MAT 531: Topology&Geometry, II Spring 2011

Problem Set 4 Due on March, 3/03, in class

1. Chapter 1, #13ad (p51)

2. Chapter 1, #22 (p51). Hint: this is 2-3 lines

3. Chapter 1, #17 (p51). Hint: only slightly longer

4. Let V be the vector field on \mathbb{R}^3 given by

$$V(x, y, z) = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} + \frac{\partial}{\partial z}.$$

Explicitly describe and sketch the flow of V. Hint: an easy MAT 303/305 problem

5. Suppose X and Y are smooth vector fields on a manifold M. Show that for every $p \in M$ and $f \in C^{\infty}(M)$,

$$\lim_{s,t \to 0} \frac{f\left(Y_{-s}(X_{-t}\left(Y_{s}(X_{t}(p))\right)\right) - f(p)}{st} = [X,Y]_{p}f \in \mathbb{R}.$$

Do not forget to explain why the limit exists.

Note: This means that the extent to which the flows $\{X_t\}$ of X and $\{Y_s\}$ of Y do not commute (i.e. the rate of change in the "difference" between $Y_s \circ X_t$ and $X_t \circ Y_s$) is measured by [X, Y].

6. Let U and V be the vector fields on \mathbb{R}^3 given by

$$U(x,y,z) = \frac{\partial}{\partial x}$$
 and $V(x,y,z) = F(x,y,z)\frac{\partial}{\partial y} + G(x,y,z)\frac{\partial}{\partial z}$,

where F and G are smooth functions on \mathbb{R}^3 . Show that there exists a proper¹ foliation of \mathbb{R}^3 by 2-dimensional embedded submanifolds such that the vector fields U and V everywhere span the tangent spaces of these submanifolds if and only if

$$F(x,y,z) = f(y,z)\,e^{h(x,y,z)} \qquad \text{and} \qquad G(x,y,z) = g(y,z)\,e^{h(x,y,z)} \label{eq:force}$$

for some $f,g\in C^\infty(\mathbb{R}^2)$ and $h\in C^\infty(\mathbb{R}^3)$ such that (f,g) does not vanish on \mathbb{R}^2 .

¹in the sense of Definition 10.4 in *Lecture Notes*