
MAT 545: Complex Geometry
Fall 2008

Notes on Connections

1 Connections in real vector bundles

1.1 Connections and splittings

Suppose M is a smooth manifold and π : E−→M is a vector bundle. Trivializations of M induce
a bundle inclusion π∗E−→TE so that the sequence of vector bundles over E

0 −→ π∗E −→ TE
dπ−→ π∗TM −→ 0 (1.1)

is exact. For each f ∈C∞(M), define

mf : E −→ E by mf (v) = f
(
π(x)) · v ∀ v∈E. (1.2)

We then have a commutative diagram

0 // π∗E //

π∗mf

��

TE
dπ //

dmf

��

π∗TM //

id

��

0

0 // π∗E // m∗fTE
dπ // π∗TM // 0

(1.3)

of bundle maps over E.

A connection in E is an R-linear map

∇ : Γ(M ;E) −→ Γ(M ;T ∗M⊗E) s.t.
∇(fξ) = df⊗ξ + f∇ξ ∀ f ∈C∞(M), ξ∈Γ(M ;E). (1.4)

The Leibnitz property implies that any two connections in E differ by a one-form on M . In other
words, if ∇ and ∇̃ are connections in E there exists

θ ∈ Γ
(
M ;T ∗M⊗HomR(E,E)

)
s.t.

∇̃vξ = ∇vξ +
{
θ(v)

}
ξ ∀ ξ∈Γ(M ;E), v∈TxM, x∈M. (1.5)

A connection ∇ in E is necessarily a local differential operator, i.e. the value of ∇ξ at a point
x∈M depends only on the restriction of ξ to any neighborhood U of x. If f is a smooth function
on M supported in U and such that f(x)=1, then

∇ξ
∣∣
x

= ∇
(
fξ)
∣∣
x
− df

∣∣
x
⊗ξ(x) (1.6)

by (1.4). The right-hand side of (1.6) depends only on ξ|U .
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In fact, a connection ∇ in E is a first-order differential operator. Suppose U is an open subset of
M and ξ1, . . . , ξn∈Γ(U ;E) is a frame for E on U , i.e.

ξ1(x), . . . , ξn(x) ∈ Ex

is a basis for Ex for all x∈U . By definition of ∇, there exist

θkl ∈ Γ(M ;T ∗M) s.t. ∇ξl =
k=n∑
k=1

ξkθ
k
l ≡

k=n∑
k=1

θkl ⊗ξk ∀ l=1, . . . , n.

We will call
θ ≡

(
θkl
)
k,l=1,...,n

∈ Γ
(
Σ;T ∗M⊗MatnR

)
the connection one-form of ∇ with respect to the frame (ξk)k. For an arbitrary section

ξ =
l=n∑
l=1

f lξl ∈ Γ(U ;E),

by (1.4) we have

∇ξ =
k=n∑
k=1

ξk

(
dfk +

l=n∑
l=1

θkl f
l
)
, i.e. ∇

(
ξ · f t

)
= ξ ·

{
d+ θ

}
f t, (1.7)

where ξ = (ξ1, . . . , ξn), f = (f1, . . . , fn).

Thus, ∇ is a first-order differential operator. It is immediate from (1.4) that the symbol of ∇ is
given by

σ∇ : T ∗M −→ Hom
(
E, T ∗M⊗E

)
,

{
σ∇(η)

}
(f) = η ⊗ f.

Since M⊂E as the zero section, there is a natural splitting

TE|M ≈ TM ⊕ E (1.8)

of the exact sequence (1.1) restricted to M . If x∈M and ξ∈Γ(M ;E) is such that ξ(x)=0, then

∇ξ
∣∣
x

= π2|x ◦ dξ|x, (1.9)

where π2|x : TxE −→Ex is the projection onto the second component in (1.8). This observation
follows from (1.5), as well as from (1.7).

Lemma 1.1 Suppose M is a smooth manifold and π : E−→M is a vector bundle. A connection ∇
in E induces a splitting

TE ≈ π∗TM ⊕ π∗E (1.10)

of the exact sequence (1.1) extending the splitting (1.8) such that

∇ξ
∣∣
x

= π2|x ◦ dξ|x ∀ ξ∈Γ(M ;E), x∈M, (1.11)

where π2|x : TxE−→Ex is the projection onto the second component in (1.10), and

dmt ≈ π∗id⊕ π∗mt ∀ t∈R, (1.12)

i.e. the splitting is consistent with the commutative diagram (1.3).

2



Proof: For each x∈M and v∈Ex, choose ξ∈Γ(M ;E) such that ξ(x)=v and let

TvE
h = Im {dξ−∇ξ}

∣∣
x
⊂ TvE.

Since π◦ξ=idM ,

dπ|v ◦
{
dξ−∇ξ

}
= idTxM =⇒ TvE ≈ TvEh ⊕ Ex ≈ TxM ⊕ Ex.

If v=0, then by (1.9)
TvE

h = TvM.

If v 6= 0, ζ ∈Γ(M ;E) is another section such that ζ(x) =v, and U is sufficiently small, then ζ=fξ
for some f ∈C∞(U) with f(x)=1 and thus

{dζ−∇ζ
}∣∣
x

= {d(fξ)−∇(fξ)
}∣∣
x

=
{
df |x⊗ξ(x)+f(x)dξ|x

}
−
{
df |x⊗ξ(x)+f(x)∇ξ|x

}
= dξ−∇ξ.

The second equality above is obtained by considering a trivialization of E near x. Thus, TvEh is
independent of the choice of ξ in either case and we obtain a well-defined splitting (1.10) of (1.1)
that satisfies (1.11) and extends (1.8).

It remains to verify (1.12). Since π◦mt=π, dπ◦dmt=dπ, i.e. the first component of dmt vanishes
on TE and is the identity on π∗TM . On the other hand, if ξ∈Γ(M ;E) and x∈M , then

Ttξ(x)E
h ≡

{
d(mt◦ξ)−∇(tξ)

}∣∣
x

=
{
dmt◦dξ−mt∇ξ

}∣∣
x

= dmt ◦
{
dξ−∇ξ

}∣∣
x

≡ dmt

(
Ttξ(x)E

h
)
.

The last equality on the first line follows from (1.3). These two observations imply (1.12).

1.2 Metric-compatible connections

Suppose E−→M is a smooth vector bundle. Let g be a metric on E, i.e.

g ∈ Γ(M ;E∗⊗E∗) s.t. g(v, w) = g(w, v), g(v, v) > 0 ∀ v, w ∈ Ex, v 6=0, x∈M.

A connection ∇ in E is g-compatible if

d
(
g(ξ, ζ)

)
= g(∇ξ, ζ) + g(ξ,∇ζ) ∈ Γ(M ;T ∗M) ∀ ξ, ζ ∈ Γ(M ;E).

Suppose U is an open subset of M and ξ1, . . . , ξn∈Γ(U ;E) is a frame for E on U . For i, j=1, . . . , n,
let

gij = g(ξi, ξj) ∈ C∞(U).

If ∇ is a connection in E and θkl is the connection one-form for ∇ with respect to the frame {ξk}k,
then ∇ is g-compatible on U if and only if

k=n∑
k=1

(
gikθ

k
j + gjkθ

k
i

)
= dgij ∀ i, j = 1, 2, . . . , n. (1.13)
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1.3 Torsion-free connections

If M is a smooth manifold, a connection ∇ in TM is torsion-free if

∇XY −∇YX = [X,Y ].

If (x1, . . . , xn) : U−→Rn is a coordinate chart on M , let

∂

∂x1
, . . . ,

∂

∂xn
∈ Γ(U ;TM)

be the corresponding frame for TM on U . If ∇ is a connection, the corresponding connection
one-form θ can be written as

θkj =
i=n∑
i=1

Γkijdx
i, where ∇∂/∂xi

∂

∂xj
=

k=n∑
k=1

Γkij
∂

∂xk
.

The connection ∇ is torsion-free on TM |U if and only if

Γkij = Γkji ∀ i, j, k = 1, . . . , n. (1.14)

Lemma 1.2 If (M, g) is a Riemannian manifold, there exists a unique torsion-free g-compatible
connection ∇ in TM .

Proof: (1) Suppose ∇ and ∇̃ are torsion-free g-compatible connections in TM . By (1.5), there
exists

θ ∈ Γ
(
M ;T ∗M⊗HomR(TM, TM)

)
s.t.

∇̃XY −∇XY =
{
θ(X)

}
Y ∀ Y ∈Γ(M ;TM), X∈TxM, x∈M.

Since ∇ and ∇̃ are torsion-free,{
θ(X)

}
Y =

{
θ(Y )

}
X ∀ X,Y ∈ TxM, x∈M. (1.15)

Since ∇ and ∇̃ are g-compatible,
g
(
{θ(X)}Y, Z

)
+ g
(
Y, {θ(X)}Z

)
= 0

g
(
{θ(Y )}X,Z

)
+ g
(
X, {θ(Y )}Z

)
= 0

g
(
{θ(Z)}X,Y

)
+ g
(
X, {θ(Z)}Y

)
= 0

∀ X,Y, Z ∈ TxM, x∈M. (1.16)

Adding the first two equations in (1.16), subtracting the third, and using (1.15) and the symmetry
of g, we obtain

2g
(
{θ(X)}Y, Z

)
= 0 ∀ X,Y, Z ∈ TxM, x∈M =⇒ θ ≡ 0.
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Thus, ∇̃=∇.

(2) Let (x1, . . . , xn) : U −→ Rn be a coordinate chart on M . With notation as in the paragraph
preceding Lemma 1.2, ∇ is g-compatible on TM |U if and only if

l=n∑
l=1

(
gilΓlkj + gjlΓlki

)
= ∂xk

gij ; (1.17)

see (1.13). Define a connection ∇ in TM |U by

Γkij =
1
2

l=n∑
l=1

gkl
(
∂xigjl + ∂xjgil − ∂xl

gij
)

∀ i, j, k = 1, . . . , n,

where gij is the (i, j)-entry of the inverse of the matrix (gij)i,j=1,...,n. By direct computation, Γkij
satisfies (1.14) and (1.17). Therefore, ∇ is a torsion-free g-compatible connection on TM |U . In
this way, we can define a torsion-free g-compatible connection on every coordinate chart. By the
uniqueness property, these connections agree on the overlaps.

2 Complex structures

2.1 Complex linear connections

Suppose M is a smooth manifold and π : (E, i)−→M is a complex vector bundle. Similarly to
Subsection 1.1, there is an exact sequence of vector bundles over E

0 −→ π∗E −→ TE
dπ−→ π∗TM −→ 0 (2.1)

is exact. If f ∈C∞(M ; C) and mf : E −→E is defined as in (1.2), we then have a commutative
diagram

0 // π∗E //

π∗mf

��

TE
dπ //

dmf

��

π∗TM //

id

��

0

0 // π∗E // m∗fTE
dπ // π∗TM // 0

(2.2)

of bundle maps over E.

Suppose
∇ : Γ(M ;E) −→ Γ(M ;T ∗M⊗RE)

is a C-linear connection (with respect to the complex structure in E on both sides). If U is an open
subset of M and ξ1, . . . , ξn∈Γ(U ;E) is a C-frame for E on U , then there exist

θkl ∈ Γ(M ;T ∗M) s.t. ∇ξl =
k=n∑
k=1

ξkθ
k
l ≡

k=n∑
k=1

θkl ⊗ξk ∀ l=1, . . . , n.

We will call
θ ≡

(
θkl
)
k,l=1,...,n

∈ Γ
(
Σ;T ∗M⊗RMatnC

)
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the complex connection one-form of ∇ with respect to the frame (ξk)k. For an arbitrary section

ξ =
l=n∑
l=1

f lξl ∈ Γ(U ;E),

by (1.4) and C-linearity of ∇ we have

∇ξ =
k=n∑
k=1

ξk

(
dfk +

l=n∑
l=1

θkl f
l
)
, i.e. ∇

(
ξ · f t

)
= ξ ·

{
d+ θ

}
f t, (2.3)

where ξ = (ξ1, . . . , ξn), f = (f1, . . . , fn). (2.4)

Let h be a hermitian metric on E, i.e.

h ∈ Γ
(
M ; HomC(E⊗CĒ,C)

)
s.t. h(v, w) = g(w, v), h(v, v) > 0 ∀ v, w ∈ Ex, v 6=0, x∈M.

A C-linear connection ∇ in E is h-compatible if

d
(
h(ξ, ζ)

)
= h(∇ξ, ζ) + h(ξ,∇ζ) ∈ Γ(M ;T ∗M⊗RC) ∀ ξ, ζ ∈ Γ(M ;E).

With notation as in the previous paragraph, let

hij = h(ξi, ξj) ∈ C∞(U ; R) ∀ i, j=1, . . . , n.

Then ∇ is h-compatible on U if and only if

k=n∑
k=1

(
hikθ̄

k
j + h̄jkθ

k
i

)
= dhij ∀ i, j = 1, 2, . . . , n. (2.5)

2.2 Generalized ∂̄-operators

If (M, j) is an almost complex manifold, let

T ∗M1,0 ≡
{
η∈T ∗M⊗RC : η ◦ j = i η

}
,

T ∗M0,1 ≡
{
η∈T ∗M⊗RC : η ◦ j = −i η

}
be the bundle of C-linear and C-antilinear 1-forms on M . If (M, j) and (E, J) are smooth almost
complex manifolds and u : M−→E is a smooth function, define

∂̄J,ju ∈ Γ
(
M ;T ∗M0,1⊗Cu

∗TE
)

by ∂̄J,ju =
1
2
(
du+ J ◦ du ◦ j

)
.

A smooth map u : (M, j)−→(E, J) will be called (J, j)-holomorphic if ∂̄J,ju=0.

Definition 2.1 Suppose (M, j) is an almost complex manifold and π : (E, i)−→M is a complex
vector bundle. A ∂̄-operator on (E, i) is a C-linear map

∂̄ : Γ(M ;E) −→ Γ(M ;T ∗M0,1⊗CE)

such that
∂̄
(
fξ) = (∂̄f)⊗ξ + f(∂̄ξ) ∀ f ∈C∞(M), ξ∈Γ(M ;E), (2.6)

where ∂̄f= ∂̄i,jf is the usual ∂̄-operator on complex-valued functions.
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Similarly to Subsection 1.1, a ∂̄-operator on (E, i) is necessarily a first-order differential operator.
If U is an open subset of M and ξ1, . . . , ξn∈Γ(U ;E) is a C-frame for E on U , then there exist

θkl ∈ Γ(U ;T ∗M0,1) s.t. ∂̄ξl =
k=n∑
k=1

ξkθ
k
l ≡

k=n∑
k=1

θkl ⊗ξk ∀ l=1, . . . , n.

We will call
θ ≡

(
θkl
)
k,l=1,...,n

∈ Γ
(
U ;T ∗M0,1⊗CMatnC

)
the connection one-form of ∂̄ with respect to the frame (ξk)k. For an arbitrary section

ξ =
l=n∑
l=1

f lξl ∈ Γ(U ;E),

by (2.6) we have

∂̄ξ =
k=n∑
k=1

ξk

(
∂̄fk +

l=n∑
l=1

θkl f
l
)
, i.e. ∂̄

(
ξ · f t

)
= ξ ·

{
∂̄ + θ

}
f t, (2.7)

where ξ and f are as in (2.4). It is immediate from (2.6) that the symbol of ∂̄ is given by

σ∂̄ : T ∗M −→ Hom
(
E, T ∗M0,1⊗CE

)
,

{
σ∂̄(η)

}
(f) =

1
2
(
η + i η ◦ j

)
⊗ f = η0,1 ⊗ f.

In particular, ∂̄ is an elliptic operator (i.e. σ∂̄(η) is an isomorphism for η 6=0) if (M, j) is a Riemann
surface.

Lemma 2.2 Suppose (M, j) is an almost complex manifold and π : (E, i)−→M is a complex vector
bundle. If

∂̄ : Γ(M ;E) −→ Γ(M ;T ∗M0,1⊗CE)

is a ∂̄-operator on (E, i), there exists a unique almost complex structure J=J∂̄ on (the total space
of) E such that π is a (j, J)-holomorphic map, the restriction of J to the vertical tangent bundle
TEv≈π∗E agrees with i, and

∂̄J,jξ = 0 ∈ Γ(U ;T ∗M0,1⊗Cξ
∗TE) ⇐⇒ ∂̄ξ = 0 ∈ Γ(U ;T ∗M0,1⊗CE) (2.8)

for every open subset U of Σ and ξ∈Γ(U ;E).

Proof: (1) With notation as above, define

ϕ : U×Cn −→ E|U by ϕ(x, c1, . . . , cn) = ξ(x) · ct ≡
k=n∑
k=1

ckξk(x) ∈ Ex.

The map ϕ is a trivialization of E over U . If J∂̄ is an almost complex structure on E with the
desired properties, let J̃ be the almost complex structure on U×Cn given by

J̃ |(x,c) =
{
dϕ|(x,c)

}−1 ◦ J∂̄
∣∣
ϕ(x,c)

◦ dϕ|(x,c) ∀ (x, c) ∈ U×Cn. (2.9)
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Since J∂̄ restricts to i on TEv,

J̃ |(x,c)w = iw ∈ TcCn ⊂ T(x,c)(U×Cn) ∀ w ∈ TcCn. (2.10)

Since the projection map π is (j, J∂̄)-holomorphic, there exists

J̃2,1 ∈ Γ
(
U ; Hom(π∗UTU , π∗CnTCn)

)
s.t.

J̃ |(x,c)w = jw + J̃2,1w ∀ w ∈ TxU ⊂ T(x,c)(U×Cn). (2.11)

If ξ∈Γ(U ;E), let
ξ̃ ≡ ϕ−1 ◦ ξ ≡

(
idU , f

)
, where f ∈ C∞(U ; Cn).

By (2.9)-(2.11),

2 ∂̄J,jξ
∣∣
x

= dϕ
∣∣
ξ̃(x)
◦ 2∂̄J̃ ,jξ̃

∣∣
x

= dϕ
∣∣
ξ̃(x)
◦
{(

IdTxU , df |x
)

+ J̃ |ξ̃(x) ◦
(
IdTxU , df |x

)
◦ j|x

}
= dϕ

∣∣
ξ̃(x)
◦
(
0, 2 ∂̄f |x + J̃2,1|ξ̃(x) ◦ j|x

)
.

(2.12)

On the other hand, by (2.7),

∂̄ξ|x = ∂̄(ξ · f t
)∣∣
x

= ξ(x) ·
{
∂̄+θ}f t

∣∣
x

= ϕ
(
∂̄f |x + θx · f(x)t

)
.

(2.13)

By (2.12) and (2.13), the property (2.8) is satisfied for all ξ∈Γ(U ;E) if and only if

J̃2,1|(x,c) = 2
(
θx · ct

)
◦ (−j|x) = 2i θx · ct ∀ (x, c) ∈ U×Cn.

In summary, the almost complex structure J=J∂̄ on E has the three desired properties if and only
if for any trivialization of E over an open subset U of Σ

J̃
∣∣
(x,c)

(
w1, w2

)
=
(
jw1, iw2 + 2iθx(w1) · ct

)
(2.14)

∀ (x, c) ∈ U×Cn, (w1, w2) ∈ TxU⊕TcCn = T(x,c)(U×Cn),

where J̃ is the almost complex structure on U×Cn induced by J via the trivialization and θ is the
connection-one form corresponding to ∂̄ with respect to the frame inducing the trivialization.

(2) By (2.14), there exists at most one almost complex structure J satisfying the three properties.
Conversely, (2.14) determines such an almost complex structure on E. Since

J̃
∣∣2
(x,c)

(
w1, w2

)
= J̃

∣∣
(x,c)

(
jw1, iw2 + 2θx(w1) · ct

)
=
(
j2w1, i

(
iw2 + 2iθx(w1) · ct

)
+ 2iθx(jw1) · ct

)
= −(w1, w2),

J̃ is indeed an almost complex structure for ∂̄-operator on (E, i). The almost complex structure
induced by J̃ on E|U must satisfy the three properties by part (a). By the uniqueness property, the
almost complex structures on E induced by the different trivializations must agree on the overlaps.
Therefore, they define an almost complex structure J=J∂̄ on the total space of E with the desired
properties.
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2.3 Connections and ∂̄-operators

Suppose (Σ, j) is an almost complex manifold, π : (E, i)−→Σ is a complex vector bundle, and

∂̄ : Γ(Σ;E) −→ Γ(Σ;T 0,1Σ⊗E)

is a ∂̄-operator on (E, i). A C-linear connection ∇ in (E, i) is ∂̄-compatible if

∂̄ξ = ∂̄∇ξ ≡
1
2
(
∇ξ + i∇ξ ◦ j

)
∀ ξ∈Γ(M ; Σ). (2.15)

Lemma 2.3 Suppose (M, j) is an almost complex manifold, π : (E, i)−→M is a complex vector
bundle,

∂̄ : Γ(M ;E) −→ Γ(M ;T ∗M0,1⊗CE)

is a ∂̄-operator on (E, i), and J∂̄ is the complex structure in the vector bundle TE−→E provided
by Lemma 2.2. A C-linear connection ∇ in (E, i) is ∂̄-compatible if and only if the splitting (1.10)
determined by ∇ respects the complex structures.

Proof: Since J∂̄ =π∗i on π∗E⊂TE by definition J∂̄ , by the construction of the splitting (1.10) it
is sufficient to check that

J∂̄ |v ◦
{
dξ −∇ξ

}∣∣
x

=
{
dξ −∇ξ

}∣∣
x
◦ jx : TxM −→ TvE

for all x∈M , v∈Ex, and ξ∈Γ(M ;E) such that ξ(x)=v. This identity is equivalent to

∂̄J∂̄ ,j
ξ = ∂̄∇ξ ∀ ξ ∈ Γ(M ;E). (2.16)

On the other hand, by the proof of Lemma 2.2,

∂̄J∂̄ ,j
ξ = ∂̄ξ ∀ ξ ∈ Γ(M ;E); (2.17)

see (2.12)-(2.14). The lemma follows immediately from (2.16) and (2.17).

2.4 Holomorphic vector bundles

Let (Σ, j) be a complex manifold. A holomorphic vector bundle (E, i) on (Σ, j) is a complex vector
bundle with a collection of trivializations that overlap holomorphically.

A collection of holomorphically overlapping trivializations of (E, i) determines a holomorphic struc-
ture J on the total space of E and a ∂̄-operator

∂̄ : Γ(Σ;E) −→ Γ(Σ;T 0,1Σ⊗E).

The latter is defined as follows. If ξ1, . . . , ξn is a holomorphic complex frame for E over an open
subset U of M , then

∂̄

k=n∑
k=1

fkξk =
k=n∑
k=1

∂̄fk⊗ξk ∀ f1, . . . , fk ∈ C∞(U ; C).

In particular, for all ξ∈Γ(M ;E)

∂̄J,jξ = 0 ⇐⇒ ∂̄ξ = 0.

Thus, J=J∂̄ ; see Lemma 2.2.
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Lemma 2.4 Suppose (Σ, j) is a Riemann surface and π : (E, i)−→Σ is a complex vector bundle.
If

∂̄ : Γ(Σ;E) −→ Γ(Σ;T 0,1Σ⊗E)

is a ∂̄-operator on (E, i), the almost complex structure J=J∂̄ on E is integrable. With this complex
structure, π : E−→Σ is a holomorphic vector bundle and ∂̄ is the corresponding ∂̄-operator.

Proof: By (2.8), it is sufficient to show that there exists a (J, j)-holomorphic local section through
every point v∈E, i.e. there exist a neighborhood U of x≡π(v) in Σ and ξ∈Γ(U ;E) such that

ξ(x) = v and ∂̄J,jξ = 0.

By Lemma 2.2 and (2.13), this is equivalent to showing that the equation{
∂̄ + θ

}
f t = 0, f(x) = v, f ∈ C∞(U ; Cn), (2.18)

has a solution for every v∈Cn. We can assume that U is a small disk contained in S2. Let

η : S2 −→ [0, 1]

be a smooth function supported in U and such that η≡1 on a neighborhood of x. Then,

ηθ ∈ Γ(S2;T 0,1S2⊗MatnC).

Choose p>2. The operator

Θ : Lp1(S2; Cn) −→ Lp
(
S2;T 0,1S2⊗Cn

)
⊕ Cn, Θ(f) =

(
∂̄i,jf, f(x)

)
,

is surjective. If η has sufficiently small support, so is

Θη : Lp1(S2; Cn) −→ Lp
(
S2;T 0,1S2⊗Cn

)
⊕ Cn, Θη(f) =

(
{∂̄i,j+ηθ}f, f(x)

)
.

Then, the restriction of Θ−1
η (0, v) to a neighborhood of x on which η≡1 is a solution of (2.18). By

elliptic regularity, Θ−1
η (0, v)∈C∞(S2; Cn).
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