MAT 541: Algebraic Topology Suggested Problems for Week 15

You may hand in solutions to at *most* 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Munkres: 67.3, 68.5, 68.6, 68.8 From Milnor-Stasheff: 9-C, 11-C

Problem Z-A

Show that

 $H^*(\mathbb{RP}^n;\mathbb{Z}_2) \approx \mathbb{Z}_2[x]/x^{n+1}$ and $H^*(\mathbb{CP}^n;\mathbb{Z}) \approx \mathbb{Z}[u]/u^{n+1}$,

as graded *algebras* over \mathbb{Z}_2 and \mathbb{Z} , respectively, if the degrees of x and u are 1 and 2, respectively. *Hint:* These algebras have long been shown to be isomorphic as *modules*. Use Poincare Duality and induction to compare the ring structures.

Problem Z-B

Let M be a connected n-manifold. Define

$$\widetilde{M} = \{(x, \mu_x) : \mu_x \in H_n(M, M - x; \mathbb{Z}) \text{ is a generator, } x \in M \}$$

For each closed ball $B \subset M$ and a generator $\mu_B \in H_n(M, M-B; \mathbb{Z})$, let

$$U(\mu_B) = \{(x, \mu_B|_x) \colon x \in B\},\$$

where $\mu_B|_x \in H_n(M, M-x; \mathbb{Z})$ is the image of μ_B under the homomorphism

$$H_n(M, M-B; \mathbb{Z}) \longrightarrow H_n(M, M-x; \mathbb{Z})$$

induced by the inclusion $M - B \longrightarrow M - x$. Show that

- (a) $U(\mu_B) \subset \widetilde{M}$ for every closed ball $B \subset M$ and every generator $\mu_B \in H_n(M, M-B; \mathbb{Z})$;
- (b) the subsets $U(M_B) \subset \widetilde{M}$ form a basis for a topology on \widetilde{M} so that the map

$$p: M \longrightarrow M, \qquad p(x, \mu_x) = x,$$

is a 2:1 covering projection;

- (c) \widetilde{M} is an *n*-manifold with a canonical orientation over \mathbb{Z} ;
- (d) \widetilde{M} is compact if and only if M is compact;
- (e) \widetilde{M} is connected if and only if M is non-orientable (over \mathbb{Z}).

If M is non-orientable, \widetilde{M} is called orientation double cover of X.

Problem Z-C

Suppose M is a connected *n*-manifold, which is not orientable over \mathbb{Z} , $p: \widetilde{M} \longrightarrow M$ is its orientation double cover, and $\sigma: \widetilde{M} \longrightarrow \widetilde{M}$ is its deck transformation.

(a) Show that

$$\sigma^* = -\mathrm{id} \colon H^n_c(\widetilde{M}; \mathbb{Z}) \longrightarrow H^n_c(\widetilde{M}; \mathbb{Z}) \approx \mathbb{Z}.$$

- (b) Show that $2\alpha = 0$ for every $\alpha \in H^i(M; \mathbb{Z})$ (resp. $H^i_c(M; \mathbb{Z})$) such that $\sigma^* \alpha = 0$ in $H^i(\widetilde{M}; \mathbb{Z})$ (resp. $H^i_c(\widetilde{M}; \mathbb{Z})$).
- (c) Conclude that $H_c^n(M;\mathbb{Z}) \approx \mathbb{Z}_2$ (a Universal Coefficient Theorem might help).
- (d) Assuming M is compact, show that $H_n(M;\mathbb{Z})=0$ and the torsion of $H_{n-1}(M;\mathbb{Z})$ is \mathbb{Z}_2 .
- (e) Assuming M is not compact, show that $H^n(M;\mathbb{Z}) = 0$, $H_n(M;\mathbb{Z}) = 0$, and $H_{n-1}(M;\mathbb{Z})$ is torsion-free.

Problem Z-D

Suppose R is a PID and M is a connected n-manifold, which is not orientable over \mathbb{R} .

- (a) Show that $H_c^n(M; R) \approx R/2R$.
- (b) Assuming M is compact, show that $H_n(M; R) = \ker(2\mathrm{id} : R \longrightarrow R)$ and the torsion of $H_{n-1}(M; R)$ over R is R/2R.
- (c) Assuming M is not compact, show that $H^n(M; R) = 0$, $H_n(M; R) = 0$, and $H_{n-1}(M; R)$ is torsion-free over R.

Problem Z-E

Let $X \subset \mathbb{CP}^3$ be a smooth hypersurface of degree 4. Determine the Hodge diamond of X (this is a K3 surface).