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Chapter 0

Notation and Terminology

If M is a topological space and p € M, a neighborhood of p in M is an open subset U of M that
contains p.

The identity element in the groups GLiR and GL;C of invertible k x k real and complex matrices
will be denoted I. For any set M, idy; will denote the identity map on M.

Ifh: M— N and f: V — X are maps and V C N, we will denote by foh the map

vy v L ox.



Chapter 1

Smooth Manifolds and Maps

1 Smooth Manifolds: Definition and Examples

Definition 1.1. A topological space M is a topological m-manifold if
(TM1) M is Hausdorff and second-countable, and
(TM2) every point p€ M has a neighborhood U homeomorphic to R™.

A chart around p on M is a pair (U, p), where U is a neighborhood of p in M and ¢: U —U" is
a homeomorphism onto an open subset of R™.

Thus, the set of rational numbers, Q, in the discrete topology is a 0-dimensional topological mani-
fold. However, the set of real numbers, R, in the discrete topology is not a 0-dimensional manifold
because it does not have a countable basis. On the other hand, R with its standard topology is a
1-dimensional topological manifold, since

(TM1:R) R is Hausdorff (being a metric space) and second-countable;

(TM2:R) the map p=id: U=R — R is a homeomorphism; thus, (R,id) is a chart around every
point peR.

A topological space satisfying (TM2) in Definition 1.1 is called locally Euclidean; such a space is
made up of copies of R™ glued together; see Figure 1.1. While every point in a locally Euclidean
space has a neighborhood which is homeomorphic to R™, the space itself need not be Hausdorff;
see Example 1.2 below. A Hausdorff locally Euclidean space is easily seen to be regular, while
a regular second-countable space is normal [7, Theorem 32.1], metrizable (Urysohn Metrization
Theorem [7, Theorem 34.1]), paracompact [7, Theorem 41.4], and thus admits partitions of unity
(see Definition 11.1 below).

Example 1.2. Let M = (0xRU0'XR)/~, where (0,s)~(0/,s) for all s€ R—0. As sets, M =RLK{0'}.
Let B be the collection of all subsets of R LI{0'} of the form

(a,b) CR, a,beR, (a,b) = ((a,b) —0) L{0'} ifa<0<b.

This collection B forms a basis for the quotient topology on M. Note that

(TO1) any neighborhoods U of 0 and U’ of 0/ in M intersect, and thus M is not Hausdorff;
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Figure 1.1: A locally Euclidean space M, such as an m-manifold, consists of copies of R™ glued
together. The line with two origins is a non-Hausdorff locally Euclidean space.

(TO2) the subsets M —0" and M —0 of M are open in M and homeomorphic to R; thus, M is
locally Euclidean.

This example is illustrated in the right diagram in Figure 1.1. The two thin lines have length
zero: R~ continues through 0 and 0’ to R*. Since M is not Hausdorff, it cannot be topologically
embedded into R™ (and thus cannot be accurately depicted in a diagram). Note that the quotient
map

q:OXxRUOXR — M

is open (takes open sets to open sets); so open quotient maps do not preserve separation properties.
In contrast, the image of a closed quotient map from a normal topological space is still normal [7,
Lemma 73.3].

Definition 1.3. A smooth m-manifold is a pair (M,F), where M is a topological m-manifold and
F={(Uq, pa)}aca is a collection of charts on M such that

(SM1) M = | Ua,
acA

(SM2) cpaogpglz 0s(UaNUg) — ¢a(UaNUp) is a smooth map (between open subsets of R™) for
all o, BE A;

(SM3) F is mazximal with respect to (SM2).
The collection F 1is called a smooth structure on M.

Since the maps ¢, and ¢g in Definition 1.3 are homeomorphisms, ¢3(UsNUg) and o (U,NUg) are
open subsets of R, and so the notion of a smooth map between them is well-defined; see Figure 1.2.
Since {gpaogpgl}_l =ppowyt, smooth map in (SM2) can be replaced by diffeomorphism. If a=p3,

@ao@glzid : @B(UamUB):‘Pa(Ua) — @a(UamUB):@a(Ua)

is of course a smooth map, and so it is sufficient to verify the smoothness requirement of (SM2)
only for a#f.

An element of such a collection F will be called a smooth chart on the smooth manifold on (M, F)
or simply M.
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Figure 1.2: The overlap map between two charts is a map between open subsets of R™.

It is hardly ever practical to specify a smooth structure F on a manifold M by listing all elements
of F. Instead F can be specified by describing a collection of charts Fo={(U, ¢)} satisfying (SM1)
and (SM2) in Definition 1.3 and setting

F = {chart (V,¢) on M| o L p(UNV) — p(UNV) is diffeomorphism V (U, ) € Fo}. (1.1)

Example 1.4. The map ¢=id: R™ — R is a homeomorphism, and thus the pair (R™,id) is a
chart around every point in the topological m-manifold M =R". So, the single-element collection
Fo={(R™,id)} satisfies (SM1) and (SM2) in Definition 1.3. It thus induces a smooth structure F
on R"; this smooth structure is called the standard smooth structure on R™.

Example 1.5. Every finite-dimensional vector space V has a canonical topology specified by the
requirement that any vector-space isomorphism ¢: V — R™, where m =dim V, is a homeomor-
phism (with respect to the standard topology on R™). If ¢: V — R™ is another vector-space
isomorphism, then the map

oy l: R™ — R™ (1.2)
is an invertible linear transformation; thus, it is a diffeomorphism and in particular a homeomor-
phism. So, two different isomorphisms ¢, : V — R™ determine the same topology on V. Each
pair (V) is then a chart on V, and the one-element collection Fo={(V, )} determines a smooth
structure F on V. Since the map (1.2) is a diffeomorphism, F is independent of the choice of
vector-space isomorphism ¢ : V — R™. Thus, every finite-dimensional vector space carries a
canonical smooth structure.

Example 1.6. The map ¢: R— R, o(t) =13, is a homeomorphism, and thus the pair (R, ¢) is
a chart around every point in the topological 1-manifold M =R. So, the single-element collection

0={(R, )} satisfies (SM1) and (SM2) in Definition 1.3. It thus induces a smooth structure F’
on R. While ' # F, where F is the standard smooth structure on R' described in Example 1.4,
the smooth manifolds (R!, F) and (R!, F’) are diffeomorphic in the sense of (2) in Definition 2.1
below.

Example 1.7. Let M =S! be the unit circle in the complex (s, ¢)-plane,
U, =8"—{i}, U_=58"—{-i}.

For each pe Uy, let p1(p) ER be the s-intercept of the line through the points +i and p # +i; see
Figure 1.3. The maps ¢4 : Uy — R are homeomorphisms and S'=U, UU_. Since

U,NnU_=8'"—{i,~i} =U, —{-i} =U_ - {i}
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Figure 1.3: A pair of charts on S! determining a smooth structure.

and ¢4 (UyNU-)=R—0=R*, the overlap map is
prop”li o (UpyNU_)=R* — ¢ (U NU-)=R*;

by a direct computation, this map is s — s~!. Since this map is a diffeomorphism between open
subsets of R!, the collection

Fo = {(U+,(,D+), (U_,QD_)}

determines a smooth structure F on S*.

A smooth structure on the unit sphere M = 8™ C R™*! can be defined similarly: take Uy C S™
to be the complement of the point gy € S™ with the last coordinate +1 and ¢4 (p) € R™ the
intersection of the line through ¢4 and p # ¢+ with R™ = R™ x 0. This smooth structure is the
unique one with which S™ is a submanifold of R™*!; see Definition 5.1 and Corollary 5.8.

Example 1.8. Let MB=([0,1]xR)/~, (0,t)~ (1, —t), be the infinite Mobius Band,
Up = (0,1)xR C MB, po=id: Uy — (0,1) xR,

(s—1/2,1), ifse(1/2,1],

P1/2: Uz = MB—{1/2} xR — (0, 1) xR, ¢12([s,]) = {(s+1/2 —t), if s€[0,1/2)

where [s,t] denotes the equivalence class of (s,t) € [0,1] x R in MB. The pairs (Up, pg) and
(U, /251 /2) are then charts on the topological 1-manifold MB. The overlap map between them is

gol/gocpalz ©o(UoNUy j2) = ((0,1/2)U(1/2,1)) xR — 12 (UoNU72) =((0,1/2)U(1/2,1)) xR,

_ ) (s+1/2,—+t), if s€(0,1/2);
P1j200y (5:1) = {(3—1/2,75), if s€(1/2,1);

see Figure 1.4. Since this map is a diffeomorphism between open subsets of R?, the collection

Fo ={Uo,¢0), Ur/2,1/2) }
determines a smooth structure F on MB.
Example 1.9. The real projective space of dimension n, denoted RP"™, is the space of real one-

dimensional subspaces ¢ of R"*! (or lines through the origin in R"*!) in the natural quotient
topology. In other words, a one-dimensional subspace of R*! is determined by a nonzero vector in
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Figure 1.4: The infinite Mobius band MB is obtained from an infinite strip by identifying the two
infinite edges in opposite directions, as indicated by the arrows in the first diagram. The two charts
on MB of Example 1.8 overlap smoothly.

R™*1 ie. an element of R"*1—0. Two such vectors determine the same one-dimensional subspace
in R"*! and the same element of RP™ if and only if they differ by a non-zero scalar. Thus, as sets

RP" = (R"™—0) /R* = (R""'~0)/ ~,  where
c-v=cveR"™ -0 VeeR*, veR" -0, v~ e YeeRY, veRMI—0.
Alternatively, a one-dimensional subspace of R"*! is determined by a unit vector in R**1, i.e. an

element of S™. Two such vectors determine the same element of RP™ if and only if they differ by
a non-zero scalar, which in this case must necessarily be 1. Thus, as sets

RP" = S"/Zg ES"/ ~, where
Lo ={x1}, c-v=cveS" Vc€ly,veS", v~cv VeeZs, ve S (1.3)

Thus, as sets,
RP" = (R —0) /R* = S" /Z,.

It follows that RP™ has two natural quotient topologies; these two topologies are the same, however.
The space RP™ has a natural smooth structure, induced from that of R**'—0 and S™. It is generated
by the n+1 charts

©;: UiE {[Xo,Xl,...,Xn]: XzyéO} —)Rn,

(X0, X1,...,X,] —

Note that RP'=51,

Example 1.10. The complex projective space of dimension n, denoted CP"™, is the space of complex
one-dimensional subspaces of C"! in the natural quotient topology. Similarly to the real case of
Example 1.9,
CP" = (C"*1—0)/C* = 5>t /S where
St ={ceC*:|c|=1}, St = LyeC™t—0: v|=1},
c-v=cveCtl—-0 VYeeC* veCt—o.



The two quotient topologies on CP"™ arising from these quotients are again the same. The space
CP™ has a natural complex structure, induced from that of C**1—0.

There are a number of canonical ways of constructing new smooth manifolds.

Proposition 1.11. (1) If (M, F) is a smooth m-manifold, U C M is open, and
Flu = {(UaﬂU, Oalv,nu): (Ua,gpa)e}"} = {(Ua,gpa)ef: UaCU}, (1.4)

then (U, Fly) is also a smooth m-manifold.
(2) If (M, Fnr) and (N, Fn) are smooth manifolds, then the collection

-FO - {(UaXVﬁ,CPaX¢B)3 (Uou@a)e-FMy (Vﬁawﬁ)GIN} (15)
satisfies (SM1) and (SM2) of Definition 1.3 and thus induces a smooth structure on M x N.

It is immediate that the second collection in (1.4) is contained in the first. The first collection is
contained in the second because F is maximal with respect to (SM2) in Definition 1.3 and the re-
striction of a smooth map from an open subset of R to a smaller open subset is still smooth. Since
every element (U, ¢, ) of F is a chart on M, every such element with U, CU is also a chart on U.
Since {Uy: (Uy, o) € F} is an open cover of M, {UNU: (Uy, o) € F} is an open cover of U. Since
F satisfies (SM2) in Definition 1.3, so does its subcollection F|i7. Since F is maximal with respect
to (SM2) in Definition 1.3, so is its subcollection F|¢;. Thus, F|y is indeed a smooth structure on U.

Let m=dim M and n=dim N. Since each (U,, ¢o) € Fur is a chart on M and each (V3,9p) € Fn
is a chart on N,

Yo Xt Uy x Vg — 0o (Us) x1p5(Vg) C R™ xR"™ = R™*"

is a homeomorphism between an open subset of M x N (in the product topology) and an open
subset of R™*". Since the collections {Uy: (Uy, ¢a)€Fm} and {Vz: (V3,¢3) EFn} cover M and
N, respectively, the collection

{Uaxvﬁ: (Ua,@a)efM, (Vﬁ7wﬁ)€f]\7}
covers M x N. If (Uyx Vg, pax1g) and (Uy X Var, @ X1pg) are elements of the collection (1.5),
UaxVgNUy x Vg = (UaﬂUa/) X (VﬁﬂVg/),
{(pa X¢g}(Ua XVg NUy XVg/) = (pa(UaﬂUa/) X ¢g (VﬁﬂVg/) C Rm—i—n’
{(pa/ X¢g/}(Ua XVg NUy XVg/) = (paf(UaﬂUa/) X Tﬁﬁ/(VﬁﬂV@) C Rm-ﬁ-n’
and the overlap map,
{@axwﬁ} 0 {‘Po/ Xwﬁ’}_l = {(paocp;,l} X {4,0504,05/1},

is the product of the overlap maps for M and N; thus, it is smooth. So the collection (1.5) satisfies
the requirements (SM1) and (SM2) of Definition 1.3 and thus induces a smooth structure on MxN,
called the product smooth structure.

Corollary 1.12. The general linear group,
GL,R = {AEMatan]R: det A # O},

is a smooth manifold of dimension n>.



Figure 1.5: A continuous map f between manifolds is smooth if it induces smooth maps between
open subsets of Euclidean spaces via the charts.

The map ,
det: Mat,,«x,R~R" — R

is continuous. Since R—0 is an open subset of R, its pre-image under det, GL,R, is an open subset
of R" and thus is a smooth manifold of dimension n? by (1) of Proposition 1.11.

2 Smooth Maps: Definition and Examples

Definition 2.1. Let (M, Fyr) and (N, Fy) be smooth manifolds.

(1) A continuous map f: M — N is a smooth map between (M,Fyr) and (N,Fn) if for all
(U,p)eFur and (V,4p) € Fn the map

pofop™ i o(fTHVINU) — (V) (2.1)
is a smooth map (between open subsets of Fuclidean spaces).

(2) A smooth bijective map f : (M,Fy) — (N, Fn) is a diffeomorphism if the inverse map,
=Y (N, Fn)— (M, Fur), is also smooth.

(8) A smooth map f: (M,Fp) — (N,Fn) is a local diffeomorphism if for every p € M there
are open neighborhoods U, of p in M and V), of f(p) in N such that fly, : U, — 'V, is a
diffeomorphism between the smooth manifolds (U, Fur|u,) and (Vy, Fnlv,).

If f: M — N is a continuous map and (V1) € Fy, f~1(V)C M is open and ¥ (V) CR" is open,
where n=dim N. If in addition (U, ¢) € Fa, then o(f~1(V)NU) is an open subset of R™, where
m =dim M. Thus, (2.1) is a map between open subsets of R™ and R", and so the notion of a
smooth map between them is well-defined; see Figure 1.5.

A bijective local diffeomorphism is a diffeomorphism, and vice versa. In particular, the identity
map id: (M, F) — (M,F) on any manifold is a diffeomorphism, since for all (U, ¢), (V,9) € Fu
the map (2.1) is simply

Yot p(UNV) — ¢(UNV) C y(V);

8



it is smooth by (SM2) in Definition 1.3. For the same reason, the map
©: (U,]:M|U) — (,D(U) c R™

is a diffeomorphism for every (U, ¢) € Fps. A composition of two smooth maps (local diffeomor-
phisms, diffeomorphisms) is again smooth (a local diffeomorphism, a diffeomorphism).

It is generally impractical to verify that the map (2.1) is smooth for all (U, p) € Fas and (V, ) € Fn.
The following lemma provides a simpler way of checking whether a map between two smooth
manifolds is smooth.

Lemma 2.2. Let (M, Fy) and (N, Fyn) be smooth manifolds and f: M — N a map.

(1) If {Us}taeca is an open cover of M, then f: M — N is a smooth map (local diffeomor-
phism) if and only if for every o € A the restriction fly,: Uy — N is a smooth map (local
diffeomorphism) with respect to the induced smooth structure on U, of Proposition 1.11.

(2) If Fuo and Fiyo are collections of charts on M and N, respectively, that generate Fpr and
Fn in the sense of (1.1), then f: M — N is a smooth map (local diffeomorphism) if and only
if (2.1) is a smooth map (local diffeomorphism) for every (U, ) € Faro and (V,v¥) € Fn.o.

Thus, f: M — N is a smooth map (local diffeomorphism) if and only if (2.1) is a smooth map
(local diffeomorphism) for every (U,¢) € Faro and all (V,1)) € Fn,o in a subcollection of Fio
covering f(U). If follows that for every chart (U, )€ Fps the map

o: U — pU) CR™

is a diffeomorphism.

By Lemma 2.2, if f: (M, Far) — (N, Fn) is smooth, then o f: f~1(V) — R" is also a smooth
map from an open subset of M (with the smooth structure induced from F; as in Proposition 1.11)
for every (V,4¢)€ Fy. If in addition f is a diffeomorphism (and thus m=mn),

Yofop tip(UNfHV)) — w(f(U)NV) CR™

is a diffeomorphism for every (U, ) € Fas, and thus (f~1(V),of) € Far by the maximality of Fas.
It follows that every diffeomorphism f: (M, Fas) — (N, Fn), which is a map f: M — N with
certain properties, induces a map

[ Fn — Fu, (V) — (f7H(V), vof),

which is easily seen to be bijective. However, there are lots of bijections Fy — Fys, and most of
them do not arise from a diffeomorphism f: M — N (which may not exist at all) or even some
map between the underlying spaces.

Example 2.3. Let V and W be finite-dimensional vector spaces with the canonical smooth struc-
tures of Example 1.5 and f: V — W a vector-space homomorphism. If ¢ : V — R™ and
1. W —R"™ are vector-space isomorphisms,

Yofop l:R™ — R"

is a linear map and thus smooth. Since f(V) is contained in the domain of ¢, it follows that
f:V—W is a smooth map. So every homomorphism between finite-dimensional vector spaces is
a smooth map with respect to the canonical smooth structures on the vector spaces.



Example 2.4. Let Mat,«,R be the vector space of nxn real matrices with the canonical smooth
structure of Example 1.5. Define

f:Mat,xnR — Mat,«,R by A— A" A, (2.2)

where A" is the transpose of A. If p: Mat, x,R —R" is an isomorphism of vector spaces (for
example, with each component of f sending a matrix to one of its entries), then each component
of the map
o fopl: R™ — R™
is a homogeneous quadratic polynomial on R”Q; so pofop~!is a smooth map. Since the image
of f is contained in the domain of ¢, it follows that the map (2.2) is smooth. The image of f is
actually contained in the linear subspace SMat,,R of symmetric nxn matrices. Thus, f induces a
map
fo: Mat,n,R — SMat,R,  fo(4) = f(A),

obtained by restricting the range of f; so the diagram
SMat, R
7

fo_~
P 3
-

Mat,, R — > Mat,, R

where ¢ is the inclusion map, commutes. The induced map fy is also smooth with respect to the
canonical smooth structures on Mat, x,R and SMat,R. In fact, if ¢: SMat,R — R™"+1)/2 ig an
isomorphism of vector spaces (for example, with each component of f sending a matrix to one of
its upper-triangular entries), then each component of the map

¢ofo(’0_1 : Rn2 — R H1)/2

is again a homogeneous quadratic polynomial on R”Q; so Yo fop~! is a smooth map and thus f

is smooth. The smoothness of fj also follows directly from the smoothness of f because SMat,,R
is an embedded submanifold of Mat,, «,R; see Proposition 5.5.

Example 2.5. Let (M, F)s) and (N, Fy) be smooth manifolds and Fjs«n the product smooth
structure on M x N of Proposition 1.11. Let Fy be as in (1.5).

(1) For each g€ N, the inclusion as a “horizontal” slice,
tg: M — M x N, p — (p,q),
is smooth, since for every (U, @) € Fas and (U XV, o x 1)) € Fy with ¢ €V the map
{oxy}orop™t =idx1(q): (i (UXVINU) =p(U) — {oxy}([UxV) = o(U)x(V)
is smooth and ¢,(U) CU x V. Similarly, for each pe M, the inclusion as a “vertical” slice,
tp: N — M XN, qg— (p,q),

is also smooth.

10
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Figure 1.6: A horizontal slice M x ¢=1Im,, a vertical slice px N =Im,, and the two component
projection maps M x N — M, N

(2) The projection map onto the first component,
7T1:7TM:M><N—>M7 (paq)—>p7

is smooth, since for every (U xV, px) € Fy and (U, p) € Fps the map

pompol{oxy} = m: {oxu} (mf (UNUXV) = oU)x (V) — o(U)

is smooth (being the restriction of the projection R™ x R™ — R™ to an open subset) and
mpm(UxV)CU. Similarly, the projection map onto the second component,

772:7TN:MXN—>N7 (p7Q)—>Q7
is also smooth.

The following lemma, corollary, and proposition provide additional ways of constructing smooth
structures. Corollary 2.7 follows immediately from Lemmas 2.6 and B.1.1. It gives rise to manifold
structures on the tangent and cotangent bundles of a smooth manifold, as indicated in Example 7.5.
Lemma 2.6 can be used in the proof of Proposition 2.8.

Lemma 2.6. Let M be a Hausdorff second-countable topological space and {pq: U, —>Ma}a€A
a collection of homeomorphisms from open subsets U, of M to smooth m-manifolds M, such that

a0y 08(UaNUs) — o (UaNUp) (2.3)

is a smooth map for all o, € A. If the collection {Uy}aeca covers M, then M admits a unique
smooth structure such that each map @ is a diffeomorphism.

Corollary 2.7. Let M be a set and {pq: Uy —>Ma}a€A a collection of bijections from subsets
U, of M to smooth m-manifolds M, such that

a0z’ 03(UaNUs) — @a(UaNUp)

is a smooth map between open subsets of Mg and M,, respectively, for all o, 3 € A. If the collec-
tion {Uy}aca separates points in M and a countable subcollection {Uqs}aca, 0f {Ua}aca covers
M, then M admits a unique topology Tar and smooth structure Fyr such that each map o, is a
diffeomorphism.
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Proposition 2.8. If a group G acts properly discontinuously on a smooth m-manifold (M,}"M)
by diffeomorphisms and w: M — M =M /G is the quotient projection map, then

Fo = {(W(U),(po{ﬂy}_l): U, p)eFy, ©lu is injective}

is a collection of charts on the quotient topological space M that satisfies (SM1) and (SM2) in
Definition 1.8 and thus induces a smooth structure Fy; on M. This smooth structure on M is the
unique one satisfying either of the following two properties:

(QSM1) the projection map M — M is a local diffeomorphism;

(QSM2) if N is a smooth manifold, a continuous map f: M — N is smooth if and only if the
map forw: M — N is smooth.

In the case of Lemma 2.6, ¢, (U,NUpg) is an open subset of M, because U, and Ug are open subsets
of M and ¢, is a homeomorphism; thus, smoothness for the map (2.3) is a well-defined require-
ment in light of (1) of Proposition 1.11 and (1) of Definition 2.1. In the case of Corollary 2.7,
©a(UaNUg) need not be a priori open in M,, and so this must be one of the assumptions. In
both cases, the requirement that gpaogpgl be smooth can be replaced by the requirement that it
be a diffeomorphism. We leave proofs of Lemma 2.6, Corollary 2.7, and Proposition 2.8 as exercises.

The smooth structure Fj; on M of Proposition 2.8 is called the quotient smooth structure on M.
For example, the group Z acts on R and on R xR by

Z xR — R, (m,s) — s+ m, (2.4)
Z x RxR — RxR, (m, s,t) — (s+m, (—1)™1). (2.5)

Both of these actions satisfy the assumptions of Proposition 2.8 and thus give rise to quotient
smooth structures on S'=R/Z and MB = (R xR)/Z. These smooth structures are the same as
those of Examples 1.7 and 1.8, respectively.

Example 1.6 is a special case of the following phenomenon. If (M, F) is a smooth manifold and
h: M — M is a homeomorphism, then

WF = {(h"HU),poh): (U,p)eF}

is also a smooth structure on M, since the overlap maps are the same as for the collection F. The
smooth structures F and h*F are the same if and only if h: (M, F) — (M, F) is a diffecomorphism.
However, in all cases, the map h=': (M, F) — (M, h*F) is a diffeomorphism; so if a topological
manifold admits a smooth structure, it admits many smooth equivalent (diffeomorphic) smooth
structures.

This raises the question of which topological manifolds admit smooth structures and if so how
many inequivalent ones. Since every connected component of a topological manifold is again a
topological manifold, it is sufficient to study this question for connected topological manifolds.

dim=0: every connected topological 0-manifold M consists of a single point, M = {pt}; the only
smooth structure on such a topological manifold is the single-element collection {(M, )},
where ¢ is the unique map M — R,

12



dim=1: every connected topological (smooth) 1-manifold is homeomorphic (diffeomorphic) to ei-
ther R or S* in the standard topology (and with standard smooth structure); a short proof
of the smooth statement is given in [4, Appendix].

dim=2: every topological 2-manifold admits a unique smooth structure; every compact topological
2-manifold is homeomorphic (and thus diffeomorphic) to either a “torus” with g >0 handles
or to a connected sum of such a “torus” with RP? [7, Chapter 8]; every such manifold
admits a smooth structure as it is the quotient of either S? or R? by a group acting properly
discontinuously by diffeomorphisms.

dim=3: every topological 3-manifold admits a unique smooth structure [5].

dim=4: there are lots of topological 4-manifolds that admit no smooth structure and lots of other
topological 4-manifolds (including R*) that admit many (even uncountably many) smooth
structures.

The first known example of a topological manifold admitting non-equivalent smooth structures
is the 7-sphere [3]. Since then the situation in dimensions 5 or greater has been sorted out by
topological arguments [8].

Remark 2.9. While topology studies the topological category 7 C, differential geometry studies
the smooth category SC. The objects in the latter are smooth manifolds, while the morphisms are
smooth maps. The composition of two morphisms is the usual composition of maps (which is still
a smooth map). For each object (M, Fys), the identity morphism is just the identity map idas
on M (which is a smooth map). The “forgetful map”

SC—TC, (M, Fu)— M, (f: (M, Fr)— (N, Fn)) — (f : M—N),
is a functor from the smooth category to the topological category.

In the remainder of these notes, we will typically denote a smooth manifold in the same way as its
underlying set and topological space; so a smooth manifold M will be understood to come with a
smooth structure Fj,.

3 Tangent Vectors

If M is an m-manifold embedded in R", with m <n, and ~: (a,b) — M is a smooth map (curve
on M), then

Y(E+7) — (1)

A(t) = lim eR" (3.1)

T—0

should be a tangent vector of M at ~y(t). The set of such vectors is an m-dimensional linear subspace
of R™; it is often thought of as having the O-vector at p; see Figure 1.7. However, this presentation
of the tangent space T),M of M at p depends on the embedding of M in R", and not just on M and p.

On the other hand, the tangent space at a point p € R™ should be R™ itself, but based (with the
origin) at p. Each vector v€R™ acts on smooth functions f defined near p by

f@+m0—f@)

; (3.2)

Dolpf = th—n>10

13



~
N

Figure 1.7: The tangent space of S at p viewed as a subspace of R2.

If v=e; is the i-th coordinate vector on R™, then 9, f is just the i-th partial derivative 0; f|, of f
at p. The map 0|, defined by (3.2) takes each smooth function defined on a neighborhood of p in
R™ to R and satisfies:

(TV1) if f: U — R and g: V — R are smooth functions on neighborhoods of p such that
flw =glw for some neighborhood W of p in UNV, then 0, |,f =0ypg;

(TV2) if f: U—R and g: V— R are smooth functions on neighborhoods of p and a,b€R, then

av|p(af+b9) = aav|pf + b@v|pg,

where af+bg is the smooth function on the neighborhood UNV given by
{af+bg}(a) = af(q) + bg(q);

(TV3) if f: U—R and g: V—R are smooth functions on neighborhoods of p, then

Dlp(f9) = F(P)Oulpg + 9(P)Oulpf .
where fg is the smooth function on the neighborhood UNV given by {fg}(q) = f(q)g(q).

It turns out every that R-valued map on the space of smooth functions defined on neighborhood
of p satisfying (TV1)-(TV3) is 0|, for some v€R™; see Proposition 3.4 below. At the same time,
these three conditions make sense for any smooth manifold, and this approach indeed leads to an
intrinsic definition of tangent vectors for smooth manifolds.

The space of functions defined on various neighborhoods of a point does not have a very nice
structure. In order to study the space of operators satisfying (TV1)-(TV3) it is convenient to put
an equivalence relation on this space.

Definition 3.1. Let M be a smooth manifold and pe M.

(1) Functions f: U—R and g: V— R defined on neighborhoods of p in M are p-equivalent, or
fr~pg, if there exists a neighborhood W of p in UNV such that f|lw=g|w.

(2) The set of p-equivalence classes of smooth functions is denoted Fp; the p-equivalence class of
a smooth function f: U — R on a neighborhood of p is called the germ of f at p and is
denoted ip.

14



The set Fp has a natural R-algebra structure:
a£p+bgp:mp, ip-gp:&p Vip,gper, a,beR,

where af+bg and fg are functions defined on UNV if f and g are defined on U and V, respectively.
There is a well-defined valuation homomorphism,

evy: F, — R, ip — f(p).

Let F, =kerevy; this subset of Fp consists of the germs at p of the smooth functions defined on
neighborhoods of p in M that vanish at p. Since ev, is an R-algebra homomorphisms, F), is an
ideal in Fj; this can also be seen directly: if f(p)=0, then {fg}(p)=0. Let Fp2 C F}, be the ideal

in Fp consisting of all finite linear combinations of elements of the form ipgp with ip, 9,€ F,. If

cER, let ¢, GFp denote the germ at p of the constant function with value ¢ on M.

Lemma 3.2. Let M be a smooth manifold and p€ M. If v is a derivation on Fp relative to the
valuation evp,1 then
U|Fg =0, v(c,) =0 VceR. (3.3)

If ip,gper, then f(p),g(p)=0 and thus

o(f,0) = Fp)ulg,) + go(f

o) =0

so v vanishes identically on Fg. If ceR,

U(gp) = U(lpgp) = 1(]7) : ’U(Qp) + c(p) ' U(lp) =1 U(gp) +c- U(lp)

so v(c,) = 0.

Corollary 3.3. If M is a smooth manifold and p€ M, the map v — v|g, induces an isomorphism
from the vector space Der(F),,ev,) of derivations on F, relative to the valuation ev, to

{LeHom(F,,R): LIp=0} ~ (F,/F,;)".
The set Der(Fp, evp) of derivations on Fp relative to the valuation ev, indeed forms a vector space:

{av + bw} (ip) = av(ip) + bw(ip) N v,wEDer(Fp,evp), a,beR, L,EFP'

If v € Der(F}, ev,), the restriction of v to Fj, C F), is a homomorphism to R that vanishes on Fp2 by
Lemma 3.2. Conversely, if L: F,, — R is a linear homomorphism vanishing on Fg, define

v: F,— R by vr(f,) =L(f =1 () );

He v: Fp — R is an R-linear map such that

v(f,g) =evp(f )olg) +evplg Ju(f,) Y[ .9 €Fp.

15



since the function f— f(p) vanishes at p, f—f (p)p € F}, and so vy, is well-defined. It is immediate
that vy, is a homomorphism of vector spaces. Furthermore, for all ip, 9,

v(f,9,) = L(fg—f()9) ) = L(f(p)g—g(p)p +9)f—f) +[—f®) 9—9() )
(P)Lg—=9p) ) + 9 L(f—f(p)) + L(f—f () 9—9(p) )
(P)ve(g,) +9(p)oL ( f,) +0,

since L vanishes on F}, 2- 50 vy, is a derivation with respect to the valuation evy. It is also immediate
that the maps

=f
=f

Der(F),, ev,) — {LeHom(F,,R): L’FSEO}, v — L, = v|p,, (3.4
- 3.4
{LeHom(Fp,R): L|pz=0} — Der(Fp, evy), L — g,

are homomorphisms of vector spaces. If L € Hom(F},R) and L] F2 =0, the restriction of vy, to F), is
L, and so L,, = L. If v€Der(F, ev,) and ip € F,, by the second statement in (3.3)

o(f,) = (L) ~v(fW),) = v( =) ) = L(f=1@)) = (1)

so v, =v and the two homomorphisms in (3.4) are inverses of each other. This completes the
proof of Corollary 3.3.

Proposition 3.4. If peR™, the vector space Fp/Fg is m-dimensional and the homomorphism
R™ — Der(ﬁ’p,evp) R~ (Fp/sz)*, v — Oylp, (3.5)
induced by (3.2), is an isomorphism.

By (TV1), d,|, induces a well-defined map F, — R. By (TV2), d,], is a vector-space homomor-
phism. By (TV3), 0,|, is a derivation with respect to the valuation ev,. Thus, the map (3.5) is
well-defined and is clearly a vector-space homomorphism. If 7;: R™ — R is the projection to the
j-th component,

1, ifi=j;
0, ifidj.
Thus, the homomorphism (3.5) is injective, and the set {ﬂ'j—ﬂ'j(p)p} is linearly independent

in Fp/Fg. On the other hand, Lemma 3.5 below implies that

ael|p( ﬂ-J(p)) = (8i(77j_77j(p)))p = 52‘]‘ = { (3.6)

7] =m

> mi / 1—1)(9;0; f ) pstdt (3.7)

i,j=1

flp+z) = —i—Z (0i f)pxi +
i=1

for every smooth function f defined on a open ball U around p in R™ and for all p4+x € U. Thus,
the set {ﬂ'j—ﬂ'j(p)p} spans F,,/F?2; so F,/F? is m-dimensional and the homomorphism (3.5) is an

isomorphism.

Note that the inverse of the isomorphism (3.5) is given by
Der(ﬁp,evp) — R™, v — (v(ﬂp), e ,U(ﬂ'_mp)); (3.8)

by (3.6), this is a right inverse and thus must be the inverse.
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Lemma 3.5. If h: U—R is a smooth function defined on an open ball U around a point p in R™,
then

—m
h(p+x) = h(p) + Z xi/o (Oih) ptzdt

for all p+x€U.

This follows from the Fundamental Theorem of Calculus:

1d 1i=m
h(p+z) = h(p) + / Sh(p+ta)dt / Z (O5h) psiomsdt

— 1
(p) + ; xi/o(aih)p—l—tmdt-

Corollary 3.6. If M is a smooth m-manifold and p € M, the vector space Der(Fp,evp) s m-
dimensional.

If p: U — R™ is a smooth chart around p € M, the map f — foy induces an R-algebra
isomorphism

FSO(P) — Fp, i — fogop . (3.9)

©(p)
Since ev () =evyop*, ¢* restricts to an isomorphism F,;,) — F, and descends to an isomorphism

E (:n)/Fi(p) — Fp/sz- (3.10)
Thus, Corollary 3.6 follows from Corollary 3.3 and Proposition 3.4.

Definition 3.7. Let M be a smooth manifold and pe M.

(1) The tangent space of M at p is the vector space T,M = Der(Fp,evp) a tangent vector of M at
p is an element of T,M.

(2) The cotangent space of M at p is TyM = (1,M)* = Hom(T,M,R).

By Corollary 3.6, T, M and T,; M are m-dimensional vector spaces if M is an m-dimensional mani-
fold. By Proposition 3.4, T,R™ is canonically isomorphic to R™ for every p€R™. By Corollary 3.3,
TyM=~F, / Fg; an element ip—i—sz of F,/ sz determines the vector-space homomorphism

LM —R,  v—v(f). (3.11)

Any smooth function f defined on a neighborhood of p in M defines an element of T*M in the
same way, but this element depends only on

f—f) +F; € F/F.

Example 3.8. Let V be an m-dimensional vector space with the canonical smooth structure of
Example 1.5. For p,veV, let }
Oplp: F — R
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be the derivation with respect to ev,, defined by (3.2). The homomorphism
V — T,V = Der(Fp,evp), v — Oylp, (3.12)

is injective because for any linear functional f: V —R

flotto) = fp) _ . [0+t () = f(p)
t

t—s0 t

= f(v);

Dolpf = th—I>n0

50 Oy|pf # 0 on every linear functional f on V not vanishing on v and thus 9,|, # 0 € T,V if
v# 0 (such functionals exist if v # 0; they are smooth by Example 2.3). Since the dimension of
T,V is m by Corollary 3.6, the homomorphism (3.12) is an isomorphism of vector spaces. So, for
every finite-dimensional vector space V' and p €T,V (3.12) provides a canonical identification of
T,V with V' (but not with R™); the dual of (3.12) provides a canonical identification 7,V with
V*=Hom(V,R).

4 Differentials of Smooth Maps
Definition 4.1. Let h: M — N be a smooth map between smooth manifolds and pe M.

(1) The differential of h at p is the map

dph: T,M — Ty)N,  {dph(0)}(f,,) = v(foh) VveLM, f, €Fyp. (41)

(2) The pull-back map on the cotangent spaces is the map

Wt ={dph}": Ty N — T, M, n—nodph, (4.2)

The map (4.1) is a vector-space homomorphism, and thus so is hA*. It is immediate from the
definition that d,idjs =idz,as and thus idy, = idT; v If N=R, T},,)R is canonically isomorphic
to R, via the map

Th(p)R — R, w —r w(idR);

see (3.8). In particular, if veT,M,
dph(v) — {dph(v)} (idr) = v(idroh) = v(h).

Thus, under the canonical identification of 7}, R with R, the differential d,h of a smooth map
h: M — R is given by

dph(v) = v(h) VveT,M (4.3)

and so corresponds to the same element of )M as
h—h(p) + F} € F,/F2;

see (3.11).
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Example 4.2. Let V and W be finite-dimensional vector spaces with the canonical smooth struc-
tures of Example 1.5. By Example 2.3, every vector-space homomorphism h: V — W is smooth.
If p,veV and f: U—R is a smooth function defined on a neighborhood of h(p) in W, by (4.1)
and (3.2)

f(h(p+tv)) — f(h(p))
t
_ o J(h(p)+th(v)) — f(h(p) _
= lim - = () ln(p) (f) -
Thus, under the canonical identifications of T,V with V' and Tj,,)/W" with W as in Example 3.8,
the differential d,h at p of a vector-space homomorphism h: V' — W corresponds to the homo-
morphism A itself; so the diagram

{dph(9]) } (1) = Bulp(foh) = lim

dph
T,V s Ty W (4.4)
(3.12) (3.12)
14 " W

commutes. In particular, the differentials of an identification ¢ : V — R™ induce the same
identifications on the tangent spaces.

Lemma 4.3. If g: M — N and h: N — X are smooth maps between smooth manifolds and
peEM, then

dp(hOg) = dg(p)h o dpg: TpM — Th(g(p))X- (45)
Thus, (hog)*=g*oh*: Ty g X — Ty M and

whenever f is a smooth function on a neighborhood of g(p) in N.

If veT,M and f is a smooth function on a neighborhood of h(g(p)) in X, then by (4.1)
{{dp(hog)}(v)}(f) = v(fohog) = {dpg(v)} (foh) = {dy()h(dpg(v)) }(f)

= {{dg(p)hodpg}(v)}(f)Q
thus, (4.5) holds. The second claim is the dual of the first. For the last claim, note that
9 dyp)f = dgp) f o dpg = dp(fog) (4.7)

by (4.2) and (4.5). For the purposes of applying (4.2) and (4.5), all expressions in (4.7) are viewed
as maps to Tp(g(p) R, before its canonical identification with R. The identities of course continue
to hold after this identification.

Definition 4.4. A smooth curve in a smooth manifold M is a smooth map ~: (a,b) — M, where
(a,b) is a nonempty open (possibly infinite) interval in R. The tangent vector to a smooth curve
v: (a,b)— M at te(a,b) is the vector

V(1) (t) = dey(9e, 1) € Ty M, (4.8)

_d
—ar

where e; =1€R! is the oriented unit vector.
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If h: M — N is a smooth map between smooth manifolds and 7: (a,b) — M is a smooth curve
in M, then
hov: (a,b) — N
is a smooth curve on N and by the chain rule (4.5)
(hov)/(t) = dt{hO’}/} (661 |t) = {d,y(t)h o dt’y} (861 |t) = d,y(t)h(dm(ﬁel |t)) (4 9)
= dy (V') € TN
for every t€(a,b).

Lemma 4.5. Let V be a finite-dimensional vector space with its canonical smooth structure of
Ezample 1.5. If v: (a,b) —V is a smooth curve and t€ (a,b), 7/'(t) €TV corresponds to

)=t 20T 20

T—0 T

eV

under the canonical isomorphism T )V ~V provided by (5.12).

If h:V — W is a homomorphism of vector spaces,

For(t) = h(3(1)) (4.10)
by the linearity of h. Thus, by (4.9) and the commutativity of (4.4), it is sufficient to prove this
lemma for V' =R"", which we now assume to be the case. If f: U — R is a smooth function defined
on a neighborhood of v(¢) in R™, by (4.8), (4.1), the usual multi-variable chain rule, and (3.1)

{VOIS) = {div(9erls) }(f) = Desle(fory) = lim f('v(t+T))T — f((1))

— J(Flyait) = lim LOOFTIO ZFO®) (411

T—0 T

=%/

where J(f)(): R™ — R is the usual Jacobian (matrix of first partials) of the smooth map f from
an open subset of R™ to R evaluated at (¢). Thus, under the canonical identification of T’ R™
with R™ provided by (3.5), the tangent vector +/(¢) of Definition 4.4 corresponds to the tangent
vector 4(t) of calculus.

Corollary 4.6. Let (M, Far) be a smooth manifold. For every pe M and veT,M, there exists a
smooth curve
v: (a,b) — M s.t. y(0)=p, 7(0)=w0.

If p: U—R™ is a smooth chart around p on M, the homomorphism
deo(p)@_l: TomR™ — T,M

is an isomorphism. Thus, by (4.9), it is sufficient to prove the claim for V' =R"™, which we now
assume to be the case. By Lemma 4.5 applied with V =R"™, it is to show that for all p,v € R™
there exists a smooth curve

v: (a,b) — R™ st. ~v(0)=p, §(0) =w.
An example of such a curve is given by

v: (—o00,00) — R™, t — p+tu.
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Example 4.7. By Example 2.4, the map

h: Maty, xn,R — SMat, R, h(A) = A" A,
is smooth; we determine the homomorphism dy, h. The map

v: (—00,00) — Mat,xnR, t — I, +tA,

is a smooth curve such that v(0) =1, and 4(0)=A. By (4.10), the homomorphism induced by dr, h
via the isomorphisms provided by (3.12) takes 4(0)=A to

L, +tA)" (L, +tA) — T
lim( +tA)" (I, +tA)

t—0 t 50 t

t = A4 A™.

Thus, the homomorphism induced by dy, h via the identifications provided by (3.12) is given by
dy, h: Mat,,x,R — SMat, R, A— A+ A",
In particular, dy, h is surjective, because its restriction to the subspace SMat, R C Mat,, xR is.

Let ¢ = (21,...,2m) : U — R™ be a smooth chart on a neighborhood of a point p in M; so,
x; = mop, where m; : R”™ — R is the projection to the i-th component as before. Since the
map (3.9) induces the isomorphism (3.10) and {Wi_xi(p)¢(p)}i is a basis for Feo(p)/Fj(p)v

}2) = {(71'@'—117@'(]9))090})}2- = {l‘i—l‘i(p)p}i

is a basis for F,,/F?. Thus, {dpz;}; is a basis for T* M, since d,z; and xi—a:,-(p)p act in the same

o ({mi—zip),

way on all elements of T),M; see the paragraph following Definition 4.1. For each i=1,2,...,m,
let 3
-1
% = dw(p)go (aei|@(p)) S TpM. (4.12)
tip
By (4.1), for every smooth function f defined on a neighborhood of p in M
0

= {do) 0™ (e o) }(f) = Deilon) (For™) (4.13)

=0, (foﬁp_l)’go(p)

is the i-th partial derivative of the function fop™" at ¢(p); this is a smooth function defined on a
neighborhood of ¢(p) in R™. In particular, for all 4, j=1,2,...,m

TP (RN I
P &Tip _8332-

the first equality above is a special case of (4.3). Thus, {8%1_ |p}i is a basis for T, M it is dual to the
basis {d,;}; for Ty M. The coefficients of other elements of T),M and T,y M with respect to these
bases are given by

8:Ei

1

(z;) = di(mjopo ™) = biy;
p

=m a =m 8

v= (dpzi(v)) o—| = v(x;)=— VveT,M,; (4.14)
=1 O =1 Oz p
=m a .

n=2_m5,| )dr¥i VneT, M. (4.15)
i=1 tlp
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The first identities in (4.14) and (4.15) are immediate from the two bases being dual to each other
(each dpz; gives the same values when evaluated on both sides of the first identity in (4.14); both
sides of (4.15) evaluate to the same number on each a%j p). The second equality in (4.14) follows

from (4.3). If f is a smooth function on a neighborhood of p, by (4.15), (4.3), and (4.13)

i=m

i=m P i=m o
= Z; dpf<a—33i p> i = Z; <aﬂfi p(f)>dpxi - Z; (8i(f0(p_1))so(p)dpxi’ (4.16)

IfY=(y1,...,Ym): V—R™ is another smooth chart around p, by (4.14), (4.3), and (4.13)

1=m

0 ":’”< 0 0 . 0
215 (200 2| =5 (amesor )
8xj p ; axj p ay’ p 12:; o ay’ p (4.17)
0 0 0 0
= — o — ==, =] T -1 ,
<8m1 » 0xy, p> <8y1 » Oyn p) (Vo )so(p)

where j(¢0@_1)¢(p) is the Jacobian of the smooth map top~! between the open subsets @(UNV)
and Y(UNV) of R™ at ¢(p); see Figure 1.2 with ¢, =1 and pg=¢.

Suppose next that f: M — N is a map between smooth manifolds and
o=(T1, .., &py): U — R™ and V=1, ,yn): V—R"

are smooth charts around p € M and f(p) € N, respectively; see Figure 1.5. By (4.14), (4.1),

and (4.13),
9 = 9 9 ~— /9 9

Wl (5| ) = XAt (o] ) bwge] =3 (5] o)

"\ a1, i=1 "\ 0z, il 1(p) ZZ:; Oy, il 1)
= (4.18)
1=n 8

=" (@(movofor™) pyar|

— ¢(0) Oy; o)

so the matrix of the linear transformation d, f: T, M — T}, N with respect to the bases {a%j ‘p}j
and {ai%|f(p)}i is j(¢0f0<p_1)<p(p), the Jacobian of the smooth map 1o fop™! between the open

subsets @(UNf~1(V)) and (V) of R™ and R", respectively, evaluated at ¢(p). In particular,
dpf is injective (surjective) if and only if j(¢ofo¢_1)¢(p) is. The f =1id case of (4.18) is the
change-of-coordinates formula (4.17). If M and N are open subsets of R™ and R", respectively,
¢=idps, and ¢ =idy, then under the canonical identifications T,R™ =R™ and T}, R" =R" the
differential d,f is simply the Jacobian J(f), of f at p. The chain-rule formula (4.5) states that
the Jacobian of a composition of maps is the (matrix) product of the Jacobians of the maps; if M,
N, and X are open subsets of Euclidean spaces, this yields the usual chain rule for smooth maps
between open subsets of Euclidean spaces, for free (once it is checked that all definitions above
make sense and correspond to the standard ones for Euclidean spaces).

By the above, if p=(z1,...,2y): U—R" is a smooth chart around a point p in M, then {d,z;};

is a basis for T; M. A weak converse to this statement is true as well; see Corollary 4.10 below. The
key tool in obtaining it is the Inverse Function Theorem for R™; see [6, Theorem 8.3], for example.
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Theorem 4.8 (Inverse Function Theorem). Let U’ C R™ be an open subset and f: U — R™ a

smooth map. If the Jacobian J(f), of f is non-singular for some peU’, there exist neighborhoods
UofpinU and V of f(p) in R™ such that f: U—V is a diffeomorphism.

Corollary 4.9 (Inverse Function Theorem for Manifolds). Let f: M — N be a smooth map
between smooth manifolds. If the differential dyf : TyM — Ty, N is an isomorphism for some
p€E€ M, then there exist neighborhoods U of p in M and V of f(p) in N such that f: U—V is a
diffeomorphism.

Let o=(21,...,2Zp): U —R™ and Y= (y1,...,Ym): V' —> R™ be smooth charts around p in M
and f(p) in N, respectively; see Figure 1.5. Then,

Yofor tip(U'NfTHV')) — (V') CR™
is a smooth map from an open subset of R™ to R such that J (yofop~!) o(p) 18 non-singular (since

by (4.18) this is the matrix of the linear transformation d,f with respect to bases {a%ﬂp}j and

{a%i| #(p)}i). Since o and 1) are homeomorphisms onto the open subsets ¢(U’) and (V') of R™,

by Theorem 4.8 there exist open neighborhoods U of p in U'Nf~1(V’) and V of f(p) in V' such
that the restriction

Yofop™tip(U) — 9(V)
is a diffeomorphism. Since ¢: U — ¢(U) and ¢: V — (V) are also diffeomorphisms, it follows
that so is f: U —V (being composition of 1o fop™! with =1 and ¢).

Corollary 4.10. Let M be a smooth m-manifold. If x1,...,z,: U — R are smooth functions
such that {dp;}; is a basis for Ty M for some p € U’, then there exists a neighborhood U of p in
U’ such that

o= (1,...,Tm): U —R

s a smooth chart around p.
Let f=(z1,...,2m): U —R™. Since {dpz;}; is a basis for Ty M, the differential
dpl‘l
df=| = |:T,M —R"
dprm

is an isomorphism (for each v&T,M—0, there exists i such that dyz;(v)#0). Thus, Corollary 4.10
follows immediately from Corollary 4.9 with M =U’ and N =R".

Corollary 4.11. Let M be a smooth m-manifold. If x1,...,x,: U — R are smooth functions
such that the set {dpx;}; spans TyM for some p € U’, then there exists a nmeighborhood U of p in
U’ such that an m-element subset of {x;}; determines a smooth chart around p on M.

This claim follows from Corollary 4.10 by choosing a subset of {z;}; so that the corresponding
subset of {dpz;}; is a basis for Ty M.

Corollary 4.12. Let M be a smooth m-manifold. If x1,...,xy: U — R are smooth functions
such that the set {d,x;}; is linearly independent in TyM for some p € U’, then there ewist a
neighborhood U of p in U’ and a set of smooth functions xyi1,...,Tm: U — R such that the map

gpz(ml,...,a:k,xk+1,...,a:n): U—R™

s a smooth chart around p on M.
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This claim follows from Corollary 4.10 by choosing a smooth chart ¢ = (y1,...,ym): U" — R™
on a neighborhood U” of p in U’ and adding some of the functions y; to the set {x;}; so that the
corresponding set {d,z;,d,y;} is a basis for T, M.

Remark 4.13. The differential of a smooth map induces a functor from the category of pointed
smooth manifolds (smooth manifolds with a choice of a point) and pointed smooth maps (smooth
maps taking chosen points to each other) to the category of finite-dimensional vector spaces and
vector-space homomorphisms:

(M,p) — T,M, (h: (M,p)—(N,q)) — (dph: T,M —T,;N);

these mappings take a composition of morphisms to a composition of morphisms by (4.5) and idys
to idz, p7. On the other hand, the pull-back map A* on the cotangent spaces reverses compositions
of morphisms by (4.6) and thus gives rise to a contravariant functor between the same two categories.

5 Immersions and Submanifolds

Definition 5.1. Let M and N be smooth manifolds.

(1) A smooth map f: M — N is an immersion if the differential d,f : T, M — Ty N is injective
for every pe M.

(2) The manifold M is a submanifold of N if M C N, M has the subspace topology, and the
inclusion map v: M — N is an immersion.

If M C N is a smooth submanifold and p € M, the differential dp¢: T,M — T,N is an injective
homomorphism. In such cases, we will identify 7}, M with Imd,. C T, N via dj¢.

Discrete subsets of points (with the unique smooth structure) and open subsets (with the induced
smooth structure of Proposition 1.11) of a smooth manifold are submanifolds; see Exercise 25. If
M and N are smooth manifolds, the horizontal and vertical slices

Imeg, Ime, C MXN

of Example 2.5 are embedded submanifolds; see Exercise 26. On the other hand, Q C R does not
admit a submanifold structure.

If f: M — N is a diffeomorphism between smooth manifolds, then the differential
dpfi TpM — Tf(p)N (51)

is an isomorphism for every p € M. Thus, a diffeomorphism between two smooth manifolds is a
bijective immersion. On the other hand, if f: M — N is an immersion, dim M < dim N. If
dimM =dim N and f: M — N is an immersion, then the differential (5.1) is an isomorphism
for every p € M. Corollary 4.9 then implies that f is a local diffeomorphism. Thus, a bijective
immersion f: M — N between smooth manifolds of the same dimension is a diffeomorphism.
The assumption that manifolds are second-countable topological spaces turns out to imply that
a bijective immersion must be a map between manifolds of the same dimension; see Exercise 31.
Thus, a bijective immersion is a diffeomorphism and vice versa.
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Figure 1.8: An immersion pull-backs a subset of the coordinates on the target to a smooth chart
on the domain

A more interesting example of an immersion is the inclusion of R™ as the coordinate subspace
R™x0 into R™, with m <n. By Proposition 5.3 below, every immersion f: M — N locally (on M
and N) looks like the inclusion of R™ as R™x 0 into R™ and every submanifold M C N locally
(on N) looks like R™x 0CR"™. We will use the following lemma in the proof of Proposition 5.3.

Lemma 5.2. Let f: M™ — N™ be a smooth map and pc M. If the differential d,f is injective,
there exist a neighborhood U of p in M and a smooth chart ¥ = (y1,...,yn) : V —> R"™ around
f(p)eN such that

o= (y1of,...,ymof): U — R™
s a smooth chart around p€ M.

Since the differential dj, f: T, M — T,y N is injective, its dual
[F={dpf}*: T}‘(p)N — Ty M

is surjective. Thus, if ¥ = (y1,...,yn) : V — R™ is any smooth chart around f(p) € N, then the
set

{Fdspyyi = dp(yiof)},
spans Ty M (because the set {d(,)y:} is a basis for TN ). By Corollary 4.11, a subset of {y;of};
determines a smooth chart around p on M. If this subset is different from {y;0f,...,ymof}, com-

pose 1 with a diffeomorphism of R that switches the coordinates, sending the chosen coordinates
(those in the subset) to the first m coordinates.

The statement of Lemma 5.2 is illustrated in Figure 1.8. In summary, if d,, f is injective, then m of
the coordinates of a smooth chart around f(p) give rise to a smooth chart around p. By re-ordering
the coordinates around f(p), it can be assumed that it is the first m coordinates that give rise to
a smooth chart around p, which is then o =mwoto f, where 7: R — R™ is the projection on the
first m coordinates. In particular,

T p(f(U)) — o(U) CR™
is bijective; so the image of f(U)CV C N under 1 is the graph of some function g: o(U) — R~
P(f(U)) = {(z,9(x)): z€p(U)}.

By construction,

V(@) = ((f @), un(f@)) = (@), g9(e(p))) € R"xR*™  Vp'eU;
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$0 g = (Ymat1,---,yn)ofop L. In the proof of the next proposition, we compose 1 with the
diffeomorphism (x,y) — (x,y—g(x)) so that the image of f(U) is shifted to R™ x0.

Proposition 5.3 (Slice Lemma). Let f: M™ — N™ be a smooth map and p € M. If d,f is
injective, there exist smooth charts

p: U —R™ and P: V— R"”

around p€ M and f(p) € N, respectively, such that the diagram

v v
| b
R™ —— R"
commutes, where the bottom arrow is the natural inclusion of R™ as R"™x0, and f(U)=1"1(R™x0).

By Lemma 5.2, there exist a neighborhood U of p in M and a smooth chart ¢’ = (y1,...,yn) :
V' —R"™ around f(p) € N such that

p=mop/of: U — R™

is a smooth chart around pe€ M, where m: R” — R™ is the projection on the first m coordinates
as before. In particular, ¢(U)CR™ is an open subset and

Vo f=(p,gop): U— R"XR"™,

L. p(U) —R™™; this is a smooth function. Thus, the map

where = (Ym+1,---,Yn)ofop™
O: p(U)xR"™™ — o(U)xR"™,  (z,y) — (z,y — g(z)),

is smooth. It is clearly bijective, and

L, 0
j(®)(m,y) = ( % > ;

Lym

so O is a diffeomorphism. Let V=v'"1(o(U)xR"™) and
b=00y: V —s R™.

Since p(U)xR™ "™ is open in R™, V is open in N. Since © is a diffeomorphism, 1) is a smooth chart
on N. Since ¢/(V') and ¢(U)xR™™™ contain w’(f(U)), f(U) is contained in V. By definition,

Yo f(p') =0cyof(p) =O0(e(),9(e@))) = (e'), 9(e@)) — gle(@")))
(gp /, ) e(U)x0 Vp el.
)-

Since ¥(f(U))=¢(U)=9(V)NR™ %0, f(U)=¢~ (R™x0

Corollary 5.4. If M™ C N" is a submanifold, for every p € M there exists a smooth chart
Y=(x1,...,2y) : V—R" on N around p such that

MOV =y YR %0) = {p eV 21 () =2ma2() = . .=z, (p) =0}
and ¥: MNV — R™x0 = R™ is a smooth chart on M.
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Figure 1.9: The local structure of immersions

Let U be an open neighborhood of p in M and (V) a smooth chart on N around p= f(p) provided
by Proposition 5.3 for the inclusion map f: M — N. Since M C N has the subspace topology,
there exists W C V open so that U = M NW; the smooth chart (W,|y ) then has the desired
properties.

According to this corollary, every smooth m-submanifold M of an n-manifold N locally (in a
suitably chosen smooth chart) looks like the horizontal slice R™ x 0 CR"™. If p € M lies in such a
chart,

0 0 0
TpM = SpanR{a—:El‘p, 8—3;2‘1,’ ey %‘p}
= {UGTPN: dprmi1(v) =dpTmia(v)=...= pxn(v)zo}-

Proposition 5.3 completely describes the local structure of immersions, but says nothing about
their global structure. Images of 3 different immersions of R into R? are shown in Figure 1.10.
Another type phenomena is illustrated by the injective immersion

R — S'x st s — (eis,eias), (5.2)
where « € R—Q. The image of this immersion is a dense submanifold of S'x S*.

If o2 M — N is an injective map and h: X — N is any map such that h(X) C¢(M), then there

S D 0,
O O

Figure 1.10: Images of some immersions R — R?
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exists a unique map hg: X — M so that the diagram

7/

_hoN
commutes. If M, N, and X are topological spaces, ¢ is an embedding, and h is continuous, then hg
is also continuous [7, Theorem 7.2e]. An analogue of this property holds in the smooth category,
as indicated by the next proposition.

Proposition 5.5. Let .: M — N be an injective immersion, h: X — N a smooth map such that
h(X)Cu(M), and hg: X — M the unique map such that h=wohg. If hy is continuous, then it is
smooth; in particular, hg is smooth if v is an embedding (e.g. if M is a submanifold of N ).

It is sufficient to show that every point g € X has a neighborhood W on which hg is smooth. By
Proposition 5.3, there exist smooth charts

p: U —R™ and v: V— R
around ho(q) € M and h(q)=t(ho(q)) € N such that the diagram

U—2-Rrm

ho /4 l l
s L
Ve
| UL L -
commutes, where W =hg L(U) and the right-most arrow is the standard inclusion of R™ as R™x 0
in R™. Since hg is continuous, W is open in X. Since h is smooth and ¢ is a smooth chart on NV,

the map
Yoh = orohg = (pohg,0): W — R™ xR" ™™

is smooth. Thus, the map @ohg: W — R™ is also smooth. Since ¢ is a smooth chart on M
containing the image of hql|y, it follows that hg|y is a smooth map.

It is possible for the map hgy to be continuous even if 1: M — N is not an embedding (and even if
the image of h is not contained in the image of any open subset of M on which ¢ is an embedding).
This is in particular the case for the immersion (5.2), which satisfies the condition of the following
definition.

Definition 5.6. An injective immersion ¢: M™ — N™ is regular if for every q € N there exists
a smooth chart ¢ : 'V — R™ xR"™™ around q such that the image of every connected subset
Ucu YV under ) is contained in =1 (R™ xy) for some y€R"™™ (dependent on U ).

Since the connected components of ¢=(V) are disjoint open subsets of M and each of them is
mapped by ¢ to one of the horizontal slices 1 (R™xy), t (V) C M is contained in at most count-
ably many of the horizontal slices 1»~!(R™ x g). In particular, each of the connected components
of 1 71(V)C M lies in one of these slices; see Figure 1.11.

Corollary 5.7. If 1: M — N s a regular immersion, h: X — N is a smooth map such that
h(X)Cu(M), and hy: X — M is the unique map such that h=tohg, then hy is smooth.
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Figure 1.11: Image of a regular immersion (M) in a smooth chart consists of horizontal slices

In light of Proposition 5.5, it is sufficient to show that the map hg is continuous. Let U be a
connected open subset of M, x€hy 1(U ), and p=hgo(z). We will show that there is an open subset
W C X such that z€ W and h(W) C«(U); since ¢ is injective, the latter implies that hg(W)CU and
so W Chy L(U). Since ¢ is a regular immersion, there exists a smooth chart t: V — R x R*~"
around hg(p) = h(z) € N such that the image of every connected subset U’ C +~!(V') under ¢ is
contained in ¢~} (R™xy) for some y € R"~™. Shrinking U and V and shifting 1, it can be assumed
that (U) =9 "H(R™x0). Let W C h~*(V) be the connected component containing = € N. Since
h(W)Cu(M)NV is connected, h(W) is contained in one of the horizontal slices ¢~} (R™xy). Since
h(z) €y~ (R™x0), we conclude that h(W)C ™ (R™ x0)=(U).

On the other hand, hg in Proposition 5.5 need not be continuous in general. For example, it is not
continuous at h~1(0) if + and h are immersions described by the middle and right-most diagrams,
respectively, in Figure 1.10. A similar example can be obtained from the left diagram in Figure 1.10
if all branches of the curve have infinite contact with the z-axis at the origin (v and h can then
differ by a “branch switch” at the origin).

Corollary 5.8. Let N be a smooth manifold, M C N, and v: M — N the inclusion map.

(1) If Tar is a topology on M, there exists at most one smooth structure Fpr on (M, Ty) with
respect to which v is an immersion.

(2) If Tar is the subspace topology on M and (M, Tar) admits a smooth structure Fyr with respect
to which ¢ is an immersion, there exists no other topology T, admitting a smooth structure
" on M with respect to which v is an immersion.

The first statement of this corollary follows easily from Proposition 5.5. The second statement
depends on manifolds being second-countable; its proof makes use of Exercise 31.

Corollary 5.9. A topological subspace M C N admits a smooth structure with respect to which M
18 a submanifold of N if and only if for every p€ M there exists a neighborhood U of p in N such
that the topological subspace MNU of N admits a smooth structure with respect to which MNU is
a submanifold of N.

By Corollary 5.8, the smooth structures on the overlaps of such open subsets must agree.
The middle and right-most diagrams in Figure 1.10 are examples of a subset M of a smooth

manifold N that admits two different manifold structures (M, Tys, Far), in different topologies, with
respect to which the inclusion map ¢: M — N is an embedding. In light of the second statement
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of Proposition 5.8, this is only possible because M does not admit such a smooth structure in
the subspace topology. On the other hand, if manifolds were not required to be second-countable,
the discrete topology on R would provide a second manifold structure with respect to which the
identity map R — R, with the target R having the standard manifold structure, would be an
immersion.

6 Submersions and Submanifolds

This section is in a sense dual to Section 5. It describes ways of constructing new immersions and
submanifolds by studying properties of submersions (smooth maps with surjective differentials),
rather than studying properties of immersions and submanifolds. While Section 5 exploits Corol-
lary 4.11, this section makes use of Corollary 4.12, as well as of the Slice Lemma (Proposition 5.3).

If M and N are smooth manifolds, the component projection maps
m: MXN — M, mo: M XN — N,
are submersions; see Exercise 26. By the following lemma, every submersion locally has this form.

Lemma 6.1. Let h: M™ — Z* be a smooth map and pe M. If the differential dph is surjective,

there exist smooth charts
©:U—R" and ¢:V —RF

around p€ M and h(p) € Z, respectively, such that the diagram

U—*2o rm

I

V — =Rk
commutes, where the right arrow is the natural projection map from R™ to RF x0CR™.

Let ¥ = (y1,...,yx): V —>RF be a smooth chart on Z around f(p). Since the differential d,h is
surjective, its dual map
W' ={dyh}": Ty, )N — T, M

is injective. Since {djy)y:} is a basis for Ty N, it follows that the set
{1 dnpyyi = dp(yioh) }
is linearly independent in 7M. By Corollary 4.12, it can be extended to a smooth chart
©: (yloh, e Ypoh, Traq, . .. ,xm) U —s RFxR™F

on M, where U is a neighborhood of p in h=1(V).

Lemma 6.1 can be seen as a counter-part of the Slice Lemma (Proposition 5.3). While an immersion
locally looks like the inclusion

R™ — R™x0 C R", m<n,
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Figure 1.12: The local structure of submersions

a submersion locally looks like the projection
R™ — RF =RFx0 c R™, k<m.

Thus, an immersion can locally be represented by a horizontal slice in a smooth chart, while the
pre-image of a point in the target of a submersion is locally a vertical slice (it is customary to
present projections vertically, as in Figure 1.12).

Corollary 6.2. Let h: M — Z be a smooth map and pc€ M. If the differential d,h is surjective,
there exist a neighborhood U of p in M and a smooth structure on the subspace h™(h(p))NU of M
so that h=1(h(p))NU is a submanifold of M and

codimpy (R~ (h(p))NU) = dim M — dim (k™! (h(p))NU) = dim Z.

If : V—RF and ¢ = (poh, ¢) : U—R*xR™ ¥ are smooth charts on Z around h(p) and on M
around p, respectively, provided by Lemma 6.1,

R (h(P))NU = {oh} ' (Y (h(p)) NU = {mop} " (¥(h(p))) = ¢~ (¥ (h(p)) xR™F).
Since : U — (U) is a homeomorphism, so is the map
@ h™ (A(p)NU — ¢(h(p)) xR™* N p(U)
in the subspace topologies. Thus,
¢: k=t (h(p))NU — R™*

induces a smooth structure on h~!(h(p))NU C M in the subspace topology with respect to which
the inclusion A1 (h(p))NU — M is an immersion because so is the inclusion

Y(h(p)) xR™F — RF xR™F,

Theorem 6.3 (Implicit Function Theorem for Manifolds). Let f: M — N be a smooth map and
Y CN an embedded submanifold. If

TN =Imd, f + Ty, Y Vpef 1 (Y), (6.1)
then f=Y(Y) admits the structure of an embedded submanifold of M,
codimp f7H(Y) = codimyY,  T,(f'(Y)) ={dpf} " (Ty)Y) VrEST(Y).
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In order to prove the first two statements, it is sufficient to show that for every p€ f~1(Y) there
exists a neighborhood U of p in M such that f~'(Y)NU admits the structure of an embedded
submanifold of M of the claimed dimension; see Corollary 5.9. As provided by Corollary 5.4, let
¥: V —R™ be a smooth chart on N around f(p) €Y such that YNV =1~ (R!x0), where [=dim Y.
Let 7: R" — 0xR"! be the projection map and

h=woof: fTHV) —V —R" — R
Since REx0=7"1(0), YNV =4~ (#71(0)) and

FENTI V) = 710V = T ETH0) = hTH0) (6.2)
On the other hand, by the chain rule (4.5)
dph = dw(f(p))ﬁ- o df(p)¢ o dpfi TpM — Tf(p)N — Tw(f(p))Rn — To(OXRn_l). (63)

The homomorphism dyf(,))7 is onto, as is the homomorphism dy,)%. On the other hand,
. ~ . n n—l
dy(renT o Ay = dy) (o) Typ) N — Ty(ppR" — To(0xR"™)

by the chain rule (4.5) and thus vanishes on T}()Y (since 7ot maps Y to 0 in 0 xR"). So,
by (6.1), the restriction
dd,(f(p))ﬁ'odf(p)?ﬁi Im dpf — To(OXRn_l)

is onto, i.e. the homomorphism (6.3) is surjective. By Corollary 6.2 and (6.2), there exists a
neighborhood U of p in f~!(V) such that

fnu=fwnfYv)ynu=nrt0)nU

admits the structure of an embedded submanifold of M of codimension [, as required. For the last
statement, note that

LT W) AN (Trp)Y)  Vpef (V)
since f(f~1(Y))CY; the opposite inclusion holds for dimensional reasons.
Corollary 6.4. Let f: M — N be a smooth map and ge N. If
dpf: T,M — T,N is onto ¥ pe€f(q), (6.4)

then f~1(q) admits the structure of an embedded submanifold of M of codimension equal to the
dimension of N and

Tp(f'(q)) =ker (dpf: T,M —T,N)  Vpef'(q).
This is just the Y ={q} case of Theorem 6.3.

Example 6.5. Let f: R™"! — R be given by f(z) = |z|?>. This is a smooth map, and its
differential at z € R™*! with respect to the standard bases for T,R™*! and TR is

T(Pe= (1 20y ) R R

Thus, d,f is surjective if and only if # # 0, i.e. f(z)# 0. By Corollary 6.4, f~1(q) with ¢ #0
then admits the structure of an embedded submanifold of R™*! and its codimension is 1 (so the
dimension is m). This is indeed the case, since f~!(q) is the sphere of radius \/q centered at the
origin if ¢ >0 and the empty set (which is a smooth manifold of any dimension) if ¢<0. If ¢=0,
f~1(q)={0}; this happens to be a smooth submanifold of R™*!, but of the wrong dimension.
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Example 6.6. Corollary 6.4 can be used to show that the group SO, is a smooth submanifold of
Mat,, «»nR, while U,, and SU,, are smooth submanifolds of Mat,,«,C. For example, with SMat,R
denoting the space of symmetric nxn real matrices, define

f:MatnynR — SMat,ynR, by f(A) = AA™.

Then, O(n)= f~1(I,). Tt is then sufficient to show that the differential d 4 f is onto for all A€ O(n).
Since f=foR4 for every A€O(n), where the diffeomorphism

R4: Mat,«nR — Mat, xR is given by RA(B) = BA,
it is sufficient to establish that dpf is surjective. This is done in Example 4.7.

Corollary 6.7 (Implicit Function Theorem for Maps). Let f: X — M and g: Y — M be smooth
maps. If
TreyM =Imd, f +Imdyg V (z,y) e X XY s.t. f(x)=g(y), (6.5)

then the space
XxpY ={(z,y)eXxY: f(x)=g(y)}

admits the structure of an embedded submanifold of X XY of codimension equal to the dimension
of M and

T(p,q) (XXMY) = {(an)eTpX@TqY: dpf(v):dqg(w)} V(p.q) € XxpY

under the identification of FExercise 26. Furthermore, the projection map mi=nx: X XY — X
is injective (an immersion) if g: Y — M is injective (an immersion).

This corollary is obtained by applying Theorem 6.3 to the smooth map

h=(fg9): XxXY — MxM.

Its last statement immediately implies Warner’s Theorem 1.39. The commutative diagram

XxyY 2 sy
Lk
x—1 ~n

is known as a fibered square.

Corollary 6.8 (Implicit Function Theorem for Intersections). Let X,Y C M be embedded subman-
ifolds. If
T,M =T,X +T,Y VpeXnY, (6.6)

then XNY is a smooth submanifold of X, Y, and M,
dimXNY =dim X +dimY — dim M, T,(XNY)=T,XNT,Y CT,M VpeXnY.

This corollary is a special case of Corollary 6.7.
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Remark 6.9. Submanifolds X,Y C M satisfying (6.6) are said to be transverse (in M); this is
written as X MY or X MY to be specific. For example, two distinct lines in the plane are
transverse, but two intersecting lines in R3 are not. Similarly, smooth maps f: X — M and
g: Y — M satisfying (6.5) are called transverse; this is written as fMg or fMyg. If f: M — N
satisfies (6.1) with respect to a submanifold Y C N, f is said to transverse to Y; this is written
as fmY or fMyY. Finally, if f: M — N satisfies (6.4) with respect to g € N, ¢ is said to be a
regular value of f. By Corollary 6.4, the pre-image of a regular value is a smooth submanifold in
the domain of codimension equal to the dimension of the target. By Sard’s Theorem [4, §2], the
set of a regular values is dense in the target (in fact, its complement is a set of measure 0); so the
pre-images of most points in the target of a smooth map are smooth submanifolds of the domain,
though in some cases they may all be empty (e.g. if the dimension of the domain is lower than the
dimension of the target).

The standard version of the Implicit Function Theorem for R™, Corollary 6.10 below, says that
under certain conditions a system of k equations in m variables has a locally smooth (m —k)-
dimensional space of solutions which can be described as a graph of a function ¢g: R™ % — RF,
It is normally obtained as an application of the Inverse Function Theorem for R, Theorem 4.8
above. It can also be deduced from the proof of Lemma 6.1 and by itself implies Corollary 6.2.

Corollary 6.10 (Implicit Function Theorem for R™). Let U C R™ ¥ xR* be an open subset and
f: U — RF a smooth function. If (xq,y0) € f~1(0) is such that the right k x k submatriz of
T (f) @o,y0) g_a(mo,yo)’ is non-singular, then there exist open neighborhoods V' of xo in R™* and
W of yo in R* and a smooth function g: V— W such that

RO NV W = {(a:,g(m)): xEV}.

Exercises

1. Show that the collection (1.1) is indeed a smooth structure on M, according to Definition 1.3.

2. Show that the maps ¢4 : Ur — R™ described after Example 1.7 are indeed charts on S™ and
the overlap map between them is

ol p (U NU_)=R™—0 — ¢ (U NU_)=R™—0, 2 — —.

3. Show that the map ¢; /5 in Example 1.8 is well-defined and is indeed a homeomorphism.
4. With notation as in Example 1.10, show that
(a) the map S?"*+1 /81— (C"*+1—0)/C* induced by inclusions $?"*+1 — C?"*+! and S!' — C*
is a homeomorphism with respect to the quotient topologies;

(b) the quotient topological space, CP", is a compact topological 2n-manifold which admits a
structure of a complex (in fact, algebraic) n-manifold, i.e. it can be covered by charts whose
overlap maps, g0 gpgl, are holomorphic maps between open subsets of C" (and rational
functions on C");

(¢c) CP™ contains C™ (with its complex structure) as a dense open subset.
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10.

11.

12.

13.

14.

. Let V and W be finite-dimensional vector spaces with the canonical smooth structures of Ex-

ample 1.5. Show that the canonical smooth structure on the vector space VW =V xW is the
same as the product smooth structure.

. Show that a composition of two smooth maps (local diffeomorphisms, diffeomorphisms) is again

smooth (a local diffeomorphism, a diffeomorphism).

. Let f: M — N be a map between smooth manifolds. Show that f is a smooth map if and only

if for every smooth function h: N — R the function hof: M — R is also smooth.

. Verify Lemma 2.2.

. Let V be a finite-dimensional vector space with the canonical smooth structure of Example 1.5.

Show that the vector space operations,

VxV-—YV, (v1,v2) — v1 + V2,
RxV —1YV, (r,v) — rv,

are smooth maps.

Let Vi, Vo, W be finite-dimensional vector spaces with their canonical smooth structures of
Example 1.5. Show that any bilinear map

VixVy — W, V1 QUg — V1-V2,
is smooth.

Show that the two smooth structures F and F’ on R! in Example 1.6 are not the same, but
(R!, F) and (R!, ') are diffeomorphic smooth manifolds.

Let S cC and M B be the unit circle and the infinite Mobius band with the smooth structures
of Examples 1.7 and 1.8, respectively. Show that the map

MB = ([0,1] x R)/~— S, [s,] — ¥,
is well-defined and smooth.

Let (M, F) be a smooth m-manifold and U C M an open subset. Show that F|;; is the unique
smooth structure on the topological subspace U of M satisfying either of the following two
properties:

(SSM1) the inclusion map ¢: U — M is a local diffeomorphism;

(SSM2) if N is a smooth manifold, a continuous map f: N — U is smooth if and only if the
map tof: N— M is smooth.

Let (M, Fyr) and (N, Fy) be smooth manifolds and Frxn the product smooth structure on
M x N of Proposition 1.11. Show that Fj;«n is the unique smooth structure on the product
topological space M x N satisfying either of the following two properties:

(PSM1) the slice inclusion maps ¢y : M — M x N, with ¢ € N, and ¢,: M — M x N, with
p€ M, and the projection maps mwps, 7y : M X N — M, N are smooth;
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

(PSM2) if X is a smooth manifold, continuous maps f: X — M and g: X — N are smooth
if and only if the map fxg: X — M X N is smooth.

Verify Lemmas 2.6 and Corollary 2.7.
Verify Proposition 2.8.

Show that the actions (2.4), (2.5), and (1.3) satisfy the assumptions of Proposition 2.8 and that
the quotient smooth structures on

S'=R/Z, MB=(RxR)/Z, and RP"=S"/Z,,
are the same as the smooth structures of Examples 1.7, 1.8, and 1.9, respectively.

Verify that the addition and product operations on Fp described after Definition 3.1 are well-
defined and make F), into an R-algebra with valuation map ev,,.

Deduce (3.7) from Lemma 3.5.
Verify that the map (3.9) is well-defined and is indeed an R-algebra homomorphism.

Verify that the differential d,h of a smooth map h: M — N, as defined in (4.1), is indeed
well-defined. In other words, d,h(v) is a derivation on Fj, for all v € T,M. Show that
dph: Ty M — T, N is a vector-space homomorphism.

Let M be a smooth connected manifold and f: M — N a smooth map. Show that d,f =0 for
all pe M if and only if f is a constant map.

Let M be a smooth manifold, V' a finite-dimensional vector space with the canonical smooth
structure of Example 1.5, and f, g: M — V smooth maps. Show that

dp(f+g) =dpf +dpg: T,M — V Vpe M,

under the canonical identifications T's,)V, Ty(p), T(p)+g(p)V =V of Example 3.8.

(»

Let f,g: M — R be smooth maps. Show that

dp(fg) = f(p)dpg + g(p)dpf: T,M — R VpeM.

More generally, suppose Vi, Vo, W are finite-dimensional vector spaces with their canonical
smooth structures of Example 1.5,

ViV, — W, V1 QUg — V1-V2,
is a bilinear map, and f1: M —V; and fo: M — V5 are smooth maps. Show that

dp(fi- f2) = filp) - dpfo +dpf1- fo(p): T,M — W Vpel,

under the canonical identifications T, ,)V1=V1, T}, ) V2= Va2, and T}, (). £, () W =W of Exam-
ple 3.8.
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25.

26.

27.
28.
29.

30.

31.

32.
33.
34.
35.

Let (M,F) be a smooth manifold, U C M an open subset with the smooth structure induced
from M as in Proposition 1.11, and ¢: U — M the inclusion map. Show that the differential

dpt: T,U — T, M
is an isomorphism for all peU.

Let (M,Fyr) and (N, Fy) be smooth manifolds and M x N their Cartesian product with the
product smooth structure of Proposition 1.11. With notation as in Example 2.5, show that the
homomorphisms

dptg+dgty: T,M & TyN — Ty o) (M X N), (v1,v2) — dptg(v1) + dgip(ve)
d(nq)ﬂ'l@d(p’q)ﬂ'gi T(p’q)(MXN) — TpM D TqN, w — (d(nq)ﬂ'l(w),d(nq)ﬂ'g(’w)),

are isomorphisms and mutual inverses for all pe M and g€ N.
Let M be a non-empty compact m-manifold. Show that there exists no immersion f: M — R™.
Show that there exists no immersion f: S'xS! — RP?.

Let M be a smooth manifold and p € M a fixed point of a smooth map f: M — M, i.e. f(p)=p.
Show that if all eigenvalues of the linear transformation

dpf: TyM —s T,M

are different from 1 (so d,f(v)#wv for all veT,M —0), then p is an isolated fixed point (has a
neighborhood that contains no other fixed point).

Let M be an embedded submanifold in a smooth manifold N and ¢: M — N the inclusion
map. Show that for every pe M the image of the differential

dpe: T,M — T,N

is the subspace of T, N consisting of the vectors o/(0), where a: (—¢,e) — N is a smooth map
such that Im o C M and «a(0)=p.

Show that a bijective immersion f: M — N between two smooth manifolds is a diffeomorphism.
Hint: you’ll need to use that M is second-countable, along with either

(i) if f: U—R" is a smooth map from an open subset of R™ with m <n, the measure of
f(U)CR™is 0;
(ii) the Slice Lemma (Proposition 5.3) and the Baire Category Theorem [7, Theorem 7.2].

Show that the map (5.2) is an injective immersion and that its image is dense in S' x S
Verify Corollary 5.8.
Show that the smooth structures on S™ of Example 6.5 and Exercise 2 are the same.
Show that the topological subspace
{(z,y)eR? : 2’ +ay+y* =1}
of R? is a smooth curve (i.e. admits a natural structure of smooth 1-manifold with respect to

which it is a submanifold of R?).
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36.

37.

38.
39.

40.

41.

42.

(a) For what values of t€R, is the subspace
{(xl, . ,xn+1)€Rn+1: x%—k. . .—i—x%—xiﬂ = t}

a smooth embedded submanifold of R?t1?

(b) For such values of ¢, determine the diffeomorphism type of this submanifold (i.e. show that
it is diffeomorphic to something rather standard). Hint: Draw some pictures.

Show that the special unitary group

SU, = {A€Mat,C: ATA=T,, det A=1}
is a smooth compact manifold. What is its dimension?
Verify Corollary 6.7.

With notation as in Corollary 6.7, show that every pair of continuous maps p: Z — X and
q: Z—Y such that fop=goq factors through a unique continuous map r: Z — X x Y,

and that Xx 7Y is the unique (up to homeomorphism) topological space possessing this property
for all (p,q) as above. If in addition the assumption (6.5) holds and p and ¢ are smooth, then r
is also smooth, and X x ;Y is the unique (up to diffeomorphism) smooth manifold possessing
this property for all (p,q) as above.

Verify Corollary 6.8.

Let M be a smooth manifold and p € M a fixed point of a smooth map f: M — M, i.e. f(p)=p.
Show that if all eigenvalues of the linear transformation

dpf: TyM —s T,M

are different from 1 (so d,f(v)#wv for all veT,M —0), then p is an isolated fixed point (has a
neighborhood that contains no other fixed point).

Deduce Corollary 6.10 from the proof of Lemma 6.1 and Corollary 6.2 from Corollary 6.10.
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Chapter 2

Smooth Vector Bundles

7 Definitions and Examples

A (smooth) real vector bundle V of rank k over a smooth manifold M is a smoothly varying family
of k-dimensional real vector spaces which is locally trivial. Formally, it is a triple (M, V, ), where
M and V are smooth manifolds and

.V —M

is a surjective submersion. For each p€ M, the fiber szw_l(p) of V over p is a real k-dimensional
vector space; see Figure 2.1. The vector-space structures in V), vary smoothly with p € M. This
means that the scalar multiplication map

RxV —1YV, (c,v) — c- v, (7.1)
and the addition map
VxuV = {(v,v02) €V xVim(v)=m(v2) € M} —V, (v1,v2) — v1+vg, (7.2)
are smooth. Note that we can add vy, v €V only if they lie in the same fiber over M, i.e.
m(v1) =m(va) — (v1,v2) € VxyV.

The space V x3;V is a smooth submanifold of V xV by the Implicit Function Theorem for Maps
(Corollary 6.7). The local triviality condition means that for every point p € M there exist a
neighborhood U of p in M and a diffeomorphism

h: Vg =7 1U) — UxRF

such that h takes every fiber of 7 to the corresponding fiber of the projection map 71 : UxRF — U,
i.e. moh=m on V|y so that the diagram

Vip=nr'(U) —2 U xRF

N4

U

commutes, and the restriction of A to each fiber is linear:

h(civ1+covg) = c1h(vy) + coh(ve) € x X RF Veci,c0€R, v1,09€V,, xel.
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Figure 2.1: Fibers of a vector-bundle projection map are vector spaces of the same rank.

These conditions imply that the restriction of h to each fiber V, of 7 is an isomorphism of vector
spaces. In summary, V locally (and not just pointwise) looks like bundles of R*’s over open sets in
M glued together. This is in a sense analogous to an m-manifold being open subsets of R™ glued
together in a nice way. Here is a formal definition.

Definition 7.1. A real vector bundle of rank k is a tuple (M,V,,-,+) such that
(RVB1) M andV are smooth manifolds and 7: V — M is a smooth map;

(RVB2) -: RxV —V is a map s.t. w(c-v)=n(v) for all (c,v) ERXV;
(RVB3) +: VxpyV—V is a map s.t. m1(vi+ve)=m(v1)=m(ve) for all (vi,v2) EV X V;
( )

RVB4) for every point p € M there exist a neighborhood U of p in M and a diffeomorphism
h: Vg —UxRF such that

(RVB4-a) mioh=m on V|y and
(RVB4-b) the map hly,: Vo — 2 xRF is an isomorphism of vector spaces for all x€U.

The spaces M and V are called the base and the total space of the vector bundle (M, V,r). It is
customary to call m: V — M a vector bundle and V a vector bundle over M. If M is an m-
manifold and V' — M is a real vector bundle of rank k, then V' is an (m-+k)-manifold. Its smooth
charts are obtained by restricting the trivialization maps h for V, as above, to small coordinate
charts in M.

Example 7.2. If M is a smooth manifold and k is a nonnegative integer, then
T MxRF — M

is a real vector bundle of rank k over M. It is called the trivial rank & real vector bundle over M and
denoted 7: TE — M or simply 7: 7, — M if there is no ambiguity.

Example 7.3. Let M =S! be the unit circle and V =MB the infinite Mobius band of Example 1.8.
With notation as in Example 1.8, the map

m:V— M, [s,t] — ™%

defines a real line bundle (i.e. rank 1 bundle) over S1. Trivializations of this vector bundle can be
constructed as follows. With Uy =S!—{41}, let

hi: Vg, — UpxR,  [s,8] — (¥™,1);

(€=, 1),  if s € (1/2,1);

he:V]y. — U_xR, = '
’U7 [S ] {(e2ﬂlsy_t)7 lf S € [07 1/2)
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Both maps are diffeomorphisms, with respect to the smooth structures of Example 1.8 on MB and
of Example 1.7 on S'. Furthermore, 7 ohy =7 and the restriction of h+ to each fiber of 7 is a
linear map to R.

Example 7.4. Let RP" be the real projective space of dimension n described in Example 1.9 and
Y = {(6,v) ERP" xR pel},

where ¢ C R"! denotes a one-dimensional linear subspace. If U; C RP™ is as in Example 1.9, the
map
hit v NU; xR — U xR, (4, (vo, - vn)) — (£,03),

is a homeomorphism. The overlap maps,
hiOhj_llUiﬂUj xR—>UiﬂUj XR, (ﬁ,c) — (6, (XZ/X])C),

are smooth. By Lemma 2.6, the collection {(v, N U; x R"*1 h;)} of generalized smooth charts
then induces a smooth structure on the topological subspace v, C RP™ x R**!. With this smooth
structure, 7, is an embedded submanifold of RP"xR"*! and the projection on the first component,

T=m Y — RP™,

defines a smooth real line bundle. The fiber over a point £ € RP™ is the one-dimensional subspace
¢ of R™*1! For this reason, 7, is called the tautological line bundle over RP™. Note that v; — S*
is the infinite Mobius band of Example 7.3.

Example 7.5. If M is a smooth m-manifold, let

T™M= | |T,M, 7:TM—M, =(v)=p if veT,M.
peEM

If po: Uy —>R™ is a smooth chart on M, let
Go: TM|y, =71 (U,) — Uy x R™, Pa(v) = (1(v), dr()Pav). (7.3)
If pg: Ug—+R™ is another smooth chart, the overlap map
BaoPy": UsNUs x R™ — UsNUg x R™

is a smooth map between open subsets of R?™. By Corollary 2.7, the collection of generalized
smooth charts

{(ﬂ-_l(Ua)v ‘;Ea): (Ua, (1004) GJ:M}a

where F)s is the smooth structure of M, then induces a manifold structure on the set TM. With
this smooth structure on 7'M, the projection 7: T'"M —> M defines a smooth real vector bundle of
rank m, called the tangent bundle of M.

Definition 7.6. A complex vector bundle of rank k is a tuple (M,V,r,-,+) such that
(CVB1) M andV are smooth manifolds and w: V — M is a smooth map;

(CVB2) -:CxV —V is a map s.t. w(c-v)=n(v) for all (c,v)eCXV;
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(CVB3) +: VxyV—V is a map s.t. m(v1+ve)=7(vy)=m(vs) for all (vi,v2) €V xpV;

(CVBA4) for every point p € M there exists a neighborhood U of p in M and a diffeomorphism
h:V|y —UxCF such that

(CVB4-a) mioh=m on Vl]y and

(CVB4-b) the map hly, : Vo —xxCF is an isomorphism of complex vector spaces for all
rzeU.

Similarly to a real vector bundle, a complex vector bundle over M locally looks like bundles of
C*’s over open sets in M glued together. If M is an m-manifold and V — M is a complex vector
bundle of rank k, then V' is an (m+2k)-manifold. A complex vector bundle of rank k is also a real
vector bundle of rank 2k, but a real vector bundle of rank 2k need not in general admit a complex
structure.

Example 7.7. If M is a smooth manifold and k is a nonnegative integer, then
T MxCF— M

is a complex vector bundle of rank k over M. It is called the trivial rank-k complex vector bundle
over M and denoted 7: 7‘,(5 — M or simply 7: 7, — M if there is no ambiguity.

Example 7.8. Let CP™ be the complex projective space of dimension n described in Example 1.10

and
Y = {(£,v) ECP"xC"t:vel}.

The projection 7: v, —» CP™ defines a smooth complex line bundle. The fiber over a point £ € CP"
is the one-dimensional complex subspace ¢ of C"*t!. For this reason, 7, is called the tautological
line bundle over CP™.

Example 7.9. If M is a complex m-manifold, the tangent bundle T'M of M is a complex vector
bundle of rank m over M.

8 Sections and Homomorphisms

Definition 8.1. (1) A (smooth) section of a (real or complex) vector bundle m: V — M is a
(smooth) map s: M —V such that mos=idyy, i.e. s(x) €V, for all z€ M.

(2) A vector field on a smooth manifold is a section of the tangent bundle TM — M.

If 7: V=MxRF— M is the trivial bundle of rank %, a section of 7 is a map s: M — V of

the form
s=(idps, f): M — M xRF

for some map f: M — R*. This section is smooth if and only if f is a smooth map. Thus,
a (smooth) section of the trivial vector bundle of rank k over M is essentially a (smooth) map
M —RF.

If s is a smooth section, then s(M) is an embedded submanifold of V: the injectivity of s and ds is

immediate from mos=1idys, while the embedding property follows from the continuity of 7. Every
fiber V,, of V is a vector space and thus has a distinguished element, the zero vector in V,, which
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So(M)%M

Figure 2.2: The image of a vector-bundle section is an embedded submanifold of the total space.

we denote by 0,. It follows that every vector bundle admits a canonical section, called the zero
section,
so(z) = (z,05) € V.

This section is smooth, since on a trivialization of V' over an open subset U of M it is given by the
inclusion of U as U x0 into U xR or UxCF. Thus, M can be thought of as sitting inside of V as
the zero section, which is a deformation retract of V; see Figure 2.2.

If s: M —V is a section of a vector bundle V— M and h: V| — U xR¥ is a trivialization of V'
over an open subset U C M, then
hos=(idy,sy): U — UxRF (8.1)

for some s5,: U — RF. Since the trivializations h cover V and each trivialization h is a diffeomor-
phism, a section s: M —V is smooth if and only if the induced functions sj: U — R¥ are smooth
in all trivializations h: V|y — U xR of V.

Every trivialization h: V|y — U xR* of a vector bundle V' — M over an open subset U C M
corresponds to a k-tuple (si,...,sg) of smooth sections of V' over U such that the set {s;(z)};
forms a basis for V, Eﬂ_l(az) for all z€U. Let ey, ..., ej be the standard coordinate vectors in R¥.
If h: V|y — U xRF is a trivialization of V, then each section

si=h"to(idy,e): U — V], si(x) = h 1 (z,e;),

is smooth. Since {e;} is a basis for R¥ and h: V, — 2 xRF is a vector-space isomorphism, {s;(x)};
is a basis for V,, for all x € U. Conversely, if s1,...,s,: U — V]|y are smooth sections such that
{si(x)}; is a basis for V, for all €U, then the map

V:UxRF — V|y, (x,c1,. .. cp) —> c181(x) + ... + cpsp(x), (8.2)

is a diffeomorphism commuting with the projection maps; its inverse, h=1"1, is thus a trivialization
of V over U. If in addition s: M — V is any bundle section and

Sp = (Sh71, R 73h,k): U— Rk
is as in (8.1), then
s(x) =h~ (2, 801(2), ., spp(2)) = sp1(@)s1(2) + ... + spp(@)sp(v) Vazel.

Thus, a bundle section s: M — V is smooth if and only if for every open subset U C M and a
k-tuple of smooth sections si,...,s,: U— V|y such that {s;(x)}; is a basis for V,, for all z €U
the coefficient functions

1y U — R, s(z) = cp(x)si(x) + ... + cp(x)sp(x) Vzel,
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are smooth.

For example, let m: V=TM — M be the tangent bundle of a smooth m-manifold M. If ¢, is a
trivialization of T'M over U, C M as in (7.3),

Va e U,

si(x) = ¢, (x,6) = I

is the i-th coordinate vector field. Thus, a vector field X : M — T'M is smooth if and only if for

every smooth chart o= (x1,...,2ny) : Uy —> R"™ the coefficient functions
0 0
Cly. . Cm:U — R, X(p)=cap)=—| +...+emp)=— VpeU,
ory P 0z, p

are smooth. If X: M —TM is a vector field on M and p€ M, sometimes it will be convenient to
denote the value X (p)eT,M of X at p by X,. If in addition feC*(M), define

XfiM-—R by {XF}p) = X,(f)  Vpeld.
A vector field X on M is smooth if and only if X f€C>®(M) for every feC>(M).

The set of all smooth sections of a vector bundle 7: V' — M is denoted by I'(M; V). This is
naturally a module over the ring C°°(M) of smooth functions on M, since fse€I'(M;V) whenever
feC>®(M) and s € '(M;V). We will denote the set I'(M;TM) of smooth vector fields on M
by VF(M). It carries a canonical structure of Lie algebra over R, with the Lie bracket defined by

[,-]: VE(M) x VF(M) — VF(M),

(X, Y], (f) = X,(Yf) = Y,(X/f) VpeM, fe C®U), U C M open, peU; (8:3)
see Exercise 5.

Definition 8.2. (1) Suppose m: V — M and 7' V! — N are real (or complex) vector bundles.
A (smooth) map f:V —V' is a (smooth) vector-bundle homomorphism if f descends to a map
f: M — N, i.e. the diagram

(8.4)

commutes, and the restriction f: V, — V(g 18 linear (or C-linear, respectively) for all x€ M.

(2) Ifm:V—M and 7' V! — M are vector bundles, “a smooth vector-bundle homomorphism
f:V—V' is an isomorphism of vector bundles if n'o f =7, i.e. the diagram

f

N

M

1% v/ (8.5)

commutes, and f is a diffeomorphism (or equivalently, its restriction to each fiber is an isomor-
phism of vector spaces). If such an isomorphism exists, then V and V' are said to be isomorphic
vector bundles.
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Let f : V— V' be a vector-bundle homomorphism between vector bundles over the same space M
that covers idys as in (8.5). If

h: Vg — UxR¥  and  K:V'|y — UxRF

are trivializations of V' and V' over the same open subset U C M, then there exists

frn: U — Maty R s.t. Wofoh Yz v) = (:17, ~hrh(:zt)v) VzeU, veRF. (8.6)

Since the trivializations h and A’ are diffeomorphisms that cover V and V', respectively, a vector-
bundle homomorphism as in (8.5) is smooth if and only if the induced function

.}Ehh“ U — Maty «iR

is smooth for every pair, h: V|y — U xR¥ and h/: V| — UxR¥ | of trivializations of V and V’
over U.

Example 8.3. The tangent bundle 7: TR — R"” of R™ is canonically trivial. The map
TR" — R"™ x R", v — (m(v);v(m),. .., v(m)),
where 7;: R — R are the component projection maps, is a vector-bundle isomorphism.

Lemma 8.4. The real line bundle V. — S* given by the infinite Mobius band of Example 7.3 is
not isomorphic to the trivial line bundle S* xR — ST,

Proof: In fact, (V,S1) is not even homeomorphic to (S* xR, S1). Since
SIXR — 50(S') = SR — §'x0=S'xR™ U S xR,

the space S' xR — S! is not connected. On the other hand, V —sq(S') is connected. If MB is
the standard Mobius Band and S'C M B is the central circle, M B—S" is a deformation retract of
V —S1. On the other hand, the boundary of M B has only one connected component (this is the
primary feature of M B) and is a deformation retract of M B—S'. Thus, V —S! is connected as
well.

Lemma 8.5. If m: V— M is a real (or complex) vector bundle of rank k, V is isomorphic to the
trivial real (or complex) vector bundle of rank k over M if and only if V' admits k sections s1,. .., Sk
such that the vectors si(x),...,sk(x) are linearly independent over R (or over C, respectively) in
Vi for all ze M.

Proof: We consider the real case; the proof in the complex case is nearly identical.
(1) Suppose 1: M xRF — V is an isomorphism of vector bundles over M. Let ey, ...,e; be the
standard coordinate vectors in R*. Define sections si,...,s; of V over M by

si(z) =¥ (z,€) Vi=1,...,k, x € M.

Since the maps x — (x, ¢;) are sections of M x R* over M and 1) is a bundle homomorphism, the
maps s; are sections of V. Since the vectors (x,e;) are linearly independent in z X R* and 9 is
an isomorphism on every fiber, the vectors sq(z),...,si(x) are linearly independent in V, for all
x €M, as needed.
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(2) Suppose s1, ..., sk are sections of V' such that the vectors si(x),..., si(z) are linearly indepen-
dent in V, for all x € M. Define the map

Y: MxRF —V by  (x,cr,...,cr) = c1s1(x) + ...+ cpsp(z) € V.

Since the sections si,...,$, and the vector space operations on V are smooth, the map h is
smooth. Tt is immediate that 7(1)(x, c)) =2 and the restriction of 1) to x x R¥ is linear; thus, ¢ is
a vector-bundle homomorphism. Since the vectors s;i(z),...,sg(z) are linearly independent in V;,
the homomorphism ¢ is injective and thus an isomorphism on every fiber. We conclude that 1) is
an isomorphism between vector bundles over M.

9 Transition Data

Suppose 7: V — M is a real vector bundle of rank k. By Definition 7.1, there exists a collection
{(Uasha)}aca of trivializations for V' such that (J,c 4 Uo =M. Since (Uy,hq) is a trivialization
for V,

ha: Vg, — Uy xRE

is a diffeomorphism such that mjoh, =m and the restriction hq : Vy, — xxRF is linear for all z € U,,.
Thus, for all a, B€ A,

hap=haohg': (UaNUs) x R¥ — (UsNUp) x R¥

is a diffeomorphism such that mjoh,g =11, i.e. hog maps x xRF to x xRF, and the restriction of
hag to zxRF defines an isomorphism of zxR¥ with itself. Such a diffeomorphism must be given by

(z,v) — (2, gap(z)v) Vo e RF,
for a unique element g,5(z) € GLgR (the general linear group of R*¥). The map hap is then given by
hog(z,v) = (2, gap(z)v) Yz € U,NUg, veRF,

and is completely determined by the map go5: UaNUsg— GLiR (and g, is determined by hqg).
Since hqp is smooth, so is gag.

Example 9.1. Let 7: V— S! be the Mobius band line bundle of Example 7.3. If {(Uy,h1)} is
the pair of trivializations described in Example 7.3, then
, V), if Im p <0,
hoohT iU NU_ xR — U,NU- xR, (p,v) — (p,g—4(p)v) = (p,v) P
(pa —U), if Imp>07
—1, if Imp>0;

where g+ :UNU_ =8"—{+1} — GLiIR=R*, g _,(p) = .
1, if Imp<0.
In this case, the transition maps g,g are locally constant, which is rarely the case.

Suppose {(Uq, ha)}aca is a collection of trivializations of a rank k vector bundle 7: V. — M
covering M. Any (smooth) section s: M — V of 7 determines a collection of (smooth) maps
{54: Uy —+RF} 4c 4 such that

hoos(z) = (z,s0(x)) VaeUs, = sa(x)=gap(@)sg(z) VazeUsNUg,a,feA,  (9.1)
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where {gos}agea is the transition data for the collection of trivializations {hq}aca of V. Con-
versely, a collection of (smooth) maps {s,: Uy — R*},c4 satisfying the second condition in (9.1)
induces a well-defined (smooth) section of 7 via the first equation in (9.1). Similarly, suppose
{(Uq, b)) }aca is a collection of trivializations of a rank &’ vector bundle ’: V' — M covering M.
A (smooth) vector-bundle homomorphism f : V — V' covering idy; as in (8.5) determines a
collection of (smooth) maps

{fa: Uy—MatysRYaca st hlofohrt(z,v) = (:E,fa(x)v) YV (z,v) €U, xR¥ (9.2)
= Jal(®)905(®) = gi5(2)f5(x) w€UNUp, 0, BEA, (9:3)

where {g;5}a,pe4 is the transition data for the collection of trivializations {hg,}aea of V'. Con-
versely, a collection of (smooth) maps as in (9.2) satisfying (9.3) induces a well-defined (smooth)

vector-bundle homomorphism f: V — V' covering idys as in (8.5) via the equation in (9.2).

By the above, starting with a real rank k vector bundle 7w: V — M, we can obtain an open cover
{Uq}aca of M and a collection of smooth transition maps

{gagz U.NUg — GLkR}a,ﬁeA'
These transition maps satisfy:
(VBT1) goa = I, since hoo =hooh, !t =id;
(VBT2) gapgsa = Ii, since hogohg, =id;
(VBT3) 9a898+v9va = i, since hagohgyohyq=id.

The last condition is known as the (Cech) cocycle condition (more details in Chapter 5 of Warner).
It is sometimes written as

ga1a29;olazgaoa1 =1 Yag,ar,an € A.
In light of (VBT2), the two versions of the cocycle condition are equivalent.
Conversely, given an open cover {Ug }aeca of M and a collection of smooth maps
{gap: UsNUs — GLkR}a,ﬁeA

that satisfy (VBT1)-(VBT3), we can assemble a rank k vector bundle 7’: V' — M as follows. Let

V' = < U aanka>/ ~, where

acA
(B,x,v) ~ (oz,:z:,gag(x)v) Va,peA xcU,NUg, veRF.

The relation ~ is reflexive by (VBT1), symmetric by (VBT2), and transitive by (VBT3) and (VBT?2).
Thus, ~ is an equivalence relation, and V'’ carries the quotient topology. Let

q: Uaanka—>V/ and 7V — M, [o,z,0] — 2,
acA
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be the quotient map and the natural projection map (which is well-defined). If S €A and W is a
subset of Up xRF then

( BXW |_| axhag(W where
acA

hag: (UaNUg) x R — (UaNUs) x RE, hag(z,v) = (2, gas(2)v).

In particular, if 3x W is an open subset of §xUpg xR*, then q_l(q(ﬁx W)) is an open subset of
Lpeq axUs xR¥. Thus, ¢ is an open continuous map. Since its restriction

Ga = q,aanka

is injective, (g (ax Uy xRF), ¢51) is a smooth chart on V' in the sense of Lemma 2.6. The overlap
maps between these charts are the maps h,g and thus smooth.! Thus, by Lemma 2.6, these charts
induce a smooth structure on V’. The projection map 7’: V/ — M is smooth with respect to this
smooth structure, since it induces projection maps on the charts. Since

T =7 0gy: axU,xRF — U, C M,

the diffeomorphism ¢, induces a vector-space structure in V for each x € U, such that the restric-
tion of ¢, to each fiber is a vector-space isomorphism. Since the restriction of the overlap map h,g
to x xR*, with € U, NU, 3, is a vector-space isomorphism, the vector space structures defined on

V. via the maps ¢, and gg are the same. We conclude that 7': V/— M is a real vector bundle of
rank k.

If {Uy}taca and { 9ap: UaNUg — GLkR}a seq Are transition data arising from a vector bundle
m: V — M, then the vector bundle V' constructed in the previous paragraph is isomorphic to V.
Let {(Uq, ha)} be the trivializations as above, giving rise to the transition functions g,g. We define

fiV—V" by  fv)=|aha(v)] if 7(v) € U,
If m(v) € UaNUpg, then

[8,h5(v)] = [0 hag (s (v))] = [0, ha(v)] € V7,

i.e. the map f is well-defined (depends only on v and not on «). It is immediate that /o f = .
Since the map .
glofohyt: UyxRF — axU, xRF

is the identity (and thus smooth), f is a smooth map. Since the restrictions of o and hq to every
fiber are vector-space isomorphisms, it follows that so is f We conclude that f is a vector-bundle
isomorphism.

In summary, a real rank k vector bundle over M determines a set of transition data with values
in GLgR satisfying (VBT1)-(VBT3) above (many such sets, of course) and a set of transition data
satisfying (VBT1)-(VBT3) determines a real rank-k vector bundle over M. These two processes
are well-defined and are inverses of each other when applied to the set of equivalence classes of
vector bundles and the set of equivalence classes of transition data satisfying (VBT1)-(VBTS3).

!Formally, the overlap map is (8 — a) X hag.
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Two vector bundles over M are defined to be equivalent if they are isomorphic as vector bundles
over M. Two sets of transition data

{gaﬁ}aﬁeA and {ggﬁ}a,ﬁeA’

with A consisting of all sufficiently small open subsets of M, are said to be equivalent if there exists
a collection of smooth functions {f,: Uy —> GLgR}4e4 such that

g:xB :fozgaﬁf5_17 Va,,@GA,2

i.e. the two sets of transition data differ by the action of a Cech 0-chain (more in Chapter 5
of Warner). Along with the cocycle condition on the gluing data, this means that isomorphism
classes of real rank k vector bundles over M can be identified with H L(M; GLgR), the quotient of
the space of Cech cocycles of degree one by the subspace of Cech boundaries.

Remark 9.2. In Chapter 5 of Warner, Cech cohomology groups, H™, are defined for (sheafs of)
abelian groups. However, the first two groups, H" and H', generalize to non-abelian groups as
well.

If 1: V— M is a complex rank k vector bundle over M, we can similarly obtain transition data
for V' consisting of an open cover {U, }aca of M and a collection of smooth maps

{gag : UaﬂUB — GLkC}a,ﬁeA
that satisfies (VBT1)-(VBT3). Conversely, given such transition data, we can construct a complex

rank k vector bundle over M. VThe set of isomorphism classes of complex rank k vector bundles
over M can be identified with H'(M; GL;C).

10 Operations on Vector Bundles

Vector bundles can be restricted to smooth submanifolds and pulled back by smooth maps. All
natural operations on vector spaces, such as taking quotient vector space, dual vector space, direct
sum of vector spaces, tensor product of vector spaces, and exterior powers also carry over to vector
bundles via transition functions.

Restrictions and pullbacks

If N is a smooth manifold, M C N is an embedded submanifold, and 7: V — N is a vector bundle
of rank k (real or complex) over N, then its restriction to M,

m: Vipy=r"t(M) — M,

is a vector bundle of rank k over M. It inherits a smooth structure from V' by the Slice Lemma
(Proposition 5.3) or the Implicit Function Theorem for Manifolds (Theorem 6.3). If {(Uy, ha)} is
a collection of trivializations for V' — N, then {(MNUa, ha|r—1(nmnv.))} 18 a collection of trivial-
izations for V[y — M. Similarly, if {gag} is transition data for V.— N, then {gag|mnv,nu,} is

2According to the discussion around (9.3), such a collection {fa}aca corresponds, via trivializations, to an
isomorphism between the vector bundles determined by {gag}a,se.4 and {ghs}a,gea.
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transition data for V| — M.

If f: M — N is a smooth map and 7: V — N is a vector bundle of rank k, there is a pullback
bundle over M:
fV=MxyV={(pv)eMxV: f(p)=n(v)} = M. (10.1)

Note that f*V is the maximal subspace of M xV so that the diagram

fv=Esvy

M——N

commutes. By the Implicit Function Theorem for Maps (Corollary 6.7), f*V is a smooth subman-
ifold of M x V. By construction, the fiber of m over p€ M is px V) C M xV, ie. the fiber of 7
over f(p)eN:

(f*V)p=p X Vi VpeM. (10.2)

If {(Uy,ha)} is a collection of trivializations for V — N, then {(f~1(U,),haof)} is a collection
of trivializations for f*V — M. Similarly, if {g.s} is transition data for V' — N, then {go50 f}
is transition data for f*V — M. The case discussed in the previous paragraph corresponds to f
being the inclusion map.

Lemma 10.1. If f: V — V" is a vector-bundle homomorphism covering a smooth map f: M — N
as in (8.4), there exists a bundle homomorphism ¢: V —s f*V' so that the diagram

f
v ¢ f*V/W_2>V{
M ! N

commutes.

The map ¢ is defined by
p:V — MxV',  ¢(v) = ((v), f(v)).
Since for=no f,
¢(v) € fV' =M xy V' ={(p,v)eMxV": f(p)=n'(v)}.

Since f*V' € M x V' is a smooth embedded submanifold, the map ¢: V — f*V’ obtained by
restricting the range is smooth; see Proposition 5.5. The above diagram commutes by the con-
struction of ¢. Since f is linear on each fiber of V', so is ¢.

If f: M — N is a smooth map, then dp,f: T)M — T, N is a linear map which varies smoothly
with p. It thus gives rises to a smooth map,

df: TM — TN, v — dyg f(0). (10.3)
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However, this description of df gives no indication that df maps v € T,M to Ty, N or that
this map is linear on each T,M. One way to fix this defect is to state that (10.3) is a bundle
homomorphism covering the map f: M — N, i.e. that the diagram

df

TM TN (10.4)
M ! N

commutes. By Lemma 10.1, df then induces a vector-bundle homomorphism from TM to f*T'N
so that the diagram

T™M Y TN TN (10.5)
|
x % ; o
M- L ~N

commutes. The triangular part of (10.5) is generally the preferred way of describing df. The
description (10.4) factors through the triangular part of (10.5), as indicated by the dashed arrows.
The triangular part of (10.5) also leads to a more precise statement of the Implicit Function The-
orem, which is rather useful in topology of manifolds; see Theorem 10.11 below.

If 7: V— N is a smooth vector bundle, f: M — N is a smooth map, and s: N—V is a bundle
section of V', then

f*s: M — f*V, {f*s}(p) = (p,s(f(p)) € ffV=MxyV C MxV,

is a bundle section of f*V — M. If s is smooth, then f*s: M — M xV is a smooth map with
the image in M xn V. Since M xnyV C M xV is an embedded submanifold, f*s: M — f*V is
a smooth map by Proposition 5.5. Thus, a smooth map f: M — N induces a homomorphism of
vector spaces

Y T(N; V) — T'(M; f*V), s — f*s, (10.6)

which is also a homomorphism of modules with respect to the ring homomorphism
[ C®(N) — C™(M), g—>gof.

In the case of tangent bundles, the homomorphism (10.6) is compatible with the Lie algebra
structures on the spaces of vector fields, as described by the following lemma.

Lemma 10.2. Let f: M — N be a smooth map. If X1,Xs € VF(M) and Y1,Ys € VF(N) are
smooth vector fields on M and N, respectively, such that df(X;)= f*Y; €T (M; f*TN) fori=1,2,
then

df (X1, Xs]) = f*[¥3,Ya].

This is checked directly from the relevant definitions.

The pullback operation on vector bundles also extends to homomorphisms. Let f: M — N
be a smooth map and ny : V — N and my : W — N be vector bundles. Any vector-bundle
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homomorphism ¢: V — W over N induces a vector-bundle homomorphism f*p: f*V — f*W
over M so that the diagram

Vv 1% (10.7)

™ W W
>, N\
N

commutes. The vector-bundle homomorphism f*y is given by

(fro)p=1dx@rp): (fV)p=px Vi) — (ffW)p=px W, (p,v) — (p, p(v)),

where @), is the restriction of ¢ to the fiber V) =7 (f(p)) over f(p)EN.

Subbundles and foliations by submanifolds
Definition 10.3. Let M be a smooth manifold.

(1) A rank k' subbundle of a vector bundle w: V — M is a smooth submanifold V' of V' such that
7|y VI— M is a vector bundle of rank k'.

(2) A rank k distribution on M is a rank k subbundle of TM — M.

A subbundle of course cannot have a larger rank than the ambient bundle; so rkV’/ <1k V in
Definition 10.3 and the equality holds if and only if V/=V. By Exercise 17, the requirement that
mlyr: V! — M is a vector bundle of rank &’ can be replaced by the condition that V;=V,NV"is a
k'-dimensional linear subspace of V), for all pe M.

If f: M — N is an immersion, the bundle homomorphism df as in (10.5) is injective and the
image of df in f*T'N is a subbundle of f*T'N. In the case M C N is an embedded submanifold and
f is the inclusion map, we identify T'M with the image of dv in f*T'N =TN|p;. By Lemma 10.2,
if Y1,Y2€ VF (V) are smooth vector fields on N, then

Y1|M,Y2‘M€VF(M)CP(M;TN‘M) - [Yl,YQHMGVF(M)CF(M;TN’M).
Definition 10.4. Let N be a smooth manifold.

(1) A collection {to : My —> N}aca of injective immersions from m-manifolds is a foliation
of N™ if the collection {Im iy }aca covers N and for every q € N there exists a smooth chart
Y: V—R™R"™™ around q such that the image under i, of every connected subset U C 1 (V)
under 1 is contained in Y~ (R™xy) for some yER™™™ (dependent on U ).

(2) A foliation {io : My —> N}aca of N is proper if 1, is an embedding and the images of tq
partition N (their union covers M and any two of them are either disjoint or the same).

Thus, a foliation of N consists of regular immersions that cover N and are regular in a systematic
way (all of them correspond to horizontal slices in a single coordinate chart); see Figure 2.3. Since
manifolds are second-countable and the subset ¢, ' (V) C M,, in Definition 10.4 is open, ¢4 (:5 (V)
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Ll(Ml) NV
LQ(MQ) nv R™

Figure 2.3: A foliation of N in a smooth chart V.

is contained in at most countably many of the horizontal slices 1 ~!(R™ xy). The images of d¢, in
TN determine a rank m distribution D on N. By Lemma 10.2, if Y7, Yo € VF(IV) are vector fields
on N, then

Y1,Y, e '(N;D) Cc VF(N) = [Y1,Y5] e I(N;D) C VE(N). (10.8)

Definition 10.5. Let DCTN be a distribution on a smooth manifold N. An injective immersion
t: M — N is integral for D if

Im dpL = DL([J) C Tb(p)N VpeM.
If «: M — N is an integrable injective immersion for a distribution D on N, then in particular
dim M =rkD.

If N admits a foliation {to : My — N }aea by injective immersions integral to a distribution D
on N, then I'(V; D) C VF(N) is a Lie subalgebra. By Frobenius Theorem, the converse is also true.

Example 10.6. The collection of embeddings
lo: R — R"=R"xR"™™ | 1,4(x) = (z,a), aeR"™™
is a proper foliation of R™ by m-manifolds. The corresponding distribution D C TR"™ is described by
D=R"x (R"x0) C R" x R" =TR".
Example 10.7. The collection of embeddings
lo: ST — 2t - ontl La(ew) = eV, a e g2t
is a proper foliation of S?"*! by circles. The corresponding distribution D C T'S?"*! is described by
D= {(p,irp): pe sl TGR} c TS*F! ¢ T(C”“‘Szn+1 = §2ntlycntl,
The embedded submanifolds of this foliations are the fibers of the quotient projection map
m: 82l g2ntl gl _ cpn

of Example 1.10. This is an S'-bundle over CP™. In general, the fibers of the projection map
m: N— B of any smooth fiber bundle form a proper foliation of the total space N of the bundle.
The corresponding distribution D CT'N is then the vertical tangent bundle of 7:

D, = kerd,m CT,N VpeN.
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Example 10.8. An example of a foliation, which is not proper, is provided by the skew lines on
the torus of the same irrational slope 7:

ot R — Stx St 1,(s) = (aeis,ei”s), aeStcc.

If n € Q, this foliation is proper. In either case, the corresponding distribution D on S!x 8! is
described by
D(eit17eit2) = d(tl’t2)q({(r7 7]7‘) €R2 :T(t17t2)R2 T ER}),

where ¢: R2— S x S the usual covering map.

Quotient and normal bundles

If V is a vector space (over R or C) and V' CV is a linear subspace, then we can form the quotient

vector space, V/V'. If W is another vector space, W/ C W is a linear subspace, and g: V—W is

a linear map such that g(V’) CW’, then g descends to a linear map between the quotient spaces:
G V)V — W/W.

If we choose bases for V and W such that the first few vectors in each basis form bases for V'
and W', then the matrix for g with respect to these bases is of the form:

=(5 1)

The matrix for g is then D. If g is an isomorphism from V to W that restricts to an isomorphism
from V'’ to W', then g is an isomorphism from V/V’ to W/W’. Any vector-space homomorphism
p: V. — W such that V' C ker ¢ descends to a homomorphism ¢ so that the diagram

V—2 W

7
S
. P

1A%

commutes.

If V/'CV is a subbundle, we can form a quotient bundle, V/V’'—s M, such that
(V/V/)p:v;?/‘/p/ VpeM.

The topology on V/V' is the quotient topology for the natural surjective map ¢ : V—V/V’. The
vector-bundle structure on V/V’ is determined from those of V and V' by requiring that ¢ be a
smooth vector-bundle homomorphism. Thus, if s is a smooth section of V, then gos is a smooth
section of V/V’; so, there is a homomorphism

L(M;V) — T(M;V/V'), s —>qos,
of C*°(M)-modules. There is also a short exact sequence?® of vector bundles over M,

0—V —VvV-Lv/Vv —o,

3exact means that at each position the kernel of the outgoing vector-bundle homomorphism equals the image of
the incoming one; short means that it consists of five terms with zeros (rank 0 vector bundles) at the ends
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where the zeros denote the zero vector bundle Mx0— M. We can choose a system of trivializations
{(Ua;ha)}aca of V such that

ha(V'[0,) = Ua x (R¥' x0) C Uy xR¥  VaecA. (10.9)

Let g : R¥ — RF=* be the projection onto the last (k—K') coordinates. The trivializations for
V/V' are then given by {(U,,{id x qi'} o ho)}. Alternatively, if {gos} is transition data for V/
such that the upper-left &’ x k’-submatrices of g3 correspond to V' (as is the case for the above
trivializations ho) and gag is the lower-right (k—k")x(k—k") matrix of g,s, then {gns} is transition
data for V/V'. Any vector-bundle homomorphism ¢ : V. — W over M such that p(v) =0 for
all v €V’ descends to a vector-bundle homomorphism @ so that ¢ = @oq. We leave proofs of the
following lemmas as an exercise.

Lemma 10.9. If f: M — N is a smooth map and W, W' — N are smooth vector bundles,
Fr(W/W') = (f*W)/(f*W)
as vector bundles over M.

Lemma 10.10. Let V — M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A wvector-bundle homomorphism f:V — W covering f as in (8.4) and vanishing
on a subbundle V' CV induces a vector-bundle homomorphism

vV —w
covering f; this induced homomorphism is smooth if the homomorphism f 18 smooth.

If .: Y — N is an immersion, the image of d¢ in «*T'N is a subbundle of :*T'N. In this case, the

quotient bundle,
Nyt = TN /Imde — Y,

is called the normal bundle for the immersion ¢. If Y is an embedded submanifold and ¢ is the
inclusion map, TY is a subbundle of *T'N =T N|y and the quotient subbundle,

NNY =Nyt = TN /Imde = TNy /TY — Y,

is called the normal bundle of Y in N; its rank is the codimension of Y in N. If f: M — N
is a smooth map and X C M is an embedded submanifold, the vector-bundle homomorphism d f
in (10.5) restricts (pulls back by the inclusion map) to a vector-bundle homomorphism

df’)(: TM‘X — (f*TN)|X
over X, which can be composed with the inclusion homomorphism TX —TM|x,

X — TM|x X (PN

If in addition f(X) CY, then the above sequence can be composed with the f*-pullback of the
projection homomorphism ¢: TN|y — NyNY,

TX — TM|x 5 (PN % Fany. (10.10)
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This composite vector-bundle homomorphism is 0, since d, f(v) € Tt)Y for all z € X. Thus, it
descends to a vector-bundle homomorphism

df: NuX — f*NNY (10.11)

over X. If fMyY as in (6.1), then the map TM|x — f*NxnY in (10.10) is onto and thus the
vector-bundle homomorphism (10.11) is surjective on every fiber. Finally, if X = f~(Y"), the ranks
of the two bundles in (10.11) are the same by the last statement in Theorem 6.3, and so (10.11)
is an isomorphism of vector bundles over X. Combining this observation with Theorem 6.3, we
obtain a more precise statement of the latter.

Theorem 10.11. Let f: M — N be a smooth map and Y C N an embedded submanifold. If
fANY as in (6.1), then X = f~1(Y) is an embedded submanifold of M and the differential df
induces a vector-bundle isomorphism

NuX F*NNY) (10.12)

\/

Since the ranks of Ay X and f*(NyY) are the codimensions of X in M and Y in N, respectively,
this theorem implies Theorem 6.3. If Y ={q} for some g€ N, then NyY is a trivial vector bundle
and thus so is Ny X ~ f*(NyY). For example, the unit sphere S™ C R™*! has trivial normal
bundle, because

s™ = (1), where f:R™ R, f(z) = |z|*.
A trivialization of the normal bundle to S™ is given by
TR™/TS™ — S™ xR, (z,v) — (z,z-v).

Corollary 10.12. Let f: X — M and g: Y — M be smooth maps. If fMarg as in (6.5), then
the space

XxyY ={(z,y)eXxY: f(z)=g(y)}

18 an embedded submanifold of X XY and the differential df induces a vector-bundle isomorphism

d(fom d(gom
Nty (X x 3 Y) —2OmFUGTY)_ o pupy — e g (10.13)
XXMY

Furthermore, the projection map m =7nx: X XY — X is injective (immersion) if g: Y — M
is injective (immersion).

This corollary is obtained by applying Theorem 10.11 to the smooth map

fxXg: XxXY — MxM.

All other versions of the Implicit Function Theorem stated in these notes are special cases of this
corollary.
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Direct sums

If V and V' are two vector spaces, we can form a new vector space, V@V’ =V xV’, the direct sum
of V and V’. There are natural inclusions V, V' — V@V’ and projections V&V’ — V, V', Linear
maps f: V—W and f': V'— W’ induce a linear map

fof vev — wWew'.

If we choose bases for V., V/, W, and W' so that f and f’ correspond to some matrices A and D,
then with respect to the induced bases for V@V’ and Wa W/,

rou- (4 B)

If 7: V— M and 7’: V' — M are smooth vector bundles, we can form their direct sum, V@V,
so that
(VeV),=VaV, VpeM.

The vector-bundle structure on V@V’ is determined from those of V' and V' by requiring that
either the natural inclusion maps V, V' — V@V’ or the projections V@V’ — V, V'’ be smooth
vector-bundle homomorphisms over M. Thus, if s and s’ are sections of V and V', then s®s’ is a
smooth section of V&V’ if and only if s and s’ are smooth. So, the map

I(M;V)eT(M; V') — T'(M; Ve V'),
(s,58") — 5@, {s®s'}(p) =s(p) ®5'(p) VpeM,

is an isomorphism of C°°(M)-modules. If {gog} and {gz} are transition data for V' and V7,
transition data for V@V’ is given by {gas® gfw}, i.e. we put the first matrix in the top left corner
and the second matrix in the bottom right corner. Alternatively,

axr VXV —s MxM
is a smooth vector bundle with respect to the product structures and
VeV =d((VxV), (10.14)
where d: M — M x M, d(p) = (p,p) is the diagonal embedding.

The operation @ is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If o= M — M is trivial rank 0 bundle,

eV xV
for every vector bundle V— M. If n€Z=°, let

nVv=Vae..aV;
—_———

n

by convention; 0V =71y. We leave proofs of the following lemmas as an exercise.
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Lemma 10.13. If f: M — N is a smooth map and W,W'—s N are smooth vector bundles,
FrwWew) = (fW)e (f'W)
as vector bundles over M.

Lemma 10.14. Let V,V' — M and W,W' — N be vector bundles over smooth manifolds and
f: M — N a smooth map. Vector-bundle homomorphisms

f:V—wW and [V —W
covering f as in (8.4) induce a vector-bundle homomorphism
fof:vev — wew'
covering f; this induced homomorphism is smooth if and only z'ff and f/ are smooth.

If V, V' — M are vector bundles, then V and V' are vector subbundles of V& V', It is immediate
that
(VeV) V=V and (VeV)/V' =V.

These equalities hold in the holomorphic category as well (i.e. when the bundles and the base
manifold carry complex structures and all trivializations and transition maps are holomorphic).
Conversely, if V' is a subbundle of V', by Section 11 below

Ve (V/V)e V!

as smooth vector bundles, real or complex. However, if V' and V' are holomorphic bundles, V' may
not have the same holomorphic structure as (V/V')®V’ (i.e. the two bundles are isomorphic as
smooth vector bundles, but not as holomorphic ones).

Dual bundles

If V is a vector space (over R or C), the dual vector space is the space of the linear homomorphisms
to the field (R or C, respectively):

V* = Hompg (V, R) or V* = Hom¢ (V, C).
A linear map g: V — W between two vector spaces induces a dual map in the “opposite” direction:
g W — VvV, {g*(L)}(v) = L(g(v)) VLeW* veV.

If V=RF and W =R", then ¢ is given by an n x k-matrix, and its dual is given by the transposed
k x n-matrix.

If 7: V— M is a smooth vector bundle of rank & (say, over R), the dual bundle of V' is a vector
bundle V* — M such that
(V¥)p =V, VpeM.

The vector-bundle structure on V* is determined from that of V' by requiring that the natural map

VoV =V xyV* — R (or C), (v,L) — L(v), (10.15)
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be smooth. Thus, if s and 1) are smooth sections of V' and V*,

U(s): M — R, {d(s)Hp) = {v(0)} (s(p),
is a smooth function on M. So, the map
LM V) x T(M; V™) — C%(M),  (s,9) — 1(s),

is a nondegenerate pairing of C°°(M)-modules. If {g,g} is transition data for V, i.e. the transitions
between smooth trivializations are given by

haohglz UaNUg x RF — U,NUg x R*, (p,v) — (p,gag(p)v),
the dual transition maps are then given by
UaNUg x RF — U,NUg x R”, (p,v) — (p,gag(p)trv).

However, these maps reverse the direction, i.e. they go from the a-side to the §-side. To fix this
problem, we simply take the inverse of g,z(p)™:

UaNUs x RF — U,nUz xR*, (p,v) — (p, {gap ()™} ).

So, transition data for V* is {(ggﬁ)_l}. As an example, if V' is a line bundle, then g,z is a smooth
nowhere-zero function on U,NUg and (¢g*)ap is the smooth function given by 1/g,3. We leave
proofs of the following lemmas as an exercise.

Lemma 10.15. If f: M — N is a smooth map and W — N is a smooth vector bundle,
[T =~ (ffw)”
as vector bundles over M.

Lemma 10.16. Let V — M and W — N be vector bundles over smooth manifolds and f: M — N
a diffeomorphism. A wvector-bundle homomorphism f:V — W covering f as in (8.4) induces a
vector-bundle homomorphism .

Wt — v
covering = this induced homomorphism is smooth if and only if the homomorphism [ is.
The cotangent bundle of a smooth manifold M, w: T*"M — M, is the dual of its tangent bundle,
TM — M, i.e. T*M = (T'M)*. For each p € M, the fiber of the cotangent bundle over p is the
cotangent space Ty M of M at p; see Definition 3.7. A section a: M —T*M of T*M is called a
1-form on M; it assigns to each p€ M a linear map

ap=a(p): T,M — R.
If in addition X is a vector field, then
aX): M —R,  {a(X)}p) = 0p(X(p)),

is a function on M. The section « is smooth if and only if a(X) e C*> (M) for every smooth vector
field X on M. If op=(z1,...,%m): U—R™ is a smooth chart, the sections

0 B,
Gos e € VEW)
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form a basis for VF(U) as a C*°(U)-module. Since

9 -
dpx’<3—%> :57’] v’l,j = 1727"’7m7

dz;(X) € C*(U) for all X € VF(U) and {dpz;}; is a basis for T;M for all p€ U. Thus, dz; is a
smooth section of T*M over U and the inverse of the map

UxR™ — T*M]|y, (p,c1,...,cm) — crdpzr + ... + cpdpzy,,

is a trivialization of T*M over U; see Section 8. By (4.16), this inverse is given by

" m 0 0
TM‘U—>UXR s U—><7T(U),U<8—$1>,,U<%>>,

where w: T*M — M is the projection map. Thus, a 1-form « on M is smooth if and only if for
every smooth chart @, =(x1,...,2y) : Uy —>R™ the coefficient functions

0 0
Cl:a((‘)—xl)"”’cm: <%> :U — R, ap = c1(p)dpx1 + ... + en(p)dpzy, VpeU,

are smooth. The C°°(M)-module of 1-forms on M is denoted by E'(M).

Tensor products

If V and V' are two vector spaces, we can form a new vector space, V®V’, the tensor product of
Vand V. If g: V—W and ¢': V' — W' are linear maps, they induce a linear map

9gRg VeV — WeW'.

If we choose bases {e;}, {e;,}, {fi}, and {f,} for V, V', W, and W’ respectively, then {e;®e], }(;n)
and {fi®f},}(im) are bases for V@V’ and W @W’. If the matrices for g and g’ with respect to the
chosen bases for V, V', W, and W' are (g;;)i,; and (g,,,,,)m.n, then the matrix for g®g¢" with respect
to the induced bases for V@V’ and WeW' is (g;; g;nn)(i7m),(j,n). The rows of this matrix are indexed
by the pairs (7,m) and the columns by the pairs (j,n). In order to actually write down the matrix,
we need to order all pairs (i,m) and (j,n). If the vector spaces V and W are one-dimensional, g
corresponds to a single number g;;, while g®¢’ corresponds to the matrix (gmn )m,» multiplied by
this number.

If 7: V— M and 7' : V' — M are smooth vector bundles, we can form their tensor product,
V®V’, so that
(VeV),=V,eV, VpecM.

The topology and smooth structure on V@V’ are determined from those of V' and V' by requiring
that if s and s’ are smooth sections of V' and V', then s ® s’ is a smooth section of V®@V’. So,
the map

L(M;V)@T(M; V") — T(M; VaV'),
(5,8") — s®5, {s@5'}(p) =s(p) @5 (p) VpeM,
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is a homomorphism of C°°(M)-modules (but not an isomorphism). If {gas} and {g/,;} are transi-
tion data for V' and V', then transition data for V@V’ is given by {gag® gfw}, i.e. we construct a
matrix-valued function gas®g,s from {gas} and {g,4} as in the previous paragraph. If V" and V'
are line bundles, then g, and g(’w are smooth nowhere-zero functions on U,NUpg and (g®¢’)ap is
the smooth function given by gaggflg.

The operation ® is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If 71 — M is the trivial line bundle,

neVaV
for every vector bundle V — M is a vector bundle. If n€Z™, let

Ve —vVee.. @V, VN (R =yrg. . . @V
N—— —— ——

by convention, V¥ =7;. We leave proofs of the following lemmas as an exercise.

Lemma 10.17. If f: M — N is a smooth map and W,W'— N are smooth vector bundles,
frwew)~(f'w)e (fWw)

as vector bundles over M.

Lemma 10.18. Let V,V/ — M and W,W’' — N be vector bundles over smooth manifolds and
f: M — N a smooth map. Vector-bundle homomorphisms

f:V—w and f:v —w
covering f as in (8.4) induce a vector-bundle homomorphism
fof:veV — weWw'
covering f; this induced homomorphism is smooth if f and f/ are smooth.

Lemma 10.19. Let V,V/ — M and W — N be vector bundles over smooth manifolds and
f: M — N a smooth map. A bundle map

f VeV =VxyV —W

covering f as in (8.4) such that the restriction of f to each fiber VpxV,, is linear in each component
mnduces a vector-bundle homomorphism

VeV —Ww

covering f; this induced homomorphism is smooth if the homomorphism f 18.
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Exterior products

If V is a vector space and k is a nonnegative integer, we can form the k-th exterior power, AFV,
of V. A linear map g: V — W induces a linear map

Afg: ARV — AW
If n is a nonnegative integer, let Si(n) be the set of increasing k-tuples of integers between 1 and n:

Sk(n) = {(i1,..., i) €Z": 1<iy <in<...<ip<n}.
If {ej}j=1,...n and {fi}i=1,...m ave bases for V and W, then {e,},cs,(n) and {f.}es, (m) are bases
for A¥V and A*W, where
€l rm) = €m N oo N e and f(m,---,uk) = fur N N [y

If (gij)i=1,...m,j=1,..n is the matrix for g with respect to the chosen bases for V" and W, then

(det ((Gprm)rs=1.6)) (ume i (my o)

is the matrix for A*g with respect to the induced bases for A¥V and A*W. The rows and columns of
this matrix are indexed by the sets Si(m) and Sk(n), respectively. The (i, n)-entry of the matrix
is the determinant of the kX k-submatrix of (g;;);; with the rows and columns indexed by the
entries of u and 7, respectively. In order to actually write down the matrix, we need to order the
sets Si(m) and Si(n). If k=m=n, then A*V and A*V are one-dimensional vector spaces, called
the top exterior power of V and W, with bases

{61/\.../\€k} and {fl/\.../\fk}.

With respect to these bases, the homomorphism A*g corresponds to the number det(gi;)i ;. Ifk>n
(or k>m), then AFV (or A¥W) is the zero vector space and the corresponding matrix is empty.

If 7: V— M is a smooth vector bundle, we can form its k-th exterior power, A¥V, so that
(A*V), = A%V,  VpeM.

The topology and smooth structure on A*V are determined from those of A¥V by requiring that
if s1,..., 5 are smooth sections of V, then sy A...Asy, is a smooth section of A*V. Thus, the map
A (D(M;V)) — T(M; ARV,

(81y...,8K) —> S1A...ASk, {s1A...Asp}(p) = s1(p)A.. . Ask(p) VpeM,
is a homomorphism of C°°(M)-modules (but not an isomorphism). If {g,} is transition data for
V, then transition data for AFV is given by {Akgag}, i.e. we construct a matrix-valued function
AP gap from each matrix g,g as in the previous paragraph. As an example, if the rank of V' is k,

then the transition data for the line bundle AV, called the top exterior power of V, is {det GaB}-
By definition, A°V =7 is the trivial line bundle over M.

It follows directly from the definitions that if V — M is a vector bundle of rank k and L — M is
a line bundle (vector bundle of rank one), then

AP(VaL) =AM Y VeL) = AV @ L =AYV L.
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More generally, if V,W — M are any two vector bundles, then
APP(VeW) = (A™PV) @ (APW)  and  AF(VeW)= @ AV)eWIW).
i+j=k
We leave proofs of the following lemmas as exercises.
Lemma 10.20. If f: M — N is a smooth map, W — N is a smooth vector bundle, and k€ Z=0,
(W) = AR (FFW)

as vector bundles over M.
Lemma 10.21. Let V — M be a vector bundle. If k,1€Z=°, the map

D(M; AFV) @ T(M; A'V) — T(M; AFY)

(s1,82) — s1/As2, {s1As2}(p) = s1(p)Asa(p) VpeM,

is a well-defined homomorphism of C°°(M)-modules.

Lemma 10.22. Let V — M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A vector-bundle homomorphism f:V — W covering f as in (8.4) induces a vector-
bundle homomorphism

AFFARY — AP
covering f; this induced homomorphism is smooth if the homomorphism f 1S.

Lemma 10.23. LetV — M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A bundle homomorphism
FikV=Vxy.. xuV —W
—_———
k

covering f as in (8.4) such that the restriction of f to each fiber V;)k 1s linear in each component
and alternating induces a vector-bundle homomorphism

fANV — W
covering f; this induced homomorphism is smooth if the homomorphism f is.

Remark: For complex vector bundles, the above constructions (exterior power, tensor product,
direct sum, etc.) are always done over C, unless specified otherwise. So if V' is a complex vector
bundle of rank k over M, the top exterior power of V is the complex line bundle A*V over M
(could also be denoted as ALV). In contrast, if we forget the complex structure of V' (so that it
becomes a real vector bundle of rank 2k), then its top exterior power is the real line bundle A2V
(could also be denoted as AZV).

If M is a smooth manifold, a section of the bundle A*(T*M) — M is called a k-form on M. A
smooth nowhere-vanishing section s of A*P(T*M), i.e.

s(p)GAtOp(T;M)—O Vpe M,

is called a volume form on M; Corollary 12.2 below provides necessary and sufficient conditions for
such a section to exist. The space of smooth k-forms on M is often denoted by E*(M), rather
than T'(M; AF(T*M)).
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11 Metrics on Fibers

If V' is a vector space over R, a positive-definite inner-product on V' is a symmetric bilinear map
(,): VXV —R, (v,w)— (v,w), s.t. (v,v) >0 YoveV-0.

If {,) and (,)’ are positive-definite inner-products on V and a,a’ €R* are not both zero, then
a(,)+ad (,): VxV — R, {a(,)+d'(,)"}(v,w) = alv,w) + d' (v, w)’,

is also a positive-definite inner-product. If W is a subspace of V' and (,) is a positive-definite
inner-product on V, let
Wt = {veV: (v,w)=0 Vwe W}

be the orthogonal complement of W in V. In particular,
V=WaeWw.

Furthermore, the quotient projection map
mV—V/W

induces an isomorphism from W+ to V/W so that

VaWe (V/W).

If M is a smooth manifold and V — M is a smooth real vector bundle of rank k, a Riemannian
metric on V is a positive-definite inner-product in each fiber V; ~R* of V that varies smoothly
with x € M. Formally, the smoothness requirement is one of the following equivalent conditions:

(a) the map (,): Vx 3V —R is smooth;
(b) the section (,) of the vector bundle (V®V)* — M is smooth;
(c) if s1, s2 are smooth sections of the vector bundle V. — M, then the map
(s1,82): M — R, p — (s1(p), s2(p)),
is smooth;
(d) if h: V|y — U xRF is a trivialization of V, then the matrix-valued function,
B:U — MatyR s.t. <h_1(p,v),h_1(p,w)> =v'B(p)w VY peU, v,weRF,
is smooth.

Every real vector bundle admits a Riemannian metric. Such a metric can be constructed by
covering M by a locally finite collection of trivializations for V' and patching together positive-
definite inner-products on each trivialization using a partition of unity; see Definition 11.1 below.
If W is a subspace of V and (,) is a Riemannian metric on V, let

wt = {fveV:(v,w)=0VweW}
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be the orthogonal complement of W in V. Then W+ — M is a vector subbundle of V and
V=wWaeWw.
Furthermore, the quotient projection map
mV—V/W
induces a vector bundle isomorphism from W+ to V/W so that
VaWwe (V/W).

Definition 11.1. A smooth partition of unity subordinate to the open cover {Uy}aca of a smooth
manifold M is a collection {na}aca of smooth functions on M with values in [0, 1] such that

(PU1) the collection {supp na}aca is locally finite;

(PU2) suppn. CU, for every a€ A;
(PU3) Z No = 1.

acA

If V is a vector space over C, a nondegenerate Hermitian inner-product on V is a map
(,):VxV —C, (v,w)— (v,w),
which is C-antilinear in the first input, C-linear in the second input,
(w,v) = (v, w) and (v,v) >0 YveV-0.

If {,) and (,)’ are nondegenerate Hermitian inner-products on V and a,a’ € RT are not both zero,
then a(, )+a’(,)" is also a nondegenerate Hermitian inner-product on V. If W is a complex subspace
of V and (,) is a nondegenerate Hermitian inner-product on V, let

Wt = {veV: (v,w)=0 VweW}
be the orthogonal complement of W in V. In particular,
V=WwWaeWw"
Furthermore, the quotient projection map
m:V—V/W
induces an isomorphism from W+ to V/W so that

VaWae (V/W).

If M is a smooth manifold and V' — M is a smooth complex vector bundle of rank k, a Hermitian
metric on V is a nondegenerate Hermitian inner-product in each fiber V, ~ C* of V that varies
smoothly with x € M. Formally, the smoothness requirement is one of the following equivalent
conditions:
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(a) the map (,): Vx 3V —C is smooth;
(b) the section (,) of the vector bundle (V®rV)* — M is smooth;

(c) if s1,s9 are smooth sections of the vector bundle V' — M, then the function <81, 82> on M
is smooth;

(d) if h: V|y — U xCF is a trivialization of V', then the matrix-valued function,
B:U — Mat,C s.t. <h_1(p,v),h_l(p,w)> =0'B(p)w Y peM, v, weCk,
is smooth.

Similarly to the real case, every complex vector bundle admits a Hermitian metric. If W is a
subspace of V and (,) is a Hermitian metric on V', let

Wt = {veV: (v,w)=0 VweW}

be the orthogonal complement of W in V. Then W+ — M is a complex vector subbundle of V/
and
V=waew

Furthermore, the quotient projection map
m:V—V/W
induces an isomorphism of complex vector bundles over M so that

VaWe (V/W).

If V — M is a real vector bundle of rank k£ with a Riemannian metric (,) or a complex vector
bundle of rank k& with a Hermitian metric (, ), let

SV ={veV:(v,v)=1} — M

be the sphere bundle of V. In the real case, the fiber of SV over every point of M is S*~1.
Furthermore, if U is a small open subset of M, then SV|y~U xS*~! as bundles over U, i.e. SV is
an S*~1_fiber bundle over M. In the complex case, SV is an S?*~!fiber bundle over M. If V— M
is a real line bundle (vector bundle of rank one) with a Riemannian metric (,), then SV — M
is an SO-fiber bundle. In particular, if U is a small open subset of M, SV|y is diffeomorphic to
U x{+£1}. Thus, SV — M is a 2: 1-covering map. If M is connected, the covering space SV is
connected if and only if V is not orientable; see Section 12 below.

12 Orientations
If V is a real vector space of dimension k, the top exterior power of V, i.e.

APV = APV
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is a one-dimensional vector space. Thus, A*PV —0 has exactly two connected components. An
orientation on V is a component C of APV —0. If C is an orientation on V, then a basis {¢;} for V
is called oriented (with respect to C) if

e1N...Neg €C.

If {f;} is another basis for V" and A is the change-of-basis matrix from {e;} to {f;}, i.e.

i=k
(fl,...,fk) = (61,...,€k)A <~ fj:ZAijeiy
=1

then
fin.. A fr=(detA)eg A ... Aeg.

Thus, two different bases for V' belong to the same orientation on V if and only if the determinant
of the corresponding change-of-basis matrix is positive.

Suppose V — M is a real vector bundle of rank k. An orientation for V' is an orientation for each
fiber V, ~ R¥, which varies smoothly (or continuously, or is locally constant) with x € M. This
means that if

h:V]y — UxRF

is a trivialization of V' and U is connected, then h is either orientation-preserving or orientation-
reversing (with respect to the standard orientation of R¥) on every fiber. If V admits an orientation,
V' is called orientable.

Lemma 12.1. Suppose V— M is a smooth real vector bundle.
(1) V is orientable if and only if V* is orientable.

(2) V is orientable if and only if there exists a collection {Uy, ha} of trivializations that covers M
such that
detgagz UaﬂUg — R+,

where {gap} is the corresponding transition data.
(3) V is orientable if and only if the line bundle A***V —s M is orientable.

(4) If V is a line bundle, V is orientable if and only if V is (isomorphic to) the trivial line
bundle M xR.

(5) If M is connected and V is a line bundle, V is orientable if and only if the sphere bundle SV
(with respect to any Riemann metric on V') is not connected.

Proof: (1) Since A*P(V*) ~ (A*PV)* and a line bundle L is trivial if and only if L* is trivial, this

claim follows from (3) and (4).

(2) If V has an orientation, we can choose a collection {Uy, hy } of trivializations that covers M such
that the restriction of h, to each fiber is orientation-preserving (if a trivialization is orientation-
reversing, simply multiply its first component by —1). Then, the corresponding transition data
{gap} is orientation-preserving, i.e.

det gog: UoNUg — RT.
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Conversely, suppose {U,, hq} is a collection of trivializations that covers M such that
det Jap: UaﬂUﬁ — RT.
Then, if z €U, for some «, define an orientation on V, by requiring that
ho: Ve — o xR
is orientation-preserving. Since det gop is RT-valued, the orientation on V is independent of «
such that z € U,. Each of the trivializations h, is then orientation-preserving on each fiber.
(3) An orientation for V' is the same as an orientation for A*PV since
APy = Atop (AmpV).

Furthermore, if {(U,, ho)} is a collection of trivializations for V' such that the corresponding tran-
sition functions g, have positive determinant, then {(U,, A*Ph,)} is a collection of trivializations
for A™PV such that the corresponding transition functions A*Pg,3 = det(g,z) have positive de-
terminant as well.

(4) The trivial line bundle M xR is orientable, with an orientation determined by the standard ori-
entation on R. Thus, if V' is isomorphic to the trivial line bundle, then V' is orientable. Conversely,
suppose V is an oriented line bundle. For each z € M, let

Cr, C APV =V

be the chosen orientation of the fiber. Choose a Riemannian metric on V and define a section s of
V' by requiring that for all z€ M

(s(z),s(z)) =1 and s(x) € Cy.

This section is well-defined and smooth (as can be seen by looking on a trivialization). Since it
does not vanish, the line bundle V' is trivial by Lemma 8.5.

(5) If V is orientable, then V' is isomorphic to M xR, and thus
SV =S(MxR) =MxS®=MuM

is not connected. Conversely, if M is connected and SV is not connected, let SV be one of the
components of SV. Since SV — M is a covering projection, so is SV — M. Since the latter is
one-to-one, it is a diffeomorphism, and its inverse determines a nowhere-zero section of V. Thus,
V' is isomorphic to the trivial line bundle by Lemma 8.5.

If V is a complex vector space of dimension k, V' has a canonical orientation as a real vector space
of dimension 2k. If {e;} is a basis for V over C, then

{61,161, v ,ek,iek}

is a basis for V over R. The orientation determined by such a basis is the canonical orientation
for the underlying real vector space V. If {f;} is another basis for V' over C, B is the complex
change-of-basis matrix from {e;} to {f;}, A is the real change-of-basis matrix from

{elyiely-"vekviek} to {fl)iflw"vfkvifk}v
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then
det A = (det B)det B € RT.

Thus, the two bases over R induced by complex bases for V' determine the same orientation for V.
This implies that every complex vector bundle V'— M is orientable as a real vector bundle.

A smooth manifold M is called orientable if its tangent bundle, TM — M, is orientable.
Corollary 12.2. Let M be a smooth manifold. The following statements are equivalent:
(1) M is orientable;

(2) the bundle T*M — M is orientable;

(8) M admits a volume form;

(4) there exists a collection of smooth charts {(Un, ¥a)}aca that covers M such that

det J(goaogogl)x >0 Vaeepg(UaNUp), a, B A.

The equivalence of the first three conditions follows immediately from Lemma 12.1. If {(Uy, ©0) }aca
is a collection of charts as in (4), then

ha=@a: TM|y, — Uy xR™ | v — (F(U),U((,Da)),
is a collection of trivializations of TM as in Lemma 12.1-(2) for V=TM, since

@aogﬁglz Us,NUg x R™ — U,NUg x R™,  (p,v) — (p,j(cpaogpgl)%(p)’u),
hOthgl: U,NUg x R™ — U,NUg x R™, (p,v) — (p,gag(p)v).

In particular, if such a collection of charts exists, then T'M is orientable. Conversely, suppose
{(Uq, ha)}aca is a collection of trivializations of TM as in Lemma 12.1-(2), {(Uy, ¢a)}aca is any
collection of smooth charts on M, and U, is connected. In particular,

P © h;lz Uy XxR™ — Uy xR™ | (p,v) — (p, {h;l(p,v)}(gpa)),
is a smooth vector-bundle isomorphism. Thus, there is a smooth map
Ay: U, — GL,R s.t. {h;Y(p,v)}pa) = Aa(p)v YvER™,

Since U, is connected, det A, does not change sign on U,. By changing the sign of the first
component of ¢, if necessary, it can be assumed that det A, (p) >0 for all pe U, and a€.A. Thus,

det J(goaogpgl)%(p) = det Ay (p) - det gog(p) - det Agl(p) >0 VpeU,NUg, a, € A.

Thus, the collection {(Uy, ¢n)}aca satisfies (4).

An orientation for a smooth manifold M is an orientation for the vector bundle TM — M; a
manifold with a choice of orientation is called oriented. A diffeomorphism f: M — N between
oriented manifolds is called orientation-preserving (orientation-reversing) if the differential

dpfi TpM — Tf(p)N
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is an orientation-preserving (orientation-reversing) isomorphism for every p € M; if M is connected,
this is the case if and only if d,, f is orientation-preserving (orientation-reversing) for a single point
pEM.

If M is a smooth manifold, the sphere bundle
T S(AtOPT*M) — M

is a two-to-one covering map. By Lemma 12.1 and Corollary 12.2, if M is connected, the domain
of 7 is connected if and only if M is not orientable. For each pe M,

F—l(p) = {Qp, _Qp} C S(AtOpT;M) - AtOpT;M

is a pair on nonzero top forms on TyM, which define opposite orientations of 7M. Thus,
S(A™PT*M) can be thought as the set of orientations on the fibers of M; it is called the ori-
entation double cover of M.

Smooth maps f,g: M — N are called smoothly homotopic if there exists a smooth map
H:Mx[0,1] — N st.  H(p,0)=f(p), H(p,1)=g(p) VpeM.

Diffeomorphisms f,g: M — N are called isotopic if there exists a smooth map H as above such
that the map
Ht:M—>N7 p—>(p7t)7

is a diffeomorphism for every t € [0, 1]. We leave proofs of the following lemmas as an exercise; both
can be proved using Corollary 12.2.

Lemma 12.3. The orientation double cover of any smooth manifold is orientable.

Lemma 12.4. Let f,g: M — N be isotopic diffeomorphisms between oriented manifolds. If f is
orientation-preserving (orientation-reversing), then so is g.

Exercises

1. Let m: V— M be a vector bundle. Show that

(a) the scalar-multiplication map (7.1) is smooth;

(b) the space V' x/V is a smooth submanifold of V' xV and the addition map (7.2) is smooth.
2. Let m: V. — M be a smooth vector bundle of rank k and {(Us,hqa)}aca a collection of

trivializations covering M. Show that a section s of 7 is continuous (smooth) if and only if the

map
Sq = moohqo0s: Uy —> Rk,

where 79 : Uy xRF — RF is the projection on the second component, is continuous (smooth) for
every a€ A.

3. Let m: V— M be a submersion satisfying (RVB1)-(RVB3) in Definition 7.1. Show that
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(a) if s1,...,s,: U— V| are smooth sections over an open subset U C M such that {s;(x)};
is a basis for V,, for all z€ U, then the map (8.2) is a diffeomorphism;

(b) m: V — M is a vector bundle of rank k if and only if for every p € M there exist a
neighborhood U of p in M and smooth sections sy, ..., s: U—V|y such that {s;(p)}; is
a basis for V,.

4. Show that the two versions of the last condition on f in (2) in Definition 8.2 are indeed equiv-
alent.

5. Let M be a smooth manifold and X,Y,Z € VF(M). Show that

(a) [X,Y] is indeed a smooth vector field on M and

[fX,9Y] = FglX. Y]+ f(Xg)Y —g(Y /)X V[,geC®(M);
(b) [, ] is bilinear, anti-symmetric, and
(X, [v.Z]] + [Y,[Z2, X]] + [Z,[X,Y]] = 0.

6. Verify all claims made in Example 7.5, thus establishing that the tangent bundle TM of a

smooth manifold is indeed a vector bundle. What is its transition data?
7. Show that the tangent bundle T'S' of S! is isomorphic to the trivial real line bundle over S*.
8. Show that the tautological line bundle ~,, — R P" is non-trivial for n>1.

9. Show that the complex tautological line bundle v, — CP" is indeed a complex line bundle as
claimed in Example 7.8. What is its transition data? Why is it non-trivial for n>17

10. Let ¢q: M — M be a smooth covering projection. Show that

(a) the map dg: M — M is a covering projection and a bundle homomorphism covering ¢ as
in (8.4);

(b) there is a natural isomorphism
VF(M) ~ VF(M)dq = {XGVF: dp,q(X (p1)) =dp,q(X(p2)) Vp1,p2 € M s.t. q(pl):q(pg)}.

11. Let M be a smooth m-manifold. Show that

(TM1) the topology on T'M constructed in Example 7.5 is the unique one so that 7: TM — M
is a topological vector bundle with the canonical vector-space structure on the fibers
and so that for every vector field X on T'M and smooth function f: U — R, where U
is an open subset of R, the function X(f): U — R is continuous if and only if X is
continuous;

(TM2) the smooth structure on 7'M constructed in Example 7.5 is the unique one so that
m: TM — M is a smooth vector bundle with the canonical vector-space structure on
the fibers and so that for every vector field X on T'M and smooth function f: U — R,
where U is an open subset of R, the function X(f): U — R is smooth if and only if X
is smooth.
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12

13

14

15

16

17

18

19

20

21

. Suppose that f: M — N is a smooth map and 7: V — N is a smooth vector bundle of rank k
with transition data {gns: UsNUg—> GL,R}, gca. Show that

(a) the space f*V defined by (10.1) is a smooth submanifold of M x V and the projection
m: f*V — M is a vector bundle of rank k& with transition data

{f*gozﬁ :gaﬁof: f_l(Ua)mf_l(UB) — GLnR}a,BEA ;

(b) if M is an embedded submanifold of N and f is the inclusion map, then the projection
ma: f*V —V induces an isomorphism f*V — V|5 of vector bundles over M.

. Let f: M —V be a smooth map and V— N a vector bundle. Show that

(a) if V— N is a trivial vector bundle, then so is f*V — M;
(b) f*V — M may be trivial even if V — N is not.

. Let f: M — N be a smooth map. Show that the bundle homomorphisms in diagrams (10.4)
and (10.5) are indeed smooth.

. Verify Lemma 10.2.

. Let f: M — N be a smooth map and ¢: V — W a smooth vector-bundle homomorphism
over N. Show that the pullback vector-bundle homomorphism f*¢ : f*V — f*W is also
smooth.

. Let m: V— M be a smooth vector bundle of rank k and V' CV a smooth submanifold so that
V,=V,NV" is a k'-dimensional linear subspace of V, for every p€ M. Show that

(a) for every pe M =sg(M) there exist an open neighborhood U of p in V'’ and smooth charts
<,0:U—>Rm><Rkl and ¢:UNM — R™ s.t. Yom=m oy,
where 71 : R x R¥ —$R™ is the projection on the first component;

(b) V' CV is a vector subbundle of rank £’.

. Let ¢ : V — W be a smooth surjective vector-bundle homomorphism over a smooth mani-
fold M. Show that
kero = {veV: p(v)=0} — M

is a subbundle of V.

. Let DCTM a rank 1 distribution on a smooth manifold M. Show that I'(M;D) C VF(M) is
a Lie subalgebra. Hint: use Exercise 5.

. Let {to,: My —> N}aeca be a foliation of N™ by immersions from m-manifolds. Show that

D= ) | Imdpa cTN
acApeEMy

is a subbundle of rank m.

. Verify all claims made in Examples 10.6 and 10.7.
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22.

23.

24.

25.
26.
27.

28.

29.

Verify all claims made in Example 10.8.
Let m: V— M be a smooth vector bundle. Show that

(a) the fibers of 7w form a proper foliation of V/;
(b) the corresponding subbundle D C TV is isomorphic to 7*V as vector bundles over V;

(c) there is a short exact sequence of vector bundles

0— 7V —TV IS r*TM — 0
Let V— M be a vector bundle of rank k and V' CV a smooth subbundle of rank k’. Show that
(a) there exists a collection {(Uy, ha)}taca of trivializations for V' covering M so that (10.9)
holds and thus the corresponding transition data has the form

GaB = (S I):UQOUB—N}L;QR,

where the top left block is k' x k/;

(b) the vector-bundle structure on V/V’ described in Section 10 is the unique one so that the
natural projection map V — V/V’ is a smooth vector-bundle homomorphism;

(c) if p: V— W is a vector-bundle homomorphism over M such that p(v)=0 for all ve V’,
then the induced vector-bundle homomorphism @: V/V/— W is smooth.

Verify Lemmas 10.9 and 10.10.
Obtain Corollary 10.12 from Theorem 10.11.

Let f=(f1,..., fr) : R" —R* be a smooth map, ¢€R* a regular value of f, and X = f~1(q).
Denote by V f; the gradient of f;. Show that
TX = {(p,v) EXXR™: Vf;|,-v=0V¥i=1,2,... Kk}

under the canonical identifications TX C TR™|x and TR™ =R™ xR™. Use this description of
TX to give a trivialization of Ngm X.

Let V,V/ — M be smooth vector bundles. Show that the two constructions of V@V’ in
Section 10 produce the same vector bundle and that this is the unique vector-bundle structure
on the total space of
vev' = | | eV,
peEM
so that

(VBE1) the projection maps V&V’ — V, V/ are smooth bundle homomorphisms over M;
(VB@2) the inclusion maps V, V' — V@&V’ are smooth bundle homomorphisms over M.

Let my: V— M and ww : W —> N be smooth vector bundles and 7p;, 7y : M XN — M, N
the component projection maps. Show that the total of the vector bundle

m:myV eryW — MXxN

is VxW (with the product smooth structure) and 7=y X mpy.
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30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Verify Lemmas 10.13 and 10.14.

Let M and N be smooth manifolds and wps, 7 : M x N — M, N the projection maps. Show
that dmys and dmy viewed as maps from T(M x N) to

(a) TM and T'N, respectively, induce a diffeomorphism T(MxN) — TMXT N that commutes
with the projections from the tangent bundles to the manifolds and is linear on the fibers
of these projections;

(b) m3,TM and 73T N, respectively, induce a vector-bundle isomorphism
T(MxN)— myTMo&ryTN.

Why are the above two statements the same?
Verify Lemmas 10.15 and 10.16.

Show that the vector-bundle structure on the total space of V* constructed in Section 10 is the
unique one so that the map (10.15) is smooth.

Verify Lemmas 10.17-10.19.

Let V — M be a smooth vector bundle of rank k¥ and W C V' a smooth subbundle of V' of
rank k’. Show that
Amn(W) = {a€V): a(w)=0VweW, pe M}

is a smooth subbundle of V* of rank k—k’.

Verify Lemmas 10.20-10.23.

Let m: V— M be a vector bundle. Show that there is an isomorphism
A (V) — (AFV)

of vector bundles over M.

Let ©Q be a volume form an m-manifold M. Show that for every p € M there exists a chart
(x1,...,Tm): U—R™ around p such that

Q\U:dxl/\.../\dxm.

Show that every complex vector bundle V — M admits a Hermitian metric.

Let m: L — M be a real line bundle over a smooth manifold. Show that L®? T]1R

bundles over M.

as real line

Let V,W — M be vector bundles. Show that

(a) if V' is orientable, then W is orientable if and only if V@ W is;

(b) if V and W are non-orientable, then V. &W may be orientable or non-orientable.

Let M be a connected manifold. Show that every real line bundle L — M is orientable if and
only if 71 (M) contains no subgroup of index 2.
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43.

44.

45.

46.

47.

48.

49.

Let M and N be nonempty smooth manifolds. Show that M x NV is orientable if and only if M
and N are.

(a) Let ¢o: M — RY be an immersion. Show that M is orientable if and only if the normal
bundle to the immersion ¢ is orientable.

(b) Show that the unit sphere S™ with its natural smooth structure is orientable.
Verify Lemmas 12.3 and 12.4.
(a) Show that the antipodal map on S® CR™*! (i.e. z — —x) is orientation-preserving if n is
odd and orientation-reversing if n is even.
(b) Show that RP™ is orientable if and only if n is odd.
(c¢) Describe the orientable double cover of RP™xRP"™ with n even.

Let 7, — CP™ be the tautological line bundle as in Example 7.8. If P: C"*! — C is a
homogeneous polynomial of degree d>0, let

sp: CP"— 7, {sP(ﬁ)}(ﬁ,v(@d) = P(v) VY (4,v) €7, C CP"xC" !,
Show that

(a) sp is a well-defined holomorphic section of ®9;

(b) if s is a holomorphic section of v*®? with d > 0, then s = sp for some homogeneous
polynomial P: C"*! — C of degree d;

(c) the line bundle 7¥ — CP™ admits no nonzero holomorphic section for any deZ™.
Let v, — CP" be the tautological line bundle as in Example 7.8. Show that there is a short

exact sequence
0 — CP"xC — (n+1)y, — TCP" — 0

of complex (even holomorphic) vector bundles over CP™.

Suppose k<n and let 7, — CP* be the tautological line bundle as in Example 7.8. Show that

the map
.: CP* — CP", [Xo,..., X1 — [Xo,...,X3,0,...,0],
N——

n—k

is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the
charts that determine the complex structures on CP* and CP™) and that the normal bundle to
this immersion, N,, is isomorphic to

=k =% D... 0%
~—_——
n—=k

as a complex (even holomorphic) vector bundle over CP*. Hint: there are a number of ways of
doing this, including;:

(i) use Exercise 48,;

(ii) construct an isomorphism between the two vector bundles;
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(iii) determine transition data for N, and (n—k)~;;
(iv) show that there exists a holomorphic diffeomorphism between (n — &)~} and a neighbor-
hood of ((CP*) in CP", fixing +(CP¥), and that this implies that A, = (n—k)v;.

50. Let v, — CP" and AZTCP" — CP" be the tautological line bundle as in Example 7.8 and
the top exterior power of the vector bundle TCP™ taken over C, respectively. Show that there

is an isomorphism
ATCP" = 420t = @ @A
—_——

n+1

of complex (even holomorphic) line bundles over CP™. Hint: see suggestions for Exercise 49.
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Chapter 3

Frobenius Theorems

13 Integral Curves

Recall from Section 8 that a vector field X on a smooth manifold M is a section of the tangent
bundle TM — M. Thus, X : M — T'M is a map such that X(p) € T,M for all pe M. If
©=(21,...,%m): U—> M is a smooth chart on M, then

i=m 9
X(p) =) _cilp)y— Vpel,
5 Ty
i=1 p
for some functions ¢y, ..., ¢y, : U—R. The vector field X is smooth (as a map between the smooth
manifolds M and T'M) if and only if the functions ¢y, ..., ¢, corresponding to every smooth chart

on M are smooth. This is the case if and only if X(f): M — R is smooth function for every
feC>(M).

As defined in Section 4, a smooth curve on M is a smooth map v: (a,b) — M. For t € (a,b), the
tangent vector to a smooth curve v at ¢ is the vector

d
V() = = ey (Oer|t) € Ty M,
where e; =1€R! is the oriented unit vector.

Definition 13.1. Let X be a smooth vector field on a smooth manifold M. An integral curve for X
is a smooth curve

v: (a,b) — M s.t. 7 (t) = X(y(t)) Vte (a,b). (13.1)
For example, a smooth vector field X on R? has the form
0

X(ﬂj,y) = f(:Evy)%

0

+ g(w,y)a—y

(z,y) (z,y)

for some f,g€ C(R?). A smooth map v = (71,72): (a,b) — R? is an integral curve for such a
vector field if

s =2 om0
o dxlyy Ot Oyl . V() = f(n(t),72(t))
a d Y (t) = g(71(t),72(1))
=FO0W)g;|  +90)g ;
ZT1(y(t)) Y1)
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This is a system of two ordinary autonomous first-order differential equations for v=(v1,72) as a
function of t.

Lemma 13.2. Let X be a smooth vector field on a smooth manifold M. For every pe M, there
exists an integral curve y: (—€, ) — M for X such that v(0)=p. If 7,5 : (—€,€) — M are two
such integral curves, then y=4.

Let p=(z1,...,2Zm): U—R" be a smooth chart on M around p and ¢y, ..., ¢y : U— R smooth
functions such that .
=m 8
X(p) = (P Vp' eU.
() Z;C(p)amp/ P

For any smooth map ~v: (a,b) — U C M, let

(717"'7’7771) = @oy: (CL?b) _>]Rm

By the chain rule (4.5) and the definition of the coordinate vector fields (4.12), the condition (13.1)
on ~y is then equivalent to

1=

{porY (1) = dep(v'(1) = Z ci(v ax
=1 v

= t) =ciop  (n(t), ..., m(t)) Vi

e(v(1))

1

Since the functions ¢;op™" are smooth on R, the initial-value problem

{%()Z ciop (@), o ym(t) i=1,2,...,m
(71(0), ..., 1m(0)) = @(p)

has a solution (y1,...,7vm): (—€,€) — R™ for some € > 0 by the Ezxistence Theorem for First-
Order Differential Equations [1, A.2]. By the Uniqueness Theorem for First-Order Differential
Equations [1, A.1], any two solutions of this initial-value problem must agree on the intersection of
the domains of their definition.

(13.2)

Corollary 13.3. Let X be a smooth vector field on a smooth manifold M and pe M. If a,a€R™,
b,beR™, and v: (a,b) — M and 7: (a,b) — M are integral curves for X, then
MNapn@i = Vapnab) -

The subset B B
A= {te(a,b)N(a,b): v(t)=5(t)} C (a,b) N (a,b)

is nonempty (as it contains 0) and closed (as v and 4 are continuous). Since (a,b) N (a,b) is
connected, it is sufficient to show that S is open. If

the S and (to—e, to+e€) C (a,b) N (a,b),
define smooth curves
i (—e ) — M by a(t) = (t+te),  B(Et) = F(t-+to),

Since v and 4 are integral curves for X,

S tt0) = X (3t +40)) = X (B(1)).

o (t) = p”

() = X (v(t+10)) = X (a(®),  B(t) =
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Thus, a and 3 are integral curves for X. Since

a(0) = v(to) = (to) = B(0),

a={ by Lemma 13.2 and thus (ty—¢,t9+€) C (a,b) N (a,b).

Corollary 13.4. Let X be a smooth vector field on a smooth manifold M. For every p € M,
there exists a unique mazximal integral curve vy : (ap,by) —> M for X such that v,(0) =p, where
ap €[—00,0) and by € (0,00]. If te(ap,by), then

(a’Yp(t)’ b’Yp(t)) = (a’p_t7 bp_t)v ’nyp(t)(_t) =D (133)

(1) Let {7va: (aq,ba) —> M}aca be the collection of all integral curves for X such that v,(0)=p.
Define

(ap,by) = U (aasba), Vi (ap,bp) —> M, 7p(t) =7a(t) Vi€ (an,ba), a€A.
acA

By Corollary 13.3, v4(t) is independent of the choice of a € A such that ¢ € (aq,b). Thus, 7, is
well-defined. It is smooth, since its restriction to each open subset (aq, by ) is smooth and these sub-
sets cover (ap,b,). It is an integral curve for X, since this is the case on the open subsets (aq,bq ).
It is immediate that +,(0)=p. By construction, ~, is a maximal integral curve for X.

(2) If te(ap, by), define
v: (ap—t,by—t) — M by V(1) = Yp(T+1).

This is a smooth map such that

Y(0) = (),  A(=t)=%0)=p, ()= %vp(ﬂrt) = X (yp(1+1)) = X (7(1));

the second-to-last equality above holds because «, is an integral curve for X. Thus, 7 is an integral
curve for X such that v(0)=~,(t). In particular, by the first statement of Corollary 13.4,

(@003 0) 2 (0=t bp=1)s Yoy (0, 100y =7 = —tE (A0 b)) Ty (—t) =P
= (ap,bp) = (ay ) (-0)s 0y () D (@) FE: 0y HE).
This confirms (13.3).
If X is a smooth vector field on M, for each t€R let
Domy(X) = {peM: te(ap, by)}, Xi: Domy(X) — M, Xi(p) = p(t).
The map X; is called the time ¢ flow of vector field X.

Example 13.5. Let X be the smooth vector field on M =R given by

X(z) = _;p?a% E
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If peR, the integral curve v, for X is described by

Bt =m0 w0 =p = )= o

Thus,
(—o0,—1/t), ift<0;
Domy(X) = ¢ (=00, ), if t=0; Xi: Domy(X) — R, Xi(p) = 1:;@
(—=1/t,00), if t>0;

Example 13.6. Let ¢: R — S', § — 2™ be the usual covering map and X the vector field
on S' defined by '
X (*™7) = dgg(er),

where e; =1 is the usual oriented unit vector in R=TpR. If ¢(61) = q(02), there exists n € Z such
that 8, =071 +n. Define
hp:R— R by 0 — 0+n.

Since dg, h(e1)=e1 and g=gqoh,, by the chain rule (4.5)
dGzQ(el) = d02Q(d01 hn(el)) = d€1{qohn}(el) = d91Q(61)'

Thus, the vector field X is well-defined (the value of X at ™ depends only on ¢*™? and not
on #). This vector field is smooth, since e; defines a smooth vector field on R, while ¢: R — S*
and dg: TR — T'S! are covering projections (and in particular local diffeomorphisms). If pe S?,
peq (p) CR, and 7: (a,b) — St is a smooth curve such that v(0)=p, let 7: (a,b) — R be the
continuous lift of v over ¢ such that 4(0)=p; since ¢ is a local diffeomorphism, this map is smooth.
The integral curve -y, is then described by

WO =1 3H0)=p =  FHt)=p+teR
N v (t) = q(%(t)) _ 2B _ (2mip | (2mit _ 2mit o gl
Thus, 7,(t) is defined for all t€R, and the time ¢t flow of X is given by
Xt:Domt(X):Sl — St p — 2™,
This is the rotation by the angle 27t.
Proposition 13.7. If X is a smooth vector field on a smooth manifold M, then
(1) Domy(X)=M, Xo=idps, and

M = | Domy(X) = | Domy(X);
t>0 t<0

(2) for all s,teR, X1y =X,0X;: Dom(X;0X;) =X; ! (Dom,y (X)) — M;
(3) for all pe M, there exist an open neighborhood U of p in M and e €R™ such that the map
X: (_67 6) xU — M7 (typ,) — Xt(p/) =T (t)v (134)

is defined and smooth;
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(4) for allteR, Dom(X;) C M is an open subset;
(5) for allteR, X;: Domy(X) — Dom_(X) is a diffeomorphism with inverse X_;.

Proof: (1) By Lemma 13.2, for each p € M there exists an integral curve y: (—¢,€) — M for X
such that v(0)=p. Thus, p€Dom,./5(X) CDomg(X); this implies the first and last claims in (1).
The middle claim follows from the requirement that Xo(p)=+,(0)=p for all pe M.

(2) Since Dom(X,)=Domg(X), Dom(X;0X;)=X; ! (Dom,(X)). If peX; ! (Dom, (X)),

s € (ax,0) b)) = (33000 0)-
Thus, s+t € (ap,b,) by (13.3) and X;* (Dom,(X)) € Dom(Xy4¢)." Define

7 (0 b)) — M by 5(r) = (T )

by (13.3), yp(7+1) is defined for all 7€ (ax, (p), bx,(p))- The map v is smooth and satisfies

WO =) =Xulp), (1) = Saplr+t) = X (1)) = X (4(7);

the second-to-last equality holds because 7, is an integral curve for X. Thus, by Corollary 13.4,

Y=7%,(p) and s0
Xert(p) = p(s+1) = 7(s) = vx() (s) = Xs(Xe(p))

for all s € (ax,(p) bx,(p))-

(3) As in the proof of Lemma 13.2, the requirement for a smooth map 7: (a,b) — M to be an
integral curve for X passing through p corresponds to an initial-value problem (13.2) in a smooth
chart around p. Thus, the claim follows from the smooth dependence of solutions of (13.2) on the
parameters [1, A.4].

(4) Since Domy(X) =M and Dom_;(X) =Dom(—X), it is sufficient to prove this statement for
teRT. Let p€Domy(X) and W C M be an open neighborhood of X;(p) =~,(t) in M. Since the
interval [0,¢] is compact, by (3) and Lebesgue Number Lemma (Lemma B.1.2), there exist € >0
and a neighborhood U of 7,([0,t]) such that the map (13.4) is defined and smooth. Let n€Z™ be
such that ¢/n <e. We inductively define subsets W; C M by

W =W,  Wi=X,! (W) U = {Xynlu} (Wip1) Vi=0,1,...,n—1.

By induction, W; CU is an open neighborhood of v, (it/n), W; CX;/;(Dom(X(n_l_i)t/n)), and thus
Xn—iytn = Xm0 Xpno1-gytn: Wi — U C M

by (2). It follows that Wy C M is an open neighborhood of p in M such that Wy C Dom;(X).

(5) By (13.3) and (2), ImX; = Dom_;(X) and X_; is the inverse of X;. If p€Dom,(X) and Wy is

a neighborhood of p in M as in the proof of (4), X;|w, is a smooth map. Thus, X; is smooth on
the open subset Dom;(X)C M.

'The domain of Xs+¢+ might be larger than Dom(Xs0X¢). For example, if s=—t, the former is all of M.
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Figure 3.1: Flows of a nonvanishing vector field and integral immersions of a rank 1 distribution
are horizontal slices in a coordinate chart.

Lemma 13.8. Let X be a smooth vector field on a smooth manifold M and pe M. If X (p)#0,
there exists a smooth chart

0= (x1,...,Tm): U — (=6,8) x R™~!

around p on M such that

0
X)) = By vy e U. (13.5)
p/

By Proposition 13.7-(3), there exist an open neighborhood U of p in M and ¢ € R™ such that the
map (13.4) is smooth. Let U’ be a neighborhood of p in U and

¢E(y17 e aym): (Ulvp) — (Rmvo)

a smooth chart such that (13.5) holds with x; replaced by y; for p’ =p; such a chart can be obtained
by composing another chart with a rigid transformation of R". Define

Y (—e,e)xR™ T — M by Q,D(:El,:ng,...,:nm):Xxl(gb_l(o,:ng,...,:nm)).

This smooth map sends (21,2, ...,2,) to the time z;-flow from the point ¢~1(0,z2,...,7,,) on
the coordinate hyperplane ¢~1(0xR™1); see Figure 3.1. Note that

d d 0
d0¢(3e1|¢(p)) = Eiﬁ(ﬂoa N)) o = Ext(p) — = X(p) = 0—y1 p;
d d ) .
. = — = — = >2;
dOT/)(aez d’(l’)) dtﬂ)(O, 707t707 70) —o dt¢ (07 707t707 70) —o 8y2 ) \V/Z_2a

on the second line, ¢ is inserted into the i-th slot. Thus, the differential of v at 0,
d0¢1 T()Rm — TpM

is an isomorphism. By the Inverse Function Theorem for Manifolds (Corollary 4.9), there are
neighborhoods U of p in M and V of 0 in R™ such that ¢: V — U is a diffeomorphism. The
inverse of this diffeomorphism is a smooth chart around p on M satisfying (13.5).

Corollary 13.9. If D C TM is a rank 1 distribution on a smooth manifold M, there exists a
foliation {to: R— M}aca by injective immersions integral to the distribution D on M.
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Let h: D)y — W xR be a trivialization of D over an open subset W C M and
X(p)=h"'(p,1) €D, cT,M VpeW.

Since h is a smooth, X is a smooth nowhere 0 vector field on the open subset W C M. Since the
rank of D is 1, D,=RX(p) for all pe W. Let

©=(x1,...,Tm): U — (=8,0) xR™!

be a coordinate chart on W C M satisfying (13.5) and ¢ : R — (—4,d) any diffeomorphism.
For ycR™~1, define

wiR—M by  (t)=¢ 1 (4(1),0,...,0).

This is an injective immersion such that Im, is contained in (in fact is) the horizontal slice
¢ 1 (Rxy) and

mdy, —R-2| = RX(4(t) =D, ViR
Oz1,, )

Thus, {ty},ecrm-1 is a foliation of the open subset U C M by immersions integral to D.

The flows of a vector field X provide a way of differentiating other vector fields and differential
forms in the direction of X.

Definition 13.10. Let X be a smooth vector field on a smooth manifold M and pe M.

(1) The Lie derivative of a smooth vector field Y € VF(M ) on M with respect to X at p is the vector

_ i S@X-(Y (X)) ~Y(p)

t—0 t

d

(LxY), = det(p)x—t (Y (X¢(p))

eT,M.
t=0

(2) The Lie derivative of a smooth k-form a.€ E¥(M) on M with respect to X at p is the alternating
k-tensor

d

(LxY)p = =X} ((Xe(p)))

_ o K@) — o)
dt B

g t—0 t

e N(TyM).
t=

Thus, the Lie derivative Ly measures the rate of change of a smooth vector field Y at p by bringing
Y (X¢(p)) € Tx, (p)M back to T, M by the differential of the inverse flow X_;. Similarly, L x measures
the rate of change of a smooth k-form « at p by pulling a(X;(p)) € A*¥ (ngt(p)M) back to A*(T* M) by

Xy = AF(dpXe)™: AR(T%, (M) — A¥(T; M)

As indicated by the following proposition, (LxY), and (Lxa), typically depend on the germ of X
at p, and not just on X(p).

Proposition 13.11. Let X be a smooth vector field on a smooth manifold M and pe M.
(1) If feC=(M), (Lx f)p = Xp(f).
(2) If Y eVF(M), (LxY), = [X,Y].
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(3) If € E*(M) and Y1,Ya,..., Yy € VE(M),

(Lx (a(Y1,...,Yk))), = {Lxa}y(Yi(p), ..., Yi(p))

1=k
+3 " ap(Yi(p), -+ Yica (p), (LxYa)p, Yisr (p), - - - Yi(D)).
=1

Corollary 13.12. If X, Y e VF(M) are smooth vector fields on a smooth manifold M,

Lixy) = [Lx,Ly]| =Lx oLy — Ly o Lx: VF(M) — VF(M), E¥(M) — E*(M).

Exercises

1. Let V be the vector field on R? given by

0 g 0
V(z,y,2) = U —:Ea—y + e

Explicitly describe and sketch the flow of V.
2. Let X be a smooth vector field on a manifold M. Show that

(a) if v: (a,b) —> M is an integral curve for X such that 7/(¢)=0 for some ¢ € (a,b), then v is
a constant map.

(b) if X is compactly supported, i.e.

supp X = {pEM: Xp;«éO}
is a compact subset of M, then Dom;(X)=M for all teR.

3. (a) Let M be a smooth compact manifold and X € VF(M) a nowhere-zero vector field on M,
ie. X(p)#0 for all pe M. Show that the flow X;: M — M of X has no fixed points for
some t€R.

(b) Show that S™ admits a smooth nowhere-zero vector field if and only if n is odd. Hint:
Exercises 46 and 12 in Chapter 2 might be helpful for n even.

(c) Show that the tangent bundle of S™ is not trivial if n>1 is even. (In fact, T'S™ is trivial if
and only if n=1,3,7 [2].)

4. Let 7: (a,b) — R? be an integral curve for a smooth vector field X on R2?. Show that 7 is an
embedding.

5. Let X be a smooth vector field on a smooth manifold M. Show that

(a) for teR, Dom_(X)=Dom;(—X);
(b) if s,t€R have the same sign, then Dom(Xs4;) = Dom(Xs0X});
(c) if Domy(X) = M for some t €R™, then Dom;(X) = M for all teR™.
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10.

11.

. Let X be the vector field on R™ given by X = Z Ti—

. Suppose X and Y are smooth vector fields on a manifold M. Show that for every p e M and

fec=(M),
lim f(Y—s(X—t (Ys(Xt(p))))) - f(p)

s,t—0 st

=[X,Y],f €R.
Do not forget to explain why the limit exists.

0
ox;

(a) Determine the time t-flow X;: R” — R" of X (give a formula).

(b) Use (a) to show directly from the definition of the Lie derivative Lx that the homomorphism
defined by

1
Ry : E¥(R") — E*R™), fdxiy Ao ANdT, — (/ Sk_lf(8$)d8> dai, Ao Adwg,
0

is a left inverse for Lx if k>1.
(c) Is Ry also a right inverse for Lx for k>17 What happens for k = 07

. Verify Corollary 13.12.

. Let U and V be the vector fields on R? given by

Uy, 2) = 2 and  Vi(esy2) = Flaey, )

0
ox 8y +G(3§‘,y,2)—

0z’

where F and G are smooth functions on R3. Show that there exists a proper foliation of R3
by 2-dimensional embedded submanifolds such that the vector fields U and V everywhere span
the tangent spaces of these submanifolds if and only if

F(z,y,z) = f(y, 2) @) and G(z,y,2) = g(y, 2) eM@:v:2)
for some f, g€ C>®(R?) and he C>(R?) such that (f,g) does not vanish on R2.

Let a be a k-form on a smooth manifold M and Xy, ..., X € VF(M). Show that

i=k

da(Xo, ..., Xp) =Y (1) Xi(a(Xo, ..., Xi, ..., Xp))
=0

+ 3 (DM a([X5, X)), Xo, -, X XL X
1<J

Hint: first show that the values of both sides at any point p€ M depend only on the values of
vector fields X;|, at p and on the restriction |y of a to any neighborhood U of p; then compute
in a smooth chart.

Let a be a nowhere-zero closed (m—1)-form on an m-manifold M. Show that for every pe M
there exists a chart (z1,...,2,,): U—R"™ around p such that

aly =dze Adzg A ... Adzy,.

Hint: Exercises 38 in Chapter 2 and 3 in Appendix A might be helpful.

85



12. Let w be a smooth closed everywhere nondegenerate? two-form on a smooth manifold M.

(a) Show that the dimension of M is even and the map
TM—)T*M, X—>ZXW7

is a vector-bundle isomorphism (ix is the contraction w.r.t. X, i.e. the dual of XA).

(b) If H: M — R is a smooth map, let Xy € VF(M) be the preimage of dH under this
isomorphism. Assume that the flow

©:RxM — M, (t,p) — @i(p)

of Xy is defined for all (¢,p). Show that for every t € R, the time-t flow ¢;: M — M is a
symplectomorphism, i.e. p;w=w.

13. Suppose M is a 3-manifold, « is a nowhere-zero one-form on M, and p€ M. Show that

(a) if there exists an embedded 2-dimensional submanifold P C M such that pe P and a|rp =0,
then (a A da)|, = 0.

(b) if there exists a neighborhood U of p in M such that (o A da))|y = 0, then there exists an
embedded 2-dimensional submanifold P C M such that p€ P and «|rp=0.

14. Let a =dx; + fdas be a smooth 1-form on R? (so f € C>®(R?)). Show that for every p € R?
there exists a diffeomorphism
e=(y1,y2,93): U — V

from a neighborhood U of p to an open subset V of R3 such that a|y = gdy; for some g€ C*°(U)
if and only if f does not depend on x3.

15. Let X be a non-vanishing vector field on R?, written in coordinates as

0 0 0
X(z,y,2) ng—i-ga—y—kh& for some f,g,h € C®(R3).

(a) Find a one-form o on R? so that at each point of R? the kernel of « is orthogonal to X,
with respect to the standard inner-product on R3.

(b) Find a necessary and sufficient condition on X so that for every point p€R? there exists a
surface S C R? passing through p which is everywhere orthogonal to X (i.e. S is a smooth
two-dimensional submanifold of R? and 7,5 C T,R3 is orthogonal to X(q) for all g€ S).

2This means that w, € AQT;M is nondegenerate for every p€ M, i.e. for every v €T, M —0 there exists v’ € T,M
such that wp(v,v")#0.
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Appendix A

Linear Algebra

Al

Exercises

1. Let V be a finite-dimensional vector space and v€V —0. Show that

(a) if we A*V, vAw=0 € A*1V if and only if w = vAu for some u € A*~1V;

(b) the sequence of vector spaces
0 — A0V 25 Aty P A2y P
is exact.

2. Let V be a vector space of dimension n and w € A?V an element such that w™ #0 € A?"V.
Show that the homomorphism

WEA - APTRY s ATTRY w —s wF A w,
is an isomorphism for all k € Z*.

3. Let V be a vector space of dimension n and 2 € A"V* a nonzero element. Show that the
homomorphism
V — AV, v —> i,

where 1, is the contraction map, is an isomorphism.

4. Show that every short exact sequence of vector spaces,

0—>AL>BL>C—>O

induces a canonical isomorphism A*PA @ A*PC — A™PB (the isomorphism is determined
by f and g).

5. Let {e1,...,ex} and {f1,..., fr} be C-bases for a vector space V over C. Let A be the com-
plex change-of-basis matrix from {e;} to {f;} and B the real change-of-basis matrix from

{61, ieg, ..., ek, iek} to {fl, ifi, e, fr, 1fk} Show that
det B = (det A)det A.
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Appendix B

Topology

B.1

Lemma B.1.1. Let M be a set and {p,: U, —>Ma}aeA a collection of bijections from subsets
U, of M to topological spaces M, such that

paopz’: 0a(UanNUs) — @a(UaNUg)

is a homeomorphism between open subsets of Mg and M,, respectively, for all o, € A. If the
collection {Uq}aca covers M, then M admits a unique topology Tar such that each map @, is a
homeomorphism. If in addition

(1) the collection {Uqy}aca separates points in M, then the topology Tyr is Hausdorff;

(2) there exists a countable subset Ay C A such that the collection {Uy}aca, covers M and M, is
second-countable for all a € Ay, then the topology Ty is second-countable.

A Dbasis for the topology Ty consists of the subsets U C M such that U C U, and ¢, (U) C M, is
open for some a € A.

Lemma B.1.2 (Lebesgue Number Lemma,[7, Lemma 27.5]). Let (M, d) be a compact metric space.
For every open cover {Uy}aca of M, there exists § €R with the property that for every subset S C M
with diamg(S) <e there exists a € A such that S CU,.

B.2 Fundamental Group and Covering Projections

Exercises

1. Show that every Hausdorff locally Euclidean space is regular.
2. Show that every regular second-countable space is normal.

3. Verify Lemma B.1.1.
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