MAT 541: Algebraic Topology
 Suggested Problems for Week 15

You may hand in solutions to at most 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Munkres: 67.3, 68.5, 68.6, 68.8
From Milnor-Stasheff: 9-C, 11-C

Problem Z-A

Show that

$$
H^{*}\left(\mathbb{R P}^{n} ; \mathbb{Z}_{2}\right) \approx \mathbb{Z}_{2}[x] / x^{n+1} \quad \text { and } \quad H^{*}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right) \approx \mathbb{Z}[u] / u^{n+1}
$$

as graded algebras over \mathbb{Z}_{2} and \mathbb{Z}, respectively, if the degrees of x and u are 1 and 2 , respectively. Hint: These algebras have long been shown to be isomorphic as modules. Use Poincare Duality and induction to compare the ring structures.

Problem Z-B

Let M be a connected n-manifold. Define

$$
\widetilde{M}=\left\{\left(x, \mu_{x}\right): \mu_{x} \in H_{n}(M, M-x ; \mathbb{Z}) \text { is a generator, } x \in M\right\}
$$

For each closed ball $B \subset M$ and a generator $\mu_{B} \in H_{n}(M, M-B ; \mathbb{Z})$, let

$$
U\left(\mu_{B}\right)=\left\{\left(x,\left.\mu_{B}\right|_{x}\right): x \in B\right\}
$$

where $\left.\mu_{B}\right|_{x} \in H_{n}(M, M-x ; \mathbb{Z})$ is the image of μ_{B} under the homomorphism

$$
H_{n}(M, M-B ; \mathbb{Z}) \longrightarrow H_{n}(M, M-x ; \mathbb{Z})
$$

induced by the inclusion $M-B \longrightarrow M-x$. Show that
(a) $U\left(\mu_{B}\right) \subset \widetilde{M}$ for every closed ball $B \subset M$ and every generator $\mu_{B} \in H_{n}(M, M-B ; \mathbb{Z})$;
(b) the subsets $U\left(M_{B}\right) \subset \widetilde{M}$ form a basis for a topology on \widetilde{M} so that the map

$$
p: \widetilde{M} \longrightarrow M, \quad p\left(x, \mu_{x}\right)=x
$$

is a $2: 1$ covering projection;
(c) \widetilde{M} is an n-manifold with a canonical orientation over \mathbb{Z};
(d) \widetilde{M} is compact if and only if M is compact;
(e) \widetilde{M} is connected if and only if M is non-orientable (over \mathbb{Z}).

If M is non-orientable, \widetilde{M} is called orientation double cover of X.

Problem Z-C

Suppose M is a connected n-manifold, which is not orientable over $\mathbb{Z}, p: \widetilde{M} \longrightarrow M$ is its orientation double cover, and $\sigma: \widetilde{M} \longrightarrow \widetilde{M}$ is its deck transformation.
(a) Show that

$$
\sigma^{*}=-\mathrm{id}: H_{c}^{n}(\widetilde{M} ; \mathbb{Z}) \longrightarrow H_{c}^{n}(\widetilde{M} ; \mathbb{Z}) \approx \mathbb{Z}
$$

(b) Show that $2 \alpha=0$ for every $\alpha \in H^{i}(M ; \mathbb{Z})\left(\operatorname{resp} . H_{c}^{i}(M ; \mathbb{Z})\right)$ such that $\sigma^{*} \alpha=0$ in $H^{i}(\widetilde{M} ; \mathbb{Z})$ $\left(\right.$ resp. $\left.H_{c}^{i}(\widetilde{M} ; \mathbb{Z})\right)$.
(c) Conclude that $H_{c}^{n}(M ; \mathbb{Z}) \approx \mathbb{Z}_{2}$ (a Universal Coefficient Theorem might help).
(d) Assuming M is compact, show that $H_{n}(M ; \mathbb{Z})=0$ and the torsion of $H_{n-1}(M ; \mathbb{Z})$ is \mathbb{Z}_{2}.
(e) Assuming M is not compact, show that $H^{n}(M ; \mathbb{Z})=0, H_{n}(M ; \mathbb{Z})=0$, and $H_{n-1}(M ; \mathbb{Z})$ is torsion-free.

Problem Z-D

Suppose R is a PID and M is a connected n-manifold, which is not orientable over \mathbb{R}.
(a) Show that $H_{c}^{n}(M ; R) \approx R / 2 R$.
(b) Assuming M is compact, show that $H_{n}(M ; R)=\operatorname{ker}(2 \mathrm{id}: R \longrightarrow R)$ and the torsion of $H_{n-1}(M ; R)$ over R is $R / 2 R$.
(c) Assuming M is not compact, show that $H^{n}(M ; R)=0, H_{n}(M ; R)=0$, and $H_{n-1}(M ; R)$ is torsion-free over R.

Problem Z-E

Let $X \subset \mathbb{C P}^{3}$ be a smooth hypersurface of degree 4. Determine the Hodge diamond of X (this is a K3 surface).

