MAT 545: Complex Geometry Fall 2008

Notes on Connections

1 Connections in real vector bundles

1.1 Connections and splittings

Suppose M is a smooth manifold and $\pi: E \longrightarrow M$ is a vector bundle. Trivializations of M induce a bundle inclusion $\pi^*E \longrightarrow TE$ so that the sequence of vector bundles over E

$$0 \longrightarrow \pi^* E \longrightarrow TE \xrightarrow{d\pi} \pi^* TM \longrightarrow 0$$
(1.1)

is exact. For each $f \in C^{\infty}(M)$, define

$$m_f : E \longrightarrow E$$
 by $m_f(v) = f(\pi(x)) \cdot v \quad \forall v \in E.$ (1.2)

We then have a commutative diagram

$$0 \longrightarrow \pi^{*}E \longrightarrow TE \xrightarrow{d\pi} \pi^{*}TM \longrightarrow 0$$

$$\downarrow^{\pi^{*}m_{f}} \qquad \downarrow^{dm_{f}} \qquad \downarrow^{id}$$

$$0 \longrightarrow \pi^{*}E \longrightarrow m_{f}^{*}TE \xrightarrow{d\pi} \pi^{*}TM \longrightarrow 0$$

$$(1.3)$$

of bundle maps over E.

A connection in E is an \mathbb{R} -linear map

$$\nabla \colon \Gamma(M; E) \longrightarrow \Gamma(M; T^*M \otimes E) \qquad \text{s.t.}$$

$$\nabla(f\xi) = df \otimes \xi + f \nabla \xi \quad \forall \ f \in C^{\infty}(M), \ \xi \in \Gamma(M; E).$$
(1.4)

The Leibnitz property implies that any two connections in E differ by a one-form on M. In other words, if ∇ and $\tilde{\nabla}$ are connections in E there exists

$$\theta \in \Gamma(M; T^*M \otimes \operatorname{Hom}_{\mathbb{R}}(E, E)) \quad \text{s.t.}$$
$$\tilde{\nabla}_v \xi = \nabla_v \xi + \{\theta(v)\} \xi \quad \forall \xi \in \Gamma(M; E), \ v \in T_x M, \ x \in M.$$
(1.5)

A connection ∇ in E is necessarily a local differential operator, i.e. the value of $\nabla \xi$ at a point $x \in M$ depends only on the restriction of ξ to any neighborhood \mathcal{U} of x. If f is a smooth function on M supported in \mathcal{U} and such that f(x) = 1, then

$$\nabla \xi \big|_x = \nabla \big(f\xi \big) \big|_x - df \big|_x \otimes \xi(x) \tag{1.6}$$

by (1.4). The right-hand side of (1.6) depends only on $\xi|_{\mathcal{U}}$.

In fact, a connection ∇ in E is a first-order differential operator. Suppose \mathcal{U} is an open subset of M and $\xi_1, \ldots, \xi_n \in \Gamma(\mathcal{U}; E)$ is a frame for E on \mathcal{U} , i.e.

$$\xi_1(x),\ldots,\xi_n(x)\in E_x$$

is a basis for E_x for all $x \in \mathcal{U}$. By definition of ∇ , there exist

$$\theta_l^k \in \Gamma(M; T^*M) \quad \text{s.t.} \quad \nabla \xi_l = \sum_{k=1}^{k=n} \xi_k \theta_l^k \equiv \sum_{k=1}^{k=n} \theta_l^k \otimes \xi_k \quad \forall \ l = 1, \dots, n.$$

We will call

$$\theta \equiv \left(\theta_l^k\right)_{k,l=1,\dots,n} \in \Gamma\left(\Sigma; T^*M \otimes \operatorname{Mat}_n \mathbb{R}\right)$$

the connection one-form of ∇ with respect to the frame $(\xi_k)_k$. For an arbitrary section

$$\xi = \sum_{l=1}^{l=n} f^l \xi_l \in \Gamma(\mathcal{U}; E),$$

by (1.4) we have

$$\nabla \xi = \sum_{k=1}^{k=n} \xi_k \Big(df^k + \sum_{l=1}^{l=n} \theta_l^k f^l \Big), \quad \text{i.e.} \quad \nabla \big(\underline{\xi} \cdot \underline{f}^t \big) = \underline{\xi} \cdot \big\{ d + \theta \big\} \underline{f}^t, \quad (1.7)$$

where $\underline{\xi} = (\xi_1, \dots, \xi_n), \quad \underline{f} = (f^1, \dots, f^n).$

Thus, ∇ is a first-order differential operator. It is immediate from (1.4) that the symbol of ∇ is given by

$$\sigma_{\nabla} \colon T^*M \longrightarrow \operatorname{Hom}(E, T^*M \otimes E), \qquad \big\{\sigma_{\nabla}(\eta)\big\}(f) = \eta \otimes f.$$

Since $M \subset E$ as the zero section, there is a natural splitting

$$TE|_M \approx TM \oplus E$$
 (1.8)

of the exact sequence (1.1) restricted to M. If $x \in M$ and $\xi \in \Gamma(M; E)$ is such that $\xi(x) = 0$, then

$$\nabla \xi \big|_x = \pi_2 |_x \circ d\xi |_x, \tag{1.9}$$

where $\pi_2|_x: T_x E \longrightarrow E_x$ is the projection onto the second component in (1.8). This observation follows from (1.5), as well as from (1.7).

Lemma 1.1 Suppose M is a smooth manifold and $\pi: E \longrightarrow M$ is a vector bundle. A connection ∇ in E induces a splitting

$$TE \approx \pi^* TM \oplus \pi^* E \tag{1.10}$$

of the exact sequence (1.1) extending the splitting (1.8) such that

$$\nabla \xi \big|_x = \pi_2 |_x \circ d\xi |_x \qquad \forall \ \xi \in \Gamma(M; E), \ x \in M,$$
(1.11)

where $\pi_2|_x: T_x E \longrightarrow E_x$ is the projection onto the second component in (1.10), and

$$dm_t \approx \pi^* \mathrm{id} \oplus \pi^* m_t \qquad \forall \ t \in \mathbb{R}, \tag{1.12}$$

i.e. the splitting is consistent with the commutative diagram (1.3).

Proof: For each $x \in M$ and $v \in E_x$, choose $\xi \in \Gamma(M; E)$ such that $\xi(x) = v$ and let

 $T_v E^h = \operatorname{Im} \left\{ d\xi - \nabla \xi \right\} \Big|_x \subset T_v E.$

Since $\pi \circ \xi = \mathrm{id}_M$,

$$d\pi|_v \circ \left\{ d\xi - \nabla \xi \right\} = \mathrm{id}_{T_x M} \qquad \Longrightarrow \qquad T_v E \approx T_v E^h \oplus E_x \approx T_x M \oplus E_x.$$

If v=0, then by (1.9)

$$T_v E^h = T_v M.$$

If $v \neq 0$, $\zeta \in \Gamma(M; E)$ is another section such that $\zeta(x) = v$, and \mathcal{U} is sufficiently small, then $\zeta = f\xi$ for some $f \in C^{\infty}(\mathcal{U})$ with f(x) = 1 and thus

$$\begin{split} \left\{ d\zeta - \nabla\zeta \right\} \Big|_x &= \left\{ d(f\xi) - \nabla(f\xi) \right\} \Big|_x = \left\{ df|_x \otimes \xi(x) + f(x)d\xi|_x \right\} - \left\{ df|_x \otimes \xi(x) + f(x)\nabla\xi|_x \right\} \\ &= d\xi - \nabla\xi. \end{split}$$

The second equality above is obtained by considering a trivialization of E near x. Thus, $T_v E^h$ is independent of the choice of ξ in either case and we obtain a well-defined splitting (1.10) of (1.1) that satisfies (1.11) and extends (1.8).

It remains to verify (1.12). Since $\pi \circ m_t = \pi$, $d\pi \circ dm_t = d\pi$, i.e. the first component of dm_t vanishes on *TE* and is the identity on π^*TM . On the other hand, if $\xi \in \Gamma(M; E)$ and $x \in M$, then

$$T_{t\xi(x)}E^{h} \equiv \left\{ d(m_{t}\circ\xi) - \nabla(t\xi) \right\} \Big|_{x} = \left\{ dm_{t}\circ d\xi - m_{t}\nabla\xi \right\} \Big|_{x} = dm_{t}\circ \left\{ d\xi - \nabla\xi \right\} \Big|_{x}$$
$$\equiv dm_{t} \left(T_{t\xi(x)}E^{h} \right).$$

The last equality on the first line follows from (1.3). These two observations imply (1.12).

1.2 Metric-compatible connections

Suppose $E \longrightarrow M$ is a smooth vector bundle. Let g be a metric on E, i.e.

$$g \in \Gamma(M; E^* \otimes E^*) \qquad \text{s.t.} \qquad g(v, w) = g(w, v), \quad g(v, v) > 0 \quad \forall \ v, w \in E_x, \ v \neq 0, \ x \in M.$$

A connection ∇ in *E* is *g*-compatible if

$$d(g(\xi,\zeta)) = g(\nabla\xi,\zeta) + g(\xi,\nabla\zeta) \in \Gamma(M;T^*M) \qquad \forall \ \xi,\zeta \in \Gamma(M;E)$$

Suppose \mathcal{U} is an open subset of M and $\xi_1, \ldots, \xi_n \in \Gamma(\mathcal{U}; E)$ is a frame for E on \mathcal{U} . For $i, j = 1, \ldots, n$, let

$$g_{ij} = g(\xi_i, \xi_j) \in C^{\infty}(\mathcal{U})$$

If ∇ is a connection in E and θ_{kl} is the connection one-form for ∇ with respect to the frame $\{\xi_k\}_k$, then ∇ is *g*-compatible on \mathcal{U} if and only if

$$\sum_{k=1}^{k=n} \left(g_{ik} \theta_j^k + g_{jk} \theta_i^k \right) = dg_{ij} \qquad \forall \ i, j = 1, 2, \dots, n.$$
 (1.13)

1.3 Torsion-free connections

If M is a smooth manifold, a connection ∇ in TM is torsion-free if

$$\nabla_X Y - \nabla_Y X = [X, Y].$$

If $(x_1, \ldots, x_n) : \mathcal{U} \longrightarrow \mathbb{R}^n$ is a coordinate chart on M, let

$$\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \in \Gamma(\mathcal{U}; TM)$$

be the corresponding frame for TM on \mathcal{U} . If ∇ is a connection, the corresponding connection one-form θ can be written as

$$\theta_j^k = \sum_{i=1}^{i=n} \Gamma_{ij}^k dx^i, \quad \text{where} \quad \nabla_{\partial/\partial x_i} \frac{\partial}{\partial x_j} = \sum_{k=1}^{k=n} \Gamma_{ij}^k \frac{\partial}{\partial x_k}.$$

The connection ∇ is torsion-free on $TM|_{\mathcal{U}}$ if and only if

$$\Gamma_{ij}^k = \Gamma_{ji}^k \qquad \forall \ i, j, k = 1, \dots, n.$$
(1.14)

Lemma 1.2 If (M,g) is a Riemannian manifold, there exists a unique torsion-free g-compatible connection ∇ in TM.

Proof: (1) Suppose ∇ and $\tilde{\nabla}$ are torsion-free *g*-compatible connections in *TM*. By (1.5), there exists

$$\theta \in \Gamma(M; T^*M \otimes \operatorname{Hom}_{\mathbb{R}}(TM, TM)) \quad \text{s.t.}$$
$$\tilde{\nabla}_X Y - \nabla_X Y = \{\theta(X)\} Y \quad \forall Y \in \Gamma(M; TM), \ X \in T_x M, \ x \in M$$

Since ∇ and $\tilde{\nabla}$ are torsion-free,

$$\{\theta(X)\}Y = \{\theta(Y)\}X \qquad \forall X, Y \in T_xM, \ x \in M.$$
(1.15)

Since ∇ and $\tilde{\nabla}$ are *g*-compatible,

$$\begin{cases} g(\{\theta(X)\}Y,Z) + g(Y,\{\theta(X)\}Z) = 0\\ g(\{\theta(Y)\}X,Z) + g(X,\{\theta(Y)\}Z) = 0\\ g(\{\theta(Z)\}X,Y) + g(X,\{\theta(Z)\}Y) = 0 \end{cases} \quad \forall X,Y,Z \in T_xM, x \in M.$$
(1.16)

Adding the first two equations in (1.16), subtracting the third, and using (1.15) and the symmetry of g, we obtain

$$2g(\{\theta(X)\}Y,Z) = 0 \quad \forall X,Y,Z \in T_xM, \ x \in M \qquad \Longrightarrow \qquad \theta \equiv 0.$$

Thus, $\tilde{\nabla} = \nabla$.

(2) Let $(x_1, \ldots, x_n) : \mathcal{U} \longrightarrow \mathbb{R}^n$ be a coordinate chart on M. With notation as in the paragraph preceding Lemma 1.2, ∇ is g-compatible on $TM|_{\mathcal{U}}$ if and only if

$$\sum_{l=1}^{l=n} \left(g_{il} \Gamma_{kj}^l + g_{jl} \Gamma_{ki}^l \right) = \partial_{x_k} g_{ij}; \tag{1.17}$$

see (1.13). Define a connection ∇ in $TM|_{\mathcal{U}}$ by

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{l=n} g^{kl} \left(\partial_{x_i} g_{jl} + \partial_{x_j} g_{il} - \partial_{x_l} g_{ij} \right) \qquad \forall \ i, j, k = 1, \dots, n,$$

where g^{ij} is the (i, j)-entry of the inverse of the matrix $(g_{ij})_{i,j=1,...,n}$. By direct computation, Γ_{ij}^k satisfies (1.14) and (1.17). Therefore, ∇ is a torsion-free *g*-compatible connection on $TM|_{\mathcal{U}}$. In this way, we can define a torsion-free *g*-compatible connection on every coordinate chart. By the uniqueness property, these connections agree on the overlaps.

2 Complex structures

2.1 Complex linear connections

Suppose M is a smooth manifold and $\pi: (E, \mathfrak{i}) \longrightarrow M$ is a complex vector bundle. Similarly to Subsection 1.1, there is an exact sequence of vector bundles over E

$$0 \longrightarrow \pi^* E \longrightarrow TE \xrightarrow{d\pi} \pi^* TM \longrightarrow 0$$
(2.1)

is exact. If $f \in C^{\infty}(M; \mathbb{C})$ and $m_f : E \longrightarrow E$ is defined as in (1.2), we then have a commutative diagram

$$0 \longrightarrow \pi^{*}E \longrightarrow TE \xrightarrow{d\pi} \pi^{*}TM \longrightarrow 0$$

$$\downarrow^{\pi^{*}m_{f}} \qquad \downarrow^{dm_{f}} \qquad \downarrow^{\text{id}}$$

$$0 \longrightarrow \pi^{*}E \longrightarrow m_{f}^{*}TE \xrightarrow{d\pi} \pi^{*}TM \longrightarrow 0$$

$$(2.2)$$

of bundle maps over E.

Suppose

$$\nabla \colon \Gamma(M; E) \longrightarrow \Gamma(M; T^*M \otimes_{\mathbb{R}} E)$$

is a \mathbb{C} -linear connection (with respect to the complex structure in E on both sides). If \mathcal{U} is an open subset of M and $\xi_1, \ldots, \xi_n \in \Gamma(\mathcal{U}; E)$ is a \mathbb{C} -frame for E on \mathcal{U} , then there exist

$$\theta_l^k \in \Gamma(M; T^*M) \quad \text{s.t.} \quad \nabla \xi_l = \sum_{k=1}^{k=n} \xi_k \theta_l^k \equiv \sum_{k=1}^{k=n} \theta_l^k \otimes \xi_k \quad \forall \ l = 1, \dots, n.$$

We will call

$$\theta \equiv \left(\theta_l^k\right)_{k,l=1,\dots,n} \in \Gamma\left(\Sigma; T^*M \otimes_{\mathbb{R}} \mathrm{Mat}_n \mathbb{C}\right)$$

the complex connection one-form of ∇ with respect to the frame $(\xi_k)_k$. For an arbitrary section

$$\xi = \sum_{l=1}^{l=n} f^l \xi_l \in \Gamma(\mathcal{U}; E),$$

by (1.4) and \mathbb{C} -linearity of ∇ we have

$$\nabla \xi = \sum_{k=1}^{k=n} \xi_k \Big(df^k + \sum_{l=1}^{l=n} \theta_l^k f^l \Big), \quad \text{i.e.} \quad \nabla \big(\underline{\xi} \cdot \underline{f}^t\big) = \underline{\xi} \cdot \big\{ d + \theta \big\} \underline{f}^t, \quad (2.3)$$

where
$$\underline{\xi} = (\xi_1, \dots, \xi_n), \quad \underline{f} = (f^1, \dots, f^n).$$
 (2.4)

Let h be a hermitian metric on E, i.e.

$$h \in \Gamma(M; \operatorname{Hom}_{\mathbb{C}}(E \otimes_{\mathbb{C}} \bar{E}, \mathbb{C})) \quad \text{s.t.} \quad h(v, w) = \overline{g(w, v)}, \quad h(v, v) > 0 \quad \forall \ v, w \in E_x, \ v \neq 0, \ x \in M.$$

A \mathbb{C} -linear connection ∇ in E is h-compatible if

$$d(h(\xi,\zeta)) = h(\nabla\xi,\zeta) + h(\xi,\nabla\zeta) \in \Gamma(M;T^*M \otimes_{\mathbb{R}} \mathbb{C}) \qquad \forall \ \xi,\zeta \in \Gamma(M;E).$$

With notation as in the previous paragraph, let

$$h_{ij} = h(\xi_i, \xi_j) \in C^{\infty}(\mathcal{U}; \mathbb{R}) \quad \forall i, j = 1, \dots, n.$$

Then ∇ is *h*-compatible on \mathcal{U} if and only if

$$\sum_{k=1}^{k=n} \left(h_{ik} \bar{\theta}_j^k + \bar{h}_{jk} \theta_i^k \right) = dh_{ij} \qquad \forall \ i, j = 1, 2, \dots, n.$$
(2.5)

2.2 Generalized $\bar{\partial}$ -operators

If (M, \mathfrak{j}) is an almost complex manifold, let

$$T^*M^{1,0} \equiv \left\{ \eta \in T^*M \otimes_{\mathbb{R}} \mathbb{C} : \eta \circ \mathfrak{j} = \mathfrak{i} \eta \right\}, \\ T^*M^{0,1} \equiv \left\{ \eta \in T^*M \otimes_{\mathbb{R}} \mathbb{C} : \eta \circ \mathfrak{j} = -\mathfrak{i} \eta \right\}$$

be the bundle of \mathbb{C} -linear and \mathbb{C} -antilinear 1-forms on M. If (M, \mathfrak{j}) and (E, J) are smooth almost complex manifolds and $u: M \longrightarrow E$ is a smooth function, define

$$\bar{\partial}_{J,\mathbf{j}} u \in \Gamma(M; T^*M^{0,1} \otimes_{\mathbb{C}} u^*TE) \qquad \text{by} \qquad \bar{\partial}_{J,\mathbf{j}} u = \frac{1}{2} (du + J \circ du \circ \mathbf{j}).$$

A smooth map $u: (M, j) \longrightarrow (E, J)$ will be called (J, j)-holomorphic if $\bar{\partial}_{J,j} u = 0$.

Definition 2.1 Suppose (M, \mathfrak{j}) is an almost complex manifold and $\pi : (E, \mathfrak{i}) \longrightarrow M$ is a complex vector bundle. A $\overline{\partial}$ -operator on (E, \mathfrak{i}) is a \mathbb{C} -linear map

$$\bar{\partial} \colon \Gamma(M; E) \longrightarrow \Gamma(M; T^*M^{0,1} \otimes_{\mathbb{C}} E)$$

such that

$$\bar{\partial}(f\xi) = (\bar{\partial}f) \otimes \xi + f(\bar{\partial}\xi) \qquad \forall \ f \in C^{\infty}(M), \ \xi \in \Gamma(M; E),$$
(2.6)

where $\bar{\partial}f = \bar{\partial}_{i,j}f$ is the usual $\bar{\partial}$ -operator on complex-valued functions.

Similarly to Subsection 1.1, a $\bar{\partial}$ -operator on (E, \mathfrak{i}) is necessarily a first-order differential operator. If \mathcal{U} is an open subset of M and $\xi_1, \ldots, \xi_n \in \Gamma(\mathcal{U}; E)$ is a \mathbb{C} -frame for E on \mathcal{U} , then there exist

$$\theta_l^k \in \Gamma(\mathcal{U}; T^*M^{0,1}) \quad \text{s.t.} \quad \bar{\partial}\xi_l = \sum_{k=1}^{k=n} \xi_k \theta_l^k \equiv \sum_{k=1}^{k=n} \theta_l^k \otimes \xi_k \quad \forall \ l = 1, \dots, n.$$

We will call

$$\theta \equiv \left(\theta_l^k\right)_{k,l=1,\dots,n} \in \Gamma\left(\mathcal{U}; T^* M^{0,1} \otimes_{\mathbb{C}} \mathrm{Mat}_n \mathbb{C}\right)$$

the connection one-form of $\bar{\partial}$ with respect to the frame $(\xi_k)_k$. For an arbitrary section

$$\xi = \sum_{l=1}^{l=n} f^l \xi_l \in \Gamma(\mathcal{U}; E),$$

by (2.6) we have

$$\bar{\partial}\xi = \sum_{k=1}^{k=n} \xi_k \Big(\bar{\partial}f^k + \sum_{l=1}^{l=n} \theta_l^k f^l \Big), \quad \text{i.e.} \quad \bar{\partial} \big(\underline{\xi} \cdot \underline{f}^t\big) = \underline{\xi} \cdot \big\{ \bar{\partial} + \theta \big\} \underline{f}^t, \quad (2.7)$$

where $\underline{\xi}$ and \underline{f} are as in (2.4). It is immediate from (2.6) that the symbol of $\overline{\partial}$ is given by

$$\sigma_{\bar{\partial}} \colon T^*M \longrightarrow \operatorname{Hom}(E, T^*M^{0,1} \otimes_{\mathbb{C}} E), \qquad \left\{\sigma_{\bar{\partial}}(\eta)\right\}(f) = \frac{1}{2} \left(\eta + \mathfrak{i} \eta \circ \mathfrak{j}\right) \otimes f = \eta^{0,1} \otimes f.$$

In particular, $\bar{\partial}$ is an elliptic operator (i.e. $\sigma_{\bar{\partial}}(\eta)$ is an isomorphism for $\eta \neq 0$) if (M, \mathfrak{j}) is a Riemann surface.

Lemma 2.2 Suppose (M, \mathfrak{j}) is an almost complex manifold and $\pi: (E, \mathfrak{i}) \longrightarrow M$ is a complex vector bundle. If

$$\bar{\partial} \colon \Gamma(M; E) \longrightarrow \Gamma(M; T^*M^{0,1} \otimes_{\mathbb{C}} E)$$

is a $\bar{\partial}$ -operator on (E, \mathfrak{i}) , there exists a unique almost complex structure $J = J_{\bar{\partial}}$ on (the total space of) E such that π is a (\mathfrak{j}, J) -holomorphic map, the restriction of J to the vertical tangent bundle $TE^v \approx \pi^* E$ agrees with \mathfrak{i} , and

$$\bar{\partial}_{J,j}\xi = 0 \in \Gamma(\mathcal{U}; T^*M^{0,1} \otimes_{\mathbb{C}} \xi^*TE) \qquad \Longleftrightarrow \qquad \bar{\partial}\xi = 0 \in \Gamma(\mathcal{U}; T^*M^{0,1} \otimes_{\mathbb{C}} E)$$
(2.8)

for every open subset \mathcal{U} of Σ and $\xi \in \Gamma(\mathcal{U}; E)$.

Proof: (1) With notation as above, define

$$\varphi : \mathcal{U} \times \mathbb{C}^n \longrightarrow E|_{\mathcal{U}} \quad \text{by} \quad \varphi(x, c^1, \dots, c^n) = \underline{\xi}(x) \cdot \underline{c}^t \equiv \sum_{k=1}^{k=n} c^k \xi_k(x) \in E_x.$$

The map φ is a trivialization of E over \mathcal{U} . If $J_{\bar{\partial}}$ is an almost complex structure on E with the desired properties, let \tilde{J} be the almost complex structure on $\mathcal{U} \times \mathbb{C}^n$ given by

$$\tilde{J}|_{(x,\underline{c})} = \left\{ d\varphi|_{(x,\underline{c})} \right\}^{-1} \circ J_{\bar{\partial}}|_{\varphi(x,\underline{c})} \circ d\varphi|_{(x,\underline{c})} \qquad \forall \ (x,\underline{c}) \in \mathcal{U} \times \mathbb{C}^{n}.$$

$$(2.9)$$

Since $J_{\bar{\partial}}$ restricts to \mathfrak{i} on TE^v ,

$$\tilde{J}|_{(x,\underline{c})}w = \mathrm{i}w \in T_{\underline{c}}\mathbb{C}^n \subset T_{(x,\underline{c})}(\mathcal{U} \times \mathbb{C}^n) \qquad \forall \ w \in T_{\underline{c}}\mathbb{C}^n.$$
(2.10)

Since the projection map π is $(j, J_{\bar{\partial}})$ -holomorphic, there exists

$$J_{2,1} \in \Gamma\left(\mathcal{U}; \operatorname{Hom}(\pi_{\mathcal{U}}^* T \mathcal{U}, \pi_{\mathbb{C}^n}^* T \mathbb{C}^n)\right) \quad \text{s.t.}$$
$$\tilde{J}|_{(x,\underline{c})} w = \mathfrak{j}w + \tilde{J}_{2,1} w \quad \forall \ w \in T_x \mathcal{U} \subset T_{(x,\underline{c})} (\mathcal{U} \times \mathbb{C}^n).$$
(2.11)

If $\xi \in \Gamma(\mathcal{U}; E)$, let

$$\tilde{\xi} \equiv \varphi^{-1} \circ \xi \equiv (\mathrm{id}_{\mathcal{U}}, \underline{f}), \quad \text{where} \quad \underline{f} \in C^{\infty}(\mathcal{U}; \mathbb{C}^n).$$

By (2.9)-(2.11),

$$2 \,\bar{\partial}_{J,\mathbf{j}}\xi\big|_{x} = d\varphi\big|_{\tilde{\xi}(x)} \circ 2\bar{\partial}_{\tilde{J},\mathbf{j}}\tilde{\xi}\big|_{x} = d\varphi\big|_{\tilde{\xi}(x)} \circ \left\{ \left(\mathrm{Id}_{T_{x}\mathcal{U}}, d\underline{f}|_{x} \right) + \tilde{J}\big|_{\tilde{\xi}(x)} \circ \left(\mathrm{Id}_{T_{x}\mathcal{U}}, d\underline{f}|_{x} \right) \circ \mathbf{j}|_{x} \right\} \\ = d\varphi\big|_{\tilde{\xi}(x)} \circ \left(0, 2 \,\bar{\partial}f\big|_{x} + \tilde{J}_{2,1}\big|_{\tilde{\xi}(x)} \circ \mathbf{j}|_{x} \right).$$

$$(2.12)$$

On the other hand, by (2.7),

$$\bar{\partial}\xi|_{x} = \bar{\partial}(\underline{\xi} \cdot f^{t})|_{x} = \underline{\xi}(x) \cdot \left\{\bar{\partial} + \theta\right\} f^{t}|_{x}
= \varphi(\bar{\partial}f|_{x} + \theta_{x} \cdot f(x)^{t}).$$
(2.13)

By (2.12) and (2.13), the property (2.8) is satisfied for all $\xi \in \Gamma(\mathcal{U}; E)$ if and only if

$$\tilde{J}_{2,1}|_{(x,\underline{c})} = 2\left(\theta_x \cdot \underline{c}^t\right) \circ (-\mathfrak{j}|_x) = 2\mathfrak{i}\,\theta_x \cdot \underline{c}^t \qquad \forall \ (x,\underline{c}) \in \mathcal{U} \times \mathbb{C}^n.$$

In summary, the almost complex structure $J = J_{\bar{\partial}}$ on E has the three desired properties if and only if for any trivialization of E over an open subset \mathcal{U} of Σ

$$\tilde{J}\big|_{(x,\underline{c})}\big(w_1, w_2\big) = \big(\mathfrak{j}w_1, \mathfrak{i}w_2 + 2\mathfrak{i}\theta_x(w_1) \cdot \underline{c}^t\big)$$

$$\forall (x,\underline{c}) \in \mathcal{U} \times \mathbb{C}^n, \ (w_1, w_2) \in T_x \mathcal{U} \oplus T_{\underline{c}} \mathbb{C}^n = T_{(x,\underline{c})} (\mathcal{U} \times \mathbb{C}^n),$$
(2.14)

where \tilde{J} is the almost complex structure on $\mathcal{U} \times \mathbb{C}^n$ induced by J via the trivialization and θ is the connection-one form corresponding to $\bar{\partial}$ with respect to the frame inducing the trivialization.

(2) By (2.14), there exists at most one almost complex structure J satisfying the three properties. Conversely, (2.14) determines such an almost complex structure on E. Since

$$\begin{split} \tilde{J}\big|_{(x,\underline{c})}^2\big(w_1,w_2\big) &= \tilde{J}\big|_{(x,\underline{c})}\big(\mathfrak{j}w_1,\mathfrak{i}w_2+2\theta_x(w_1)\cdot\underline{c}^t\big) = \big(\mathfrak{j}^2w_1,\mathfrak{i}\big(\mathfrak{i}w_2+2\mathfrak{i}\theta_x(w_1)\cdot\underline{c}^t\big)+2\mathfrak{i}\theta_x(\mathfrak{j}w_1)\cdot\underline{c}^t\big) \\ &= -(w_1,w_2), \end{split}$$

 \tilde{J} is indeed an almost complex structure for $\bar{\partial}$ -operator on (E, \mathfrak{i}) . The almost complex structure induced by \tilde{J} on $E|_{\mathcal{U}}$ must satisfy the three properties by part (a). By the uniqueness property, the almost complex structures on E induced by the different trivializations must agree on the overlaps. Therefore, they define an almost complex structure $J = J_{\bar{\partial}}$ on the total space of E with the desired properties.

2.3 Connections and $\bar{\partial}$ -operators

Suppose (Σ, \mathfrak{j}) is an almost complex manifold, $\pi: (E, \mathfrak{i}) \longrightarrow \Sigma$ is a complex vector bundle, and

$$\bar{\partial} \colon \Gamma(\Sigma; E) \longrightarrow \Gamma(\Sigma; T^{0,1}\Sigma \otimes E)$$

is a $\bar{\partial}$ -operator on (E, \mathfrak{i}) . A \mathbb{C} -linear connection ∇ in (E, \mathfrak{i}) is $\bar{\partial}$ -compatible if

$$\bar{\partial}\xi = \bar{\partial}_{\nabla}\xi \equiv \frac{1}{2} \big(\nabla\xi + \mathfrak{i}\nabla\xi \circ \mathfrak{j} \big) \qquad \forall \ \xi \in \Gamma(M; \Sigma).$$
(2.15)

Lemma 2.3 Suppose (M, \mathfrak{j}) is an almost complex manifold, $\pi : (E, \mathfrak{i}) \longrightarrow M$ is a complex vector bundle,

$$\bar{\partial} \colon \Gamma(M; E) \longrightarrow \Gamma(M; T^*M^{0,1} \otimes_{\mathbb{C}} E)$$

is a $\bar{\partial}$ -operator on (E, \mathfrak{i}) , and $J_{\bar{\partial}}$ is the complex structure in the vector bundle $TE \longrightarrow E$ provided by Lemma 2.2. A \mathbb{C} -linear connection ∇ in (E, \mathfrak{i}) is $\bar{\partial}$ -compatible if and only if the splitting (1.10) determined by ∇ respects the complex structures.

Proof: Since $J_{\bar{\partial}} = \pi^* \mathfrak{i}$ on $\pi^* E \subset TE$ by definition $J_{\bar{\partial}}$, by the construction of the splitting (1.10) it is sufficient to check that

$$J_{\bar{\partial}}|_{v} \circ \left\{ d\xi - \nabla \xi \right\} \Big|_{x} = \left\{ d\xi - \nabla \xi \right\} \Big|_{x} \circ \mathfrak{j}_{x} \colon T_{x}M \longrightarrow T_{v}E$$

for all $x \in M$, $v \in E_x$, and $\xi \in \Gamma(M; E)$ such that $\xi(x) = v$. This identity is equivalent to

$$\partial_{J_{\bar{\partial}}}\xi = \partial_{\nabla}\xi \qquad \forall \ \xi \in \Gamma(M; E).$$
(2.16)

On the other hand, by the proof of Lemma 2.2,

$$\bar{\partial}_{J_{\bar{\partial}},j}\xi = \bar{\partial}\xi \qquad \forall \ \xi \in \Gamma(M;E);$$
(2.17)

see (2.12)-(2.14). The lemma follows immediately from (2.16) and (2.17).

2.4 Holomorphic vector bundles

Let (Σ, \mathfrak{j}) be a complex manifold. A holomorphic vector bundle (E, \mathfrak{i}) on (Σ, \mathfrak{j}) is a complex vector bundle with a collection of trivializations that overlap holomorphically.

A collection of holomorphically overlapping trivializations of (E, i) determines a holomorphic structure J on the total space of E and a $\bar{\partial}$ -operator

$$\bar{\partial} \colon \Gamma(\Sigma; E) \longrightarrow \Gamma(\Sigma; T^{0,1}\Sigma \otimes E).$$

The latter is defined as follows. If ξ_1, \ldots, ξ_n is a holomorphic complex frame for E over an open subset \mathcal{U} of M, then

$$\bar{\partial}\sum_{k=1}^{k=n}f^k\xi_k=\sum_{k=1}^{k=n}\bar{\partial}f^k\otimes\xi_k\qquad\forall\ f^1,\ldots,f^k\in C^\infty(\mathcal{U};\mathbb{C}).$$

In particular, for all $\xi \in \Gamma(M; E)$

 $\bar{\partial}_{J,j}\xi = 0 \qquad \Longleftrightarrow \qquad \bar{\partial}\xi = 0.$

Thus, $J = J_{\bar{\partial}}$; see Lemma 2.2.

Lemma 2.4 Suppose (Σ, \mathfrak{j}) is a Riemann surface and $\pi: (E, \mathfrak{i}) \longrightarrow \Sigma$ is a complex vector bundle. If

$$\bar{\partial} \colon \Gamma(\Sigma; E) \longrightarrow \Gamma(\Sigma; T^{0,1}\Sigma \otimes E)$$

is a $\bar{\partial}$ -operator on (E, \mathfrak{i}) , the almost complex structure $J = J_{\bar{\partial}}$ on E is integrable. With this complex structure, $\pi: E \longrightarrow \Sigma$ is a holomorphic vector bundle and $\bar{\partial}$ is the corresponding $\bar{\partial}$ -operator.

Proof: By (2.8), it is sufficient to show that there exists a (J, j)-holomorphic local section through every point $v \in E$, i.e. there exist a neighborhood \mathcal{U} of $x \equiv \pi(v)$ in Σ and $\xi \in \Gamma(\mathcal{U}; E)$ such that

$$\xi(x) = v$$
 and $\bar{\partial}_{J,\mathbf{i}}\xi = 0.$

By Lemma 2.2 and (2.13), this is equivalent to showing that the equation

$$\left\{\bar{\partial} + \theta\right\} f^t = 0, \qquad f(x) = v, \qquad f \in C^{\infty}(\mathcal{U}; \mathbb{C}^n), \tag{2.18}$$

has a solution for every $v \in \mathbb{C}^n$. We can assume that \mathcal{U} is a small disk contained in S^2 . Let

$$\eta: S^2 \longrightarrow [0,1]$$

be a smooth function supported in \mathcal{U} and such that $\eta \equiv 1$ on a neighborhood of x. Then,

$$\eta \theta \in \Gamma(S^2; T^{0,1}S^2 \otimes \operatorname{Mat}_n \mathbb{C}).$$

Choose p > 2. The operator

$$\Theta: L^p_1(S^2; \mathbb{C}^n) \longrightarrow L^p(S^2; T^{0,1}S^2 \otimes \mathbb{C}^n) \oplus \mathbb{C}^n, \qquad \Theta(f) = (\bar{\partial}_{\mathbf{i},\mathbf{j}}f, f(x)),$$

is surjective. If η has sufficiently small support, so is

$$\Theta_{\eta}: L^p_1(S^2; \mathbb{C}^n) \longrightarrow L^p(S^2; T^{0,1}S^2 \otimes \mathbb{C}^n) \oplus \mathbb{C}^n, \qquad \Theta_{\eta}(f) = \left(\{\bar{\partial}_{\mathbf{i},\mathbf{j}} + \eta\theta\}f, f(x)\right).$$

Then, the restriction of $\Theta_{\eta}^{-1}(0, v)$ to a neighborhood of x on which $\eta \equiv 1$ is a solution of (2.18). By elliptic regularity, $\Theta_{\eta}^{-1}(0, v) \in C^{\infty}(S^2; \mathbb{C}^n)$.