MAT 541: Algebraic Topology Suggested Problems for Week 14

You may hand in solutions to at *most* 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Milnor-Stasheff: A.1, A.2 From Munkres: 65.1

Problem W

Let M be an n-manifold, possibly with boundary.

- (a) Suppose $x \in M \partial M$ and $\mu_x \in H_n(M, M x)$ is an orientation for M at $x \in M$. Describe μ_x and its dual generator $u_x \in H_n(M, M x)$ using a chart centered at x.
- (b) Suppose M is an oriented manifold, $\partial M \subset M$ is its boundary with the induced orientation, $K \subset M$ is a compact subset. Show that the image of the fundamental class

$$\mu_{M;K} \in H_n(M; \partial M \cup (M-K))$$

for M under an appropriate boundary homomorphism ∂ is the fundamental class

$$\mu_{\partial M;\partial M\cap K} \in H_{n-1}(\partial M;\partial M-K)$$

Problem X

Suppose M is a smooth n-manifold.

- (a) Let $x \in M$. Show that a local orientation μ_x of M at x in the sense of p273 in Milnor-Stasheff with \mathbb{Z} -coefficients corresponds to an orientation of $T_x M$.
- (b) Show that an orientation for M in the sense of p273 in Milnor-Stasheff with \mathbb{Z} -coefficients corresponds to an orientation of TM as a vector bundle (or some other standard notion of orientation for a smooth manifold).

Problem Y

Let X be a topological space and R be a ring. Show that

- (a) $\operatorname{Tor}(H^1(X; R)), \operatorname{Tor}(H^1_c(X; R)) = \{0\};$
- (b) $H_c^0(X; R) = \{0\}$ if X is connected and not compact.

Problem Z

Suppose X is a topological space.

(a) Let $\{K_j\}_{j \in \mathcal{A}}$ be a collection of compact subsets of X such that every compact subset $K \subset X$ is contained in some K_j . Show that the R-modules $H^*(X, X - K_j)$ form a direct system and

$$\lim H^*(X, X - K_j) \approx H^*_c(X).$$

(b) Let $\{U_j\}_{j \in \mathcal{A}}$ be a collection of open subsets of X such that their union is X and the union of every pair of these subsets is contained in some U_j . Show that the *R*-modules $H_c^*(U_j)$ form a direct system and

$$\lim H_c^*(U_j) \approx H_c^*(X).$$