MAT 545: Complex Geometry Fall 2008

Problem Set 6

Due on Tuesday, 12/2, at 2:20pm in Math P-131

(or by 2pm on 12/2 in Math 3-111)

Please write up clear and concise solutions to problems worth 20 pts, including exactly one of the last two problems.

Problem 1 (10 pts)

(a) For each $z \in \mathbb{C}^n$, let \mathcal{O}_z be the ring of germs at z of holomorphic functions on \mathbb{C}^n . If $f, g : \mathbb{C}^n \longrightarrow \mathbb{C}$ are holomorphic functions and $p \in \mathbb{C}^n$ are such that f(p) = 0, let

$$\operatorname{ord}_{f^{-1}(0),p}g = \max \{ a \in \mathbb{Z} \colon [g]/[f^a] \in \mathcal{O}_p \}.$$

Show that for any $p \in f^{-1}(0)$ such that $[f] \in \mathcal{O}_p$ is irreducible, there exists a neighborhood $U_p(f,g)$ of p in \mathbb{C}^n with the property such that

$$\operatorname{ord}_{f^{-1}(0),z}g = \operatorname{ord}_{f^{-1}(0),p}g \qquad \forall z \in f^{-1}(0) \cap U_p(f,g).$$

(b) Let M be a complex manifold and $V \subset M$ be an irreducible analytic hypersurface; thus, $V^* \subset M$ is connected. Suppose $s \equiv \{s_{\alpha}^+, s_{\alpha}^- \in \mathcal{O}(U_{\alpha})\}_{\alpha \in \mathcal{A}}$ is a meromorphic section of a holomorphic line bundle $L \longrightarrow M$. Show that the number

$$\operatorname{ord}_{V,p} s \equiv \operatorname{ord}_{V,p} s_{\alpha}^{+} - \operatorname{ord}_{V,p} s_{\alpha}^{-}$$

is independent of the choice of $\alpha \in \mathcal{A}$ and $p \in V^* \cap U_\alpha$.

Problem 2 (5 pts)

Let Σ be a compact connected Riemann surface (complex one-dimensional manifold) and $p, q \in \Sigma$ be any two distinct points. Show that

- (a) if $\Sigma = \mathbb{P}^1$, then [p] = [q].
- (b) if [p] = [q], then $\Sigma = \mathbb{P}^1$ (up to bi-holomorphism).

Problem 3 (10 pts)

Let Σ be a compact connected Riemann surface and $V \longrightarrow \Sigma$ be a holomorphic line bundle.

- (a) Give a necessary and sufficient condition on V so that there exists a holomorphic line bundle $L \longrightarrow \Sigma$ such that $L^{\otimes 2} = V$.
- (b) If this condition holds, how many "square roots" L does V have?
- (c) If M is a complex surface $(\dim_{\mathbb{C}} M = 2)$ and $\Sigma \subset M$ is a smooth canonical divisor with normal bundle N, show that $N^{\otimes 2} = \mathcal{K}_{\Sigma}$.

Note: a pair (Σ, L) such that $L^{\otimes 2} = \mathcal{K}_{\Sigma}$ is called a *spin curve*.

Problem 4 (5 pts)

Let M be a complex manifold. Show that every C^{∞} complex line bundle $L \longrightarrow M$ admits

- (a) at most one holomorphic structure if and only if $H_{\bar{\partial}}^{0,1}(M) = 0$.
- (b) at least one holomorphic structure if and only if $H_{\bar{\partial}}^{0,2}(M) = 0$.

Problem 5 (10 pts)

Show that

(a) there exists a short exact sequence of sheaves on \mathbb{P}^n :

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n} \longrightarrow (n+1)\mathcal{O}_{\mathbb{P}^n}(1) \longrightarrow \mathcal{O}(T\mathbb{P}^n) \longrightarrow 0;$$

- (b) $H^q_{\bar{\partial}}(\mathbb{P}^n; \mathcal{O}(T\mathbb{P}^n)) = 0$ for all q > 0; (c) $H^q_{\bar{\partial}}(\Sigma; \mathcal{O}(u^*T\mathbb{P}^n)) = 0$ for all q > 0 for every compact connected Riemann surface Σ of genus gand holomorphic map $u: \Sigma \longrightarrow \mathbb{P}^n$ of degree $d \ge 2q-1$;
- (d) the homomorphism

$$H^0_{\bar{\partial}}(\Sigma; \mathcal{O}(u^*T\mathbb{P}^n)) \longrightarrow \bigoplus_{i=1}^{i=k} a_i T_{u(z_i)} \mathbb{P}^n, \qquad s \longrightarrow (\nabla^{j-1}_{e_i} s)_{1 \le j \le a_i, 1 \le i \le k},$$

is surjective for every (Σ, u) as in (c), every choice of distinct points $z_1, \ldots, z_k \in \Sigma$, $e_i \in T_{z_i}\Sigma$ with $e_i \neq 0$, and $a_1, \ldots, a_k \in \mathbb{Z}^+$ with $d \geq 2g - 1 + \sum_{i=1}^{i=k} a_i$.

Note: $\nabla_{e_i}^j s$ denotes the j-th vertical derivative of the section s with respect to a connection ∇ evaluated at e_i ; thus,

$$\nabla^0_{e_j}(s) = s(z_j), \qquad \nabla^1_{e_j}(s) = \{\nabla s\}|_{z_j}(e_j), \qquad \nabla^2_{e_j}(s) = \{\nabla(\nabla s)\}|_{z_j}(e_j, e_j).$$

Problem 6 (10 pts)

Let $\gamma \longrightarrow \mathbb{P}^1$ be the tautological line bundle, $\mathcal{O}_{\mathbb{P}^1}(-1)$, and $E \longrightarrow \mathbb{P}^1$ be any holomorphic vector bundle. Show that

- (a) $H^1_{\bar{\partial}}(\mathbb{P}^1;\gamma)=0;$
- (b) $H^0_{\bar{\partial}}(\mathbb{P}^1; E \otimes \gamma^{*a}) \neq 0$ for for some $a \in \mathbb{Z}$; (c) if $a_E = \min\{a \in \mathbb{Z} : H^0_{\bar{\partial}}(\mathbb{P}^1; E \otimes \gamma^{*a}) \neq 0\}$, then $E \otimes \gamma^{*a_E}$ admits a nowhere zero holomorphic section and E contains a holomorphic subbundle isomorphic to γ^{a_E} ;
- (d) if $F \equiv E/\gamma^{a_E} \approx \gamma^{a_1} \oplus \ldots \oplus \gamma^{a_k}$, then $a_E \leq a_i$ for all $i = 1, \ldots, k$;
- (e) $H_{\bar{\partial}}^1(\mathbb{P}^1; F^* \otimes \gamma^{a_E}) = 0$ and the exact sequences of holomorphic vector bundles

$$0 \longrightarrow F^* \otimes \gamma^{a_E} \longrightarrow E^* \otimes \gamma^{a_E} \longrightarrow \tau_1 \longrightarrow 0, \qquad 0 \longrightarrow \gamma^{a_E} \longrightarrow E \longrightarrow F \longrightarrow 0$$

split:

(f) E is isomorphic to a unique vector bundle

$$\bigoplus_{i=0}^{i=k}\mathcal{O}_{\mathbb{P}^1}(b_i) \equiv \bigoplus_{i=0}^{i=k} \gamma^{*b_i}$$

with $b_0 \ge b_1 \ge \ldots \ge b_k$.

Note: the last statement is *Grothendieck's theorem*.