MAT 531: Topology&Geometry, II Spring 2006

Problem Set 6 Due on Friday, 3/10, by 11am, in Math 3-117

Note: This problem set has two pages. It covers 1.5 weeks, and so it is longer than usual. Please review the newest version of *Notes on Vector Bundles* before starting on Problem 4. It may also help with Problem 3.

- 1. Chapter 4, #19 (p160)
- 2. (a) Show that a one-form α on S^1 is exact if and only if

$$\int_{[0,1]} f^* \alpha = 0$$

for every smooth function $f\colon [0,1]\longrightarrow S^1$ such that $f(0)\!=\!f(1).$ (b) Let

$$q: \mathbb{R} \longrightarrow S^1, \qquad q(t) = e^{it},$$

be the standard covering map. Show the differential of the "angular coordinate function",

 $\theta \colon S^1 \longrightarrow \mathbb{R}, \qquad \theta(q(t)) = t,$

is well-defined (even though θ is not) and generates $H^1_{\text{de R}}(S^1)$. Determine all de Rham cohomology groups of S^1 .

- 3. (a) Suppose φ: M → ℝ^N is an immersion. Show that M is orientable if and only if the normal bundle to the immersion φ is orientable.
 (b) Chapter 4, #1 (p157)
- 4. Let M be a smooth manifold.

(a) Show that every real vector bundle $V \longrightarrow M$ admits a Riemannian metric and every complex vector bundle admits a hermitian metric.

(b) Show that if M is connected and there exists a non-orientable vector bundle $V \longrightarrow M$, then M admits a connected double-cover (2:1 covering map).

- (c) Show that if the order of $\pi_1(M)$ is finite and odd, then M is orientable.
- 5. (a) Show that the antipodal map on $S^n \subset \mathbb{R}^{n+1}$ (i.e. $x \longrightarrow -x$) is orientation-preserving if n is odd and orientation-reversing if n is even.
 - (b) Show that $\mathbb{R}P^n$ is orientable if and only if n is odd.
 - (c) Describe the orientable double cover of $\mathbb{R}P^n \times \mathbb{R}P^n$ with n even.

- 6. (a) Show that every diffeomorphism f: Sⁿ → Sⁿ that has no fixed points is smoothly homotopic to the antipodal map (x is a *fixed point* of f if f(x)=x).
 (b) Show that if π: Sⁿ → M is a covering projection onto a smooth manifold M and |π₁(M)|≠2, then M is orientable.
- 7. (a) Show that if X is a smooth nowhere-vanishing¹ vector field on a compact manifold M, then the flow X_t: M → M of X has no fixed points for some t∈ ℝ.
 (b) Show that Sⁿ admits a nowhere vanishing vector field if and only if n is odd.
 (c) Show that the tangent bundle of Sⁿ is not trivial if n≥1 is even. Note: In fact, TSⁿ is trivial if and only if n=1,3,7.
- 8. Suppose M is a 3-manifold with boundary and $\partial M = T^2 = S^1 \times S^1$. Let

$$\pi_1, \pi_2 \colon T^2 \longrightarrow S^1$$

be the two projection maps. Show that it is impossible to extend both (as opposed to at least one of) $\alpha_1 \equiv \pi_1^* d\theta$ and $\alpha_2 \equiv \pi_2^* d\theta$ to closed forms on M ($d\theta$ is as in Problem 2).

 $^{^{1}}X(m) \neq 0$ for all $m \in M$