## MAT 541: Algebraic Topology Suggested Problems for Week 13

You may hand in solutions to at *most* 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Munkres: 61.1, 61.3, 52.3, 52.4, 53.3

## Problem V

Give  $\mathbb{Z}$  the discrete topology. The module  $S_0(\mathbb{Z} \times \mathbb{Z})$  is free with basis

$$\sigma_{ij} \colon \Delta^0 \longrightarrow \mathbb{Z} \times \mathbb{Z}, \quad \sigma_{ij} \big( \Delta^0 \big) = \big\{ (i, j) \big\}, \qquad i, j \in \mathbb{Z}.$$

Define

$$\delta \in S^0(\mathbb{Z} \times \mathbb{Z}) \qquad \text{by} \qquad \delta(\sigma_{ij}) = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$$

- (a) Show that  $\delta$  is a cocycle.
- (b) Show that  $\delta$  is not in the image of  $\times : H^*(\mathbb{Z}) \otimes H^*(\mathbb{Z}) \longrightarrow H^*(\mathbb{Z} \times \mathbb{Z})$ .
- (c) Let  $S \subset \mathbb{Z}$  be a finite subset. Write  $\delta|_{\mathbb{Z} \times S}$  explicitly as an element in the image of

$$\times : H^*(\mathbb{Z}) \otimes H^*(S) \longrightarrow H^*(\mathbb{Z} \times S).$$

This problem illustrates the necessity of the assumption in the Kenneth Theorem for  $H^*$  that  $H_*$  of one of the factors be finitely generated in each dimension.