MAT 545: Complex Geometry

Problem Set 4 Written Solutions due by Thursday, 10/31, 1pm

Please figure out all of the problems below and discuss them with others.

If you have not passed the orals yet, please write up concise solutions to problems worth 10 points.

Problem 1 (5 pts)

Let (V, J) be a complex vector space of complex dimension m and g a Riemannian metric on V compatible with J. Show that

$$*: \Lambda^{p,q}V \longrightarrow \Lambda^{m-p,m-q}V \subset \Lambda^{2m-p-q}_{\mathbb{C}}(V \otimes_{\mathbb{R}} \mathbb{C}),$$

where * is the Hodge operator on (V, g) with the orientation induced by J and extended \mathbb{C} -antilinearly to $V \otimes_{\mathbb{R}} \mathbb{C}$.

Problem 2
$$(5 \text{ pts})$$

Let M and N be complex manifolds with hermitian metrics h_M and h_N . Show that

$$\Delta_{M\times N} = \Delta_M \otimes 1 + 1 \otimes \Delta_N \,,$$

where Δ_M , Δ_N , and $\Delta_{M \times N}$ are the Laplacians on M, N, and $M \times N$ with respect to the metrics h_M , h_N , and $h_M \otimes 1 + 1 \otimes h_N$.

Problem 3 (5 pts)

Let $E \longrightarrow M$ be a holomorphic vector bundle with a hermitian inner-product over a compact complex manifold with a hermitian metric and Δ_E the corresponding Laplacian on E. Show that (a) all eigenvalues of Δ_E are non-negative;

(b) eigenfunctions corresponding to distinct eigenvalues of Δ_E are orthogonal;

(c) eigenspaces of Δ_E are finite-dimensional;

(d) the set of eigenvalues of Δ_E has no limit point.

Problem 4 (10 pts)

With notation as in Problem 3, show that

- (a) Δ_E has a positive eigenvalue;
- (b) Δ_E has infinitely many positive eigenvalues;
- (c) the linear span of eigenfunctions of Δ_E is L^2 -dense in $\Gamma(M; \Lambda^*_{\mathbb{C}}(T^*M \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} E);$

(d) the linear span of eigenfunctions of Δ_E is L^{∞} -dense in $\Gamma(M; \Lambda^*_{\mathbb{C}}(T^*M \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} E)$.

This problems supplies the missing ingredient for the proof of Kunneth formula in the textbook: the existence of a complete set of eigenfunctions of a laplacian.

Hint for (a): Let G be the inverse of Δ_E on $\mathcal{H}^{*,*}(M, E)^{\perp}$. Show that $\lambda_1 \in \mathbb{R}^+$ given by

$$1/\lambda_1 = \sup_{\alpha \in \mathcal{H}^{*,*}(M,E)^{\perp}, \|\alpha\|=1} \|G\alpha\|$$

is the smallest positive eigenvalue of Δ_E .