect to Y p~, Qq, the transforms of Zp~, Qq of Lemma 5.3.7 are also
C-recursive and satisfy the MPC with respect to appropriate transforms of Y p~, Qq;

(M2) if R Ě Q is any field, Z P H˚
TN pXτ

M ;RqV~WrrΛss is recursive in the sense of Def-
inition 5.3.1 and pY, Zq satisfies the MPC for some Y P H˚

TpXτ
M ;RqV~WrrΛss withq

Y p~, Qq
ˇ̌
I

y
Q;0

P R˚
α for all I P V τ

M , then Z is determined by its ‘mod ~´1 part’ (see

Proposition 5.3.5);

1See Appendix A for the correspondence between the relevant notation in [LLY3] and ours and detailed
references within [LLY3] indicating how [LLY3, Theorem 4.7] together with [LLY3, Section 5.2] implies
(5.1.2).
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(M3)
İ

Yp of (4.2.3) and
İ

Zζ of (4.0.2) are
İ

C-recursive in the sense of Definition 5.3.1 with
İ

C

given by (5.5.2), while
İİ

Yp of (4.2.3) and
İİ

Zζ of (4.0.2) are
İİ

C-recursive with
İİ

C given by
(5.5.2);

(M4) p
İ

Y ,
İİ

Ypq, p
İİ

Y ,
İ

Ypq, p
İ

Z1,
İİ

Zζq, and p
İİ

Z1,
İ

Zζq satisfy the MPC;

(M5) the two sides of (4.2.2) viewed as powers series in ~´1, agree mod ~´1.

The proof of Theorem 4.2.1 described below follows the same ideas and extends the proof of
[Z1, (1.17)].

Claims (M3) and (M4) concerning
İ

Zζ and
İİ

Zζ follow from Lemmas 5.5.1 and 5.6.1, since
by the string equation of [MirSym, Section 26.3] and (5.5.3),

İ

Zζp~, Qq“~
İ

Zη,βp~, Qq and
İİ

Zζp~, Qq“~
İİ

Zη,βp~, Qq,

if m“3, β2 “β3 “0, η2 “ζ, and η3 “1.

By Lemmas 5.7.1, 5.7.2, and 5.3.6,
İ

Y is
İ

C-recursive and
İİ

Y is
İİ

C-recursive, while p
İ

Y ,
İİ

Yq
and p

İİ

Y ,
İ

Yq satisfy the MPC. This together with the admissibility of transforms (a) and (b)

of Lemma 5.3.7 proves claims (M3) and (M4) for
İ

Yp and
İİ

Yp.
Claims (M3) and (M4) together with (5.1.2), the admissibility of transforms (c) and (d)

of Lemma 5.3.7, and Proposition 5.3.5, prove that verifying (4.2.2) amounts to showing that
the two sides of each of these equations agree mod ~´1; this is in turn equivalent to (4.1.11).

Lemma 5.3.6, Lemma 5.3.7, and Proposition 5.3.5 are proved in Section 5.3; the prepa-
rations for this section and the ones following it are made in Section 5.2. Lemmas 5.5.1
and 5.6.1 are proved in Sections 5.5 and 5.6, respectively. Both proofs rely on the Virtual
Localization Theorem [GraPa, (1)]. The localization data provided by [Sp] is presented in
Section 5.4. Lemmas 5.7.1 and 5.7.2 are proved in Section 5.7.

Proof of (4.2.12). Define E´
p PZ with pPpZě0qk by

bź

i“1

˜
kÿ

r“1

ℓ´
riAr

¸
”

ÿ

pPpZě0qk

E´
pA

p.

By (4.1.4) and (4.2.9),

epE´q pYpx, ~, qq “
ÿ

pPpZě0qk

E´
p

"
x`~ q

d

dq

*p
İ

Ypx, h, qq. (5.1.3)

Since
İ

Y is
İ

C-recursive by Lemma 5.7.1 and p
İİ

Y ,
İ

Yq satisfies the MPC by Lemmas 5.3.6 and

5.7.2, epE´q pY is
İ

C-recursive and p
İİ

Y , epE´q pYq satisfies the MPC by (5.1.3) and Lemma 5.3.7(a).

This together with Lemma 5.3.7(a)(b) implies that the right-hand side of (4.2.12) is
İ

C-

recursive and satisfies the MPC with respect to
İİ

Y . Since
İ

Yp also satisfies these two proper-
ties by (M3) and (M4), the claim follows from (M2) and the fact that both sides of (4.2.12)

are congruent to xp modulo ~´1. The latter follows from the fact that
İ

Yppx, h,Qq and
pYppx, h,Qq are congruent to xp modulo ~´1 by (4.1.11) together with (4.1.4), (4.2.10), and
(4.2.11).
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Proof of Theorem 4.2.1. By (4.0.1), (2.3.15), and (2.3.1),

p~1`~2q
İ

Zp~1, ~2, Qq
ˇ̌
ˇ
rIsˆrJs

“~1~2
ÿ

dPΛ

Qd

ż

rM0,3pXτ
M

,dqsvir
ep

İ

VEqev˚
1φIev

˚
2φJ

p~1´ψ1qp~2´ψ2q (5.1.4)

for all I, J P V τ
M . Applying Lemmas 5.5.1 and 5.6.1 for

İ

Zη,βp~1, Qq with

m“3, β2 “n, β3 “0, η2 “φJ , η3 “1,

along with Lemma 5.3.7(b), we obtain that the coefficient of ~´n
2 in p~1`~2q

İ

Zp~1, ~2, Qq is
İ

C-recursive with
İ

C given by (5.5.2) and satisfies the MPC with respect to
İİ

Z1p~1, Qq for all
ně 0. Using this, Proposition 2.3.3(b), (M3), (M4), and (M2), it follows that in order to
prove (4.2.1) it suffices to show that

p~1`~2q
İ

Zp~1, ~2, Qq
ˇ̌
ˇ
rIsˆrJs

–
sÿ

j“1

İ

Zηjp~1, Qq
ˇ̌
ˇ
rIs

İİ

Zqηjp~2, Qq
ˇ̌
ˇ
rJs

mod ~´1
1 (5.1.5)

for all I, J PV τ
M . By (5.1.4) and the string equation, the left-hand side of (5.1.5) mod ~´1

1 is

φIpJq ` ~2
ÿ

dPΛ´0

Qd

ż

rM0,3pXτ
M

,dqsvir
ep

İ

VEqev˚
1φIev

˚
2φJ

~2´ψ2

“ ∆˚1
ˇ̌
ˇ
rIsˆrJs

`
ÿ

dPΛ´0

Qd

ż

rM0,2pXτ
M

,dqsvir
ep

İ

VEqev˚
1φIev

˚
2φJ

~2´ψ2

,

(5.1.6)

where ∆:Xτ
M ÝÑXτ

M ˆXτ
M , ∆rzs”przs, rzsq. The right-hand side of (5.1.5) mod ~´1

1 is

sÿ

j“1

ηj

ˇ̌
ˇ
rIs

İİ

Zqηjp~2, Qq
ˇ̌
ˇ
rJs
. (5.1.7)

Applying Lemmas 5.5.1 and 5.6.1 for
İİ

Zη,βp~2, Qq with

m“3, β2 “β3 “0, η2 “φI , η3 “1,

along with Lemma 5.3.7(b), we obtain that (5.1.6) is the restriction to rJs of a
İİ

C-recursive

formal power series which satisfies the MPC with respect to
İ

Z1p~2, Qq. Since (5.1.7) also
satisfies these two properties, by Proposition 5.3.5 the power series (5.1.6) and (5.1.7) agree if
and only if they agree mod ~´1

2 . The latter is the case since (5.1.7) mod ~´1 is the equivariant
Poincaré dual to the diagonal in Xτ

M ˆXτ
M restricted to the point rIsˆrJs.

5.2 Notation for fixed points and curves

With V τ
M as in (2.1.4) and for all I, J PV τ

M with |IXJ |“k´1, we denote by

IJ ” Xτ
MpI Y Jq Ď Xτ

M and deg IJ ”
“
IJ

‰
rXτ

M
s

P Λ (5.2.1)
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the P1 passing through the points rIs and rJs and its homology class, respectively; see
Corollary 2.3.2. Given I PV τ

M and j PrN s´I, we denote by

Ij ” Xτ
M pI Y tjuq and deg Ij ”

“
Ij
‰

rXτ
M

s
P Λ

the compact one-dimensional complex submanifold of Xτ
M defined by Remark 2.1.10 and its

homology class, respectively. Since Xτ
M admits a Kähler form,

deg IJ, deg Ij P Λ´t0u

by [GriH, Chapter 0, Section 7]. By the last part of Remark 2.1.10, there exists a unique
element vpI, jq of V τ

M such that

v pI, jq‰I and v pI, jqĂIYtju.

Since vpI, jqYI“tjuYI, j Pv pI, jq and Ij“IvpI, jq. Let tpju”I´vpI, jq.
Applying the Localization Theorem (2.3.2) to the integral of 1 over Ij – P1 and using

(2.3.14) and Corollary 2.3.2, we find that

ujpIq`upj pv pI, jqq“0 @ I PV
τ
M , j PrN s´I. (5.2.2)

Applying the Localization Theorem (2.3.2) to the integrals of xi, λ
˘
i , and us over Ij and

using Corollary 2.3.2, (2.3.14), and (5.2.2), we find that

xipIq´xi pv pI, jqq “ xHi, deg IjyujpIq @ I PV
τ
M , j PrN s´I, iPrks, (5.2.3)

λ˘
i pIq´λ˘

i pv pI, jqq “ L˘
i

`
Ij
˘
ujpIq @ I PV

τ
M , j PrN s´I, iPras piPrbsq, (5.2.4)

uspIq´us pv pI, jqq “ Ds

`
Ij
˘
ujpIq @ I PV

τ
M , j PrN s´I, sPrN s. (5.2.5)

By (5.2.5), (5.2.2), (2.3.10), and (2.3.13),

Dj

`
Ij
˘

“Dpj
`
Ij
˘

“1, Ds

`
Ij
˘

“0 @ sPIXvpI, jq. (5.2.6)

The last five identities are stated in [Gi2].

5.3 Recursivity, polynomiality, and admissible trans-

forms

As in [Gi2], we introduce a partial order on Λ: if s,dPΛ, we define sĺd if d´sPΛ. By
Proposition 2.2.4,

d P Λ ùñ ts P Λ : s ĺ du is finite. (5.3.1)

This implies that for every non-empty subset S of Λ, there exists dPS such that

s P Λ, s ă d ùñ s R S.
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Definition 5.3.1. Let R Ě Q be any field and C ” pCI,jpdqqdě1
IPV τ

M , jPrNs´I
any collection of

elements of Rα. A power series Z P H˚
TN pXτ

M ;RqV~WrrΛss is C-recursive if the following
holds: if d˚ PΛ is such that

JZ pxpvpI, jqq, ~, QqKQ;d˚´d¨deg Ij PRαp~q @ I PV
τ
M , j PrN s´I, dě1,

and JZ pxpvpI, jqq, ~, QqKQ;d˚´d¨deg Ij is regular at ~“´ujpIq{d for all I PV τ
M , j PrN s´I, and

dě1, then

JZ pxpIq, ~, QqKQ;d˚́

ÿ

dě1

ÿ

jPrNs´I

d¨deg Ijĺd˚

CI,jpdq
~ ` ujpIq

d

JZ px pvpI, jqq , ~, QqKQ;d˚´d¨deg Ij

ˇ̌
~“´

ujpIq

d

PRαr~, ~´1s,

for all I PV τ
M . A power series Z PH˚

TN pXτ
M ;RqV~WrrΛss is called recursive if it is C-recursive

for some collection C”pCI,jpdqqdě1

IPV τ
M

,jPrNs´I
of elements of Rα.

By Remark 5.3.2 below, if Z P H˚
TN pXτ

M ;RqV~WrrΛss is pCI,jpdqqdě1
IPV τ

M
,jPrNs´I

-recursive,

then for each I PV τ
M

ZpxpIq, ~, Qq “
ÿ

dPΛ

Ndÿ

r“´Nd

Z
prq
I;d~

´rQd

`
8ÿ

d“1

ÿ

jPrNs´I

CI,jpdqQd¨deg Ij

~ ` ujpIq

d

Z

ˆ
x pvpI, jqq ,´ujpIq

d
,Q

˙

for some integers Nd and some Z
prq
I;d PRα.

Remark 5.3.2. Let R Ě Q be any field. If Z P H˚
TN pXτ

M ;RqV~WrrΛss is recursive, then

Z
ˇ̌
I

P Rαp~qrrΛss and JZpxpvpI, jqq, ~, QqKQ;d is regular at ~ “ ´ujpIq

d
for all I P V τ

M , d P Λ,
j P rN s´I, and d ě 1; this follows by induction on d P Λ. The regularity claim also uses
Remark 5.3.3 below.

The C-recursivity is an Rα-linear property (that is, if Z1 and Z2 are C-recursive, then
so is f1Z1 ` f2Z2 for any f1, f2 P Rα). By Lemma 5.3.7(b), C-recursivity is actually an
Rαr~srrΛss-linear property.

Remark 5.3.3. For all I PV τ
M , j PrN s´I, all dPQ´t1u, and all sPrN s,

ujpIq ` d¨uspvpI, jqq ‰ 0.

Proof. Assume that
ujpIq ` d¨uspvpI, jqq “ 0 (5.3.2)

for some I P V τ
M , j P rN s´I, d P Q´t1u, and s P rN s. If d“ 0 or s P vpI, jq, then ujpIq “ 0

by (2.3.10) which contradicts (2.3.13). If d‰ 0 and s P pI´vpI, jqq, then ujpIqp1´dq “ 0 by
(5.3.2) and (5.2.2), which again contradicts (2.3.13). If d‰0 and sRpIYvpI, jqq, then setting
αi “ 0 for all i P pIYvpI, jqq in (5.3.2) and using (2.3.13), we find that ´dαs “ 0, which is
false.
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For the purposes of Definition 5.3.4 and the transforms (a) and (d) in Lemma 5.3.7 below
as well as all statements involving them, we identify H2pXτ

M ;Zq with Zk via the dual basis
to tH1, . . . ,Hku so that ΛĂZk.

Definition 5.3.4. For any Y ” Y p~, Qq, Z ”Zp~, Qq PH˚
TN pXτ

M ;RqV~WrrΛss, define ΦY,Z P
RαV~Wrrz,Λss by

ΦY,Z p~, z, Qq ”
ÿ

IPV τ
M

expIq¨z

ś
jPrNs´I

ujpIqY
`
xpIq, ~, Qe~z

˘
Z pxpIq,´~, Qq ,

where z”pz1, . . . , zkq, xpIq ¨ z”
kř

i“1

xipIqzi, and Qe~z ”
`
Q1e

~z1 , . . . , Qke
~zk

˘
.

If Y, Z PH˚
TN pXτ

M ;RqV~WrrΛss, the pair pY, Zq satisfies the mutual polynomiality condition
(MPC) if ΦY,Z PRαr~srrz,Λss.
Proposition 5.3.5. Let RĚQ be a field. Assume that Z PH˚

TN pXτ
M ;RqV~WrrΛss is recursive

and that pY, Zq satisfies the MPC for some Y PH˚
TN pXτ

M ;RqV~WrrΛss with
q
Y p~, Qq

ˇ̌
I

y
Q;0

P R˚
α @ I P V

τ
M .

Then, Zp~, Qq – 0 mod ~´1 if and only if Zp~, Qq“0.

Proof. By the second statement in Proposition 2.3.3(b),

Zp~, Qq “ 0 ðñ Zp~, Qq
ˇ̌
I

“ 0 @ I P V
τ
M .

Set fI ”
q
Y p´~, Qq

ˇ̌
I

y
Q;0

and assume that
q
Zp~, Qq

ˇ̌
I

y
Q;d1 “ 0 for all 0 ĺ d1

ă d and all

I PV τ
M . Since Z is recursive and Zp~, Qq – 0 modulo ~´1,

q
Zp~, Qq

ˇ̌
I

y
Q;d

“
Ndÿ

r“1

Z
prq
I;d~

´r

for some Nd ě0 and some Z
prq
I;d PRα. Thus,

JΦY,Zp´~, z, QqK
Q;d

“
ÿ

IPV τ
M

expIq¨z

ś
jPrNs´I

ujpIqfI
˜

Ndÿ

r“1

Z
prq
I;d~

´r

¸
PRαr~srrzss.

This implies that

ÿ

IPV τ
M

pxpIq ¨ zqmś
jPrNs´I

ujpIqfI
˜

Ndÿ

r“1

Z
prq
I;d~

´r

¸
PRαr~, zs @mě0.

In particular,

ÿ

IPV τ
M

pxpIq ¨ zqmś
jPrNs´I

ujpIqfIZ
prq
I;d “0 @ 0ďmď|V τ

M |´1, @ rPrNds.
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For each r P rNds, this is a linear system in the ‘unknowns’ fIZ
prq
I;d

M ś
jPrNs´I

ujpIq with I PV τ
M .

Its coefficient matrix has a non-zero Vandermonde determinant, since

xpIq‰xpJq @ I‰J PV
τ
M

by Proposition 2.3.3(a). It follows that Z
prq
I;d “0 for all I PV τ

M and all rPrNds.

Lemmas 5.3.6 and 5.3.7 below extend [Z1, Lemmas 2.2, 2.3] from the Xτ
M “Pn´1 case to

an arbitrary Xτ
M . Our proof of the former is completely different from and much simpler than

the one in [Z1]. For the latter, the arguments in [Z1] go through with only two significant
changes required.

Lemma 5.3.6. Let RĚQ be a field and Y, Z PH˚
TN pXτ

M ;RqV~WrrΛss. Then,

ΦY,Z PRαr~srrz,Λss ðñ ΦZ,Y PRαr~srrz,Λss.

Proof. Let Ydp~q” JY p~, QqKQ;d and Zdp~q” JZp~, QqKQ;d. It follows that JΦY,Zp~, z, QqK
Q;d

is

ÿ

0ĺd1
ĺd

IPV τ
M

expIq¨z

ś
jPrNs´I

ujpIqYd1p~q
ˇ̌
ˇ
I
e~zd

1

Zd´d1p´~q
ˇ̌
ˇ
I

“
ÿ

0ĺd1
ĺd

IPV τ
M

expIq¨z

ś
jPrNs´I

ujpIqYd´d1p~q
ˇ̌
ˇ
I
e~zpd´d1qZd1p´~q

ˇ̌
ˇ
I
,

where e~z ”pe~z1 , . . . , e~zkq. The right-hand side is e~zd times JΦZ,Y p´~, z, QqK
Q;d

.

Lemma 5.3.7. Let RĚQ be any field and C”pCI,jpdqqdě1
IPV τ

M , jPrNs´I
any collection of elements

of Rα. Let Y1, Y2, Y3 PH˚
TN pXτ

M ;RqV~WrrΛss. If Y1 is C-recursive and pY2, Y3q satisfies the
MPC, then

( a) if Yi ”
!
xs`~Qs

d
dQs

)
Yi for all i and s P rks, then Y1 is C-recursive and ΦY2,Y3

P
Rαr~srrz,Λss;

(b) if f PRαr~srrΛss, then fY1 is C-recursive and ΦY2,fY3
PRαr~srrz,Λss;

( c) if f PRαrrΛ́ 0ss and Yi ”ef{~Yi for all i, then Y1 is C-recursive and ΦY2,Y3
PRαr~srrz,Λss;

(d) if fr PRαrrΛ´0ss for all r P rks and Yip~, Qq ” ef ¨x{~Yip~, Qef q for all i, where f ¨ x”
kř

r“1

frxr and Qef ”pQ1e
f1 , . . . , Qke

fkq, then Y1 is C-recursive and ΦY2,Y3
PRαr~srrz,Λss.

Proof. For all I PV τ
M ,

"
xspIq `~Qs

d

dQs

*˜
CI,jpdq
~` ujpIq

d

Qd¨deg IjY1

ˆ
x pvpI, jqq ,´ujpIq

d
,Q

˙¸
“

CI,jpdq
~` ujpIq

d

Qd¨deg IjY1

ˆ
x pvpI, jqq ,´ujpIq

d
,Q

˙
` CI,jpdq
~` ujpIq

d

Qd¨deg Ij

ˆ
ˆˆ

~`ujpIq
d

˙
Qs

d

dQs

`~ d¨degs Ij`xspIq ´ xs pvpI, jqq
˙
Y1

ˆ
x pvpI, jqq ,´ujpIq

d
,Q

˙
.
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The first claim in (a) now follows from Remark 5.3.2 and (5.2.3). The second claim in (a) and
the claims in (b)-(d) follow similarly to the proof of [Z1, Lemma 2.3] for the Xτ

M “Pn´1 case,
using Lemma 5.3.6, Remark 5.3.2, (5.3.1), and (5.2.3). Equation (5.2.3) and property (5.3.1)
are used in the proof of the recursivity claim in (d) when showing that

1

~ ` ujpIq

d

ˆ
edfpQq¨deg Ij` fpQqxpIq

~ ´ e
´fpQqxpvpI,jqqd

ujpIq

˙
P Rαr~, ~´1srrΛss.

Property (5.3.1) is also used to show that transforms (c) and (d) preserveH˚
TN pXτ

M ;Rαqr~, ~´1srrΛss,
that

ef{~ ´ e´df{ujpIq

~ ` ujpIq

d

P Rαr~, ~´1srrΛss, e
fpQe~zq´fpQq

~ P Rαr~srrz,Qss,

in the case of (c), and that

zr ` frpQe~zq ´ frpQq
~

P Rαr~, zsrrΛss @ rPrks

in the case of (d).

5.4 Torus action on the moduli space of stable maps

An action of TN on a smooth projective variety X induces an action on M0,mpX,dq as in
Chapter 4 and an integration along the fiber homomorphism as in Section 2.3. The Virtual
Localization Theorem [GraPa, (1)] implies that
ż

rM0,mpX,dqsvir
η “

ÿ

FĎM0,mpX,dqTN

ż

rF svir

η

epN vir
F {Xq P Qrαs @ η P H˚

TN

`
M0,mpX,dq

˘
, (5.4.1)

where the sum runs over the components of the TN pointwise fixed locus

M0,mpX,dqTN Ď M0,mpX,dq.
This section describes M0,mpXτ

M , dqTN

, the equivariant Euler class epN vir
F {Xq of the virtual

normal bundle to each component F of M0,mpXτ
M , dqTN

, and the restriction of epVEq to F .
We follow [Sp] where the corresponding statements are formulated in the language of fans
rather than toric pairs.

If f : pΣ, z1, . . . , zmq ÝÑ Xτ
M is a TN-fixed stable map, then the images of its marked

points, nodes, contracted components, and ramification points are TN-fixed points and so
points of the form rIs for some I PV τ

M by Corollary 2.3.2(a). Each non-contracted component
Σe of Σ maps to a closed TN-fixed curve which is of the form IJ for some I, J P V τ

M with
|IXJ | “ k´1 by Corollary 2.3.2(b). Since all such curves IJ are biholomorphic to P1 by
Corollary 2.3.2(b), the map

f
ˇ̌
ˇ
Σe

: Σe ÝÑ IJ

is a degree dpeq covering map ramified only over rIs and rJs. To each such map we associate
a decorated graph as in Definition 5.4.1 below; the vertices of this graph correspond to the
nodes and contracted components of Σ or the ramification points of f ; the edges e correspond
to non-contracted components Σe of Σ, and dpeq describes the degree of f

ˇ̌
Σe
.
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Definition 5.4.1. A genus 0 m-point decorated graph Γ is a collection of vertices VerpΓq,
edges EdgpΓq, and maps

d : EdgpΓq ÝÑ Zą0, p : VerpΓq ÝÑ V
τ
M , dec : rms ÝÑ VerpΓq

satisfying the following properties:

1. the underlying graph pVerpΓq,EdgpΓqq has no loops;

2. if two vertices v and v1 are connected by an edge, then |ppvqX ppv1q|“k´1.

Such a decorated graph is said to be of degree dPΛ if

ÿ

ePEdgpΓq
Be“tv,v1u

dpeq deg
´
ppvqppv1q

¯
“d,

where Be”tv, v1u for an edge e joining vertices v and v1.

For a decorated graph Γ as in Definition 5.4.1, we denote by AutpΓq the group of auto-
morphisms of pVerpΓq,EdgpΓqq. It acts naturally on

ś
ePEdgpΓq

Zdpeq; let

AΓ ”
ź

ePEdgpΓq

Zdpeq ¸ AutpΓq

denote the corresponding semidirect product.
For any vPVerpΓq, let

Edgpvq ” |te P EdgpΓq : v P Beu| and valpvq ” |dec´1pvq| ` Edgpvq

denote the number of edges to which the vertex v belongs and its valence, repectively. A
flag F in Γ is a pair pv, eq, where e is an edge and v is a vertex of e. For a flag F “ pv, eq,
let valpF q”valpvq. For a flag F “pv, eq, let ωF ”epTf´1pppvqqP

1q, where f :P1 ÝÑppvqppv1q is

the degree dpeq cover of ppvqppv1q corresponding to e, Be“ tv, v1u, and the TN-action on P1

is induced from the action on Xτ
M via f . If tju”ppv1q´ppvq,

ωF “ ujpppvqq
dpeq (5.4.2)

by (2.3.14). If v is a vertex that belongs to exactly 2 edges e1 and e2, then we write
Fipvq”pv, eiq.

Given a decorated graph Γ as above, let

MΓ ”
ź

vPVerpΓq

M0,valpvq,

where M0,m ” point, whenever mď 2. For a flag F “ pv, eq, let ψF PH2
TN pMΓq denote the

equivariant Euler class of the universal cotangent line bundle on MΓ corresponding to F
(that is, the pull-back of the ψ class on M0,valpvq corresponding to e).
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Proposition 5.4.2 ([Sp, Lemma 6.9]). There is a morphism γ :MΓ ÝÑM0,mpXτ
M ;dq whose

image is a component of M0,mpXτ
M ;dqTN

and every such component occurs as the image of
such a morphism corresponding to some degree d decorated graph. With

ś
ePEdgpΓq

Zdpeq acting

trivially on MΓ, the induced map

γ{AΓ : MΓ{AΓ ÝÑ M0,mpXτ
M ,dq

identifies MΓ{AΓ with the corresponding component of M0,mpXτ
M ,dqTN

.

Proposition 5.4.3 ([Sp, Theorem 7.8]). Let Γ be a degree d genus 0 m-point decorated
graph and N vir

Γ the virtual normal bundle to γ :MΓ ÝÑM0,mpXτ
M ,dq. Then,

e
`
N vir

Γ

˘
“

ź

flagsF of Γ
valpF qě3

pωF ´ψF q 1
ś

vPVerpΓq

“
φppvqpppvqq

‰Edgpvq´1

ź

vPVerpΓq
valpvq“2

dec´1pvq“H

`
ωF1pvq`ωF2pvq

˘ 1ś
flagsF of Γ
valpF q“1

ωF

ˆ
ź

ePEdgpΓq
Be“tv,v1u

¨
˚̊
˚̊
˝

p´1qdpeq pdpeq!q2 pujpIqq2dpeq

pdpeqq2dpeq

ź

rPrNs´pIYtjuq

dpeqDrpIjqś
s“0

´
urpIq´ s

dpeq
ujpIq

¯

´1ś
s“dpeqDrpIjq`1

´
urpIq´ s

dpeq
ujpIq

¯

˛
‹‹‹‹‚

ˇ̌
ˇ̌
ˇ I“ppvq
tju“ppv1q´I

.

By (5.2.2) and (5.2.5),

p´1qdpeq pujpIqq2dpeq

ˇ̌
ˇ̌
ˇ I“ppvq
tju“ppv1q´I

“ u
dpeq
ppv1q´ppvqpppvqqudpeq

ppvq´ppv1qpppv1qq,

urpIq´ s

dpequjpIq
ˇ̌
ˇ̌
ˇ I“ppvq
tju“ppv1q´I

“

$
&
%

rdpeqDrpppvqppv1qq´ssurpppvqq`surpppv1qq

dpeqDrpppvqppv1qq if Dr

´
ppvqppv1q

¯
‰0,

ur pppvqq “ ur pppv1qq if Dr

´
ppvqppv1q

¯
, s“0;

so the edge contributions to epN vir
Γ q in Proposition 5.4.3 are indeed symmetric in the vertices

of each edge.
Let f :pP1, z1, . . . , zmqÝÑIJ be a TN-fixed stable map. Thus, f is a degree d cover of IJ

for some dPZą0. By (1.0.1),

VE

ˇ̌
rP1,z1,...,zm,f s

“ H0
`
P1, f˚E`

˘
‘ H1

`
P1, f˚E´

˘
.

By [MirSym, Exercise 27.2.3] together with (5.2.2) and (5.2.4), and with tju ” J´I,

epVEq
ˇ̌
rP1,z1,...,zm,f s

“
aź

i“1

dL`
i pIJqź

s“0

”
λ`
i pIq ´ s

d
ujpIq

ı bź

i“1

´1ź

s“dL´
i pIJq`1

”
λ´
i pIq ´ s

d
ujpIq

ı
. (5.4.3)

By (5.2.4),

λ`
i pIq´ s

d
uJ´IpIq “

$
&
%

rdL`
i pIJq´ssλ`

i pIq`sλ`
i pJq

dL`
i pIJq

if L`
i pIJq‰0,

λ`
i pIq “ λ`

i pJq if L`
i pIJq“s“0,

λ´
i pIq´ s

d
uJ´IpIq “

“
dL´

i pIJq ´ s
‰
λ´
i pIq ` sλ´

i pJq
dL´

i pIJq
.
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5.5 Recursivity for the GW power series

For all dPZą0, I PV τ
M , j PrN s´I, let

rCI,jpdq ” p´1qdd2d´1

pd!q2
1

rujpIqs2d´1

ź

rPrNs´pIYtjuq

0ś
s“dDrpIjq`1

“
urpIq´ s

d
ujpIq

‰

dDrpIjqś
s“1

“
urpIq´ s

d
ujpIq

‰
P Qα, (5.5.1)

İ

CI,jpdq ” rCI,jpdq
aź

i“1

dL`
i pIjqź

s“1

”
λ`
i pIq´ s

d
ujpIq

ı bź

i“1

´dL´
i pIjq´1ź

s“0

”
λ´
i pIq` s

d
ujpIq

ı
PQα,

İİ

CI,jpdq ” rCI,jpdq
aź

i“1

dL`
i pIjq´1ź

s“0

”
λ`
i pIq´ s

d
ujpIq

ı bź

i“1

´dL´
i pIjqź

s“1

”
λ´
i pIq` s

d
ujpIq

ı
PQα.

(5.5.2)

Lemma 5.5.1. If mě3, evj :M0,mpXτ
M ,dqÝÑXτ

M is the evaluation map at the j-th marked
point, ηj PH˚

TNpXτ
Mq and βj PZě0 for j“2, . . . ,m, then the power series

İ

Zη,βp~, Qq ”
ÿ

dPΛ

Qdev1˚

»
–
e
´

İ

VE

¯

~´ψ1

mź

j“2

´
ψ

βj

j ev˚
j ηj

¯
fi
flPH˚

TN pXτ
MqV~WrrΛss and

İİ

Zη,βp~, Qq ”
ÿ

dPΛ

Qdev1˚

»
–
e
´

İİ

VE

¯

~´ψ1

mź

j“2

´
ψ

βj

j ev˚
j ηj

¯
fi
flPH˚

TN pXτ
MqV~WrrΛss

(5.5.3)

are
İ

C- and
İİ

C-recursive, respectively, with
İ

C and
İİ

C given by (5.5.2).

Proof. This is obtained by applying the Virtual Localization Theorem (5.4.1) onM0,mpXτ
M ,dq,

using Section 5.4, and extending the proof of [Z1, Lemma 1.1] from the case of a positive
line bundle over Pn´1 to that of a split vector bundle E “ E` ‘E´ as in (1.1.2) over an
arbitrary symplectic toric manifold Xτ

M . By (2.3.15), (2.3.1), (5.4.1), and the second equa-

tion in (2.3.14), a decorated graph may contribute to
İ

Zη,βp~, QqpIq and
İİ

Zη,βp~, QqpIq only if
ppdecp1qq “ I. There are thus two types of contributing graphs: the AI and the BI graphs,
where I PV τ

M . In an AI graph the first marked point is attached to a vertex v0 of valence 2,
while in a BI graph the first marked point is attached to a vertex v0 of valence at least 3. If
Γ is a BI graph and ZΓ the corresponding component of M0,mpXτ

M ,dqTN

, then

ψn
1 “0 @nąvalpv0q´3.

Thus, Γ contributes a polynomial in ~´1 to the coefficient of Qd in
İ

Zη,βp~, QqpIq and
İİ

Zη,βp~, QqpIq.
In an AI graph there is a unique vertex v joined to v0 by an edge. Let ApI,jqpd0q be the

set of all AI graphs such that ppvq“vpI, jq and the edge having v0 as a vertex is labeled d0.
Thus,

AI “
8ď

d0“1

ď

jRI

ApI,jqpd0q.
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d0
I vpI, jq

1

2

3

Γ

d0
I vpI, jq

1 2

Γ0

vpI, jq

1

2

3

Γc

Figure 5.1: A graph of type ApI,jqpd0q and its two subgraphs

We fix Γ PApI,jqpd0q and denote by Γ0 and Γc the two graphs obtained by breaking Γ at v,
adding a second marked point to the vertex v in Γ0 and a first marked point to v in Γc, and
requiring that marked points 2, . . . ,m are in Γc; see Figure 5.1.2 Thus, Γ0 consists only of
the vertices v0 and v and the marked points 1 and 2 attached to v0 and v, respectively. With
ZΓ denoting the component in M0,mpXτ

M ,dqTN

corresponding to Γ,

ZΓ – ZΓ0
ˆ ZΓc

;

we denote by π0 and πc the two projections. Thus,

İ

VE “ π˚
0

İ

VE ‘ π˚
c

İ

VE and
İİ

VE “ π˚
0

İİ

VE ‘ π˚
c

İİ

VE. (5.5.4)

These identities are obtained by considering the short exact sequence of sheaves

0 ÝÑ f˚E˘ ÝÑ f˚
0E

˘ ‘ f˚
c E

˘ ÝÑ E˘
ˇ̌
p

ÝÑ 0,

where f : ΣÝÑXτ
M is a TN-fixed stable map whose corresponding graph is Γ, while f0 and

fc are its restrictions to the components of Σ corresponding to the edge leaving v0 and the
rest of Γ. Let

ηβ ”
mź

j“2

´
ψ

βj

j ev˚
j ηj

¯
.

By (5.5.4),

e
´

İ

VE

¯
ηβ

~´ψ1

ˇ̌
ˇ
ZΓ

“ π˚
0

¨
˝
e
´

İ

VE

¯

~´ψ1

˛
‚π˚

c

´
e
´

İ

VE

¯
ηβ
¯
,

e
´

İİ

VE

¯
ηβ

~´ψ1

ˇ̌
ˇ
ZΓ

“ π˚
0

¨
˝
e
´

İİ

VE

¯

~´ψ1

˛
‚π˚

c

´
e
´

İİ

VE

¯
ηβ
¯
.

(5.5.5)

By Proposition 5.4.3, (5.4.2), and (5.2.2),

ev˚
1φI

ˇ̌
ZΓ

epN vir
Γ q “ π˚

0

ˆ
ev˚

1φI

epN vir
Γ0

q

˙
π˚
c

ˆ
ev˚

1φvpI,jq

epN vir
Γc

q

˙
1

´ujpIq

d0
´ π˚

cψ1

. (5.5.6)

2Figure 5.1 is [Z1, Figure 2] adapted to the toric setting.
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By (5.4.3) and (5.2.4), on ZΓ0

e
´

İ

VE

¯
“

aź

i“1

d0L
`
i pIjqź

s“1

„
λ`
i pIq´ s

d0
ujpIq

 bź

i“1

´d0L
´
i pIjq´1ź

s“0

„
λ´
i pIq` s

d0
ujpIq


,

e
´

İİ

VE

¯
“

aź

i“1

d0L
`
i pIjq´1ź

s“0

„
λ`
i pIq´ s

d0
ujpIq

 bź

i“1

´d0L
´
i pIjqź

s“1

„
λ´
i pIq` s

d0
ujpIq


.

(5.5.7)

By Proposition 5.4.3,

epN vir
Γ0

q “ p´1qd0 pd0!q2

d2d00

rujpIqs2d0
ź

rPrNs´pIYtjuq

d0DrpIjqś
s“0

”
urpIq´ s

d0
ujpIq

ı

´1ś
s“d0DrpIjq`1

”
urpIq´ s

d0
ujpIq

ı . (5.5.8)

By (5.5.7), (5.5.8), (5.4.2), and (5.5.2),

ż

ZΓ0

e
´

İ

VE

¯
ev˚

1φI

p~´ψ1qe
`
N vir

Γ0

˘ “
İ

CI,jpd0q
~` ujpIq

d0

and

ż

ZΓ0

e
´

İİ

VE

¯
ev˚

1φI

p~´ψ1qe
`
N vir

Γ0

˘ “
İİ

CI,jpd0q
~` ujpIq

d0

. (5.5.9)

By (5.5.5), (5.5.6), and (5.5.9),

ż

ZΓ

ep
İ

VEqev˚
1φIη

β

~ ´ ψ1

ˇ̌
ˇ
ZΓ

1

epN vir
Γ q “

İ

CI,jpd0q
~ ` ujpIq

d0

ż

ZΓc

ep
İ

VEqev˚
1φvpI,jqη

β

~ ´ ψ1

1

epN vir
Γc

q
ˇ̌
ˇ
~“´

ujpIq

d0

,

ż

ZΓ

ep
İİ

VEqev˚
1φIη

β

~ ´ ψ1

ˇ̌
ˇ
ZΓ

1

epN vir
Γ q “

İİ

CI,jpd0q
~ ` ujpIq

d0

ż

ZΓc

ep
İİ

VEqev˚
1φvpI,jqη

β

~ ´ ψ1

1

epN vir
Γc

q
ˇ̌
ˇ
~“´

ujpIq

d0

.

(5.5.10)

By the first equation in (5.5.10) and the Virtual Localization Theorem (5.4.1), the contribu-

tion of the AI graphs to the coefficient of Qd in
İ

Zη,β

ˇ̌
I
is

ÿ

d0ě1

ÿ

jPrNs´I

d0¨deg Ijĺd

İ

CI,jpd0q
~ ` ujpIq

d0

r
İ

Zη,βpxpvpI, jqq, ~, Qq
z
Q;d´d0¨deg Ij

ˇ̌
~“´

ujpIq

d0

whenever d ” d˚ satisfies the two properties in Definition 5.3.1 (which make evaluation at

~“´ujpIq

d0
meaningful). An analogous statement holds when summing in the second equation

in (5.5.10).

5.6 MPC for the GW power series

Let
İ

Z1 and
İİ

Z1 be as in (4.0.2) and
İ

Zη,β and
İİ

Zη,β be as in (5.5.3).
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Figure 5.2: A graph representing a fixed locus in XdpXτ
Mq; I, J,K, L P V τ

M , I‰J,K, L.

Lemma 5.6.1. For all mě 3, ηj PH˚
TN pXτ

Mq, βj PZě0, the pairs p
İİ

Z1p~, Qq, ~m´2
İ

Zη,βp~, Qqq
and p

İ

Z1p~, Qq, ~m´2
İİ

Zη,βp~, Qqq satisfy the MPC.

Lemma 5.6.1 extends [Z1, Lemma 1.2] from the case of a positive line bundle over Pn´1

to that of a split vector bundle E“E`‘E´ as in (1.1.2) over an arbitrary symplectic toric
manifold Xτ

M . While [Z1, Lemma 1.2] follows from [Z1, Lemma 3.1], Lemma 5.6.1 follows
from Lemma 5.6.3 below, which extends [Z1, Lemma 3.1] to the general toric case. The
proof of Lemma 5.6.3 uses the Virtual Localization Theorem (5.4.1) instead of the classical
one used in the Xτ

M “ Pn´1 case and Lemma 5.6.2, which is a general toric version of the
first displayed formula in [Z1] after [Z1, (3.32)].

As in [Gi1] and [Z1], we consider the action of T1 on V ”C2 given by ξ ¨pz0, z1q”pz0, ξ´1z1q
and the induced action on PV . Let ~ be the weight of the standard action of T1 on C. For
any dPΛ, let

XdpXτ
Mq”

 
f PM0,mpPV ˆXτ

M , p1,dqq : ev1pfqPr1, 0sˆXτ
M , ev2pfqPr0, 1sˆXτ

M

(
.

By Proposition 5.4.2, the components of the fixed locus XdpXτ
MqT1ˆTN

of the T1 ˆTN-
action on XdpXτ

Mq are indexed by decorated graphs Γ of the following form. Such a graph
Γ has a unique edge of positive PV -degree; this special edge corresponds to a degree-one
map f : P1 ÝÑ PV ˆrIs for some I P V τ

M . Edges to the left (respectively right) of this edge
are mapped into r1, 0sˆXτ

M (respectively r0, 1sˆXτ
M ); see Figure 5.2, where we dropped the

PV -label of the vertices.3 Thus, the first marked point is attached to some vertex to the left
of the special edge, while the second marked point is attached to some vertex to the right of
the special edge.

Let
dL ”dLpΓq, dR ”dRpΓqPΛ

denote the Xτ
M -degrees of the left- and right-hand side (with respect to the special edge)

sub-graphs, respectively; thus, d “ dL `dR. Let ZΓ be the component of XdpXτ
MqT1ˆTN

corresponding to Γ.

Lemma 5.6.2. For every iPrks and dPΛ, there exists

Ωi PH2
T1ˆTN pXdpXτ

Mqq such that Ωi

ˇ̌
ZΓ

“xipIq`pdLpΓqqi ~

for all graphs Γ corresponding to components of XdpXτ
MqT1ˆTN

, with dLpΓq and I depending
on Γ as above.

3Figure 5.2 is [Z1, Figure 3] adapted to the toric setting.
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Proof. We follow the proof in [Gi1, Section 11] and [Gi2, Section 2].
Given sPZě0 and ně1, let

Polyns ” P
`
tP P Crz0, z1s : P homogeneous of degree su‘n

˘
.

We next define a morphism

θ0 : M0,0pPV ˆPn´1, p1, sqq ÝÑ Polyns .

If rΣ, f s is an element of M0,0pPV ˆPn´1, p1, sqq, Σ “ Σ0YΣ1Y . . .YΣr, where Σ0 is a P1,

f
ˇ̌
ˇ
Σ0

has degree p1, s0q, Σi is connected for all iPrrs, and f
ˇ̌
ˇ
Σi

has degree p0, siq for all iPrrs.
Thus,

fpΣiq Ď trAi, BisuˆPn´1 for some rAi, BisPPV @ iPrrs.
Let θ0rΣ, f s”rP1g, . . . , Pngs, where

f
ˇ̌
Σ0

” pf1, f2q, f2 ˝ f´1
1 ” rP1, . . . , PnsPPolyns0 , g ”

rź

i“1

pAiz1´Biz0qsi .

Let θ”θ0 ˝ fgt, where

fgt : M0,mpPV ˆPn´1, p1, sqq ÝÑ M0,0pPV ˆPn´1, p1, sqq

is the forgetful morphism. By [Gi1, Section 11, Main Lemma], θ
ˇ̌
XspPn´1q

is continuous.

The torus T1ˆTn acts on Polyns by

pξ, t1, . . . , tnq ¨ pP1rz0, z1s, . . . , Pnrz0, z1sq ” pt1P1rz0, ξz1s, . . . , tnPnrz0, ξz1sq .

This action naturally lifts to the hyperplane line bundle over Polyns . The map θ0 is T1ˆTn-
equivariant and hence so is θ.

Let L ÝÑ Xτ
M be any very ample line bundle. For any d P Λ, let Lpdq ”

@
c1pLq,d

D
.

Consider the canonical lift of the TN-action on Xτ
M to L given by Proposition 2.2.5 together

with (2.3.3). Thus, there exists n, an injective group homomorphism ιT : TN ÝÑ Tn, and
an ιT-equivariant embedding ι : Xτ

M ÝÑ Pn´1 such that ι˚OPn´1p1q “ L. We consider the
TN-action on Pn´1 induced by ιT. The embedding ι induces a T1ˆTN-equivariant embedding

XdpXτ
Mq FÝÑ XLpdqpPn´1q.

The composition

XdpXτ
Mq FÝÑ XLpdqpPn´1q θÝÑ PolynLpdq

maps ZΓ onto rzLpdRq
0 z

LpdLq
1 a1, . . . , z

LpdRq
0 z

LpdLq
1 ans, where ra1, . . . , ans” ιprIsq.

Let ΩPH2
T1ˆTNpPolynLpdqq be the equivariant Euler class of the hyperplane line bundle and

ΩpLq ” F ˚θ˚Ω P H2
T1ˆTN pXdpXτ

Mqq.

It follows that

ΩpLq
ˇ̌
ZΓ

“ Ω
ˇ̌
rz

LpdRq
0 z

LpdLq
1 a1,...,z

LpdRq
0 z

LpdLq
1 ans

“ epLqpIq`
@
c1pLq,dL

D
~, (5.6.1)
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where epLq is the TN-equivariant Euler class of L.
By Proposition 2.2.4, there exist very ample line bundles Li for all i P rks such that

tc1pLiq : iPrksu is a basis for H2pXτ
Mq; so, using the TN-action on each Li defined by (2.3.3),

we find that

SpanQ tepLiq : iPrksu “ SpanQ txi : iPrksu .

Via Proposition 2.3.3(b), this shows that tepLiq, αj : iPrks, j PrN su is a basis for H2
TN pXτ

Mq.
As in [Gi2], we define a Q-linear map from H2

TN pXτ
Mq to H2

T1ˆTN pXdpXτ
Mqq by sending epLiq

to ΩpLiq for all iPrks and αj to αj for all j PrN s. Let Ωi PH2
T1̂ TN pXdpXτ

Mqq be the image of
xi under this map. The claim now follows from (5.6.1).

Lemma 5.6.3. Let ηβ ”
mś
j“2

´
ψ

βj

j ev˚
j ηj

¯
in H˚

TN pM0,mpXτ
M ,dqq and let

π : M0,mpPV ˆXτ
M , p1,dqq ÝÑ M0,mpXτ

M ,dq

denote the natural projection. With Φ as in Definition 5.3.4 and Ωi as in Lemma 5.6.2,

p´~qm´2Φİİ

Z1,
İ

Zη,β

p~, z, Qq “
ÿ

dPΛ

Qd

ż

rXdpXτ
M

qsvir
e

kř
i“1

Ωizi
π˚

”
e
´

İ

VE

¯
ηβ
ı mź

j“3

ev˚
j epOPV p1qq,

p´~qm´2Φ İ

Z1,
İİ

Zη,β

p~, z, Qq “
ÿ

dPΛ

Qd

ż

rXdpXτ
M

qsvir
e

kř
i“1

Ωizi
π˚

”
e
´

İİ

VE

¯
ηβ
ı mź

j“3

ev˚
j epOPV p1qq.

(5.6.2)

Proof. We apply the Virtual Localization Theorem (5.4.1) to the right-hand side of each of
the two equations in (5.6.2), using Section 5.4 and extending the proof of [Z1, Lemma 3.1]
from the case of a positive line bundle over Pn´1 to that of a split vector bundle E“E`‘E´

as in (1.1.2) over an arbitrary symplectic toric manifold Xτ
M . The possible contributing fixed

loci graphs are described above. Given such a fixed locus graph Γ, we denote by N vir
Γ the

virtual normal bundle to the corresponding component of the fixed locus inside the moduli
space. We denote by AI the set of all T

1ˆTN-fixed loci graphs whose unique edge of positive
PV -degree corresponds to a map P1 ÝÑPV ˆrIs, where I PV τ

M . A graph ΓPAI breaks into
3 graphs - ΓL, ΓR, and Γ0 - as follows; see also Figure 5.3.4 The graph ΓL is obtained by
considering all vertices and edges of Γ to the left of the special edge (of positive PV -degree)
and adding a marked point labeled 2 at the vertex belonging to the special edge. Given that
all vertices in this “left-hand side graph” are labeled pr1, 0s, Iq for some I PV τ

M , it defines a
component of M0,2pXτ

M ,dLqTN

. The graph ΓR is obtained by considering all vertices of Γ to
the right of the special edge and adding a marked point labeled 1 at the vertex belonging to
the special edge. Given that all vertices in this “right-hand side graph” are labeled pr0, 1s, Iq
for some I PV τ

M , it defines a component of M0,mpXτ
M ,dRqTN

. Finally, Γ0 is the special edge
with 2 marked points added. They are labeled 1 in the left-hand side and 2 in the right-hand
side. Thus,

ZΓ – ZΓL
ˆ ZΓ0

ˆ ZΓR
;

4Figure 5.3 is [Z1, Figure 4] adapted to the toric setting.

65



I2
J

2K

1
L

3L

1

2 1 2

I I

1

I 1
K 2

3
J

5 J

3

Figure 5.3: The three sub-graphs of the graph in Figure 5.2

we denote by πL, π0, and πR the corresponding projections.
It follows that

π˚
İ

VE “ π˚
L

İ

VE ‘ π˚
R

İ

VE, π˚
İİ

VE “ π˚
L

İİ

VE ‘ π˚
R

İİ

VE,

N vir
Γ

TrIsX
τ
M

“ π˚
L

ˆ
N vir

ΓL

TrIsX
τ
M

˙
‘ π˚

R

ˆ
N vir

ΓR

TrIsX
τ
M

˙
‘ π˚

LL2 b π˚
0L1 ‘ π˚

0L2 b π˚
RL1,

(5.6.3)

where L2 ÝÑZΓL
,L1, L2 ÝÑZΓ0

, and L1 ÝÑZΓR
are the tautological tangent line bundles.

The first two equations in (5.6.3) follow similarly to (5.5.4).
By (5.6.3) and (2.3.14),

π˚
”
e
´

İ

VE

¯
ηβ
ı mź

j“3

ev˚
j re pOPV p1qqs

ˇ̌
ZΓ

“ π˚
L

”
e
´

İ

VE

¯ı
π˚
R

”
e
´

İ

VE

¯
ηβ p´~qm´2

ı
,

epTrIsX
τ
Mq

e pN vir
Γ q “ π˚

L

«
ev˚

2φI

e
`
N vir

ΓL

˘
ff
π˚
R

«
ev˚

1φI

e
`
N vir

ΓR

˘
ff

1

p~´π˚
Lψ2q pp´~q´π˚

Rψ1q ,
(5.6.4)

and the first equation in (5.6.4) with
İ

VE replaced by
İİ

VE also holds. By (5.6.4) and Lemma 5.6.2,

ż

ZΓ

e

kř
i“1

Ωizi
π˚

”
e
´

İ

VE

¯
ηβ
ı mś
j“3

ev˚
j e pOPV p1qq

ˇ̌
ZΓ

e pN vir
Γ q “ p´~qm´2 e

kř
i“1

xipIqzi

epTrIsX
τ
Mq

ˆ

$
&
%e

kř
i“1

pdLqizi~
ż

ZΓL

e
´

İ

VE

¯
ev˚

2φI

~´ψ2

ˇ̌
ZΓL

1

e
`
N vir

ΓL

˘

,
.
-

$
&
%

ż

ZΓR

e
´

İ

VE

¯
ηβev˚

1φI

p´~q´ψ1

1

e
`
N vir

ΓR

˘

,
.
- ;

(5.6.5)

(5.6.5) with
İ

VE replaced by
İİ

VE also holds. In the dL “0 case, the first curly bracket on the
right-hand side of (5.6.5) is defined to be 1. By the Virtual Localization Theorem (5.4.1)
and (2.3.1),

ÿ

ΓL

QdL

$
&
%e

kř
i“1

pdLqizi~
ż

ZΓL

e
´

İ

VE

¯
ev˚

2φI

~´ψ2

ˇ̌
ZΓL

1

e
`
N vir

ΓL

˘

,
.
- “

İİ

Z1p~, Qe~zq
ˇ̌
I
,

ÿ

ΓR

QdR

$
&
%

ż

ZΓR

e
´

İ

VE

¯
ηβev˚

1φI

p´~q´ψ1

1

e
`
N vir

ΓR

˘

,
.
- “

İ

Zη,βp´~, Qq
ˇ̌
I
,

(5.6.6)
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where the first sum is taken after all graphs ΓL corresponding to components ofM0,2pXτ
M ,dLqTN

and with second marked point mapping to rIs, while the second is taken after all graphs cor-
responding to components of M0,mpXτ

M ,dRqTN

such that the first marked point is mapped

to rIs. The equation obtained from (5.6.6) by replacing
İ

VE by
İİ

VE,
İİ

Z1 by
İ

Z1, and
İ

Zη,β by
İİ

Zη,β also holds. The claims follow from (5.6.5) and (5.6.6) (and their
İİ

VE analogues), by
summing the left-hand side of (5.6.5) over all graphs ΓPAI and all I PV τ

M .

5.7 Recursivity and MPC for the explicit power series

As in [Gi2], for each I PV τ
M we define

∆˚
I ” tdPΛ : Djpdq ě 0 @ j PIu . (5.7.1)

By (4.1.3), (4.1.4), and (2.3.10),

J
İ

YpxpIq, ~, qqKq;d ‰ 0 ùñ dP∆˚
I and J

İİ

YpxpIq, ~, qqKq;d ‰ 0 ùñ dP∆˚
I . (5.7.2)

Lemma 5.7.1. The power series
İ

Ypx, ~, qq of (4.1.4) is
İ

C-recursive with
İ

C given by (5.5.2).

The power series
İİ

Ypx, ~, qq of (4.1.4) is
İİ

C-recursive with
İİ

C given by (5.5.2).

Proof. The recursivity of
İ

Y in the E “E` case is [Gi2, Proposition 6.3]. The proof of the

recursivity of
İ

Y in the general case is similar and so is the proof of the recursivity of
İİ

Y . We

prove below the recursivity of
İİ

Y extending the proof of (a) in [Z1, Section 2.3] and the proof
of [Gi2, Proposition 6.3]. Let I PV τ

M , j P rN s´I, J ”vpI, jq, tpju ” I´J . By (5.7.2), (4.1.4),
Remark 5.3.3, and (5.2.2),

İİ

Y

ˆ
xpJq,´ujpIq

d
, q

˙
“

ÿ

d1P∆˚
J

Dj1 pd1qě´d

qd
1

ś
rPrNs

Drpd1qă0

0ś
s“Drpd1q`1

“
urpJq´ s

d
ujpIq

‰

ś
rPrNs

Drpd1qě0

Drpd1qś
s“1

“
urpJq´ s

d
ujpIq

‰

ˆ
aź

i“1

L`
i pd1q´1ź

s“0

”
λ`
i pJq´ s

d
ujpIq

ı bź

i“1

´L´
i pd1qź

s“1

”
λ´
i pJq` s

d
ujpIq

ı
.

(5.7.3)

By (5.7.3), (5.2.5), and (5.2.4),

İİ

Y

ˆ
xpJq,´ujpIq

d
, q

˙
“

ÿ

d1P∆˚
J

Dpjpd1qě´d

qd
1

ś
rPrNs

Drpd1qă0

dDrpIjqś
s“Drpd1q`1`dDrpIjq

“
urpIq´ s

d
ujpIq

‰

ś
rPrNs

Drpd1qě0

Drpd1q`dDrpIjqś
s“1`dDrpIjq

“
urpIq´ s

d
ujpIq

‰

ˆ
aź

i“1

L`
i pd1q´1`dL`

i pIjqź

s“dL`
i pIjq

”
λ`
i pIq´ s

d
ujpIq

ı bź

i“1

´L´
i pd1q´dL´

i pIjqź

s“1´dL´
i pIjq

”
λ´
i pIq` s

d
ujpIq

ı
.

(5.7.4)
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By (5.2.6) and (5.5.1),

rCI,jpdq “ p´1qdd2d´1

pd!q2
1

rujpIqs2d´1

ź

rPrNs´tj,pju

0ś
s“1`dDrpIjq

“
urpIq´ s

d
ujpIq

‰

dDrpIjqś
s“1

“
urpIq´ s

d
ujpIq

‰
. (5.7.5)

If dě1, d˚ PΛ, d1 ”d˚´d¨deg Ij PΛ, then,
”
d˚ P∆˚

I and Djpd˚qěd
ı

ðñ
”
d1 P∆˚

J and Dpjpd1qě´d
ı

(5.7.6)

by (5.2.6). By (5.7.2), (4.1.4), (5.7.4), (5.7.5), and (5.5.2),

Res
z“´

ujpIq

d

"
1

~´z
r

İİ

YpxpIq, z, qq
z
q;d˚

*
“

İİ

CI,jpdq
~` ujpIq

d

s
İİ

Y

ˆ
xpJq,´ujpIq

d
, q

˙{

q;d˚´d¨deg Ij

for all d˚ PΛ. Finally, viewing 1
~´z

r
İİ

YpxpIq, z, qq
z
q;d˚

as a rational function in ~, z, and αj

and using the Residue Theorem on P1, we obtain

ÿ

dě1

ÿ

jPrNs´I

d¨deg Ijĺd˚

İİ

CI,jpdq
~` ujpIq

d

s
İİ

Y

ˆ
xpJq,´ujpIq

d
, q

˙{

q;d˚´d¨deg Ij

“
r

İİ

YpxpIq, ~, qq
z
q;d˚

´Resz“0,8

"
1

~´z
r

İİ

Y pxpIq, z, qq
z
q;d˚

*
,

where Resz“0,8F ”Resz“0F`Resz“8F . Since

Resz“0,8

"
1

~´z
r

İİ

Y pxpIq, z, qq
z
q;d˚

*
PQαr~, ~´1s,

this concludes the proof.

Lemma 5.7.2. With
İ

Y and
İİ

Y defined by (4.1.4), p
İ

Y ,
İİ

Yq satisfies the MPC.

We follow the idea of the proof of [Gi2, Proposition 6.2] and begin with some preparations.
Let dP Ť

IPV τ
M

∆˚
I ,

J ” Jpdq ” tj P rN s : Djpdq ě 0u , S”|J |`
ÿ

jPJ

Djpdq.

Let A be the |J |ˆS matrix giving
ś
jPJ

PDjpdq as in (2.4.2). Denote the coordinates of a point

yPCS by `
yj;0, yj;1, . . . , yj;Djpdq

˘
jPJ

.
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The pair pMJA, τq is toric in the sense of Definition 2.1.1. It satisfies (ii) in Definition 2.1.1,
since

V
τ
MJA

“
 

ppi1; p1q, . . . , pik; pkqq :
ti1, . . . , ikuPV

τ
M , ti1, . . . , ikuĎJ, 0ďpr ďDirpdq @ rPrks

( (5.7.7)

by the second statement in Lemma 2.1.4(b). We identify CS with
À
jPJ

H0pP1,OP1pDjpdqqq via

`
yj;0, yj;1, . . . , yj;Djpdq

˘
jPJ

ÝÑ
˜

Djpdqÿ

r“0

yj;rz
Djpdq´r

0 zr1

¸

jPJ

and set Xd ” Xτ
MJA

. The torus T1ˆT|J | acts on
À
jPJ

H0pP1,OP1pDjpdqq by

´
ξ, ptjqjPJ

¯
¨pPjpz0, z1qq

jPJ ” ptjPjpz0, ξz1qq
jPJ , (5.7.8)

while the torus T|J | acts on
À
jPJ

H0pP1,OP1pDjpdqqq by restricting this action via

T|J | Q t ãÑ p1, tqPT1ˆT|J |;

these actions descend to actions on Xd.

Lemma 5.7.3. ( a) The fixed points of the T1ˆT|J |-action on Xd are

rI,ps”
”
pPjpz0, z1qq

jPJ

ı
, (5.7.9)

where I PV τ
M , IĎJ , p“ppiqiPI PZk, 0ďpi ďDipdq for all iPI, and

Pjpz0, z1q”
#
z
Djpdq´pj
0 z

pj
1 , if j PI;

0, otherwise.

(b) Let I PV τ
M and p“ppiqiPI PZk. Then

0ďpi ďDipdq @ iPI ðñ pM´1
I ,d´pM´1

I P∆˚
I .

Proof. Let rpPjpz0, z1qjPJqs be any fixed point of the T1ˆT|J |-action on Xd and pξ0, ξ1qPC2 be

such that Pjpξ0, ξ1q‰0 whenever Pj ‰0. By Lemma 2.1.4(i) and (5.7.7), pPjpξ0, ξ1qqjPJ P rXτ
MJ

.

Since rpPjpξ0, ξ1qqjPJ s is a T|J |-fixed point in Xτ
MJ

, there exists I P V τ
M with I ĎJ such that

Pj ‰ 0 if and only if j P I; see Corollary 2.3.2(a). This concludes the proof of (a). Part (b)
follows from (5.7.1) and the identity pDiprqqiPI ”rMI for r“pM´1

I ; see the second equation
in (2.2.4).
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We consider the T1ˆTN-action on Xd obtained by composing the projection T1ˆTN ÝÑ
T1 ˆT|J | induced by J ãÑ rN s with the action (5.7.8) of T1 ˆT|J | on Xd. We denote by
repTrI,psXdq the T1ˆTN-equivariant Euler class of TrI,psXd and by

¨pI,pq : H˚
T1ˆTN pXdqÝÑH˚

T1ˆTN

the restriction map induced by the inclusion rI,ps ãÑXd, where rI,ps is the T1ˆTN-fixed
point defined by (5.7.9). Let ~ denote the weight of the standard action of T1 on C.

Lemma 5.7.4. There exist classes pxiqiPrks, purqrPrNs, pλ`
i qiPras, pλ´

i qiPrbs PH˚
T1ˆTN pXdq such

that

ur “
kÿ

i“1

mirxi´αr @ rPrN s, (5.7.10)

and such that for all pI,d1q with I PV τ
M , IĎJ , d1,d´d1 P∆˚

I , and all rI,ps as in (5.7.9),

px1pI,d1MIq, . . . ,xkpI,d1MIqq “ px1pIq, . . . , xkpIqq`~d,1 (5.7.11)

repTrI,psXdq “
ź

jPJ´I

ź

0ďsďDjpdq

rujpI,pq´s ~s (5.7.12)

ˆ
ź

jPI

ź

0ďsďDjpdq
s‰pj

rujpI,pq´s ~s ,

λ˘
i pI,d1MIq “ λ˘

i pIq`~L˘
i pd1q @ iPras p@ iPrbsq. (5.7.13)

Proof. We define the classes rx1, . . . , rxk and uj;s in H
˚
TSpXdq with j PJ and 0ďsďDjpdq by

(2.3.7) with pM, τq replaced by pMJA, τq. By (2.3.9),

uj;s “
kÿ

i“1

mijrxi ´ αj;s, (5.7.14)

where αj;s ”π˚
j;sc1pOP8p1qq and πj;s :pP8qS ÝÑP8 is the projection onto the pj; sq component.

By Corollary 2.3.2(a), (5.7.7), and (2.3.14), the TS-fixed points in Xd are the points rI,ps
and

eT
SpTrI,psXdq“

ź

jPJ´I

ź

0ďsďDjpdq

”
uj;s

ˇ̌
rI,ps

ı
ˆ
ź

jPI

ź

0ďsďDjpdq
s‰pj

”
uj;s

ˇ̌
rI,ps

ı
, (5.7.15)

where eT
SpTrI,psXdq denotes the TS-equivariant Euler class of TrI,psXd and

ˇ̌
rI,ps

: H˚
TSpXdq ÝÑ H˚

TS

the restriction homomorphism induced by rI,ps ãÑXd. The map

F :pC8´t0uqN`1ÝÑ pC8´t0uqS, F pe0, e1, . . . , eNq”
´
ej, ej ¨ e0, ej ¨e20, . . . , ej ¨eDjpdq

0

¯
jPJ

,
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where

pz1, z2, . . .qd ” pzd1 , zd2 , . . .q @ dě1, pz1, z2, . . .qPC8´t0u, and

pz1, z2, . . .q¨py1, y2, . . .q ” pziyjqpi,jqPZą0ˆZą0 @ pz1, z2, . . .q, py1, y2, . . .qPC8´t0u

is equivariant with respect to the homomorphism

f :T1ˆTN ÝÑTS, fpξ, t1,. . ., tNq ”
`
tj, tjξ, tjξ

2, . . . , tjξ
Djpdq

˘
jPJ

.

It induces a map F :pC8´t0uqN`1ˆT1ˆTNXd ÝÑpC8´t0uqSˆTSXd,

F re0, e1, . . . , eN , rpPjqjPJ ss ” rF pe0, e1, . . . , eNq, rpPjqjPJ ss
@ pe0, e1, . . . , eNqPpC8´0qN`1, rpPjqjPJ sPXd,

and thus a homomorphism F
˚
:H˚

TSpXdqÝÑH˚
T1ˆTN pXdq. It follows that

F
˚
αj;s “ αj ` s~ @ pj; sq with j PJ, 0ďsďDjpdq. (5.7.16)

We define xi and ur as the T1ˆTN-equivariant Euler classes of the line bundles

rXτ
MJA

ˆ C{ „iÝÑ Xd and rXτ
MJA

ˆ C{ „rÝÑ Xd,

where

ppPjqjPJ , cq „i

`
ptMjPjqjPJ , tic

˘

ppPjqjPJ , cq „r

`
ptMjPjqjPJ , t

Mrc
˘ @ tPTk, ppPjqjPJ , cqP rXτ

MJA
ˆC (5.7.17)

with respect to the lifts of the T1ˆTN-action on Xd given by

pξ, t1, . . . , tNq¨rpPjpz0, z1qqjPJ , cs ” rptjPjpz0, ξz1qqjPJ , cs and

pξ, t1, . . . , tNq¨rpPjpz0, z1qqjPJ , cs ” rptjPjpz0, ξz1qqjPJ , trcs
(5.7.18)

respectively. It follows that
xi “ F

˚rxi (5.7.19)

and uj satisfy (5.7.10). The latter follows similarly to the proof of (2.3.9) using equations
analogous to (2.3.5) and (2.3.6) with TN replaced by T1ˆTN . Equation (5.7.11) follows from
(5.7.19), Proposition 2.3.3(a), and (5.7.16). Equation (5.7.21) follows from (5.7.10), (5.7.11),
and (2.3.9). Equation (5.7.12) follows from (5.7.15) together with (5.7.14), (5.7.16), (5.7.19),
and (5.7.10). Finally, define

λ`
i ”

kÿ

r“1

ℓ`
rixr and λ´

i ”
kÿ

r“1

ℓ´
rixr, (5.7.20)

with ℓ`
ri, ℓ

´
ri as in (3.1.3). Equations (5.7.13) then follow from (5.7.20), (5.7.11), and (4.1.1).
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With uj and pI,d1q as in Lemma 5.7.4,

uj pI,d1MIq “ ujpIq`~Djpd1q @ j PrN s, (5.7.21)

by (5.7.10), (5.7.11), and (2.3.9).

Lemma 5.7.5. There exists a vector bundle Vd ÝÑXd and a lift of the T1ˆTN-action to Vd
such that the T1ˆTN-equivariant Euler class repVdq satisfies

repVdqpI,pq “
Nź

j“1

´Djpdq´1ź

s“1

rujpI,pq ` s ~s

for all T1 T̂N-fixed points rI,ps defined by (5.7.9) and with uj PH˚
T1ˆTN pXdq as in Lemma 5.7.4.

Proof. Let

rVd ”
#

pPjqjPrNs´J
P
à

jPrNs´J

H0
`
P1,OP1p D́jpdq´1q

˘
: Pjp1, 0q“0 @ j PrN s´J

+
,

Vd ”
rXτ
MJA

ˆ rVd
„ ÝÑXd,

´
pPjqjPJ , pPjqjPrNs´J

¯
„
´`
tMjPj

˘
jPJ

,
`
tMjPj

˘
jPrNs´J

¯
@ tP Tk.

Since rXτ
MJA

ÝÑXd is a principal bundle, Vd ÝÑXd is a holomorphic vector bundle. The
T1ˆTN-action on Xd lifts to Vd via

pξ, t1, . . . , tNq¨
”
pPjpz0, z1qq

jPJ , pPjpz0, z1qq
jPrNs´J

ı
”
”
ptjPjpz0, ξz1qq

jPJ , ptjPjpz0, ξz1qq
jPrNs´J

ı
.

The lemma now follows from the definition of uj in (5.7.17) and (5.7.18).

By the Localization Theorem (2.3.2), Lemma 5.7.3, Lemma 5.7.5, and (5.7.12),

ż

Xd

f repVdq“
ÿ

IPV τ
M

d1,d´d1P∆˚
I

fpI,d1MIq
Nś
j“1

´1ś
s“Djpdq`1

rujpI,d1MIq´s~s
ś

jPJ´I

ś
0ďsďDjpdq

rujpI,d1MIq´s~sś
jPI

ś
0ďsďDjpdq
s‰Djpd1q

rujpI,d1MIq´s~s , (5.7.22)

for all f PH˚
T1ˆTN pXdq.

Proof of Lemma 5.7.2. By Definition 5.3.4, (5.7.2), (4.1.4), (5.7.22), (5.7.11), (5.7.21), and

72



(5.7.13),

Φ İ

Y,
İİ

Y
p~, z, Qq“

ÿ

IPV τ
M

ÿ

dP∆˚
I

Qd

#
ÿ

d1,d2P∆˚
I

d1`d2“d

epxpIq`~d1q¨z

ś
jPrNs´I

ujpIq

ś
jPrNs

Djpdqă0

ujpIq ś
jPrNs

Djpdqă0

´Djpd2q´1ś
s“Djpd1q`1

rujpIq`s~s

ś
Djpdqě0

ś
´Djpd2qďsďDjpd1q

s‰0

rujpIq`s~s

ˆ
aź

i“1

L`
i pd1qź

s“´L`
i pd2q`1

“
λ`
i pIq`s~

‰ bź

i“1

´L´
i pd2qź

s“L´
i pd1q`1

“
λ´
i pIq ` s~

‰
+

“
ÿ

dP
Ť

IPV τ
M

∆˚
I

Qd

ż

Xd

repVdqex¨z
aź

i“1

0ź

s“´L`
i pdq`1

“
λ`

i `s~
‰ bź

i“1

´L´
i pdqź

s“1

“
λ´

i `s~
‰
.

The last expression is in Qrα, ~srrz,Λss.
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Appendix A

Derivation of (5.1.2) from [LLY3]

rLLY3s our notation

m k

etj qj

R Cpα1, . . . , αNqr~s
CrT ˚s Qrα1, . . . , αN s
α ~

T TN

eT e

c1pLdq ´ψ1 P H2
`
M0,1pXτ

M ,dq
˘

ρ forgetful morphism M0,1pX,dq ÝÑ M0,0pX,dq
eXd ev1 : M0,1pX,dq ÝÑ X

LT0,1pd,Xq
“
M0,1pX,dq

‰vir

Vd VE ÝÑ M0,0pX,dq
Ud “ ρ˚Vd VE ÝÑ M0,1pX,dq
pDaqaPrNs pujqjPrNs

In [LLY3, Section 3.2], we take bT ” eT (that is, e), X “ Xτ
M , and V ” E. By [LLY3,

Section 3.2],

AV,bT ptq“Aptq“e´H¨t{α

«
epE`q
epE´q `

ÿ

dPΛ´0

Ade
d¨t

ff
, Ad “eX˚

ˆ
ρ˚bT pVdq X LT0,1pd,Xq

eGpF0{MdpXqq

˙
,

where tHau Ă H2
TN pXτ

Mq is a basis whose restriction to H2pXτ
Mq is a basis of first Chern

classes of ample line bundles; see [LLY3, Section 3,viii]. By [LLY3, Lemma 3.5],

eGpF0{MdpXqq “ αpα´c1pLdqq.
Thus, in our notation,

Aptq “ e´H¨t{~

#
epE`q
epE´q `

ÿ

dPΛ´0

ed¨tev1˚

„
epVEq

~p~`ψ1q

+
, (A.0.1)

74



where ev1 : M0,1pXτ
M ,dq ÝÑ Xτ

M is the evaluation map at the marked point. By (4.0.2),
(A.0.1), and the string relation [MirSym, Section 26.3],

Aptq “ e´H¨t{~epE`q
epE´q

İ

Z1p´~, etq. (A.0.2)

By (4.1.4), Remark 5.1.1, and (4.1.1), (5.1.2) is independent of the choice of a Qrαs-basis
for H2

TN pXτ
Mq and so it is not necessary to assume that the restrictions of xi to H

2pXτ
Mq

are Chern classes of ample line bundles. Thus, we may take H“px1, . . . , xkq in [LLY3]. By
[LLY3, (5.2)] and [LLY3, Theorem 4.9],

Bptq “ e´H¨t{~epE`q
epE´q

İ

Y
`
x,´~, et

˘
(A.0.3)

in [LLY3, Theorem 4.7]. In the notation of the proof of [LLY3, Theorem 4.7] correlated with
Remark 5.1.1,

C“
İ

I0pqq, C 1 “´
İ

I0pqq
˜
Gpqq`

Nÿ

j“1

αjgjpqq
¸
, C2 “´

İ

I0pqq ¨ pf1pqq, . . . , fkpqqq,

ef{α “e´ logC´ C1

Cα “ 1
İ

I0pqq
e

1
~

«
Gpqq`

Nř
j“1

αjgjpqq

ff

, g“´C2

C
“pf1pqq, . . . , fkpqqq.

(A.0.4)

Finally, by [LLY3, Section 5.2] and [LLY3, Corollary 4.11], the hypothesis of [LLY3,
Theorem 4.7] are satisfied with Aptq and Bptq as in (A.0.2) and (A.0.3) if νEpdq ě 0 for all
d P Λ, since epE`q and epE´q are non-zero whenever restricted to any TN -fixed point; see
Proposition 2.3.3(a). Thus, (5.1.2) follows from [LLY3, Theorem 4.7], (A.0.2), (A.0.3), and
(A.0.4).
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Birkhäuser, Basel, 2003.

[CoZ] Y. Cooper and A. Zinger, Double Givental’s J-function for stable quotients invariants,
preprint.

[Ch] L Cherveny, Genus-zero mirror principle for two marked points, math/1001.0242v1.

[CK] D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Mathematical
Surveys and Monographs, 68, AMS, 1999.

[De] T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bul-
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