MAT 545: Complex Geometry Fall 2008

Problem Set 5 Due on Tuesday, 11/18, at 2:20pm in Math P-131 (or by 2pm on 11/18 in Math 3-111)

Please write up clear and concise solutions to problems worth 20 pts.

Problem 1 (10 pts)

Suppose (M, J) is an almost complex manifold, g is a J-compatible Riemannian metric on M, and ∇ is the Levi-Civita connection of g (thus, J is a complex structure in the fibers of the vector bundle $TM \longrightarrow M$ which preserves g; ∇ is g-compatible and $[X, Y] = \nabla_X Y - \nabla_Y X$ for any two vector fields X, Y on M). Show that $\nabla J = 0$ if and only if (M, J, g) is Kahler (you can use either of the equivalent conditions in PS2,#1 as the integrability criterion for J).

Problem 2 (5 pts)

Let $M_n = (\mathbb{C}^n - 0) / \sim$, where $z \sim 2^k z$ for every $k \in \mathbb{Z}$. (a) Show that M_n is a complex manifold (with the complex structure inherited from \mathbb{C}^n). What simple smooth manifold is M diffeomorphic to?

(b) Give at least two reasons why M_n does not admit a Kahler metric for $n \ge 2$.

Problem 3 (10 pts)

Let $M = \mathbb{R}^4 / \sim$, where

$$(s,t,x,y) \sim (s+k,t+l,x+m,y+lx+n) \qquad \forall \ (s,t,x,y) \in \mathbb{R}^4, \ (k,l,m,n) \in \mathbb{Z}^4$$

Show that

(a) this is an equivalence relation;

(b) M is a compact symplectic manifold (with the symplectic form, i.e. closed non-degenerate 2-form, inherited from the standard symplectic form on \mathbb{R}^4 , i.e. $ds \wedge dt + dx \wedge dy$).

(c) M does not admit an integrable complex structure compatible with this symplectic form.

Note 1: M in (c) is the first known example (due to W. Thurston'76) of a symplectic manifold that admits no Kahler structure.

Note 2: in contrast, every symplectic manifold (M, ω) admits an *almost* complex structure compatible with ω ; the space of ω -compatible almost complex structures is contractible.

Problem 4 (5 pts)

Let (X, J, g) be a Kahler manifold and ω its symplectic form. Show that ω is harmonic with respect to g.

Problem 5 (10 pts)

Let M be a compact complex manifold that admits a Kahler metric. (a) Let α be a (p,q)-form on M such that $d\alpha = 0$. Show that the following are equivalent:

- (i) $\alpha = d\beta$ for some (p+q-1)-form β ;
- (ii) $\alpha = \partial \beta$ for some (p-1, q)-form β ;
- (ii) $\alpha = \bar{\partial}\beta$ for some (p, q-1)-form β ;
- (ii) $\alpha = \partial \bar{\partial} \beta$ for some (p-1, q-1)-form β .

(b) Let ω and ω' be symplectic forms compatible with the complex structure on M (thus ω and ω' arise from Kahler metrics on M). If $[\omega] = [\omega'] \in H^2_{deR}(M)$, show that $\omega' = \omega + i\partial\bar{\partial}f$ for some $f \in C^{\infty}(M; \mathbb{R})$.