MAT 541: Algebraic Topology Suggested Problems for Week 1

You may hand in solutions to at most 2 problems every 2 weeks and no later than 2 weeks after the necessary material for them is covered in class.

From Munkres: 1.5, 2.3, 2.5, 2.8, 2.9, 3.2, 4.2, 38.1

Problem A

(a) Let V be a vector space and $K \subset V$ be a geometric simplicial complex as in $\S 2$. Show that the simplicial topology on $|K|$ is the quotient topology with respect to the projection

$$
\bigsqcup_{\sigma \in K} \sigma \longrightarrow|K| \equiv \bigcup_{\sigma \in K} \sigma \subset V
$$

and the subspace topology on each σ on the left-hand side above.
(b) A finite-dimensional vector space V has a unique T 1 topology with respect to which the vector space operations are continuous. If J is an infinite set, there are a number of such topologies on \mathbb{R}^{J} : product, uniform, box (all described in Munkres's point-set topology book) and "coherent". A set $U \subset \mathbb{R}^{J}$ is defined to be open in the last topology if $U \cap V$ is open in V for every finite-dimensional linear subspace $V \subset \mathbb{R}^{J}$ (this is equivalent to the same definition with open replaced by closed). Show that the vector space operations

$$
\mathbb{R}^{J} \times \mathbb{R}^{J} \longrightarrow \mathbb{R}^{J}, \quad(v, w) \longrightarrow v+w, \quad \mathbb{R} \times \mathbb{R}^{J} \longrightarrow \mathbb{R}^{J}, \quad(r, v) \longrightarrow r w
$$

are continuous with respect to all four topologies.
(c) Let \mathcal{S} be an abstract simplicial complex as in $\S 3$, $\operatorname{Ver}(\mathcal{S})$ be its vertex set, and $|\mathcal{S}| \subset \mathbb{R}^{\operatorname{Ver}(\mathcal{S})}$ be its canonical geometric realization. Show that the simplicial topology on $|S|$ is the subspace topology with respect to the coherent topology on $\mathbb{R}^{\operatorname{Ver}(\mathcal{S})}$.
(d) Suppose in addition that the set $\{S \in \mathcal{S}: v \in S\}$ is (at most) countable for every $v \in \operatorname{Ver}(\mathcal{S})$. Show that the simplicial topology on $|S|$ is the subspace topology with respect to the box topology on $\mathbb{R}^{\operatorname{Ver}(\mathcal{S})}$.

Problem B

(a) Describe simplicial and CW decompositions of S^{1} and S^{2} with as few cells as possible.
(b) Describe CW decompositions of $\mathbb{R P}^{n}$ and $\mathbb{C P}^{n}$ with precisely $n+1$ cells each.
(c) Use them to show that

$$
H_{p}\left(\mathbb{R}^{p} ; \mathbb{Z}_{2}\right)=\left\{\begin{array}{ll}
\mathbb{Z}_{2}, & \text { if } p \leq n ; \\
0, & \text { if } p>n ;
\end{array} \quad H_{p}\left(\mathbb{P}^{n} ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z}, & \text { if } p \leq 2 n, p \in 2 \mathbb{Z} ; \\
0, & \text { otherwise }\end{cases}\right.
$$

Since H_{*} does not depend on the CW decomposition, the above conclusions imply that $\mathbb{R}^{p}{ }^{n}$ and $\mathbb{C P}^{n}$ do not admit CW decompositions with fewer than $n+1$ cells.

