
MAT 531: Topology&Geometry, II
Spring 2010

Midterm Solutions

Problem 1 (15pts)

Let f : M −→ N and g : N −→ Z be smooth maps between smooth manifolds. State the chain
rule for the differential of the map g◦f : M −→Z and obtain it directly from the relevant defini-
tions (state the relevant definition(s); you do not need to show that they define the required objects).

If h : X−→Y is a smooth map and x∈X, the differential dxh : TxX−→Th(x)Y is defined by{
dxh(v)

}
(φ) = v(φ◦h) ∀ v∈TxX, φ∈C∞(Y ).

Thus, for all p∈M , v∈TpM , and φ∈C∞(Z),{
dp(g◦f)(v)

}
(φ) ≡ v

(
φ◦g◦f

)
≡
{

dpf(v)
}

(φ◦g) ≡
{

df(p)g
(
dpf(v)

)}
(φ)

=
{
{df(p)g◦ dpf}(v)

}
(φ).

Since this equality holds for all v∈TpM and φ∈C∞(Z),

dp(g◦f) = df(p)g◦ dpf : TpM −→ Tg(f(p))Z ∀ p∈M ;

this statement is the chain rule for g◦f .

Problem 2 (20pts)

Let M be a smooth manifold and p ∈M a fixed point of a smooth map f : M −→M , i.e. f(p)=p.
Show that if all eigenvalues of the linear transformation

dpf : TpM −→ TpM

are different from 1 (so dpf(v) 6= v for all v ∈ TpM−0), then p is an isolated fixed point (has a
neighborhood that contains no other fixed point).

We will show that the map

h : M −→M×M, h(x) =
(
x, f(x)

)
,

is transverse to the diagonal ∆M ={(x, x) : x∈M} at p, i.e.

Th(p)(M×M) = Im dph+ Th(p)∆M .

This condition is equivalent to the surjectivity of the composite homomorphism

dph : TpM −→ Th(p)(M×M) −→ Th(p)(M×M)
/
Th(p)∆M , (1)



where the second map is the natural projection to the quotient. Since the dimensions of the domain
and target vector spaces in (1) are the same, the map (1) is not surjective if and only if

dph(v) ≡
(
v,dpf(v)

)
∈ Th(p)∆M ⇐⇒ dpf(v) = v

for some v∈TpM−0. Thus, by our assumption on dpf the homomorphism (1) is surjective. Since
the map q−→dqh is continuous on M , there exists a neighborhood U of p such that

dqh : TqM −→ Th(q)(M×M) −→ Th(q)(M×M)
/
Th(q)∆M

is onto for all q ∈ h−1(∆M ). Thus, h : U −→M ×M is transverse to ∆M and by the Implicit
Function Theorem

U∩h−1(∆M ) =
{
q∈U : f(q)=q

}
is a smooth submanifold of U of codimension dim(M ×M)−dimM = dimM ; so U ∩h−1(∆M )
consists of isolated fixed points (and p is one of them).

Here is a direct approach. Let ϕ : (U, p)−→(Rn,0) be a smooth chart, V =U∩f−1(U), and

g = ϕ ◦ f ◦ ϕ−1 : ϕ(V ) −→ V −→ U −→ Rn .

This is a smooth map from an open subset of Rn to Rn such that

g(0) = 0, d0g = dpϕ ◦ dpf ◦ d0ϕ
−1 = dpϕ ◦ dpf ◦ (dpϕ)−1 : T0Rn=Rn −→ Rn;

thus, d0g(v) 6= v for all v ∈Rn−0 by our assumption on dpf . Furthermore, q ∈V is a fixed point
of f if and only if ϕ(q) is a fixed point of g. Thus, it is sufficient to show that 0 is an isolated
fixed point of g. Suppose instead that there is a sequence xk∈ϕ(V )−0 converging to 0 such that
g(xk)=xk for all k∈Z+. Since Sn−1 is compact, a subsequence of the sequence vk=xk/|xk|, which
we’ll continue to call vk, converges to some v∈Sn−1. Since g(0) =0, g(xk) =xk, |xk|−→0, and g
is smooth,

d0g(v) ≡ lim
t−→0

g(tv)− g(0)
t

= lim
k−→∞

g(|xk|v)
|xk|

= lim
k−→∞

g(xk) + (g(|xk|v)− g(|xk|vk))
|xk|

= lim
k−→∞

vk + lim
k−→∞

g(|xk|v)− g(|xk|vk)
|xk|

= v + 0.
(2)

The reason the last limit vanishes is the following. If gk(t)=g(|xk|(vk+t(v−vk))), then

g(|xk|v)− g(|xk|vk) = g(1)− g(0) = g′(tk) = ~∇g||xk|(vk+tk(v−vk)) · |xk|(v−vk)

for some tk∈ [0, 1] by the Mean Value Theorem and the Chain Rule. Equation (2) contradicts our
assumptions.
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Problem 3 (20pts)

Let α= dx1 + fdx2 be a smooth 1-form on R3 (so f ∈C∞(R3)). Show that for every p∈R3 there
exists a diffeomorphism

ϕ=(y1, y2, y3) : U −→ V

from a neighborhood U of p to an open subset V of R3 such that α|U = gdy1 for some g∈C∞(U)
if and only if f does not depend on x3.

The form gdy1 vanishes on the two-dimensional slices y1 = const and any one-form vanishing on
these slices has this form. Thus, the existence of the desired charts is equivalent to the existence of
two-dimensional integral submanifolds for α through every point; this is the setting of Frobenius
Theorem. Since R3 is 3-dimensional and α is a nowhere zero one-form on R3, the line subbundle
Rα⊂T ∗R3 satisfies the condition of Frobenius Theorem if and only if

0 = α ∧ dα = (dx1 + fdx2) ∧ (fx1dx1 ∧ dx2 + fx3dx3 ∧ dx2

)
= −fx3dx1 ∧ dx2 ∧ dx3;

see Problem 5 on PS5. So, the desired charts exist around every point if and only if fx3 =0, i.e. f
does not depend on x3.

Problem 4 (20pts)

Let D⊂R2 be the closed unit disk centered at the origin.
(a) State Stokes’ Theorem (for integration of top forms on manifold; no singular chains) for D.
(b) Show that it reduces to Green’s theorem of calculus (if you do not remember what the latter
says, make sure your final statement is in calculus notation).

(a) If α∈E1(D), ∫
D

dα =
∫
S1

α ,

where D has the standard orientation and the unit circle S1 =∂D has the induced orientation. If
p ∈ S1 and v ∈ TpD = TpR2 is an outer normal vector to TpS

1, then a vector v1 ∈ TpS1 forms an
oriented basis for TpS1 if {v, v1} is an oriented basis for TpD. Thus, S1 is oriented counter-clockwise.

(b) A one-form α on E1(D) must be of the form α=fdx+gdy; then,

dα = fydy ∧ dx+ gxdx ∧ dy = (gx−fy)dx ∧ dy.

Thus, Stokes’ theorem reduces to∫
S1

fdx+gdy =
∫
D

(gx−fy)dx ∧ dy =
∫
D

(gx−fy)dxdy =
∫
D

(gx−fy)dA.
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In geometry, LHS is computed by taking a smooth σ= (x, y) : [0, 1]−→S1 with σ(0) =σ(1) which
is a diffeomorphism from (0, 1) to S1−f(0) and traverses S1 counter-clockwise; then∫

S1

fdx+gdy =
∫

[0,1]
σ∗(fdx+gdy) =

∫
[0,1]

(f ◦σdx+ g◦σdy) =
∫ 1

0

(
(f ◦σ)x′(t)+(g◦σ)y′(t)

)
dt.

The last expression is the calculus definition of the line integral∮
S1

fdx+gdy =
∮
S1

(f, g) · d~r

with S1 oriented counter-clockwise. So, Stokes’ theorem reduces to∮
S1

(f, g) · d~r =
∫
D

(gx−fy)dA.

This is Green’s theorem for the disk. Note that

gx − fy = det
(
∂x ∂y
f g

)
.

Problem 5 (25pts)

(a) State the usual definition of the tautological line bundle γn over the real projective space RPn,
making clear the topology on the total space and the projection map.
(b) Show that γ1−→RP 1 is isomorphic to the line bundle formed by projecting the infinite Mobius
Band to the circle S1.
(c) Show that the line bundle γn−→RPn is not orientable (for n≥1).

(a) γn=
{

(`, v)∈RPn×Rn+1 : v∈`
}

The topology on γn⊂RPn×Rn+1 is the subspace topology,
and the projection map γn−→RPn is the restriction of the first-component projection.

(b) The Mobius band bundle is described by

MB = (R×R)/Z −→ S1 =R/Z, [x, y] −→ [x],

k · (x, y) = (x+k, (−1)ky), k · x = x+k ∀ x, y∈R, k∈Z+ .

Identifying R2 with C in the usual way, define

h : MB = (R×R)/Z −→ γ1 ⊂ RP 1×R2 = S1/Z2 × R2 by [x, y] −→
(
[eπix], eπixy

)
.

This map is well-defined because

[x, y] =
[
x+k, (−1)ky

]
−→

(
[eπi(x+k)], eπi(x+k)(−1)ky

)
=
(
[(−1)keπix], (−1)keπix(−1)ky

)
=
(
[eπix], eπixy

)
.
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It is smooth because it is induced by a smooth map h̃ : R×R −→ S1×R2 followed by the projection
to RP 1×R2 and γ1⊂RP 1×R2 is an embedded submanifold. Since h̃ is an immersion, so is h. Since
h is a bijection, it is a diffeomorphism. Furthermore, it maps each fiber of MB−→S1 to a fiber of
γ1−→RP 1, i.e. the diagram

MB
h //

��

γ1

��
S1

[x]−→[eπix] // RP 1

commutes. Thus, h is an isomorphism of vector bundles.

Alternatively, one can start with

MB =
(
[0, 1]×R

)
/∼−→ S1, (0, t) ∼ (1,−t), [s, t] −→ e2πis ,

with the smooth structure specified by the two standard charts on MB. Define

h :
(
[0, 1]×R

)
/∼−→ γ1 ⊂ RP 1×R2 = S1/Z2 × R2 by [s, t] −→

(
[eπis], eπist

)
.

This map is well-defined because

h
(
[1,−t]

)
=
(
[−1],−(−t)

)
=
(
[1], t

)
= h

(
[0, t]

)
.

It is smooth because the composition of h with the inverse of each of the two charts on MB is the
composition of a smooth map

h̃i : (0, 1)×R −→ S1×R2

followed by the projection to RP 1×R2 and γ1 ⊂ RP 1×R2 is an embedded submanifold. Since
h̃i is an immersion, so is h. Since h is a bijection, it is a diffeomorphism. Furthermore, it maps
each fiber of MB−→S1 to a fiber of γ1−→RP1 and thus provides an isomorphism of vector bundles.

(c) Since the Mobius Band line is not orientable, neither is γ1−→RP 1 by part (b). Since RP 1⊂RPn
and

γ1 = γn
∣∣
RP 1 −→ RP 1

is not orientable, neither is γn.

Alternatively, since γn is a line bundle, it is enough to show that it is not trivial. For the latter, it
is enough to show that the complement of the zero section s0(RPn) in γn is connected (since the
complement of RPn×0 in RPn×R is not connected). By definition of γn in part (a),

γn − s0(RPn) =
{

(`, v)∈RPn×(Rn+1−0) : v∈`
}
.

Since each v∈Rn+1−0 determines a unique element π(v)∈RPn, the projection γn−→Rn+1−0 is
a continuous map with inverse

Rn−1−0 −→ γn, v −→
(
π(v), v

)
.

Since π is continuous and γn⊂RPn×(Rn+1−0) has the subspace topology, the inverse map is also
continuous. Thus, γn−s0(RPn) is homeomorphic to Rn+1−0, which is connected for n≥1, and so
γn−→RPn is not orientable for n≥1.
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