MAT 541: Algebraic Topology Suggested Problems for Week 11

You may hand in solutions to at most 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Munkres: 47.1, 47.3, 47.5, 47.7, 48.1-3, 49.1-3, 49.8, 66.4-6, 57.1

Problem R

Let R be a commutative ring with 1 and M be a module over R. A directed set is a set S with a partial order \prec such that for any pair of elements $i, j \in S$ there exists $k \in S$ with $i, j \leq k$. A directed system of R-modules over a directed set (S, \prec) is an assignment of an R-module M_{i} for each $i \in S$ and an R-module homomorphism $\rho_{j i}: M_{i} \longrightarrow M_{j}$ for all $i, j \in S$ with $i \preceq j$ such that

$$
\rho_{i i}=\operatorname{id}_{M_{i}} \forall i \in S, \quad \rho_{k i}=\rho_{k j} \circ \rho_{j i} \quad \forall i, j, k \in S, i \preceq j \preceq k .
$$

An inverse system of R-modules over a directed set (S, \prec) is an assignment of an R-module M_{i} for each $i \in S$ and an R-module homomorphism $\varrho_{i j}: M_{j} \longrightarrow M_{i}$ for all $i, j \in S$ with $i \preceq j$ such that

$$
\varrho_{i i}=\operatorname{id}_{M_{i}} \forall i \in S, \quad \varrho_{i k}=\varrho_{i j} \circ \varrho_{j k} \quad \forall i, j, k \in S, i \preceq j \preceq k .
$$

The direct limit of a directed system and the inverse limit of an inverse system are

$$
\begin{gathered}
\underset{i}{\lim } M_{i} \equiv\left(\bigsqcup_{i} M_{i}\right) / \sim, \quad A_{i} \ni x_{i} \sim x_{j} \in A_{j} \quad \text { if } \exists k \in S \text { s.t. } i, j \preceq k, \rho_{k i}\left(x_{i}\right)=\rho_{k j}\left(x_{j}\right), \\
\lim _{\rightleftarrows} M_{i} \equiv\left\{\left(x_{i}\right)_{i \in S} \in \prod_{i} M_{i}: x_{i}=\varrho_{i j}\left(x_{j}\right) \forall i, j \in S, i \prec j\right\},
\end{gathered}
$$

respectively. For example, the collection of compact subsets K of a topological spaces forms a directed set. The associated homology and cohomology groups form a direct system and an inverse system under the homomorphisms

$$
\rho_{K^{\prime} K}: H_{*}(K ; R) \longrightarrow H_{*}\left(K^{\prime} ; R\right) \quad \text { and } \quad \varrho_{K K^{\prime}}: H^{*}\left(K^{\prime} ; M\right) \longrightarrow H^{*}(K ; M)
$$

induced by the inclusions $K \subset K^{\prime}$.
(a) Show that the direct and inverse limits are R-modules.
(b) Construct a ring isomorphism $\underset{\longrightarrow}{\lim } H_{*}(K ; R) \longrightarrow H_{*}(X ; R)$.
(c) Construct a ring homomorphism $H^{*}(X ; R) \longrightarrow \lim _{\longleftarrow} H^{*}(K ; R)$.
(d) Take $X=\mathbb{R} \mathbb{P}^{\infty}$ and $R=\mathbb{Z}_{2}$. Construct an isomorphism $\lim _{\leftrightarrows} H^{*}(K ; R) \longrightarrow \lim H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; R\right)$ and conclude that the above homomorphism is injective, but not surjective in this case.

Problem S

Let R be a commutative ring with 1 . Let X, Y be Hausdorff topological spaces and $X \vee Y$ be their wedge product at points that are deformation retracts of neighborhoods in their spaces.
(a) Construct an isomorphism

$$
H^{p}(X \vee Y ; R) \longrightarrow H^{p}(X ; R) \oplus H^{p}(Y ; R) \quad \forall p \in \mathbb{Z}^{+}
$$

and show that it respects the cup product.
(b) Use this to establish the claims of Example 4 and Exercise 5 in Section 49 without any simplicial complexes.

