MAT 541: Algebraic Topology

Suggested Problems for Week 9

You may hand in solutions to at most 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Munkres: 37.1-3, 38.2-4, 39.2, 36.2, 36.3

Problem O

Let $n \in \mathbb{Z}^{+}$and $S^{2 n-1} \subset \mathbb{C}^{n}$ be the unit sphere. For $p \in \mathbb{Z}^{+}$and $q_{1}, \ldots, q_{n} \in \mathbb{Z}$ such that each q_{i} is prime relative to p, define

$$
\begin{gathered}
L\left(p ; q_{1}, \ldots, q_{n}\right)=S^{2 n-1} / \sim, \\
\left(z_{1}, \ldots, z_{n}\right) \sim\left(\mathrm{e}^{2 \pi \mathrm{i} k q_{1} / p} z_{1}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} k q_{n} / p} z_{n}\right) \quad \forall\left(z_{1}, \ldots, z_{n}\right) \in S^{2 n-1}, k \in \mathbb{Z} .
\end{gathered}
$$

(a) Show that $L\left(p ; q_{1}, \ldots, q_{n}\right)$ is a compact connected smooth manifold of dimension $2 n-1$.
(b) Show that

$$
\begin{gathered}
L(1 ; 1, \ldots, 1)=S^{2 n-1}, \quad L(2 ; 1, \ldots, 1)=\mathbb{R} \mathbb{P}^{2 n-1}, \\
L\left(p ; q_{1}, \ldots, q_{i}, \ldots, q_{n}\right)=L\left(p ; q_{1}, \ldots,-q_{i}, \ldots, q_{n}\right), \\
L\left(p ; q_{1}, \ldots, q_{i}, q_{i+1}, \ldots, q_{n}\right)=L\left(p ; q_{1}, \ldots, q_{i+1}, q_{i}, \ldots, q_{n}\right), \\
L\left(p ; q_{1}, \ldots, q_{n}\right)=L\left(p ; q q_{1}, \ldots, q q_{n}\right)
\end{gathered}
$$

for any $q \in \mathbb{Z}$ relatively prime to p.
(c) Show that $L(p ; 1, q)$ is homeomorphic to the space $L(p ; q)$ of Section 40 in Munkres and obtain the claim of 40.4 in Munkres without any triangulations.
(d) Compute π_{1} and H_{*} of $L\left(p ; q_{1}, \ldots, q_{n}\right)$.

